1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
43 #include "filenames.h"
50 #include "cp-support.h"
52 #include "cli/cli-utils.h"
53 #include "common/symbol.h"
55 #include "safe-ctype.h"
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
67 case mst_slot_got_plt:
73 case mst_data_gnu_ifunc:
75 struct gdbarch *gdbarch = get_objfile_arch (objfile);
77 = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
78 current_top_target ());
81 if (func_address_p != NULL)
88 if (func_address_p != NULL)
89 *func_address_p = msym_addr;
94 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
95 At the end, copy them all into one newly allocated location on an objfile's
96 per-BFD storage obstack. */
98 #define BUNCH_SIZE 127
102 struct msym_bunch *next;
103 struct minimal_symbol contents[BUNCH_SIZE];
109 msymbol_hash_iw (const char *string)
111 unsigned int hash = 0;
113 while (*string && *string != '(')
115 string = skip_spaces (string);
116 if (*string && *string != '(')
118 hash = SYMBOL_HASH_NEXT (hash, *string);
128 msymbol_hash (const char *string)
130 unsigned int hash = 0;
132 for (; *string; ++string)
133 hash = SYMBOL_HASH_NEXT (hash, *string);
137 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
139 add_minsym_to_hash_table (struct minimal_symbol *sym,
140 struct minimal_symbol **table)
142 if (sym->hash_next == NULL)
145 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
147 sym->hash_next = table[hash];
152 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
155 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
156 struct objfile *objfile)
158 if (sym->demangled_hash_next == NULL)
160 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
161 MSYMBOL_SEARCH_NAME (sym));
163 objfile->per_bfd->demangled_hash_languages.set (MSYMBOL_LANGUAGE (sym));
165 struct minimal_symbol **table
166 = objfile->per_bfd->msymbol_demangled_hash;
167 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
168 sym->demangled_hash_next = table[hash_index];
169 table[hash_index] = sym;
173 /* Worker object for lookup_minimal_symbol. Stores temporary results
174 while walking the symbol tables. */
176 struct found_minimal_symbols
178 /* External symbols are best. */
179 bound_minimal_symbol external_symbol {};
181 /* File-local symbols are next best. */
182 bound_minimal_symbol file_symbol {};
184 /* Symbols for shared library trampolines are next best. */
185 bound_minimal_symbol trampoline_symbol {};
187 /* Called when a symbol name matches. Check if the minsym is a
188 better type than what we had already found, and record it in one
189 of the members fields if so. Returns true if we collected the
190 real symbol, in which case we can stop searching. */
191 bool maybe_collect (const char *sfile, objfile *objf,
192 minimal_symbol *msymbol);
195 /* See declaration above. */
198 found_minimal_symbols::maybe_collect (const char *sfile,
199 struct objfile *objfile,
200 minimal_symbol *msymbol)
202 switch (MSYMBOL_TYPE (msymbol))
208 || filename_cmp (msymbol->filename, sfile) == 0)
210 file_symbol.minsym = msymbol;
211 file_symbol.objfile = objfile;
215 case mst_solib_trampoline:
217 /* If a trampoline symbol is found, we prefer to keep
218 looking for the *real* symbol. If the actual symbol
219 is not found, then we'll use the trampoline
221 if (trampoline_symbol.minsym == NULL)
223 trampoline_symbol.minsym = msymbol;
224 trampoline_symbol.objfile = objfile;
230 external_symbol.minsym = msymbol;
231 external_symbol.objfile = objfile;
232 /* We have the real symbol. No use looking further. */
240 /* Walk the mangled name hash table, and pass each symbol whose name
241 matches LOOKUP_NAME according to NAMECMP to FOUND. */
244 lookup_minimal_symbol_mangled (const char *lookup_name,
246 struct objfile *objfile,
247 struct minimal_symbol **table,
249 int (*namecmp) (const char *, const char *),
250 found_minimal_symbols &found)
252 for (minimal_symbol *msymbol = table[hash];
254 msymbol = msymbol->hash_next)
256 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
258 if (namecmp (symbol_name, lookup_name) == 0
259 && found.maybe_collect (sfile, objfile, msymbol))
264 /* Walk the demangled name hash table, and pass each symbol whose name
265 matches LOOKUP_NAME according to MATCHER to FOUND. */
268 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
270 struct objfile *objfile,
271 struct minimal_symbol **table,
273 symbol_name_matcher_ftype *matcher,
274 found_minimal_symbols &found)
276 for (minimal_symbol *msymbol = table[hash];
278 msymbol = msymbol->demangled_hash_next)
280 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
282 if (matcher (symbol_name, lookup_name, NULL)
283 && found.maybe_collect (sfile, objfile, msymbol))
288 /* Look through all the current minimal symbol tables and find the
289 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
290 the search to that objfile. If SFILE is non-NULL, the only file-scope
291 symbols considered will be from that source file (global symbols are
292 still preferred). Returns a pointer to the minimal symbol that
293 matches, or NULL if no match is found.
295 Note: One instance where there may be duplicate minimal symbols with
296 the same name is when the symbol tables for a shared library and the
297 symbol tables for an executable contain global symbols with the same
298 names (the dynamic linker deals with the duplication).
300 It's also possible to have minimal symbols with different mangled
301 names, but identical demangled names. For example, the GNU C++ v3
302 ABI requires the generation of two (or perhaps three) copies of
303 constructor functions --- "in-charge", "not-in-charge", and
304 "allocate" copies; destructors may be duplicated as well.
305 Obviously, there must be distinct mangled names for each of these,
306 but the demangled names are all the same: S::S or S::~S. */
308 struct bound_minimal_symbol
309 lookup_minimal_symbol (const char *name, const char *sfile,
310 struct objfile *objf)
312 struct objfile *objfile;
313 found_minimal_symbols found;
315 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
318 = (case_sensitivity == case_sensitive_on
323 sfile = lbasename (sfile);
325 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
327 for (objfile = object_files;
328 objfile != NULL && found.external_symbol.minsym == NULL;
329 objfile = objfile->next)
331 if (objf == NULL || objf == objfile
332 || objf == objfile->separate_debug_objfile_backlink)
334 if (symbol_lookup_debug)
336 fprintf_unfiltered (gdb_stdlog,
337 "lookup_minimal_symbol (%s, %s, %s)\n",
338 name, sfile != NULL ? sfile : "NULL",
339 objfile_debug_name (objfile));
342 /* Do two passes: the first over the ordinary hash table,
343 and the second over the demangled hash table. */
344 lookup_minimal_symbol_mangled (name, sfile, objfile,
345 objfile->per_bfd->msymbol_hash,
346 mangled_hash, mangled_cmp, found);
348 /* If not found, try the demangled hash table. */
349 if (found.external_symbol.minsym == NULL)
351 /* Once for each language in the demangled hash names
352 table (usually just zero or one languages). */
353 for (unsigned iter = 0; iter < nr_languages; ++iter)
355 if (!objfile->per_bfd->demangled_hash_languages.test (iter))
357 enum language lang = (enum language) iter;
360 = (lookup_name.search_name_hash (lang)
361 % MINIMAL_SYMBOL_HASH_SIZE);
363 symbol_name_matcher_ftype *match
364 = get_symbol_name_matcher (language_def (lang),
366 struct minimal_symbol **msymbol_demangled_hash
367 = objfile->per_bfd->msymbol_demangled_hash;
369 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
370 msymbol_demangled_hash,
373 if (found.external_symbol.minsym != NULL)
380 /* External symbols are best. */
381 if (found.external_symbol.minsym != NULL)
383 if (symbol_lookup_debug)
385 minimal_symbol *minsym = found.external_symbol.minsym;
387 fprintf_unfiltered (gdb_stdlog,
388 "lookup_minimal_symbol (...) = %s (external)\n",
389 host_address_to_string (minsym));
391 return found.external_symbol;
394 /* File-local symbols are next best. */
395 if (found.file_symbol.minsym != NULL)
397 if (symbol_lookup_debug)
399 minimal_symbol *minsym = found.file_symbol.minsym;
401 fprintf_unfiltered (gdb_stdlog,
402 "lookup_minimal_symbol (...) = %s (file-local)\n",
403 host_address_to_string (minsym));
405 return found.file_symbol;
408 /* Symbols for shared library trampolines are next best. */
409 if (found.trampoline_symbol.minsym != NULL)
411 if (symbol_lookup_debug)
413 minimal_symbol *minsym = found.trampoline_symbol.minsym;
415 fprintf_unfiltered (gdb_stdlog,
416 "lookup_minimal_symbol (...) = %s (trampoline)\n",
417 host_address_to_string (minsym));
420 return found.trampoline_symbol;
424 if (symbol_lookup_debug)
425 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
431 struct bound_minimal_symbol
432 lookup_bound_minimal_symbol (const char *name)
434 return lookup_minimal_symbol (name, NULL, NULL);
437 /* See common/symbol.h. */
440 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
441 struct objfile *objfile)
443 struct bound_minimal_symbol sym
444 = lookup_minimal_symbol (name, NULL, objfile);
446 if (sym.minsym != NULL)
447 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
449 return sym.minsym == NULL;
452 /* Get the lookup name form best suitable for linkage name
456 linkage_name_str (const lookup_name_info &lookup_name)
458 /* Unlike most languages (including C++), Ada uses the
459 encoded/linkage name as the search name recorded in symbols. So
460 if debugging in Ada mode, prefer the Ada-encoded name. This also
461 makes Ada's verbatim match syntax ("<...>") work, because
462 "lookup_name.name()" includes the "<>"s, while
463 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
465 if (current_language->la_language == language_ada)
466 return lookup_name.ada ().lookup_name ().c_str ();
468 return lookup_name.name ().c_str ();
474 iterate_over_minimal_symbols
475 (struct objfile *objf, const lookup_name_info &lookup_name,
476 gdb::function_view<bool (struct minimal_symbol *)> callback)
478 /* The first pass is over the ordinary hash table. */
480 const char *name = linkage_name_str (lookup_name);
481 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
483 = (case_sensitivity == case_sensitive_on
487 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
489 iter = iter->hash_next)
491 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
497 /* The second pass is over the demangled table. Once for each
498 language in the demangled hash names table (usually just zero or
500 for (unsigned liter = 0; liter < nr_languages; ++liter)
502 if (!objf->per_bfd->demangled_hash_languages.test (liter))
505 enum language lang = (enum language) liter;
506 const language_defn *lang_def = language_def (lang);
507 symbol_name_matcher_ftype *name_match
508 = get_symbol_name_matcher (lang_def, lookup_name);
511 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
512 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
514 iter = iter->demangled_hash_next)
515 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
523 struct bound_minimal_symbol
524 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
526 struct objfile *objfile;
527 struct minimal_symbol *msymbol;
528 struct bound_minimal_symbol found_symbol = { NULL, NULL };
529 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
531 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
533 for (objfile = object_files;
534 objfile != NULL && found_symbol.minsym == NULL;
535 objfile = objfile->next)
537 if (objf == NULL || objf == objfile
538 || objf == objfile->separate_debug_objfile_backlink)
540 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
541 msymbol != NULL && found_symbol.minsym == NULL;
542 msymbol = msymbol->hash_next)
544 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
545 (MSYMBOL_TYPE (msymbol) == mst_text
546 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
547 || MSYMBOL_TYPE (msymbol) == mst_file_text))
549 switch (MSYMBOL_TYPE (msymbol))
552 found_file_symbol.minsym = msymbol;
553 found_file_symbol.objfile = objfile;
556 found_symbol.minsym = msymbol;
557 found_symbol.objfile = objfile;
564 /* External symbols are best. */
565 if (found_symbol.minsym)
568 /* File-local symbols are next best. */
569 return found_file_symbol;
574 struct minimal_symbol *
575 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
576 struct objfile *objf)
578 struct objfile *objfile;
579 struct minimal_symbol *msymbol;
581 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
583 for (objfile = object_files;
585 objfile = objfile->next)
587 if (objf == NULL || objf == objfile
588 || objf == objfile->separate_debug_objfile_backlink)
590 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
592 msymbol = msymbol->hash_next)
594 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
595 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
606 struct bound_minimal_symbol
607 lookup_minimal_symbol_solib_trampoline (const char *name,
608 struct objfile *objf)
610 struct objfile *objfile;
611 struct minimal_symbol *msymbol;
612 struct bound_minimal_symbol found_symbol = { NULL, NULL };
614 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
616 for (objfile = object_files;
618 objfile = objfile->next)
620 if (objf == NULL || objf == objfile
621 || objf == objfile->separate_debug_objfile_backlink)
623 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
625 msymbol = msymbol->hash_next)
627 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
628 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
630 found_symbol.objfile = objfile;
631 found_symbol.minsym = msymbol;
641 /* A helper function that makes *PC section-relative. This searches
642 the sections of OBJFILE and if *PC is in a section, it subtracts
643 the section offset and returns true. Otherwise it returns
647 frob_address (struct objfile *objfile, CORE_ADDR *pc)
649 struct obj_section *iter;
651 ALL_OBJFILE_OSECTIONS (objfile, iter)
653 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
655 *pc -= obj_section_offset (iter);
663 /* Helper for lookup_minimal_symbol_by_pc_section. Convert a
664 lookup_msym_prefer to a minimal_symbol_type. */
666 static minimal_symbol_type
667 msym_prefer_to_msym_type (lookup_msym_prefer prefer)
671 case lookup_msym_prefer::TEXT:
673 case lookup_msym_prefer::TRAMPOLINE:
674 return mst_solib_trampoline;
675 case lookup_msym_prefer::GNU_IFUNC:
676 return mst_text_gnu_ifunc;
679 /* Assert here instead of in a default switch case above so that
680 -Wswitch warns if a new enumerator is added. */
681 gdb_assert_not_reached ("unhandled lookup_msym_prefer");
684 /* Search through the minimal symbol table for each objfile and find
685 the symbol whose address is the largest address that is still less
686 than or equal to PC, and matches SECTION (which is not NULL).
687 Returns a pointer to the minimal symbol if such a symbol is found,
688 or NULL if PC is not in a suitable range.
689 Note that we need to look through ALL the minimal symbol tables
690 before deciding on the symbol that comes closest to the specified PC.
691 This is because objfiles can overlap, for example objfile A has .text
692 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
695 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
696 there are text and trampoline symbols at the same address.
697 Otherwise prefer mst_text symbols. */
700 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
701 lookup_msym_prefer prefer)
706 struct objfile *objfile;
707 struct minimal_symbol *msymbol;
708 struct minimal_symbol *best_symbol = NULL;
709 struct objfile *best_objfile = NULL;
710 struct bound_minimal_symbol result;
714 section = find_pc_section (pc_in);
719 minimal_symbol_type want_type = msym_prefer_to_msym_type (prefer);
721 /* We can not require the symbol found to be in section, because
722 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
723 symbol - but find_pc_section won't return an absolute section and
724 hence the code below would skip over absolute symbols. We can
725 still take advantage of the call to find_pc_section, though - the
726 object file still must match. In case we have separate debug
727 files, search both the file and its separate debug file. There's
728 no telling which one will have the minimal symbols. */
730 gdb_assert (section != NULL);
732 for (objfile = section->objfile;
734 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
736 CORE_ADDR pc = pc_in;
738 /* If this objfile has a minimal symbol table, go search it
739 using a binary search. */
741 if (objfile->per_bfd->minimal_symbol_count > 0)
743 int best_zero_sized = -1;
745 msymbol = objfile->per_bfd->msymbols.get ();
747 hi = objfile->per_bfd->minimal_symbol_count - 1;
749 /* This code assumes that the minimal symbols are sorted by
750 ascending address values. If the pc value is greater than or
751 equal to the first symbol's address, then some symbol in this
752 minimal symbol table is a suitable candidate for being the
753 "best" symbol. This includes the last real symbol, for cases
754 where the pc value is larger than any address in this vector.
756 By iterating until the address associated with the current
757 hi index (the endpoint of the test interval) is less than
758 or equal to the desired pc value, we accomplish two things:
759 (1) the case where the pc value is larger than any minimal
760 symbol address is trivially solved, (2) the address associated
761 with the hi index is always the one we want when the interation
762 terminates. In essence, we are iterating the test interval
763 down until the pc value is pushed out of it from the high end.
765 Warning: this code is trickier than it would appear at first. */
767 if (frob_address (objfile, &pc)
768 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
770 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
772 /* pc is still strictly less than highest address. */
773 /* Note "new" will always be >= lo. */
774 newobj = (lo + hi) / 2;
775 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
786 /* If we have multiple symbols at the same address, we want
787 hi to point to the last one. That way we can find the
788 right symbol if it has an index greater than hi. */
789 while (hi < objfile->per_bfd->minimal_symbol_count - 1
790 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
791 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
794 /* Skip various undesirable symbols. */
797 /* Skip any absolute symbols. This is apparently
798 what adb and dbx do, and is needed for the CM-5.
799 There are two known possible problems: (1) on
800 ELF, apparently end, edata, etc. are absolute.
801 Not sure ignoring them here is a big deal, but if
802 we want to use them, the fix would go in
803 elfread.c. (2) I think shared library entry
804 points on the NeXT are absolute. If we want
805 special handling for this it probably should be
806 triggered by a special mst_abs_or_lib or some
809 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
815 /* If SECTION was specified, skip any symbol from
818 /* Some types of debug info, such as COFF,
819 don't fill the bfd_section member, so don't
820 throw away symbols on those platforms. */
821 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
822 && (!matching_obj_sections
823 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
830 /* If we are looking for a trampoline and this is a
831 text symbol, or the other way around, check the
832 preceding symbol too. If they are otherwise
833 identical prefer that one. */
835 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
836 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
837 && (MSYMBOL_SIZE (&msymbol[hi])
838 == MSYMBOL_SIZE (&msymbol[hi - 1]))
839 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
840 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
841 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
842 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
848 /* If the minimal symbol has a zero size, save it
849 but keep scanning backwards looking for one with
850 a non-zero size. A zero size may mean that the
851 symbol isn't an object or function (e.g. a
852 label), or it may just mean that the size was not
854 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
856 if (best_zero_sized == -1)
857 best_zero_sized = hi;
862 /* If we are past the end of the current symbol, try
863 the previous symbol if it has a larger overlapping
864 size. This happens on i686-pc-linux-gnu with glibc;
865 the nocancel variants of system calls are inside
866 the cancellable variants, but both have sizes. */
868 && MSYMBOL_SIZE (&msymbol[hi]) != 0
869 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
870 + MSYMBOL_SIZE (&msymbol[hi]))
871 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
872 + MSYMBOL_SIZE (&msymbol[hi - 1])))
878 /* Otherwise, this symbol must be as good as we're going
883 /* If HI has a zero size, and best_zero_sized is set,
884 then we had two or more zero-sized symbols; prefer
885 the first one we found (which may have a higher
886 address). Also, if we ran off the end, be sure
888 if (best_zero_sized != -1
889 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
890 hi = best_zero_sized;
892 /* If the minimal symbol has a non-zero size, and this
893 PC appears to be outside the symbol's contents, then
894 refuse to use this symbol. If we found a zero-sized
895 symbol with an address greater than this symbol's,
896 use that instead. We assume that if symbols have
897 specified sizes, they do not overlap. */
900 && MSYMBOL_SIZE (&msymbol[hi]) != 0
901 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
902 + MSYMBOL_SIZE (&msymbol[hi])))
904 if (best_zero_sized != -1)
905 hi = best_zero_sized;
907 /* Go on to the next object file. */
911 /* The minimal symbol indexed by hi now is the best one in this
912 objfile's minimal symbol table. See if it is the best one
916 && ((best_symbol == NULL) ||
917 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
918 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
920 best_symbol = &msymbol[hi];
921 best_objfile = objfile;
927 result.minsym = best_symbol;
928 result.objfile = best_objfile;
934 struct bound_minimal_symbol
935 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
937 return lookup_minimal_symbol_by_pc_section (pc, NULL);
940 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
943 in_gnu_ifunc_stub (CORE_ADDR pc)
945 bound_minimal_symbol msymbol
946 = lookup_minimal_symbol_by_pc_section (pc, NULL,
947 lookup_msym_prefer::GNU_IFUNC);
948 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
951 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
954 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
956 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
957 "the ELF support compiled in."),
958 paddress (gdbarch, pc));
961 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
964 stub_gnu_ifunc_resolve_name (const char *function_name,
965 CORE_ADDR *function_address_p)
967 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
968 "the ELF support compiled in."),
972 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
975 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
977 internal_error (__FILE__, __LINE__,
978 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
981 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
984 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
986 internal_error (__FILE__, __LINE__,
987 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
990 /* See elf_gnu_ifunc_fns for its real implementation. */
992 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
994 stub_gnu_ifunc_resolve_addr,
995 stub_gnu_ifunc_resolve_name,
996 stub_gnu_ifunc_resolver_stop,
997 stub_gnu_ifunc_resolver_return_stop,
1000 /* A placeholder for &elf_gnu_ifunc_fns. */
1002 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
1006 /* Return leading symbol character for a BFD. If BFD is NULL,
1007 return the leading symbol character from the main objfile. */
1010 get_symbol_leading_char (bfd *abfd)
1013 return bfd_get_symbol_leading_char (abfd);
1014 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
1015 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
1019 /* See minsyms.h. */
1021 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1023 m_msym_bunch (NULL),
1024 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1025 first call to save a minimal symbol to allocate the memory for
1027 m_msym_bunch_index (BUNCH_SIZE),
1032 /* Discard the currently collected minimal symbols, if any. If we wish
1033 to save them for later use, we must have already copied them somewhere
1034 else before calling this function.
1036 FIXME: We could allocate the minimal symbol bunches on their own
1037 obstack and then simply blow the obstack away when we are done with
1038 it. Is it worth the extra trouble though? */
1040 minimal_symbol_reader::~minimal_symbol_reader ()
1042 struct msym_bunch *next;
1044 while (m_msym_bunch != NULL)
1046 next = m_msym_bunch->next;
1047 xfree (m_msym_bunch);
1048 m_msym_bunch = next;
1052 /* See minsyms.h. */
1055 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1056 enum minimal_symbol_type ms_type)
1063 case mst_text_gnu_ifunc:
1065 case mst_solib_trampoline:
1066 section = SECT_OFF_TEXT (m_objfile);
1069 case mst_data_gnu_ifunc:
1071 section = SECT_OFF_DATA (m_objfile);
1075 section = SECT_OFF_BSS (m_objfile);
1081 record_with_info (name, address, ms_type, section);
1084 /* Convert an enumerator of type minimal_symbol_type to its string
1088 mst_str (minimal_symbol_type t)
1090 #define MST_TO_STR(x) case x: return #x;
1093 MST_TO_STR (mst_unknown);
1094 MST_TO_STR (mst_text);
1095 MST_TO_STR (mst_text_gnu_ifunc);
1096 MST_TO_STR (mst_slot_got_plt);
1097 MST_TO_STR (mst_data);
1098 MST_TO_STR (mst_bss);
1099 MST_TO_STR (mst_abs);
1100 MST_TO_STR (mst_solib_trampoline);
1101 MST_TO_STR (mst_file_text);
1102 MST_TO_STR (mst_file_data);
1103 MST_TO_STR (mst_file_bss);
1111 /* See minsyms.h. */
1113 struct minimal_symbol *
1114 minimal_symbol_reader::record_full (const char *name, int name_len,
1115 bool copy_name, CORE_ADDR address,
1116 enum minimal_symbol_type ms_type,
1119 struct msym_bunch *newobj;
1120 struct minimal_symbol *msymbol;
1122 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1123 the minimal symbols, because if there is also another symbol
1124 at the same address (e.g. the first function of the file),
1125 lookup_minimal_symbol_by_pc would have no way of getting the
1127 if (ms_type == mst_file_text && name[0] == 'g'
1128 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1129 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1132 /* It's safe to strip the leading char here once, since the name
1133 is also stored stripped in the minimal symbol table. */
1134 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1140 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1143 if (symtab_create_debug >= 2)
1144 printf_unfiltered ("Recording minsym: %-21s %18s %4d %s\n",
1145 mst_str (ms_type), hex_string (address), section, name);
1147 if (m_msym_bunch_index == BUNCH_SIZE)
1149 newobj = XCNEW (struct msym_bunch);
1150 m_msym_bunch_index = 0;
1151 newobj->next = m_msym_bunch;
1152 m_msym_bunch = newobj;
1154 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1155 symbol_set_language (msymbol, language_auto,
1156 &m_objfile->per_bfd->storage_obstack);
1157 symbol_set_names (msymbol, name, name_len, copy_name, m_objfile->per_bfd);
1159 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1160 MSYMBOL_SECTION (msymbol) = section;
1162 MSYMBOL_TYPE (msymbol) = ms_type;
1164 /* If we already read minimal symbols for this objfile, then don't
1165 ever allocate a new one. */
1166 if (!m_objfile->per_bfd->minsyms_read)
1168 m_msym_bunch_index++;
1169 m_objfile->per_bfd->n_minsyms++;
1175 /* Compare two minimal symbols by address and return a signed result based
1176 on unsigned comparisons, so that we sort into unsigned numeric order.
1177 Within groups with the same address, sort by name. */
1180 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1182 const struct minimal_symbol *fn1;
1183 const struct minimal_symbol *fn2;
1185 fn1 = (const struct minimal_symbol *) fn1p;
1186 fn2 = (const struct minimal_symbol *) fn2p;
1188 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1190 return (-1); /* addr 1 is less than addr 2. */
1192 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1194 return (1); /* addr 1 is greater than addr 2. */
1197 /* addrs are equal: sort by name */
1199 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1200 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1202 if (name1 && name2) /* both have names */
1203 return strcmp (name1, name2);
1205 return 1; /* fn1 has no name, so it is "less". */
1206 else if (name1) /* fn2 has no name, so it is "less". */
1209 return (0); /* Neither has a name, so they're equal. */
1213 /* Compact duplicate entries out of a minimal symbol table by walking
1214 through the table and compacting out entries with duplicate addresses
1215 and matching names. Return the number of entries remaining.
1217 On entry, the table resides between msymbol[0] and msymbol[mcount].
1218 On exit, it resides between msymbol[0] and msymbol[result_count].
1220 When files contain multiple sources of symbol information, it is
1221 possible for the minimal symbol table to contain many duplicate entries.
1222 As an example, SVR4 systems use ELF formatted object files, which
1223 usually contain at least two different types of symbol tables (a
1224 standard ELF one and a smaller dynamic linking table), as well as
1225 DWARF debugging information for files compiled with -g.
1227 Without compacting, the minimal symbol table for gdb itself contains
1228 over a 1000 duplicates, about a third of the total table size. Aside
1229 from the potential trap of not noticing that two successive entries
1230 identify the same location, this duplication impacts the time required
1231 to linearly scan the table, which is done in a number of places. So we
1232 just do one linear scan here and toss out the duplicates.
1234 Note that we are not concerned here about recovering the space that
1235 is potentially freed up, because the strings themselves are allocated
1236 on the storage_obstack, and will get automatically freed when the symbol
1237 table is freed. The caller can free up the unused minimal symbols at
1238 the end of the compacted region if their allocation strategy allows it.
1240 Also note we only go up to the next to last entry within the loop
1241 and then copy the last entry explicitly after the loop terminates.
1243 Since the different sources of information for each symbol may
1244 have different levels of "completeness", we may have duplicates
1245 that have one entry with type "mst_unknown" and the other with a
1246 known type. So if the one we are leaving alone has type mst_unknown,
1247 overwrite its type with the type from the one we are compacting out. */
1250 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1251 struct objfile *objfile)
1253 struct minimal_symbol *copyfrom;
1254 struct minimal_symbol *copyto;
1258 copyfrom = copyto = msymbol;
1259 while (copyfrom < msymbol + mcount - 1)
1261 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1262 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1263 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1264 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1265 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1267 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1269 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1274 *copyto++ = *copyfrom++;
1276 *copyto++ = *copyfrom++;
1277 mcount = copyto - msymbol;
1282 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1283 after compacting or sorting the table since the entries move around
1284 thus causing the internal minimal_symbol pointers to become jumbled. */
1287 build_minimal_symbol_hash_tables (struct objfile *objfile)
1290 struct minimal_symbol *msym;
1292 /* Clear the hash tables. */
1293 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1295 objfile->per_bfd->msymbol_hash[i] = 0;
1296 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1299 /* Now, (re)insert the actual entries. */
1300 for ((i = objfile->per_bfd->minimal_symbol_count,
1301 msym = objfile->per_bfd->msymbols.get ());
1305 msym->hash_next = 0;
1306 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1308 msym->demangled_hash_next = 0;
1309 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1310 add_minsym_to_demangled_hash_table (msym, objfile);
1314 /* Add the minimal symbols in the existing bunches to the objfile's official
1315 minimal symbol table. In most cases there is no minimal symbol table yet
1316 for this objfile, and the existing bunches are used to create one. Once
1317 in a while (for shared libraries for example), we add symbols (e.g. common
1318 symbols) to an existing objfile.
1320 Because of the way minimal symbols are collected, we generally have no way
1321 of knowing what source language applies to any particular minimal symbol.
1322 Specifically, we have no way of knowing if the minimal symbol comes from a
1323 C++ compilation unit or not. So for the sake of supporting cached
1324 demangled C++ names, we have no choice but to try and demangle each new one
1325 that comes in. If the demangling succeeds, then we assume it is a C++
1326 symbol and set the symbol's language and demangled name fields
1327 appropriately. Note that in order to avoid unnecessary demanglings, and
1328 allocating obstack space that subsequently can't be freed for the demangled
1329 names, we mark all newly added symbols with language_auto. After
1330 compaction of the minimal symbols, we go back and scan the entire minimal
1331 symbol table looking for these new symbols. For each new symbol we attempt
1332 to demangle it, and if successful, record it as a language_cplus symbol
1333 and cache the demangled form on the symbol obstack. Symbols which don't
1334 demangle are marked as language_unknown symbols, which inhibits future
1335 attempts to demangle them if we later add more minimal symbols. */
1338 minimal_symbol_reader::install ()
1341 struct msym_bunch *bunch;
1342 struct minimal_symbol *msymbols;
1345 if (m_objfile->per_bfd->minsyms_read)
1348 if (m_msym_count > 0)
1350 if (symtab_create_debug)
1352 fprintf_unfiltered (gdb_stdlog,
1353 "Installing %d minimal symbols of objfile %s.\n",
1354 m_msym_count, objfile_name (m_objfile));
1357 /* Allocate enough space in the obstack, into which we will gather the
1358 bunches of new and existing minimal symbols, sort them, and then
1359 compact out the duplicate entries. Once we have a final table,
1360 we will give back the excess space. */
1362 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count;
1363 gdb::unique_xmalloc_ptr<minimal_symbol>
1364 msym_holder (XNEWVEC (minimal_symbol, alloc_count));
1365 msymbols = msym_holder.get ();
1367 /* Copy in the existing minimal symbols, if there are any. */
1369 if (m_objfile->per_bfd->minimal_symbol_count)
1370 memcpy (msymbols, m_objfile->per_bfd->msymbols.get (),
1371 m_objfile->per_bfd->minimal_symbol_count
1372 * sizeof (struct minimal_symbol));
1374 /* Walk through the list of minimal symbol bunches, adding each symbol
1375 to the new contiguous array of symbols. Note that we start with the
1376 current, possibly partially filled bunch (thus we use the current
1377 msym_bunch_index for the first bunch we copy over), and thereafter
1378 each bunch is full. */
1380 mcount = m_objfile->per_bfd->minimal_symbol_count;
1382 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1384 memcpy (&msymbols[mcount], &bunch->contents[0],
1385 m_msym_bunch_index * sizeof (struct minimal_symbol));
1386 mcount += m_msym_bunch_index;
1387 m_msym_bunch_index = BUNCH_SIZE;
1390 /* Sort the minimal symbols by address. */
1392 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1393 compare_minimal_symbols);
1395 /* Compact out any duplicates, and free up whatever space we are
1398 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1399 msym_holder.reset (XRESIZEVEC (struct minimal_symbol,
1400 msym_holder.release (),
1403 /* Attach the minimal symbol table to the specified objfile.
1404 The strings themselves are also located in the storage_obstack
1407 m_objfile->per_bfd->minimal_symbol_count = mcount;
1408 m_objfile->per_bfd->msymbols = std::move (msym_holder);
1410 /* Now build the hash tables; we can't do this incrementally
1411 at an earlier point since we weren't finished with the obstack
1412 yet. (And if the msymbol obstack gets moved, all the internal
1413 pointers to other msymbols need to be adjusted.) */
1414 build_minimal_symbol_hash_tables (m_objfile);
1418 /* Check if PC is in a shared library trampoline code stub.
1419 Return minimal symbol for the trampoline entry or NULL if PC is not
1420 in a trampoline code stub. */
1422 static struct minimal_symbol *
1423 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1425 bound_minimal_symbol msymbol
1426 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1427 lookup_msym_prefer::TRAMPOLINE);
1429 if (msymbol.minsym != NULL
1430 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1431 return msymbol.minsym;
1435 /* If PC is in a shared library trampoline code stub, return the
1436 address of the `real' function belonging to the stub.
1437 Return 0 if PC is not in a trampoline code stub or if the real
1438 function is not found in the minimal symbol table.
1440 We may fail to find the right function if a function with the
1441 same name is defined in more than one shared library, but this
1442 is considered bad programming style. We could return 0 if we find
1443 a duplicate function in case this matters someday. */
1446 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1448 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1450 if (tsymbol != NULL)
1452 for (objfile *objfile : current_program_space->objfiles ())
1454 for (minimal_symbol *msymbol : objfile->msymbols ())
1456 /* Also handle minimal symbols pointing to function
1458 if ((MSYMBOL_TYPE (msymbol) == mst_text
1459 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
1460 || MSYMBOL_TYPE (msymbol) == mst_data
1461 || MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
1462 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1463 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1467 /* Ignore data symbols that are not function
1469 if (msymbol_is_function (objfile, msymbol, &func))
1478 /* See minsyms.h. */
1481 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1485 struct obj_section *obj_section;
1487 struct minimal_symbol *msymbol;
1489 gdb_assert (minsym.minsym != NULL);
1491 /* If the minimal symbol has a size, use it. Otherwise use the
1492 lesser of the next minimal symbol in the same section, or the end
1493 of the section, as the end of the function. */
1495 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1496 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1498 /* Step over other symbols at this same address, and symbols in
1499 other sections, to find the next symbol in this section with a
1500 different address. */
1502 msymbol = minsym.minsym;
1503 section = MSYMBOL_SECTION (msymbol);
1504 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1506 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1507 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1508 && MSYMBOL_SECTION (msymbol + i) == section)
1512 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1513 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1514 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1515 < obj_section_endaddr (obj_section)))
1516 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1518 /* We got the start address from the last msymbol in the objfile.
1519 So the end address is the end of the section. */
1520 result = obj_section_endaddr (obj_section);