This commit was generated by cvs2svn to track changes on a CVS vendor
[external/binutils.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3    2002, 2003, 2004
4    Free Software Foundation, Inc.
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street, Fifth Floor,
22    Boston, MA 02110-1301, USA.  */
23
24
25 /* This file contains support routines for creating, manipulating, and
26    destroying minimal symbol tables.
27
28    Minimal symbol tables are used to hold some very basic information about
29    all defined global symbols (text, data, bss, abs, etc).  The only two
30    required pieces of information are the symbol's name and the address
31    associated with that symbol.
32
33    In many cases, even if a file was compiled with no special options for
34    debugging at all, as long as was not stripped it will contain sufficient
35    information to build useful minimal symbol tables using this structure.
36
37    Even when a file contains enough debugging information to build a full
38    symbol table, these minimal symbols are still useful for quickly mapping
39    between names and addresses, and vice versa.  They are also sometimes used
40    to figure out what full symbol table entries need to be read in. */
41
42
43 #include "defs.h"
44 #include <ctype.h>
45 #include "gdb_string.h"
46 #include "symtab.h"
47 #include "bfd.h"
48 #include "symfile.h"
49 #include "objfiles.h"
50 #include "demangle.h"
51 #include "value.h"
52 #include "cp-abi.h"
53
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55    At the end, copy them all into one newly allocated location on an objfile's
56    symbol obstack.  */
57
58 #define BUNCH_SIZE 127
59
60 struct msym_bunch
61   {
62     struct msym_bunch *next;
63     struct minimal_symbol contents[BUNCH_SIZE];
64   };
65
66 /* Bunch currently being filled up.
67    The next field points to chain of filled bunches.  */
68
69 static struct msym_bunch *msym_bunch;
70
71 /* Number of slots filled in current bunch.  */
72
73 static int msym_bunch_index;
74
75 /* Total number of minimal symbols recorded so far for the objfile.  */
76
77 static int msym_count;
78
79 /* Compute a hash code based using the same criteria as `strcmp_iw'.  */
80
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84   unsigned int hash = 0;
85   while (*string && *string != '(')
86     {
87       while (isspace (*string))
88         ++string;
89       if (*string && *string != '(')
90         {
91           hash = hash * 67 + *string - 113;
92           ++string;
93         }
94     }
95   return hash;
96 }
97
98 /* Compute a hash code for a string.  */
99
100 unsigned int
101 msymbol_hash (const char *string)
102 {
103   unsigned int hash = 0;
104   for (; *string; ++string)
105     hash = hash * 67 + *string - 113;
106   return hash;
107 }
108
109 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE.  */
110 void
111 add_minsym_to_hash_table (struct minimal_symbol *sym,
112                           struct minimal_symbol **table)
113 {
114   if (sym->hash_next == NULL)
115     {
116       unsigned int hash
117         = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
118       sym->hash_next = table[hash];
119       table[hash] = sym;
120     }
121 }
122
123 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
124    TABLE.  */
125 static void
126 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
127                                   struct minimal_symbol **table)
128 {
129   if (sym->demangled_hash_next == NULL)
130     {
131       unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
132       sym->demangled_hash_next = table[hash];
133       table[hash] = sym;
134     }
135 }
136
137
138 /* Look through all the current minimal symbol tables and find the
139    first minimal symbol that matches NAME.  If OBJF is non-NULL, limit
140    the search to that objfile.  If SFILE is non-NULL, the only file-scope
141    symbols considered will be from that source file (global symbols are
142    still preferred).  Returns a pointer to the minimal symbol that
143    matches, or NULL if no match is found.
144
145    Note:  One instance where there may be duplicate minimal symbols with
146    the same name is when the symbol tables for a shared library and the
147    symbol tables for an executable contain global symbols with the same
148    names (the dynamic linker deals with the duplication).
149
150    It's also possible to have minimal symbols with different mangled
151    names, but identical demangled names.  For example, the GNU C++ v3
152    ABI requires the generation of two (or perhaps three) copies of
153    constructor functions --- "in-charge", "not-in-charge", and
154    "allocate" copies; destructors may be duplicated as well.
155    Obviously, there must be distinct mangled names for each of these,
156    but the demangled names are all the same: S::S or S::~S.  */
157
158 struct minimal_symbol *
159 lookup_minimal_symbol (const char *name, const char *sfile,
160                        struct objfile *objf)
161 {
162   struct objfile *objfile;
163   struct minimal_symbol *msymbol;
164   struct minimal_symbol *found_symbol = NULL;
165   struct minimal_symbol *found_file_symbol = NULL;
166   struct minimal_symbol *trampoline_symbol = NULL;
167
168   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
169   unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
170
171 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
172   if (sfile != NULL)
173     {
174       char *p = strrchr (sfile, '/');
175       if (p != NULL)
176         sfile = p + 1;
177     }
178 #endif
179
180   for (objfile = object_files;
181        objfile != NULL && found_symbol == NULL;
182        objfile = objfile->next)
183     {
184       if (objf == NULL || objf == objfile)
185         {
186           /* Do two passes: the first over the ordinary hash table,
187              and the second over the demangled hash table.  */
188         int pass;
189
190         for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
191             {
192             /* Select hash list according to pass.  */
193             if (pass == 1)
194               msymbol = objfile->msymbol_hash[hash];
195             else
196               msymbol = objfile->msymbol_demangled_hash[dem_hash];
197
198             while (msymbol != NULL && found_symbol == NULL)
199                 {
200                   /* FIXME: carlton/2003-02-27: This is an unholy
201                      mixture of linkage names and natural names.  If
202                      you want to test the linkage names with strcmp,
203                      do that.  If you want to test the natural names
204                      with strcmp_iw, use SYMBOL_MATCHES_NATURAL_NAME.  */
205                   if (strcmp (DEPRECATED_SYMBOL_NAME (msymbol), (name)) == 0
206                       || (SYMBOL_DEMANGLED_NAME (msymbol) != NULL
207                           && strcmp_iw (SYMBOL_DEMANGLED_NAME (msymbol),
208                                         (name)) == 0))
209                     {
210                     switch (MSYMBOL_TYPE (msymbol))
211                       {
212                       case mst_file_text:
213                       case mst_file_data:
214                       case mst_file_bss:
215 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
216                         if (sfile == NULL
217                             || strcmp (msymbol->filename, sfile) == 0)
218                           found_file_symbol = msymbol;
219 #else
220                         /* We have neither the ability nor the need to
221                            deal with the SFILE parameter.  If we find
222                            more than one symbol, just return the latest
223                            one (the user can't expect useful behavior in
224                            that case).  */
225                         found_file_symbol = msymbol;
226 #endif
227                         break;
228
229                       case mst_solib_trampoline:
230
231                         /* If a trampoline symbol is found, we prefer to
232                            keep looking for the *real* symbol. If the
233                            actual symbol is not found, then we'll use the
234                            trampoline entry. */
235                         if (trampoline_symbol == NULL)
236                           trampoline_symbol = msymbol;
237                         break;
238
239                       case mst_unknown:
240                       default:
241                         found_symbol = msymbol;
242                         break;
243                       }
244                     }
245
246                 /* Find the next symbol on the hash chain.  */
247                 if (pass == 1)
248                   msymbol = msymbol->hash_next;
249                 else
250                   msymbol = msymbol->demangled_hash_next;
251                 }
252             }
253         }
254     }
255   /* External symbols are best.  */
256   if (found_symbol)
257     return found_symbol;
258
259   /* File-local symbols are next best.  */
260   if (found_file_symbol)
261     return found_file_symbol;
262
263   /* Symbols for shared library trampolines are next best.  */
264   if (trampoline_symbol)
265     return trampoline_symbol;
266
267   return NULL;
268 }
269
270 /* Look through all the current minimal symbol tables and find the
271    first minimal symbol that matches NAME and has text type.  If OBJF
272    is non-NULL, limit the search to that objfile.  Returns a pointer
273    to the minimal symbol that matches, or NULL if no match is found.
274
275    This function only searches the mangled (linkage) names.  */
276
277 struct minimal_symbol *
278 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
279 {
280   struct objfile *objfile;
281   struct minimal_symbol *msymbol;
282   struct minimal_symbol *found_symbol = NULL;
283   struct minimal_symbol *found_file_symbol = NULL;
284
285   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
286
287   for (objfile = object_files;
288        objfile != NULL && found_symbol == NULL;
289        objfile = objfile->next)
290     {
291       if (objf == NULL || objf == objfile)
292         {
293           for (msymbol = objfile->msymbol_hash[hash];
294                msymbol != NULL && found_symbol == NULL;
295                msymbol = msymbol->hash_next)
296             {
297               if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
298                   (MSYMBOL_TYPE (msymbol) == mst_text ||
299                    MSYMBOL_TYPE (msymbol) == mst_file_text))
300                 {
301                   switch (MSYMBOL_TYPE (msymbol))
302                     {
303                     case mst_file_text:
304                       found_file_symbol = msymbol;
305                       break;
306                     default:
307                       found_symbol = msymbol;
308                       break;
309                     }
310                 }
311             }
312         }
313     }
314   /* External symbols are best.  */
315   if (found_symbol)
316     return found_symbol;
317
318   /* File-local symbols are next best.  */
319   if (found_file_symbol)
320     return found_file_symbol;
321
322   return NULL;
323 }
324
325 /* Look through all the current minimal symbol tables and find the
326    first minimal symbol that matches NAME and is a solib trampoline.
327    If OBJF is non-NULL, limit the search to that objfile.  Returns a
328    pointer to the minimal symbol that matches, or NULL if no match is
329    found.
330
331    This function only searches the mangled (linkage) names.  */
332
333 struct minimal_symbol *
334 lookup_minimal_symbol_solib_trampoline (const char *name,
335                                         struct objfile *objf)
336 {
337   struct objfile *objfile;
338   struct minimal_symbol *msymbol;
339   struct minimal_symbol *found_symbol = NULL;
340
341   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
342
343   for (objfile = object_files;
344        objfile != NULL && found_symbol == NULL;
345        objfile = objfile->next)
346     {
347       if (objf == NULL || objf == objfile)
348         {
349           for (msymbol = objfile->msymbol_hash[hash];
350                msymbol != NULL && found_symbol == NULL;
351                msymbol = msymbol->hash_next)
352             {
353               if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
354                   MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
355                 return msymbol;
356             }
357         }
358     }
359
360   return NULL;
361 }
362
363
364 /* Search through the minimal symbol table for each objfile and find
365    the symbol whose address is the largest address that is still less
366    than or equal to PC, and matches SECTION (if non-NULL).  Returns a
367    pointer to the minimal symbol if such a symbol is found, or NULL if
368    PC is not in a suitable range.  Note that we need to look through
369    ALL the minimal symbol tables before deciding on the symbol that
370    comes closest to the specified PC.  This is because objfiles can
371    overlap, for example objfile A has .text at 0x100 and .data at
372    0x40000 and objfile B has .text at 0x234 and .data at 0x40048.  */
373
374 struct minimal_symbol *
375 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section)
376 {
377   int lo;
378   int hi;
379   int new;
380   struct objfile *objfile;
381   struct minimal_symbol *msymbol;
382   struct minimal_symbol *best_symbol = NULL;
383   struct obj_section *pc_section;
384
385   /* PC has to be in a known section.  This ensures that anything
386      beyond the end of the last segment doesn't appear to be part of
387      the last function in the last segment.  */
388   pc_section = find_pc_section (pc);
389   if (pc_section == NULL)
390     return NULL;
391
392   /* NOTE: cagney/2004-01-27: Removed code (added 2003-07-19) that was
393      trying to force the PC into a valid section as returned by
394      find_pc_section.  It broke IRIX 6.5 mdebug which relies on this
395      code returning an absolute symbol - the problem was that
396      find_pc_section wasn't returning an absolute section and hence
397      the code below would skip over absolute symbols.  Since the
398      original problem was with finding a frame's function, and that
399      uses [indirectly] lookup_minimal_symbol_by_pc, the original
400      problem has been fixed by having that function use
401      find_pc_section.  */
402
403   for (objfile = object_files;
404        objfile != NULL;
405        objfile = objfile->next)
406     {
407       /* If this objfile has a minimal symbol table, go search it using
408          a binary search.  Note that a minimal symbol table always consists
409          of at least two symbols, a "real" symbol and the terminating
410          "null symbol".  If there are no real symbols, then there is no
411          minimal symbol table at all. */
412
413       if (objfile->minimal_symbol_count > 0)
414         {
415           msymbol = objfile->msymbols;
416           lo = 0;
417           hi = objfile->minimal_symbol_count - 1;
418
419           /* This code assumes that the minimal symbols are sorted by
420              ascending address values.  If the pc value is greater than or
421              equal to the first symbol's address, then some symbol in this
422              minimal symbol table is a suitable candidate for being the
423              "best" symbol.  This includes the last real symbol, for cases
424              where the pc value is larger than any address in this vector.
425
426              By iterating until the address associated with the current
427              hi index (the endpoint of the test interval) is less than
428              or equal to the desired pc value, we accomplish two things:
429              (1) the case where the pc value is larger than any minimal
430              symbol address is trivially solved, (2) the address associated
431              with the hi index is always the one we want when the interation
432              terminates.  In essence, we are iterating the test interval
433              down until the pc value is pushed out of it from the high end.
434
435              Warning: this code is trickier than it would appear at first. */
436
437           /* Should also require that pc is <= end of objfile.  FIXME! */
438           if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
439             {
440               while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
441                 {
442                   /* pc is still strictly less than highest address */
443                   /* Note "new" will always be >= lo */
444                   new = (lo + hi) / 2;
445                   if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
446                       (lo == new))
447                     {
448                       hi = new;
449                     }
450                   else
451                     {
452                       lo = new;
453                     }
454                 }
455
456               /* If we have multiple symbols at the same address, we want
457                  hi to point to the last one.  That way we can find the
458                  right symbol if it has an index greater than hi.  */
459               while (hi < objfile->minimal_symbol_count - 1
460                      && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
461                          == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
462                 hi++;
463
464               /* The minimal symbol indexed by hi now is the best one in this
465                  objfile's minimal symbol table.  See if it is the best one
466                  overall. */
467
468               /* Skip any absolute symbols.  This is apparently what adb
469                  and dbx do, and is needed for the CM-5.  There are two
470                  known possible problems: (1) on ELF, apparently end, edata,
471                  etc. are absolute.  Not sure ignoring them here is a big
472                  deal, but if we want to use them, the fix would go in
473                  elfread.c.  (2) I think shared library entry points on the
474                  NeXT are absolute.  If we want special handling for this
475                  it probably should be triggered by a special
476                  mst_abs_or_lib or some such.  */
477               while (hi >= 0
478                      && msymbol[hi].type == mst_abs)
479                 --hi;
480
481               /* If "section" specified, skip any symbol from wrong section */
482               /* This is the new code that distinguishes it from the old function */
483               if (section)
484                 while (hi >= 0
485                        /* Some types of debug info, such as COFF,
486                           don't fill the bfd_section member, so don't
487                           throw away symbols on those platforms.  */
488                        && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL
489                        && SYMBOL_BFD_SECTION (&msymbol[hi]) != section)
490                   --hi;
491
492               if (hi >= 0
493                   && ((best_symbol == NULL) ||
494                       (SYMBOL_VALUE_ADDRESS (best_symbol) <
495                        SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
496                 {
497                   best_symbol = &msymbol[hi];
498                 }
499             }
500         }
501     }
502   return (best_symbol);
503 }
504
505 /* Backward compatibility: search through the minimal symbol table 
506    for a matching PC (no section given) */
507
508 struct minimal_symbol *
509 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
510 {
511   /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
512      force the section but that (well unless you're doing overlay
513      debugging) always returns NULL making the call somewhat useless.  */
514   struct obj_section *section = find_pc_section (pc);
515   if (section == NULL)
516     return NULL;
517   return lookup_minimal_symbol_by_pc_section (pc, section->the_bfd_section);
518 }
519 \f
520
521 /* Return leading symbol character for a BFD. If BFD is NULL,
522    return the leading symbol character from the main objfile.  */
523
524 static int get_symbol_leading_char (bfd *);
525
526 static int
527 get_symbol_leading_char (bfd *abfd)
528 {
529   if (abfd != NULL)
530     return bfd_get_symbol_leading_char (abfd);
531   if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
532     return bfd_get_symbol_leading_char (symfile_objfile->obfd);
533   return 0;
534 }
535
536 /* Prepare to start collecting minimal symbols.  Note that presetting
537    msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
538    symbol to allocate the memory for the first bunch. */
539
540 void
541 init_minimal_symbol_collection (void)
542 {
543   msym_count = 0;
544   msym_bunch = NULL;
545   msym_bunch_index = BUNCH_SIZE;
546 }
547
548 void
549 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
550                             enum minimal_symbol_type ms_type,
551                             struct objfile *objfile)
552 {
553   int section;
554
555   switch (ms_type)
556     {
557     case mst_text:
558     case mst_file_text:
559     case mst_solib_trampoline:
560       section = SECT_OFF_TEXT (objfile);
561       break;
562     case mst_data:
563     case mst_file_data:
564       section = SECT_OFF_DATA (objfile);
565       break;
566     case mst_bss:
567     case mst_file_bss:
568       section = SECT_OFF_BSS (objfile);
569       break;
570     default:
571       section = -1;
572     }
573
574   prim_record_minimal_symbol_and_info (name, address, ms_type,
575                                        NULL, section, NULL, objfile);
576 }
577
578 /* Record a minimal symbol in the msym bunches.  Returns the symbol
579    newly created.  */
580
581 struct minimal_symbol *
582 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
583                                      enum minimal_symbol_type ms_type,
584                                      char *info, int section,
585                                      asection *bfd_section,
586                                      struct objfile *objfile)
587 {
588   struct msym_bunch *new;
589   struct minimal_symbol *msymbol;
590
591   /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
592      the minimal symbols, because if there is also another symbol
593      at the same address (e.g. the first function of the file),
594      lookup_minimal_symbol_by_pc would have no way of getting the
595      right one.  */
596   if (ms_type == mst_file_text && name[0] == 'g'
597       && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
598           || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
599     return (NULL);
600
601   /* It's safe to strip the leading char here once, since the name
602      is also stored stripped in the minimal symbol table. */
603   if (name[0] == get_symbol_leading_char (objfile->obfd))
604     ++name;
605
606   if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
607     return (NULL);
608
609   if (msym_bunch_index == BUNCH_SIZE)
610     {
611       new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch));
612       msym_bunch_index = 0;
613       new->next = msym_bunch;
614       msym_bunch = new;
615     }
616   msymbol = &msym_bunch->contents[msym_bunch_index];
617   SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
618   SYMBOL_LANGUAGE (msymbol) = language_auto;
619   SYMBOL_SET_NAMES (msymbol, (char *)name, strlen (name), objfile);
620
621   SYMBOL_VALUE_ADDRESS (msymbol) = address;
622   SYMBOL_SECTION (msymbol) = section;
623   SYMBOL_BFD_SECTION (msymbol) = bfd_section;
624
625   MSYMBOL_TYPE (msymbol) = ms_type;
626   /* FIXME:  This info, if it remains, needs its own field.  */
627   MSYMBOL_INFO (msymbol) = info;        /* FIXME! */
628   MSYMBOL_SIZE (msymbol) = 0;
629
630   /* The hash pointers must be cleared! If they're not,
631      add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
632   msymbol->hash_next = NULL;
633   msymbol->demangled_hash_next = NULL;
634
635   msym_bunch_index++;
636   msym_count++;
637   OBJSTAT (objfile, n_minsyms++);
638   return msymbol;
639 }
640
641 /* Compare two minimal symbols by address and return a signed result based
642    on unsigned comparisons, so that we sort into unsigned numeric order.  
643    Within groups with the same address, sort by name.  */
644
645 static int
646 compare_minimal_symbols (const void *fn1p, const void *fn2p)
647 {
648   const struct minimal_symbol *fn1;
649   const struct minimal_symbol *fn2;
650
651   fn1 = (const struct minimal_symbol *) fn1p;
652   fn2 = (const struct minimal_symbol *) fn2p;
653
654   if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
655     {
656       return (-1);              /* addr 1 is less than addr 2 */
657     }
658   else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
659     {
660       return (1);               /* addr 1 is greater than addr 2 */
661     }
662   else
663     /* addrs are equal: sort by name */
664     {
665       char *name1 = SYMBOL_LINKAGE_NAME (fn1);
666       char *name2 = SYMBOL_LINKAGE_NAME (fn2);
667
668       if (name1 && name2)       /* both have names */
669         return strcmp (name1, name2);
670       else if (name2)
671         return 1;               /* fn1 has no name, so it is "less" */
672       else if (name1)           /* fn2 has no name, so it is "less" */
673         return -1;
674       else
675         return (0);             /* neither has a name, so they're equal. */
676     }
677 }
678
679 /* Discard the currently collected minimal symbols, if any.  If we wish
680    to save them for later use, we must have already copied them somewhere
681    else before calling this function.
682
683    FIXME:  We could allocate the minimal symbol bunches on their own
684    obstack and then simply blow the obstack away when we are done with
685    it.  Is it worth the extra trouble though? */
686
687 static void
688 do_discard_minimal_symbols_cleanup (void *arg)
689 {
690   struct msym_bunch *next;
691
692   while (msym_bunch != NULL)
693     {
694       next = msym_bunch->next;
695       xfree (msym_bunch);
696       msym_bunch = next;
697     }
698 }
699
700 struct cleanup *
701 make_cleanup_discard_minimal_symbols (void)
702 {
703   return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
704 }
705
706
707
708 /* Compact duplicate entries out of a minimal symbol table by walking
709    through the table and compacting out entries with duplicate addresses
710    and matching names.  Return the number of entries remaining.
711
712    On entry, the table resides between msymbol[0] and msymbol[mcount].
713    On exit, it resides between msymbol[0] and msymbol[result_count].
714
715    When files contain multiple sources of symbol information, it is
716    possible for the minimal symbol table to contain many duplicate entries.
717    As an example, SVR4 systems use ELF formatted object files, which
718    usually contain at least two different types of symbol tables (a
719    standard ELF one and a smaller dynamic linking table), as well as
720    DWARF debugging information for files compiled with -g.
721
722    Without compacting, the minimal symbol table for gdb itself contains
723    over a 1000 duplicates, about a third of the total table size.  Aside
724    from the potential trap of not noticing that two successive entries
725    identify the same location, this duplication impacts the time required
726    to linearly scan the table, which is done in a number of places.  So we
727    just do one linear scan here and toss out the duplicates.
728
729    Note that we are not concerned here about recovering the space that
730    is potentially freed up, because the strings themselves are allocated
731    on the objfile_obstack, and will get automatically freed when the symbol
732    table is freed.  The caller can free up the unused minimal symbols at
733    the end of the compacted region if their allocation strategy allows it.
734
735    Also note we only go up to the next to last entry within the loop
736    and then copy the last entry explicitly after the loop terminates.
737
738    Since the different sources of information for each symbol may
739    have different levels of "completeness", we may have duplicates
740    that have one entry with type "mst_unknown" and the other with a
741    known type.  So if the one we are leaving alone has type mst_unknown,
742    overwrite its type with the type from the one we are compacting out.  */
743
744 static int
745 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
746                          struct objfile *objfile)
747 {
748   struct minimal_symbol *copyfrom;
749   struct minimal_symbol *copyto;
750
751   if (mcount > 0)
752     {
753       copyfrom = copyto = msymbol;
754       while (copyfrom < msymbol + mcount - 1)
755         {
756           if (SYMBOL_VALUE_ADDRESS (copyfrom)
757               == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
758               && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
759                          SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
760             {
761               if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
762                 {
763                   MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
764                 }
765               copyfrom++;
766             }
767           else
768             *copyto++ = *copyfrom++;
769         }
770       *copyto++ = *copyfrom++;
771       mcount = copyto - msymbol;
772     }
773   return (mcount);
774 }
775
776 /* Build (or rebuild) the minimal symbol hash tables.  This is necessary
777    after compacting or sorting the table since the entries move around
778    thus causing the internal minimal_symbol pointers to become jumbled. */
779   
780 static void
781 build_minimal_symbol_hash_tables (struct objfile *objfile)
782 {
783   int i;
784   struct minimal_symbol *msym;
785
786   /* Clear the hash tables. */
787   for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
788     {
789       objfile->msymbol_hash[i] = 0;
790       objfile->msymbol_demangled_hash[i] = 0;
791     }
792
793   /* Now, (re)insert the actual entries. */
794   for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
795        i > 0;
796        i--, msym++)
797     {
798       msym->hash_next = 0;
799       add_minsym_to_hash_table (msym, objfile->msymbol_hash);
800
801       msym->demangled_hash_next = 0;
802       if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
803         add_minsym_to_demangled_hash_table (msym,
804                                             objfile->msymbol_demangled_hash);
805     }
806 }
807
808 /* Add the minimal symbols in the existing bunches to the objfile's official
809    minimal symbol table.  In most cases there is no minimal symbol table yet
810    for this objfile, and the existing bunches are used to create one.  Once
811    in a while (for shared libraries for example), we add symbols (e.g. common
812    symbols) to an existing objfile.
813
814    Because of the way minimal symbols are collected, we generally have no way
815    of knowing what source language applies to any particular minimal symbol.
816    Specifically, we have no way of knowing if the minimal symbol comes from a
817    C++ compilation unit or not.  So for the sake of supporting cached
818    demangled C++ names, we have no choice but to try and demangle each new one
819    that comes in.  If the demangling succeeds, then we assume it is a C++
820    symbol and set the symbol's language and demangled name fields
821    appropriately.  Note that in order to avoid unnecessary demanglings, and
822    allocating obstack space that subsequently can't be freed for the demangled
823    names, we mark all newly added symbols with language_auto.  After
824    compaction of the minimal symbols, we go back and scan the entire minimal
825    symbol table looking for these new symbols.  For each new symbol we attempt
826    to demangle it, and if successful, record it as a language_cplus symbol
827    and cache the demangled form on the symbol obstack.  Symbols which don't
828    demangle are marked as language_unknown symbols, which inhibits future
829    attempts to demangle them if we later add more minimal symbols. */
830
831 void
832 install_minimal_symbols (struct objfile *objfile)
833 {
834   int bindex;
835   int mcount;
836   struct msym_bunch *bunch;
837   struct minimal_symbol *msymbols;
838   int alloc_count;
839
840   if (msym_count > 0)
841     {
842       /* Allocate enough space in the obstack, into which we will gather the
843          bunches of new and existing minimal symbols, sort them, and then
844          compact out the duplicate entries.  Once we have a final table,
845          we will give back the excess space.  */
846
847       alloc_count = msym_count + objfile->minimal_symbol_count + 1;
848       obstack_blank (&objfile->objfile_obstack,
849                      alloc_count * sizeof (struct minimal_symbol));
850       msymbols = (struct minimal_symbol *)
851         obstack_base (&objfile->objfile_obstack);
852
853       /* Copy in the existing minimal symbols, if there are any.  */
854
855       if (objfile->minimal_symbol_count)
856         memcpy ((char *) msymbols, (char *) objfile->msymbols,
857             objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
858
859       /* Walk through the list of minimal symbol bunches, adding each symbol
860          to the new contiguous array of symbols.  Note that we start with the
861          current, possibly partially filled bunch (thus we use the current
862          msym_bunch_index for the first bunch we copy over), and thereafter
863          each bunch is full. */
864
865       mcount = objfile->minimal_symbol_count;
866
867       for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
868         {
869           for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
870             msymbols[mcount] = bunch->contents[bindex];
871           msym_bunch_index = BUNCH_SIZE;
872         }
873
874       /* Sort the minimal symbols by address.  */
875
876       qsort (msymbols, mcount, sizeof (struct minimal_symbol),
877              compare_minimal_symbols);
878
879       /* Compact out any duplicates, and free up whatever space we are
880          no longer using.  */
881
882       mcount = compact_minimal_symbols (msymbols, mcount, objfile);
883
884       obstack_blank (&objfile->objfile_obstack,
885                (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
886       msymbols = (struct minimal_symbol *)
887         obstack_finish (&objfile->objfile_obstack);
888
889       /* We also terminate the minimal symbol table with a "null symbol",
890          which is *not* included in the size of the table.  This makes it
891          easier to find the end of the table when we are handed a pointer
892          to some symbol in the middle of it.  Zero out the fields in the
893          "null symbol" allocated at the end of the array.  Note that the
894          symbol count does *not* include this null symbol, which is why it
895          is indexed by mcount and not mcount-1. */
896
897       SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
898       SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
899       MSYMBOL_INFO (&msymbols[mcount]) = NULL;
900       MSYMBOL_SIZE (&msymbols[mcount]) = 0;
901       MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
902       SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
903
904       /* Attach the minimal symbol table to the specified objfile.
905          The strings themselves are also located in the objfile_obstack
906          of this objfile.  */
907
908       objfile->minimal_symbol_count = mcount;
909       objfile->msymbols = msymbols;
910
911       /* Try to guess the appropriate C++ ABI by looking at the names 
912          of the minimal symbols in the table.  */
913       {
914         int i;
915
916         for (i = 0; i < mcount; i++)
917           {
918             /* If a symbol's name starts with _Z and was successfully
919                demangled, then we can assume we've found a GNU v3 symbol.
920                For now we set the C++ ABI globally; if the user is
921                mixing ABIs then the user will need to "set cp-abi"
922                manually.  */
923             const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
924             if (name[0] == '_' && name[1] == 'Z'
925                 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
926               {
927                 set_cp_abi_as_auto_default ("gnu-v3");
928                 break;
929               }
930           }
931       }
932
933       /* Now build the hash tables; we can't do this incrementally
934          at an earlier point since we weren't finished with the obstack
935          yet.  (And if the msymbol obstack gets moved, all the internal
936          pointers to other msymbols need to be adjusted.) */
937       build_minimal_symbol_hash_tables (objfile);
938     }
939 }
940
941 /* Sort all the minimal symbols in OBJFILE.  */
942
943 void
944 msymbols_sort (struct objfile *objfile)
945 {
946   qsort (objfile->msymbols, objfile->minimal_symbol_count,
947          sizeof (struct minimal_symbol), compare_minimal_symbols);
948   build_minimal_symbol_hash_tables (objfile);
949 }
950
951 /* Check if PC is in a shared library trampoline code stub.
952    Return minimal symbol for the trampoline entry or NULL if PC is not
953    in a trampoline code stub.  */
954
955 struct minimal_symbol *
956 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
957 {
958   struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
959
960   if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
961     return msymbol;
962   return NULL;
963 }
964
965 /* If PC is in a shared library trampoline code stub, return the
966    address of the `real' function belonging to the stub.
967    Return 0 if PC is not in a trampoline code stub or if the real
968    function is not found in the minimal symbol table.
969
970    We may fail to find the right function if a function with the
971    same name is defined in more than one shared library, but this
972    is considered bad programming style. We could return 0 if we find
973    a duplicate function in case this matters someday.  */
974
975 CORE_ADDR
976 find_solib_trampoline_target (CORE_ADDR pc)
977 {
978   struct objfile *objfile;
979   struct minimal_symbol *msymbol;
980   struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
981
982   if (tsymbol != NULL)
983     {
984       ALL_MSYMBOLS (objfile, msymbol)
985       {
986         if (MSYMBOL_TYPE (msymbol) == mst_text
987             && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
988                        SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
989           return SYMBOL_VALUE_ADDRESS (msymbol);
990       }
991     }
992   return 0;
993 }