1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
30 #include "gdb_string.h"
37 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "sim-regno.h"
43 #include "trad-frame.h"
44 #include "reggroups.h"
47 #include "prologue-value.h"
48 #include "cgen/bitset.h"
51 #include "gdb_assert.h"
53 /* Get the user's customized MeP coprocessor register names from
55 #include "opcodes/mep-desc.h"
56 #include "opcodes/mep-opc.h"
59 /* The gdbarch_tdep structure. */
61 /* A quick recap for GDB hackers not familiar with the whole Toshiba
62 Media Processor story:
64 The MeP media engine is a configureable processor: users can design
65 their own coprocessors, implement custom instructions, adjust cache
66 sizes, select optional standard facilities like add-and-saturate
67 instructions, and so on. Then, they can build custom versions of
68 the GNU toolchain to support their customized chips. The
69 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
70 tree, and a config file pointing to various files provided by the
71 user describing their customizations, and edits the source tree to
72 produce a compiler that can generate their custom instructions, an
73 assembler that can assemble them and recognize their custom
74 register names, and so on.
76 Furthermore, the user can actually specify several of these custom
77 configurations, called 'me_modules', and get a toolchain which can
78 produce code for any of them, given a compiler/assembler switch;
79 you say something like 'gcc -mconfig=mm_max' to generate code for
80 the me_module named 'mm_max'.
82 GDB, in particular, needs to:
84 - use the coprocessor control register names provided by the user
85 in their hardware description, in expressions, 'info register'
86 output, and disassembly,
88 - know the number, names, and types of the coprocessor's
89 general-purpose registers, adjust the 'info all-registers' output
90 accordingly, and print error messages if the user refers to one
93 - allow access to the control bus space only when the configuration
94 actually has a control bus, and recognize which regions of the
95 control bus space are actually populated,
97 - disassemble using the user's provided mnemonics for their custom
100 - recognize whether the $hi and $lo registers are present, and
101 allow access to them only when they are actually there.
103 There are three sources of information about what sort of me_module
104 we're actually dealing with:
106 - A MeP executable file indicates which me_module it was compiled
107 for, and libopcodes has tables describing each module. So, given
108 an executable file, we can find out about the processor it was
111 - There are SID command-line options to select a particular
112 me_module, overriding the one specified in the ELF file. SID
113 provides GDB with a fake read-only register, 'module', which
114 indicates which me_module GDB is communicating with an instance
117 - There are SID command-line options to enable or disable certain
118 optional processor features, overriding the defaults for the
119 selected me_module. The MeP $OPT register indicates which
120 options are present on the current processor. */
125 /* A CGEN cpu descriptor for this BFD architecture and machine.
127 Note: this is *not* customized for any particular me_module; the
128 MeP libopcodes machinery actually puts off module-specific
129 customization until the last minute. So this contains
130 information about all supported me_modules. */
131 CGEN_CPU_DESC cpu_desc;
133 /* The me_module index from the ELF file we used to select this
134 architecture, or CONFIG_NONE if there was none.
136 Note that we should prefer to use the me_module number available
137 via the 'module' register, whenever we're actually talking to a
140 In the absence of live information, we'd like to get the
141 me_module number from the ELF file. But which ELF file: the
142 executable file, the core file, ... ? The answer is, "the last
143 ELF file we used to set the current architecture". Thus, we
144 create a separate instance of the gdbarch structure for each
145 me_module value mep_gdbarch_init sees, and store the me_module
146 value from the ELF file here. */
147 CONFIG_ATTR me_module;
152 /* Getting me_module information from the CGEN tables. */
155 /* Find an entry in the DESC's hardware table whose name begins with
156 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
157 intersect with GENERIC_ISA_MASK. If there is no matching entry,
159 static const CGEN_HW_ENTRY *
160 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
162 CGEN_BITSET *copro_isa_mask,
163 CGEN_BITSET *generic_isa_mask)
165 int prefix_len = strlen (prefix);
168 for (i = 0; i < desc->hw_table.num_entries; i++)
170 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
171 if (strncmp (prefix, hw->name, prefix_len) == 0)
173 CGEN_BITSET *hw_isa_mask
175 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
177 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
178 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
187 /* Find an entry in DESC's hardware table whose type is TYPE. Return
188 zero if there is none. */
189 static const CGEN_HW_ENTRY *
190 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
194 for (i = 0; i < desc->hw_table.num_entries; i++)
196 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
198 if (hw->type == type)
206 /* Return the CGEN hardware table entry for the coprocessor register
207 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
208 no such register set, return zero. If ME_MODULE is the generic
209 me_module CONFIG_NONE, return the table entry for the register set
210 whose hardware type is GENERIC_TYPE. */
211 static const CGEN_HW_ENTRY *
212 me_module_register_set (CONFIG_ATTR me_module,
214 CGEN_HW_TYPE generic_type)
216 /* This is kind of tricky, because the hardware table is constructed
217 in a way that isn't very helpful. Perhaps we can fix that, but
218 here's how it works at the moment:
220 The configuration map, `mep_config_map', is indexed by me_module
221 number, and indicates which coprocessor and core ISAs that
222 me_module supports. The 'core_isa' mask includes all the core
223 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
224 The entry for the generic me_module, CONFIG_NONE, has an empty
225 'cop_isa', and its 'core_isa' selects only the standard MeP
228 The CGEN CPU descriptor's hardware table, desc->hw_table, has
229 entries for all the register sets, for all me_modules. Each
230 entry has a mask indicating which ISAs use that register set.
231 So, if an me_module supports some coprocessor ISA, we can find
232 applicable register sets by scanning the hardware table for
233 register sets whose masks include (at least some of) those ISAs.
235 Each hardware table entry also has a name, whose prefix says
236 whether it's a general-purpose ("h-cr") or control ("h-ccr")
237 coprocessor register set. It might be nicer to have an attribute
238 indicating what sort of register set it was, that we could use
239 instead of pattern-matching on the name.
241 When there is no hardware table entry whose mask includes a
242 particular coprocessor ISA and whose name starts with a given
243 prefix, then that means that that coprocessor doesn't have any
244 registers of that type. In such cases, this function must return
247 Coprocessor register sets' masks may or may not include the core
248 ISA for the me_module they belong to. Those generated by a2cgen
249 do, but the sample me_module included in the unconfigured tree,
252 There are generic coprocessor register sets, intended only for
253 use with the generic me_module. Unfortunately, their masks
254 include *all* ISAs --- even those for coprocessors that don't
255 have such register sets. This makes detecting the case where a
256 coprocessor lacks a particular register set more complicated.
258 So, here's the approach we take:
260 - For CONFIG_NONE, we return the generic coprocessor register set.
262 - For any other me_module, we search for a register set whose
263 mask contains any of the me_module's coprocessor ISAs,
264 specifically excluding the generic coprocessor register sets. */
266 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
267 const CGEN_HW_ENTRY *hw;
269 if (me_module == CONFIG_NONE)
270 hw = find_hw_entry_by_type (desc, generic_type);
273 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
274 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
275 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
276 CGEN_BITSET *cop_and_core;
278 /* The coprocessor ISAs include the ISA for the specific core which
279 has that coprocessor. */
280 cop_and_core = cgen_bitset_copy (cop);
281 cgen_bitset_union (cop, core, cop_and_core);
282 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
289 /* Given a hardware table entry HW representing a register set, return
290 a pointer to the keyword table with all the register names. If HW
291 is NULL, return NULL, to propage the "no such register set" info
293 static CGEN_KEYWORD *
294 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
299 /* Check that HW is actually a keyword table. */
300 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
302 /* The 'asm_data' field of a register set's hardware table entry
303 refers to a keyword table. */
304 return (CGEN_KEYWORD *) hw->asm_data;
308 /* Given a keyword table KEYWORD and a register number REGNUM, return
309 the name of the register, or "" if KEYWORD contains no register
310 whose number is REGNUM. */
312 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
314 const CGEN_KEYWORD_ENTRY *entry
315 = cgen_keyword_lookup_value (keyword_table, regnum);
319 char *name = entry->name;
321 /* The CGEN keyword entries for register names include the
322 leading $, which appears in MeP assembly as well as in GDB.
323 But we don't want to return that; GDB core code adds that
335 /* Masks for option bits in the OPT special-purpose register. */
337 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
338 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
339 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
340 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
341 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
342 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
343 MEP_OPT_AVE = 1 << 19, /* average instruction option */
344 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
345 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
346 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
347 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
348 MEP_OPT_COP = 1 << 4, /* coprocessor option */
349 MEP_OPT_DSP = 1 << 2, /* DSP option */
350 MEP_OPT_UCI = 1 << 1, /* UCI option */
351 MEP_OPT_DBG = 1 << 0, /* DBG function option */
355 /* Given the option_mask value for a particular entry in
356 mep_config_map, produce the value the processor's OPT register
357 would use to represent the same set of options. */
359 opt_from_option_mask (unsigned int option_mask)
361 /* A table mapping OPT register bits onto CGEN config map option
364 unsigned int opt_bit, option_mask_bit;
366 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
367 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
368 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
369 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
370 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
371 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
372 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
373 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
374 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
375 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
376 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
377 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
378 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
382 unsigned int opt = 0;
384 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
385 if (option_mask & bits[i].option_mask_bit)
386 opt |= bits[i].opt_bit;
392 /* Return the value the $OPT register would use to represent the set
393 of options for ME_MODULE. */
395 me_module_opt (CONFIG_ATTR me_module)
397 return opt_from_option_mask (mep_config_map[me_module].option_mask);
401 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
402 This is either 32 or 64. */
404 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
406 if (mep_config_map[me_module].option_mask
407 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
414 /* Return true if ME_MODULE is big-endian, false otherwise. */
416 me_module_big_endian (CONFIG_ATTR me_module)
418 return mep_config_map[me_module].big_endian;
422 /* Return the name of ME_MODULE, or NULL if it has no name. */
424 me_module_name (CONFIG_ATTR me_module)
426 /* The default me_module has "" as its name, but it's easier for our
427 callers to test for NULL. */
428 if (! mep_config_map[me_module].name
429 || mep_config_map[me_module].name[0] == '\0')
432 return mep_config_map[me_module].name;
438 /* The MeP spec defines the following registers:
439 16 general purpose registers (r0-r15)
440 32 control/special registers (csr0-csr31)
441 32 coprocessor general-purpose registers (c0 -- c31)
442 64 coprocessor control registers (ccr0 -- ccr63)
444 For the raw registers, we assign numbers here explicitly, instead
445 of letting the enum assign them for us; the numbers are a matter of
446 external protocol, and shouldn't shift around as things are edited.
448 We access the control/special registers via pseudoregisters, to
449 enforce read-only portions that some registers have.
451 We access the coprocessor general purpose and control registers via
452 pseudoregisters, to make sure they appear in the proper order in
453 the 'info all-registers' command (which uses the register number
454 ordering), and also to allow them to be renamed and resized
455 depending on the me_module in use.
457 The MeP allows coprocessor general-purpose registers to be either
458 32 or 64 bits long, depending on the configuration. Since we don't
459 want the format of the 'g' packet to vary from one core to another,
460 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
461 types of registers to change (see the implementation of
462 register_type), so we have four banks of pseudoregisters for the
463 coprocessor gprs --- 32-bit vs. 64-bit, and integer
464 vs. floating-point --- and we show or hide them depending on the
468 MEP_FIRST_RAW_REGNUM = 0,
470 MEP_FIRST_GPR_REGNUM = 0,
484 MEP_FP_REGNUM = MEP_R8_REGNUM,
486 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
488 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
490 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
491 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
493 /* The raw control registers. These are the values as received via
494 the remote protocol, directly from the target; we only let user
495 code touch the via the pseudoregisters, which enforce read-only
497 MEP_FIRST_RAW_CSR_REGNUM = 16,
498 MEP_RAW_PC_REGNUM = 16, /* Program counter */
499 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
500 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
501 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
502 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
503 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
504 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
505 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
506 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
507 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
508 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
509 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
510 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
511 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
512 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
513 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
514 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
515 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
516 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
517 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
518 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
519 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
520 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
521 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
522 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
523 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
524 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
525 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
526 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
527 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
528 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
529 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
530 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
532 /* The raw coprocessor general-purpose registers. These are all 64
534 MEP_FIRST_RAW_CR_REGNUM = 48,
535 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
537 MEP_FIRST_RAW_CCR_REGNUM = 80,
538 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
540 /* The module number register. This is the index of the me_module
541 of which the current target is an instance. (This is not a real
542 MeP-specified register; it's provided by SID.) */
545 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
547 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
549 /* Pseudoregisters. See mep_pseudo_register_read and
550 mep_pseudo_register_write. */
551 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
553 /* We have a pseudoregister for every control/special register, to
554 implement registers with read-only bits. */
555 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
556 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
557 MEP_LP_REGNUM, /* Link pointer */
558 MEP_SAR_REGNUM, /* shift amount */
559 MEP_CSR3_REGNUM, /* csr3: reserved */
560 MEP_RPB_REGNUM, /* repeat begin address */
561 MEP_RPE_REGNUM, /* Repeat end address */
562 MEP_RPC_REGNUM, /* Repeat count */
563 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
564 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
565 MEP_CSR9_REGNUM, /* csr3: reserved */
566 MEP_CSR10_REGNUM, /* csr3: reserved */
567 MEP_CSR11_REGNUM, /* csr3: reserved */
568 MEP_MB0_REGNUM, /* modulo begin address 0 */
569 MEP_ME0_REGNUM, /* modulo end address 0 */
570 MEP_MB1_REGNUM, /* modulo begin address 1 */
571 MEP_ME1_REGNUM, /* modulo end address 1 */
572 MEP_PSW_REGNUM, /* program status word */
573 MEP_ID_REGNUM, /* processor ID/revision */
574 MEP_TMP_REGNUM, /* Temporary */
575 MEP_EPC_REGNUM, /* Exception program counter */
576 MEP_EXC_REGNUM, /* exception cause */
577 MEP_CFG_REGNUM, /* processor configuration*/
578 MEP_CSR22_REGNUM, /* csr3: reserved */
579 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
580 MEP_DBG_REGNUM, /* debug */
581 MEP_DEPC_REGNUM, /* Debug exception PC */
582 MEP_OPT_REGNUM, /* options */
583 MEP_RCFG_REGNUM, /* local ram config */
584 MEP_CCFG_REGNUM, /* cache config */
585 MEP_CSR29_REGNUM, /* csr3: reserved */
586 MEP_CSR30_REGNUM, /* csr3: reserved */
587 MEP_CSR31_REGNUM, /* csr3: reserved */
588 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
590 /* The 32-bit integer view of the coprocessor GPR's. */
591 MEP_FIRST_CR32_REGNUM,
592 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
594 /* The 32-bit floating-point view of the coprocessor GPR's. */
595 MEP_FIRST_FP_CR32_REGNUM,
596 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
598 /* The 64-bit integer view of the coprocessor GPR's. */
599 MEP_FIRST_CR64_REGNUM,
600 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
602 /* The 64-bit floating-point view of the coprocessor GPR's. */
603 MEP_FIRST_FP_CR64_REGNUM,
604 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
606 MEP_FIRST_CCR_REGNUM,
607 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
609 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
611 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
613 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
617 #define IN_SET(set, n) \
618 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
620 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
621 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
622 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
623 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
625 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
626 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
627 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
628 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
629 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
630 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
631 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
632 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
634 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
635 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
637 #define NUM_REGS_IN_SET(set) \
638 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
640 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
641 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
642 #define MEP_LP_SIZE (4) /* Size of the LP register. */
645 /* Many of the control/special registers contain bits that cannot be
646 written to; some are entirely read-only. So we present them all as
649 The following table describes the special properties of each CSR. */
650 struct mep_csr_register
652 /* The number of this CSR's raw register. */
655 /* The number of this CSR's pseudoregister. */
658 /* A mask of the bits that are writeable: if a bit is set here, then
659 it can be modified; if the bit is clear, then it cannot. */
660 LONGEST writeable_bits;
664 /* mep_csr_registers[i] describes the i'th CSR.
665 We just list the register numbers here explicitly to help catch
667 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
668 struct mep_csr_register mep_csr_registers[] = {
669 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
670 { CSR(LP), 0xffffffff },
671 { CSR(SAR), 0x0000003f },
672 { CSR(CSR3), 0xffffffff },
673 { CSR(RPB), 0xfffffffe },
674 { CSR(RPE), 0xffffffff },
675 { CSR(RPC), 0xffffffff },
676 { CSR(HI), 0xffffffff },
677 { CSR(LO), 0xffffffff },
678 { CSR(CSR9), 0xffffffff },
679 { CSR(CSR10), 0xffffffff },
680 { CSR(CSR11), 0xffffffff },
681 { CSR(MB0), 0x0000ffff },
682 { CSR(ME0), 0x0000ffff },
683 { CSR(MB1), 0x0000ffff },
684 { CSR(ME1), 0x0000ffff },
685 { CSR(PSW), 0x000003ff },
686 { CSR(ID), 0x00000000 },
687 { CSR(TMP), 0xffffffff },
688 { CSR(EPC), 0xffffffff },
689 { CSR(EXC), 0x000030f0 },
690 { CSR(CFG), 0x00c0001b },
691 { CSR(CSR22), 0xffffffff },
692 { CSR(NPC), 0xffffffff },
693 { CSR(DBG), 0x00000580 },
694 { CSR(DEPC), 0xffffffff },
695 { CSR(OPT), 0x00000000 },
696 { CSR(RCFG), 0x00000000 },
697 { CSR(CCFG), 0x00000000 },
698 { CSR(CSR29), 0xffffffff },
699 { CSR(CSR30), 0xffffffff },
700 { CSR(CSR31), 0xffffffff },
704 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
705 the number of the corresponding pseudoregister. Otherwise,
706 mep_raw_to_pseudo[R] == R. */
707 static int mep_raw_to_pseudo[MEP_NUM_REGS];
709 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
710 is the number of the underlying raw register. Otherwise
711 mep_pseudo_to_raw[R] == R. */
712 static int mep_pseudo_to_raw[MEP_NUM_REGS];
715 mep_init_pseudoregister_maps (void)
719 /* Verify that mep_csr_registers covers all the CSRs, in order. */
720 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
721 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
723 /* Verify that the raw and pseudo ranges have matching sizes. */
724 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
725 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
727 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
729 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
731 struct mep_csr_register *r = &mep_csr_registers[i];
733 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
734 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
737 /* Set up the initial raw<->pseudo mappings. */
738 for (i = 0; i < MEP_NUM_REGS; i++)
740 mep_raw_to_pseudo[i] = i;
741 mep_pseudo_to_raw[i] = i;
744 /* Add the CSR raw<->pseudo mappings. */
745 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
747 struct mep_csr_register *r = &mep_csr_registers[i];
749 mep_raw_to_pseudo[r->raw] = r->pseudo;
750 mep_pseudo_to_raw[r->pseudo] = r->raw;
753 /* Add the CR raw<->pseudo mappings. */
754 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
756 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
757 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
758 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
759 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
760 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
762 /* Truly, the raw->pseudo mapping depends on the current module.
763 But we use the raw->pseudo mapping when we read the debugging
764 info; at that point, we don't know what module we'll actually
765 be running yet. So, we always supply the 64-bit register
766 numbers; GDB knows how to pick a smaller value out of a
767 larger register properly. */
768 mep_raw_to_pseudo[raw] = pseudo64;
769 mep_pseudo_to_raw[pseudo32] = raw;
770 mep_pseudo_to_raw[pseudofp32] = raw;
771 mep_pseudo_to_raw[pseudo64] = raw;
772 mep_pseudo_to_raw[pseudofp64] = raw;
775 /* Add the CCR raw<->pseudo mappings. */
776 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
778 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
779 int pseudo = MEP_FIRST_CCR_REGNUM + i;
780 mep_raw_to_pseudo[raw] = pseudo;
781 mep_pseudo_to_raw[pseudo] = raw;
787 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
789 /* The debug info uses the raw register numbers. */
790 return mep_raw_to_pseudo[debug_reg];
794 /* Return the size, in bits, of the coprocessor pseudoregister
797 mep_pseudo_cr_size (int pseudo)
799 if (IS_CR32_REGNUM (pseudo)
800 || IS_FP_CR32_REGNUM (pseudo))
802 else if (IS_CR64_REGNUM (pseudo)
803 || IS_FP_CR64_REGNUM (pseudo))
806 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
810 /* If the coprocessor pseudoregister numbered PSEUDO is a
811 floating-point register, return non-zero; if it is an integer
812 register, return zero. */
814 mep_pseudo_cr_is_float (int pseudo)
816 return (IS_FP_CR32_REGNUM (pseudo)
817 || IS_FP_CR64_REGNUM (pseudo));
821 /* Given a coprocessor GPR pseudoregister number, return its index
822 within that register bank. */
824 mep_pseudo_cr_index (int pseudo)
826 if (IS_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_CR32_REGNUM;
828 else if (IS_FP_CR32_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
830 else if (IS_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_CR64_REGNUM;
832 else if (IS_FP_CR64_REGNUM (pseudo))
833 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
835 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
839 /* Return the me_module index describing the current target.
841 If the current target has registers (e.g., simulator, remote
842 target), then this uses the value of the 'module' register, raw
843 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
844 from the ELF header's e_flags field of the current executable
847 current_me_module (void)
849 if (target_has_registers)
852 regcache_cooked_read_unsigned (get_current_regcache (),
853 MEP_MODULE_REGNUM, ®val);
857 return gdbarch_tdep (target_gdbarch ())->me_module;
861 /* Return the set of options for the current target, in the form that
862 the OPT register would use.
864 If the current target has registers (e.g., simulator, remote
865 target), then this is the actual value of the OPT register. If the
866 current target does not have registers (e.g., an executable file),
867 then use the 'module_opt' field we computed when we build the
868 gdbarch object for this module. */
870 current_options (void)
872 if (target_has_registers)
875 regcache_cooked_read_unsigned (get_current_regcache (),
876 MEP_OPT_REGNUM, ®val);
880 return me_module_opt (current_me_module ());
884 /* Return the width of the current me_module's coprocessor data bus,
885 in bits. This is either 32 or 64. */
887 current_cop_data_bus_width (void)
889 return me_module_cop_data_bus_width (current_me_module ());
893 /* Return the keyword table of coprocessor general-purpose register
894 names appropriate for the me_module we're dealing with. */
895 static CGEN_KEYWORD *
896 current_cr_names (void)
898 const CGEN_HW_ENTRY *hw
899 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
901 return register_set_keyword_table (hw);
905 /* Return non-zero if the coprocessor general-purpose registers are
906 floating-point values, zero otherwise. */
908 current_cr_is_float (void)
910 const CGEN_HW_ENTRY *hw
911 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
913 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
917 /* Return the keyword table of coprocessor control register names
918 appropriate for the me_module we're dealing with. */
919 static CGEN_KEYWORD *
920 current_ccr_names (void)
922 const CGEN_HW_ENTRY *hw
923 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
925 return register_set_keyword_table (hw);
930 mep_register_name (struct gdbarch *gdbarch, int regnr)
932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
934 /* General-purpose registers. */
935 static const char *gpr_names[] = {
936 "r0", "r1", "r2", "r3", /* 0 */
937 "r4", "r5", "r6", "r7", /* 4 */
938 "fp", "r9", "r10", "r11", /* 8 */
939 "r12", "tp", "gp", "sp" /* 12 */
942 /* Special-purpose registers. */
943 static const char *csr_names[] = {
944 "pc", "lp", "sar", "", /* 0 csr3: reserved */
945 "rpb", "rpe", "rpc", "hi", /* 4 */
946 "lo", "", "", "", /* 8 csr9-csr11: reserved */
947 "mb0", "me0", "mb1", "me1", /* 12 */
949 "psw", "id", "tmp", "epc", /* 16 */
950 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
951 "dbg", "depc", "opt", "rcfg", /* 24 */
952 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
955 if (IS_GPR_REGNUM (regnr))
956 return gpr_names[regnr - MEP_R0_REGNUM];
957 else if (IS_CSR_REGNUM (regnr))
959 /* The 'hi' and 'lo' registers are only present on processors
960 that have the 'MUL' or 'DIV' instructions enabled. */
961 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
962 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
965 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
967 else if (IS_CR_REGNUM (regnr))
973 /* Does this module have a coprocessor at all? */
974 if (! (current_options () & MEP_OPT_COP))
977 names = current_cr_names ();
979 /* This module's coprocessor has no general-purpose registers. */
982 cr_size = current_cop_data_bus_width ();
983 if (cr_size != mep_pseudo_cr_size (regnr))
984 /* This module's coprocessor's GPR's are of a different size. */
987 cr_is_float = current_cr_is_float ();
988 /* The extra ! operators ensure we get boolean equality, not
990 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
991 /* This module's coprocessor's GPR's are of a different type. */
994 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
996 else if (IS_CCR_REGNUM (regnr))
998 /* Does this module have a coprocessor at all? */
999 if (! (current_options () & MEP_OPT_COP))
1003 CGEN_KEYWORD *names = current_ccr_names ();
1006 /* This me_module's coprocessor has no control registers. */
1009 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1013 /* It might be nice to give the 'module' register a name, but that
1014 would affect the output of 'info all-registers', which would
1015 disturb the test suites. So we leave it invisible. */
1021 /* Custom register groups for the MeP. */
1022 static struct reggroup *mep_csr_reggroup; /* control/special */
1023 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1024 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1028 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1029 struct reggroup *group)
1031 /* Filter reserved or unused register numbers. */
1033 const char *name = mep_register_name (gdbarch, regnum);
1035 if (! name || name[0] == '\0')
1039 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1040 the existing behavior, so we'd want to run that by them. */
1041 if (group == general_reggroup)
1042 return (IS_GPR_REGNUM (regnum)
1043 || IS_CSR_REGNUM (regnum));
1045 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1046 else if (group == all_reggroup)
1047 return (IS_GPR_REGNUM (regnum)
1048 || IS_CSR_REGNUM (regnum)
1049 || IS_CR_REGNUM (regnum)
1050 || IS_CCR_REGNUM (regnum));
1052 /* All registers should be saved and restored, except for the raw
1055 This is probably right if the coprocessor is something like a
1056 floating-point unit, but would be wrong if the coprocessor is
1057 something that does I/O, where register accesses actually cause
1058 externally-visible actions. But I get the impression that the
1059 coprocessor isn't supposed to do things like that --- you'd use a
1060 hardware engine, perhaps. */
1061 else if (group == save_reggroup || group == restore_reggroup)
1062 return (IS_GPR_REGNUM (regnum)
1063 || IS_CSR_REGNUM (regnum)
1064 || IS_CR_REGNUM (regnum)
1065 || IS_CCR_REGNUM (regnum));
1067 else if (group == mep_csr_reggroup)
1068 return IS_CSR_REGNUM (regnum);
1069 else if (group == mep_cr_reggroup)
1070 return IS_CR_REGNUM (regnum);
1071 else if (group == mep_ccr_reggroup)
1072 return IS_CCR_REGNUM (regnum);
1078 static struct type *
1079 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1081 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1082 long. So for them, the raw registers are always 64 bits long (to
1083 keep the 'g' packet format fixed), and the pseudoregisters vary
1085 if (IS_RAW_CR_REGNUM (reg_nr))
1086 return builtin_type (gdbarch)->builtin_uint64;
1088 /* Since GDB doesn't allow registers to change type, we have two
1089 banks of pseudoregisters for the coprocessor general-purpose
1090 registers: one that gives a 32-bit view, and one that gives a
1091 64-bit view. We hide or show one or the other depending on the
1093 if (IS_CR_REGNUM (reg_nr))
1095 int size = mep_pseudo_cr_size (reg_nr);
1098 if (mep_pseudo_cr_is_float (reg_nr))
1099 return builtin_type (gdbarch)->builtin_float;
1101 return builtin_type (gdbarch)->builtin_uint32;
1103 else if (size == 64)
1105 if (mep_pseudo_cr_is_float (reg_nr))
1106 return builtin_type (gdbarch)->builtin_double;
1108 return builtin_type (gdbarch)->builtin_uint64;
1111 gdb_assert_not_reached ("unexpected cr size");
1114 /* All other registers are 32 bits long. */
1116 return builtin_type (gdbarch)->builtin_uint32;
1121 mep_read_pc (struct regcache *regcache)
1124 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1128 static enum register_status
1129 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1130 struct regcache *regcache,
1134 enum register_status status;
1135 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1136 /* Read the raw register into a 64-bit buffer, and then return the
1137 appropriate end of that buffer. */
1138 int rawnum = mep_pseudo_to_raw[cookednum];
1141 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1142 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1143 status = regcache_raw_read (regcache, rawnum, buf64);
1144 if (status == REG_VALID)
1146 /* Slow, but legible. */
1147 store_unsigned_integer (buf, 4, byte_order,
1148 extract_unsigned_integer (buf64, 8, byte_order));
1154 static enum register_status
1155 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1156 struct regcache *regcache,
1160 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1164 static enum register_status
1165 mep_pseudo_register_read (struct gdbarch *gdbarch,
1166 struct regcache *regcache,
1170 if (IS_CSR_REGNUM (cookednum)
1171 || IS_CCR_REGNUM (cookednum))
1172 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1173 else if (IS_CR32_REGNUM (cookednum)
1174 || IS_FP_CR32_REGNUM (cookednum))
1175 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1176 else if (IS_CR64_REGNUM (cookednum)
1177 || IS_FP_CR64_REGNUM (cookednum))
1178 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1180 gdb_assert_not_reached ("unexpected pseudo register");
1185 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1186 struct regcache *regcache,
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 int size = register_size (gdbarch, cookednum);
1192 struct mep_csr_register *r
1193 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1195 if (r->writeable_bits == 0)
1196 /* A completely read-only register; avoid the read-modify-
1197 write cycle, and juts ignore the entire write. */
1201 /* A partially writeable register; do a read-modify-write cycle. */
1204 ULONGEST mixed_bits;
1206 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1207 new_bits = extract_unsigned_integer (buf, size, byte_order);
1208 mixed_bits = ((r->writeable_bits & new_bits)
1209 | (~r->writeable_bits & old_bits));
1210 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1216 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1217 struct regcache *regcache,
1221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1222 /* Expand the 32-bit value into a 64-bit value, and write that to
1223 the pseudoregister. */
1224 int rawnum = mep_pseudo_to_raw[cookednum];
1227 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1228 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1229 /* Slow, but legible. */
1230 store_unsigned_integer (buf64, 8, byte_order,
1231 extract_unsigned_integer (buf, 4, byte_order));
1232 regcache_raw_write (regcache, rawnum, buf64);
1237 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1238 struct regcache *regcache,
1242 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1247 mep_pseudo_register_write (struct gdbarch *gdbarch,
1248 struct regcache *regcache,
1250 const gdb_byte *buf)
1252 if (IS_CSR_REGNUM (cookednum))
1253 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1254 else if (IS_CR32_REGNUM (cookednum)
1255 || IS_FP_CR32_REGNUM (cookednum))
1256 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1257 else if (IS_CR64_REGNUM (cookednum)
1258 || IS_FP_CR64_REGNUM (cookednum))
1259 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1260 else if (IS_CCR_REGNUM (cookednum))
1261 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1263 gdb_assert_not_reached ("unexpected pseudo register");
1270 /* The mep disassembler needs to know about the section in order to
1273 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1275 struct obj_section * s = find_pc_section (pc);
1279 /* The libopcodes disassembly code uses the section to find the
1280 BFD, the BFD to find the ELF header, the ELF header to find
1281 the me_module index, and the me_module index to select the
1282 right instructions to print. */
1283 info->section = s->the_bfd_section;
1284 info->arch = bfd_arch_mep;
1286 return print_insn_mep (pc, info);
1293 /* Prologue analysis. */
1296 /* The MeP has two classes of instructions: "core" instructions, which
1297 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1298 which are mostly concerned with moving data in and out of
1299 coprocessor registers, and branching on coprocessor condition
1300 codes. There's space in the instruction set for custom coprocessor
1303 Instructions can be 16 or 32 bits long; the top two bits of the
1304 first byte indicate the length. The coprocessor instructions are
1305 mixed in with the core instructions, and there's no easy way to
1306 distinguish them; you have to completely decode them to tell one
1309 The MeP also supports a "VLIW" operation mode, where instructions
1310 always occur in fixed-width bundles. The bundles are either 32
1311 bits or 64 bits long, depending on a fixed configuration flag. You
1312 decode the first part of the bundle as normal; if it's a core
1313 instruction, and there's any space left in the bundle, the
1314 remainder of the bundle is a coprocessor instruction, which will
1315 execute in parallel with the core instruction. If the first part
1316 of the bundle is a coprocessor instruction, it occupies the entire
1319 So, here are all the cases:
1322 Every bundle is four bytes long, and naturally aligned, and can hold
1323 one or two instructions:
1324 - 16-bit core instruction; 16-bit coprocessor instruction
1325 These execute in parallel.
1326 - 32-bit core instruction
1327 - 32-bit coprocessor instruction
1330 Every bundle is eight bytes long, and naturally aligned, and can hold
1331 one or two instructions:
1332 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1333 These execute in parallel.
1334 - 32-bit core instruction; 32-bit coprocessor instruction
1335 These execute in parallel.
1336 - 64-bit coprocessor instruction
1338 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1339 instruction, so I don't really know what's up there; perhaps these
1340 are always the user-defined coprocessor instructions. */
1343 /* Return non-zero if PC is in a VLIW code section, zero
1346 mep_pc_in_vliw_section (CORE_ADDR pc)
1348 struct obj_section *s = find_pc_section (pc);
1350 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1355 /* Set *INSN to the next core instruction at PC, and return the
1356 address of the next instruction.
1358 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1359 instructions are encoded as one or two two-byte parts, and each
1360 part is byte-swapped independently. Thus:
1365 asm ("movu $1, 0x123456");
1366 asm ("sb $1,0x5678($2)");
1367 asm ("clip $1, 19");
1370 compiles to this big-endian code:
1372 0: d1 56 12 34 movu $1,0x123456
1373 4: c1 28 56 78 sb $1,22136($2)
1374 8: f1 01 10 98 clip $1,0x13
1377 and this little-endian code:
1379 0: 56 d1 34 12 movu $1,0x123456
1380 4: 28 c1 78 56 sb $1,22136($2)
1381 8: 01 f1 98 10 clip $1,0x13
1384 Instructions are returned in *INSN in an endian-independent form: a
1385 given instruction always appears in *INSN the same way, regardless
1386 of whether the instruction stream is big-endian or little-endian.
1388 *INSN's most significant 16 bits are the first (i.e., at lower
1389 addresses) 16 bit part of the instruction. Its least significant
1390 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1391 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1392 are fetched using the current endianness.
1394 So, the *INSN values for the instruction sequence above would be
1395 the following, in either endianness:
1397 0xd1561234 movu $1,0x123456
1398 0xc1285678 sb $1,22136($2)
1399 0xf1011098 clip $1,0x13
1402 (In a sense, it would be more natural to return 16-bit instructions
1403 in the least significant 16 bits of *INSN, but that would be
1404 ambiguous. In order to tell whether you're looking at a 16- or a
1405 32-bit instruction, you have to consult the major opcode field ---
1406 the most significant four bits of the instruction's first 16-bit
1407 part. But if we put 16-bit instructions at the least significant
1408 end of *INSN, then you don't know where to find the major opcode
1409 field until you know if it's a 16- or a 32-bit instruction ---
1410 which is where we started.)
1412 If PC points to a core / coprocessor bundle in a VLIW section, set
1413 *INSN to the core instruction, and return the address of the next
1414 bundle. This has the effect of skipping the bundled coprocessor
1415 instruction. That's okay, since coprocessor instructions aren't
1416 significant to prologue analysis --- for the time being,
1420 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1422 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1423 int pc_in_vliw_section;
1430 /* Are we in a VLIW section? */
1431 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1432 if (pc_in_vliw_section)
1434 /* Yes, find out which bundle size. */
1435 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1437 /* If PC is in a VLIW section, but the current core doesn't say
1438 that it supports either VLIW mode, then we don't have enough
1439 information to parse the instruction stream it contains.
1440 Since the "undifferentiated" standard core doesn't have
1441 either VLIW mode bit set, this could happen.
1443 But it shouldn't be an error to (say) set a breakpoint in a
1444 VLIW section, if you know you'll never reach it. (Perhaps
1445 you have a script that sets a bunch of standard breakpoints.)
1447 So we'll just return zero here, and hope for the best. */
1448 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1451 /* If both VL32 and VL64 are set, that's bogus, too. */
1452 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1458 read_memory (pc, buf, sizeof (buf));
1459 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1461 /* The major opcode --- the top four bits of the first 16-bit
1462 part --- indicates whether this instruction is 16 or 32 bits
1463 long. All 32-bit instructions have a major opcode whose top
1464 two bits are 11; all the rest are 16-bit instructions. */
1465 if ((*insn & 0xc0000000) == 0xc0000000)
1467 /* Fetch the second 16-bit part of the instruction. */
1468 read_memory (pc + 2, buf, sizeof (buf));
1469 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1472 /* If we're in VLIW code, then the VLIW width determines the address
1473 of the next instruction. */
1476 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1477 coprocessor half of a core / copro bundle. */
1478 if (vliw_mode == MEP_OPT_VL32)
1481 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1482 coprocessor half of a core / copro bundle. */
1483 else if (vliw_mode == MEP_OPT_VL64)
1486 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1488 gdb_assert_not_reached ("unexpected vliw mode");
1491 /* Otherwise, the top two bits of the major opcode are (again) what
1492 we need to check. */
1493 else if ((*insn & 0xc0000000) == 0xc0000000)
1498 return pc + insn_len;
1502 /* Sign-extend the LEN-bit value N. */
1503 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1505 /* Return the LEN-bit field at POS from I. */
1506 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1508 /* Like FIELD, but sign-extend the field's value. */
1509 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1512 /* Macros for decoding instructions.
1514 Remember that 16-bit instructions are placed in bits 16..31 of i,
1515 not at the least significant end; this means that the major opcode
1516 field is always in the same place, regardless of the width of the
1517 instruction. As a reminder of this, we show the lower 16 bits of a
1518 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1520 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1521 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1522 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1524 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1525 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1526 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1527 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1528 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1529 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1530 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1531 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1532 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1534 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1535 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1536 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1537 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1539 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1540 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1541 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1542 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1544 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1545 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1546 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1547 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1549 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1550 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1551 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1552 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1553 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1555 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1556 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1557 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1558 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1560 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1561 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1562 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1563 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1565 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1567 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1568 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1569 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1571 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1572 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1573 #define LW_TARGET(i) (FIELD (i, 24, 4))
1574 #define LW_BASE(i) (FIELD (i, 20, 4))
1575 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1577 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1578 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1579 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1580 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1582 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1583 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1584 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1587 /* This structure holds the results of a prologue analysis. */
1590 /* The architecture for which we generated this prologue info. */
1591 struct gdbarch *gdbarch;
1593 /* The offset from the frame base to the stack pointer --- always
1596 Calling this a "size" is a bit misleading, but given that the
1597 stack grows downwards, using offsets for everything keeps one
1598 from going completely sign-crazy: you never change anything's
1599 sign for an ADD instruction; always change the second operand's
1600 sign for a SUB instruction; and everything takes care of
1604 /* Non-zero if this function has initialized the frame pointer from
1605 the stack pointer, zero otherwise. */
1608 /* If has_frame_ptr is non-zero, this is the offset from the frame
1609 base to where the frame pointer points. This is always zero or
1611 int frame_ptr_offset;
1613 /* The address of the first instruction at which the frame has been
1614 set up and the arguments are where the debug info says they are
1615 --- as best as we can tell. */
1616 CORE_ADDR prologue_end;
1618 /* reg_offset[R] is the offset from the CFA at which register R is
1619 saved, or 1 if register R has not been saved. (Real values are
1620 always zero or negative.) */
1621 int reg_offset[MEP_NUM_REGS];
1624 /* Return non-zero if VALUE is an incoming argument register. */
1627 is_arg_reg (pv_t value)
1629 return (value.kind == pvk_register
1630 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1634 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1635 probably spilling an argument register to its stack slot in STACK.
1636 Such instructions should be included in the prologue, if possible.
1638 The store is a spill if:
1639 - the value being stored is REG's original value;
1640 - the value has not already been stored somewhere in STACK; and
1641 - ADDR is a stack slot's address (e.g., relative to the original
1642 value of the SP). */
1644 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1645 struct pv_area *stack)
1647 return (is_arg_reg (value)
1648 && pv_is_register (addr, MEP_SP_REGNUM)
1649 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1653 /* Function for finding saved registers in a 'struct pv_area'; we pass
1654 this to pv_area_scan.
1656 If VALUE is a saved register, ADDR says it was saved at a constant
1657 offset from the frame base, and SIZE indicates that the whole
1658 register was saved, record its offset in RESULT_UNTYPED. */
1660 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1662 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1664 if (value.kind == pvk_register
1666 && pv_is_register (addr, MEP_SP_REGNUM)
1667 && size == register_size (result->gdbarch, value.reg))
1668 result->reg_offset[value.reg] = addr.k;
1672 /* Analyze a prologue starting at START_PC, going no further than
1673 LIMIT_PC. Fill in RESULT as appropriate. */
1675 mep_analyze_prologue (struct gdbarch *gdbarch,
1676 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1677 struct mep_prologue *result)
1683 pv_t reg[MEP_NUM_REGS];
1684 struct pv_area *stack;
1685 struct cleanup *back_to;
1686 CORE_ADDR after_last_frame_setup_insn = start_pc;
1688 memset (result, 0, sizeof (*result));
1689 result->gdbarch = gdbarch;
1691 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1693 reg[rn] = pv_register (rn, 0);
1694 result->reg_offset[rn] = 1;
1697 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1698 back_to = make_cleanup_free_pv_area (stack);
1701 while (pc < limit_pc)
1704 pv_t pre_insn_fp, pre_insn_sp;
1706 next_pc = mep_get_insn (gdbarch, pc, &insn);
1708 /* A zero return from mep_get_insn means that either we weren't
1709 able to read the instruction from memory, or that we don't
1710 have enough information to be able to reliably decode it. So
1711 we'll store here and hope for the best. */
1715 /* Note the current values of the SP and FP, so we can tell if
1716 this instruction changed them, below. */
1717 pre_insn_fp = reg[MEP_FP_REGNUM];
1718 pre_insn_sp = reg[MEP_SP_REGNUM];
1722 int rn = ADD_TARGET (insn);
1723 CORE_ADDR imm6 = ADD_OFFSET (insn);
1725 reg[rn] = pv_add_constant (reg[rn], imm6);
1727 else if (IS_ADD3_16 (insn))
1729 int rn = ADD3_16_TARGET (insn);
1730 int imm7 = ADD3_16_OFFSET (insn);
1732 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1734 else if (IS_ADD3_32 (insn))
1736 int rn = ADD3_32_TARGET (insn);
1737 int rm = ADD3_32_SOURCE (insn);
1738 int imm16 = ADD3_32_OFFSET (insn);
1740 reg[rn] = pv_add_constant (reg[rm], imm16);
1742 else if (IS_SW_REG (insn))
1744 int rn = SW_REG_SOURCE (insn);
1745 int rm = SW_REG_BASE (insn);
1747 /* If simulating this store would require us to forget
1748 everything we know about the stack frame in the name of
1749 accuracy, it would be better to just quit now. */
1750 if (pv_area_store_would_trash (stack, reg[rm]))
1753 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1754 after_last_frame_setup_insn = next_pc;
1756 pv_area_store (stack, reg[rm], 4, reg[rn]);
1758 else if (IS_SW_IMMD (insn))
1760 int rn = SW_IMMD_SOURCE (insn);
1761 int offset = SW_IMMD_OFFSET (insn);
1762 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1764 /* If simulating this store would require us to forget
1765 everything we know about the stack frame in the name of
1766 accuracy, it would be better to just quit now. */
1767 if (pv_area_store_would_trash (stack, addr))
1770 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1771 after_last_frame_setup_insn = next_pc;
1773 pv_area_store (stack, addr, 4, reg[rn]);
1775 else if (IS_MOV (insn))
1777 int rn = MOV_TARGET (insn);
1778 int rm = MOV_SOURCE (insn);
1782 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1783 after_last_frame_setup_insn = next_pc;
1785 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1787 int rn = SWBH_32_SOURCE (insn);
1788 int rm = SWBH_32_BASE (insn);
1789 int disp = SWBH_32_OFFSET (insn);
1790 int size = (IS_SB (insn) ? 1
1792 : (gdb_assert (IS_SW (insn)), 4));
1793 pv_t addr = pv_add_constant (reg[rm], disp);
1795 if (pv_area_store_would_trash (stack, addr))
1798 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1799 after_last_frame_setup_insn = next_pc;
1801 pv_area_store (stack, addr, size, reg[rn]);
1803 else if (IS_LDC (insn))
1805 int rn = LDC_TARGET (insn);
1806 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1810 else if (IS_LW (insn))
1812 int rn = LW_TARGET (insn);
1813 int rm = LW_BASE (insn);
1814 int offset = LW_OFFSET (insn);
1815 pv_t addr = pv_add_constant (reg[rm], offset);
1817 reg[rn] = pv_area_fetch (stack, addr, 4);
1819 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1821 /* When a loop appears as the first statement of a function
1822 body, gcc 4.x will use a BRA instruction to branch to the
1823 loop condition checking code. This BRA instruction is
1824 marked as part of the prologue. We therefore set next_pc
1825 to this branch target and also stop the prologue scan.
1826 The instructions at and beyond the branch target should
1827 no longer be associated with the prologue.
1829 Note that we only consider forward branches here. We
1830 presume that a forward branch is being used to skip over
1833 A backwards branch is covered by the default case below.
1834 If we were to encounter a backwards branch, that would
1835 most likely mean that we've scanned through a loop body.
1836 We definitely want to stop the prologue scan when this
1837 happens and that is precisely what is done by the default
1839 next_pc = pc + BRA_DISP (insn);
1840 after_last_frame_setup_insn = next_pc;
1844 /* We've hit some instruction we don't know how to simulate.
1845 Strictly speaking, we should set every value we're
1846 tracking to "unknown". But we'll be optimistic, assume
1847 that we have enough information already, and stop
1851 /* If this instruction changed the FP or decreased the SP (i.e.,
1852 allocated more stack space), then this may be a good place to
1853 declare the prologue finished. However, there are some
1856 - If the instruction just changed the FP back to its original
1857 value, then that's probably a restore instruction. The
1858 prologue should definitely end before that.
1860 - If the instruction increased the value of the SP (that is,
1861 shrunk the frame), then it's probably part of a frame
1862 teardown sequence, and the prologue should end before that. */
1864 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1866 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1867 after_last_frame_setup_insn = next_pc;
1869 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1871 /* The comparison of constants looks odd, there, because .k
1872 is unsigned. All it really means is that the new value
1873 is lower than it was before the instruction. */
1874 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1875 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1876 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1877 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1878 after_last_frame_setup_insn = next_pc;
1884 /* Is the frame size (offset, really) a known constant? */
1885 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1886 result->frame_size = reg[MEP_SP_REGNUM].k;
1888 /* Was the frame pointer initialized? */
1889 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1891 result->has_frame_ptr = 1;
1892 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1895 /* Record where all the registers were saved. */
1896 pv_area_scan (stack, check_for_saved, (void *) result);
1898 result->prologue_end = after_last_frame_setup_insn;
1900 do_cleanups (back_to);
1905 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1908 CORE_ADDR func_addr, func_end;
1909 struct mep_prologue p;
1911 /* Try to find the extent of the function that contains PC. */
1912 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1915 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1916 return p.prologue_end;
1923 static const unsigned char *
1924 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1926 static unsigned char breakpoint[] = { 0x70, 0x32 };
1927 *lenptr = sizeof (breakpoint);
1933 /* Frames and frame unwinding. */
1936 static struct mep_prologue *
1937 mep_analyze_frame_prologue (struct frame_info *this_frame,
1938 void **this_prologue_cache)
1940 if (! *this_prologue_cache)
1942 CORE_ADDR func_start, stop_addr;
1944 *this_prologue_cache
1945 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1947 func_start = get_frame_func (this_frame);
1948 stop_addr = get_frame_pc (this_frame);
1950 /* If we couldn't find any function containing the PC, then
1951 just initialize the prologue cache, but don't do anything. */
1953 stop_addr = func_start;
1955 mep_analyze_prologue (get_frame_arch (this_frame),
1956 func_start, stop_addr, *this_prologue_cache);
1959 return *this_prologue_cache;
1963 /* Given the next frame and a prologue cache, return this frame's
1966 mep_frame_base (struct frame_info *this_frame,
1967 void **this_prologue_cache)
1969 struct mep_prologue *p
1970 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1972 /* In functions that use alloca, the distance between the stack
1973 pointer and the frame base varies dynamically, so we can't use
1974 the SP plus static information like prologue analysis to find the
1975 frame base. However, such functions must have a frame pointer,
1976 to be able to restore the SP on exit. So whenever we do have a
1977 frame pointer, use that to find the base. */
1978 if (p->has_frame_ptr)
1981 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1982 return fp - p->frame_ptr_offset;
1987 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1988 return sp - p->frame_size;
1994 mep_frame_this_id (struct frame_info *this_frame,
1995 void **this_prologue_cache,
1996 struct frame_id *this_id)
1998 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1999 get_frame_func (this_frame));
2003 static struct value *
2004 mep_frame_prev_register (struct frame_info *this_frame,
2005 void **this_prologue_cache, int regnum)
2007 struct mep_prologue *p
2008 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2010 /* There are a number of complications in unwinding registers on the
2011 MeP, having to do with core functions calling VLIW functions and
2014 The least significant bit of the link register, LP.LTOM, is the
2015 VLIW mode toggle bit: it's set if a core function called a VLIW
2016 function, or vice versa, and clear when the caller and callee
2017 were both in the same mode.
2019 So, if we're asked to unwind the PC, then we really want to
2020 unwind the LP and clear the least significant bit. (Real return
2021 addresses are always even.) And if we want to unwind the program
2022 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2024 Tweaking the register values we return in this way means that the
2025 bits in BUFFERP[] are not the same as the bits you'd find at
2026 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2028 if (regnum == MEP_PC_REGNUM)
2030 struct value *value;
2032 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2034 lp = value_as_long (value);
2035 release_value (value);
2038 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2042 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2043 struct value *value;
2045 /* Our caller's SP is our frame base. */
2046 if (regnum == MEP_SP_REGNUM)
2047 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2049 /* If prologue analysis says we saved this register somewhere,
2050 return a description of the stack slot holding it. */
2051 if (p->reg_offset[regnum] != 1)
2052 value = frame_unwind_got_memory (this_frame, regnum,
2053 frame_base + p->reg_offset[regnum]);
2055 /* Otherwise, presume we haven't changed the value of this
2056 register, and get it from the next frame. */
2058 value = frame_unwind_got_register (this_frame, regnum, regnum);
2060 /* If we need to toggle the operating mode, do so. */
2061 if (regnum == MEP_PSW_REGNUM)
2065 psw = value_as_long (value);
2066 release_value (value);
2069 /* Get the LP's value, too. */
2070 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2071 lp = value_as_long (value);
2072 release_value (value);
2075 /* If LP.LTOM is set, then toggle PSW.OM. */
2079 return frame_unwind_got_constant (this_frame, regnum, psw);
2087 static const struct frame_unwind mep_frame_unwind = {
2089 default_frame_unwind_stop_reason,
2091 mep_frame_prev_register,
2093 default_frame_sniffer
2097 /* Our general unwinding function can handle unwinding the PC. */
2099 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2101 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2105 /* Our general unwinding function can handle unwinding the SP. */
2107 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2109 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2114 /* Return values. */
2118 mep_use_struct_convention (struct type *type)
2120 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2125 mep_extract_return_value (struct gdbarch *arch,
2127 struct regcache *regcache,
2130 int byte_order = gdbarch_byte_order (arch);
2132 /* Values that don't occupy a full register appear at the less
2133 significant end of the value. This is the offset to where the
2137 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2138 pointed to by R0. */
2139 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2141 if (byte_order == BFD_ENDIAN_BIG)
2142 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2146 /* Return values that do fit in a single register are returned in R0. */
2147 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2148 offset, TYPE_LENGTH (type),
2154 mep_store_return_value (struct gdbarch *arch,
2156 struct regcache *regcache,
2157 const gdb_byte *valbuf)
2159 int byte_order = gdbarch_byte_order (arch);
2161 /* Values that fit in a single register go in R0. */
2162 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2164 /* Values that don't occupy a full register appear at the least
2165 significant end of the value. This is the offset to where the
2169 if (byte_order == BFD_ENDIAN_BIG)
2170 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2174 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2175 offset, TYPE_LENGTH (type),
2179 /* Return values larger than a single register are returned in
2180 memory, pointed to by R0. Unfortunately, we can't count on R0
2181 pointing to the return buffer, so we raise an error here. */
2184 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2185 calling conventions do not provide enough information to do this.\n\
2186 Try using the 'return' command with no argument."));
2189 static enum return_value_convention
2190 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2191 struct type *type, struct regcache *regcache,
2192 gdb_byte *readbuf, const gdb_byte *writebuf)
2194 if (mep_use_struct_convention (type))
2199 /* Although the address of the struct buffer gets passed in R1, it's
2200 returned in R0. Fetch R0's value and then read the memory
2202 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2203 read_memory (addr, readbuf, TYPE_LENGTH (type));
2207 /* Return values larger than a single register are returned in
2208 memory, pointed to by R0. Unfortunately, we can't count on R0
2209 pointing to the return buffer, so we raise an error here. */
2211 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2212 calling conventions do not provide enough information to do this.\n\
2213 Try using the 'return' command with no argument."));
2215 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2219 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2221 mep_store_return_value (gdbarch, type, regcache, writebuf);
2223 return RETURN_VALUE_REGISTER_CONVENTION;
2227 /* Inferior calls. */
2231 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2233 /* Require word alignment. */
2238 /* From "lang_spec2.txt":
2240 4.2 Calling conventions
2242 4.2.1 Core register conventions
2244 - Parameters should be evaluated from left to right, and they
2245 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2246 after should be held in the stack. If the size is larger than 4
2247 bytes in the first four parameters, the pointer should be held in
2248 the registers instead. If the size is larger than 4 bytes in the
2249 fifth parameter or after, the pointer should be held in the stack.
2251 - Return value of a function should be held in register $0. If the
2252 size of return value is larger than 4 bytes, $1 should hold the
2253 pointer pointing memory that would hold the return value. In this
2254 case, the first parameter should be held in $2, the second one in
2255 $3, and the third one in $4, and the forth parameter or after
2256 should be held in the stack.
2258 [This doesn't say so, but arguments shorter than four bytes are
2259 passed in the least significant end of a four-byte word when
2260 they're passed on the stack.] */
2263 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2264 large to fit in a register, save it on the stack, and place its
2265 address in COPY[i]. SP is the initial stack pointer; return the
2266 new stack pointer. */
2268 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2273 for (i = 0; i < argc; i++)
2275 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2277 if (arg_len > MEP_GPR_SIZE)
2279 /* Reserve space for the copy, and then round the SP down, to
2280 make sure it's all aligned properly. */
2281 sp = (sp - arg_len) & -4;
2282 write_memory (sp, value_contents (argv[i]), arg_len);
2292 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2293 struct regcache *regcache, CORE_ADDR bp_addr,
2294 int argc, struct value **argv, CORE_ADDR sp,
2296 CORE_ADDR struct_addr)
2298 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2299 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2300 CORE_ADDR func_addr = find_function_addr (function, NULL);
2303 /* The number of the next register available to hold an argument. */
2306 /* The address of the next stack slot available to hold an argument. */
2307 CORE_ADDR arg_stack;
2309 /* The address of the end of the stack area for arguments. This is
2310 just for error checking. */
2311 CORE_ADDR arg_stack_end;
2313 sp = push_large_arguments (sp, argc, argv, copy);
2315 /* Reserve space for the stack arguments, if any. */
2317 if (argc + (struct_addr ? 1 : 0) > 4)
2318 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2320 arg_reg = MEP_R1_REGNUM;
2323 /* If we're returning a structure by value, push the pointer to the
2324 buffer as the first argument. */
2327 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2331 for (i = 0; i < argc; i++)
2335 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2336 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2337 value = extract_unsigned_integer (value_contents (argv[i]),
2338 TYPE_LENGTH (value_type (argv[i])),
2341 /* Arguments too large to fit in a GPR get copied to the stack,
2342 and we pass a pointer to the copy. */
2346 /* We use $1 -- $4 for passing arguments, then use the stack. */
2347 if (arg_reg <= MEP_R4_REGNUM)
2349 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2354 gdb_byte buf[MEP_GPR_SIZE];
2355 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2356 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2357 arg_stack += MEP_GPR_SIZE;
2361 gdb_assert (arg_stack <= arg_stack_end);
2363 /* Set the return address. */
2364 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2366 /* Update the stack pointer. */
2367 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2373 static struct frame_id
2374 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2376 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2377 return frame_id_build (sp, get_frame_pc (this_frame));
2382 /* Initialization. */
2385 static struct gdbarch *
2386 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2388 struct gdbarch *gdbarch;
2389 struct gdbarch_tdep *tdep;
2391 /* Which me_module are we building a gdbarch object for? */
2392 CONFIG_ATTR me_module;
2394 /* If we have a BFD in hand, figure out which me_module it was built
2395 for. Otherwise, use the no-particular-me_module code. */
2398 /* The way to get the me_module code depends on the object file
2399 format. At the moment, we only know how to handle ELF. */
2400 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2401 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2403 me_module = CONFIG_NONE;
2406 me_module = CONFIG_NONE;
2408 /* If we're setting the architecture from a file, check the
2409 endianness of the file against that of the me_module. */
2412 /* The negations on either side make the comparison treat all
2413 non-zero (true) values as equal. */
2414 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2416 const char *module_name = me_module_name (me_module);
2417 const char *module_endianness
2418 = me_module_big_endian (me_module) ? "big" : "little";
2419 const char *file_name = bfd_get_filename (info.abfd);
2420 const char *file_endianness
2421 = bfd_big_endian (info.abfd) ? "big" : "little";
2423 fputc_unfiltered ('\n', gdb_stderr);
2425 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2426 "%s is %s-endian."),
2427 module_name, module_endianness,
2428 file_name, file_endianness);
2430 warning (_("the selected MeP module is %s-endian, but the "
2432 "%s is %s-endian."),
2433 module_endianness, file_name, file_endianness);
2437 /* Find a candidate among the list of architectures we've created
2438 already. info->bfd_arch_info needs to match, but we also want
2439 the right me_module: the ELF header's e_flags field needs to
2441 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2443 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2444 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2445 return arches->gdbarch;
2447 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2448 gdbarch = gdbarch_alloc (&info, tdep);
2450 /* Get a CGEN CPU descriptor for this architecture. */
2452 const char *mach_name = info.bfd_arch_info->printable_name;
2453 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2455 : CGEN_ENDIAN_LITTLE);
2457 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2458 CGEN_CPU_OPEN_ENDIAN, endian,
2462 tdep->me_module = me_module;
2465 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2466 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2467 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2468 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2469 set_gdbarch_register_name (gdbarch, mep_register_name);
2470 set_gdbarch_register_type (gdbarch, mep_register_type);
2471 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2472 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2473 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2474 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2475 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2477 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2478 reggroup_add (gdbarch, all_reggroup);
2479 reggroup_add (gdbarch, general_reggroup);
2480 reggroup_add (gdbarch, save_reggroup);
2481 reggroup_add (gdbarch, restore_reggroup);
2482 reggroup_add (gdbarch, mep_csr_reggroup);
2483 reggroup_add (gdbarch, mep_cr_reggroup);
2484 reggroup_add (gdbarch, mep_ccr_reggroup);
2487 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2490 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2491 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2492 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2494 /* Frames and frame unwinding. */
2495 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2496 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2497 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2498 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2499 set_gdbarch_frame_args_skip (gdbarch, 0);
2501 /* Return values. */
2502 set_gdbarch_return_value (gdbarch, mep_return_value);
2504 /* Inferior function calls. */
2505 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2506 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2507 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2512 /* Provide a prototype to silence -Wmissing-prototypes. */
2513 extern initialize_file_ftype _initialize_mep_tdep;
2516 _initialize_mep_tdep (void)
2518 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2519 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2520 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2522 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2524 mep_init_pseudoregister_maps ();