* symtab.h (add_minsym_to_hash_table): Don't declare.
[platform/upstream/binutils.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3    Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4    2011 Free Software Foundation, Inc.
5
6    Contributed by Red Hat, Inc.
7
8    This file is part of GDB.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "dis-asm.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "remote.h"
41 #include "floatformat.h"
42 #include "sim-regno.h"
43 #include "disasm.h"
44 #include "trad-frame.h"
45 #include "reggroups.h"
46 #include "elf-bfd.h"
47 #include "elf/mep.h"
48 #include "prologue-value.h"
49 #include "cgen/bitset.h"
50 #include "infcall.h"
51
52 #include "gdb_assert.h"
53
54 /* Get the user's customized MeP coprocessor register names from
55    libopcodes.  */
56 #include "opcodes/mep-desc.h"
57 #include "opcodes/mep-opc.h"
58
59 \f
60 /* The gdbarch_tdep structure.  */
61
62 /* A quick recap for GDB hackers not familiar with the whole Toshiba
63    Media Processor story:
64
65    The MeP media engine is a configureable processor: users can design
66    their own coprocessors, implement custom instructions, adjust cache
67    sizes, select optional standard facilities like add-and-saturate
68    instructions, and so on.  Then, they can build custom versions of
69    the GNU toolchain to support their customized chips.  The
70    MeP-Integrator program (see utils/mep) takes a GNU toolchain source
71    tree, and a config file pointing to various files provided by the
72    user describing their customizations, and edits the source tree to
73    produce a compiler that can generate their custom instructions, an
74    assembler that can assemble them and recognize their custom
75    register names, and so on.
76
77    Furthermore, the user can actually specify several of these custom
78    configurations, called 'me_modules', and get a toolchain which can
79    produce code for any of them, given a compiler/assembler switch;
80    you say something like 'gcc -mconfig=mm_max' to generate code for
81    the me_module named 'mm_max'.
82
83    GDB, in particular, needs to:
84
85    - use the coprocessor control register names provided by the user
86      in their hardware description, in expressions, 'info register'
87      output, and disassembly,
88
89    - know the number, names, and types of the coprocessor's
90      general-purpose registers, adjust the 'info all-registers' output
91      accordingly, and print error messages if the user refers to one
92      that doesn't exist
93
94    - allow access to the control bus space only when the configuration
95      actually has a control bus, and recognize which regions of the
96      control bus space are actually populated,
97
98    - disassemble using the user's provided mnemonics for their custom
99      instructions, and
100
101    - recognize whether the $hi and $lo registers are present, and
102      allow access to them only when they are actually there.
103
104    There are three sources of information about what sort of me_module
105    we're actually dealing with:
106
107    - A MeP executable file indicates which me_module it was compiled
108      for, and libopcodes has tables describing each module.  So, given
109      an executable file, we can find out about the processor it was
110      compiled for.
111
112    - There are SID command-line options to select a particular
113      me_module, overriding the one specified in the ELF file.  SID
114      provides GDB with a fake read-only register, 'module', which
115      indicates which me_module GDB is communicating with an instance
116      of.
117
118    - There are SID command-line options to enable or disable certain
119      optional processor features, overriding the defaults for the
120      selected me_module.  The MeP $OPT register indicates which
121      options are present on the current processor.  */
122
123
124 struct gdbarch_tdep
125 {
126   /* A CGEN cpu descriptor for this BFD architecture and machine.
127
128      Note: this is *not* customized for any particular me_module; the
129      MeP libopcodes machinery actually puts off module-specific
130      customization until the last minute.  So this contains
131      information about all supported me_modules.  */
132   CGEN_CPU_DESC cpu_desc;
133
134   /* The me_module index from the ELF file we used to select this
135      architecture, or CONFIG_NONE if there was none.
136
137      Note that we should prefer to use the me_module number available
138      via the 'module' register, whenever we're actually talking to a
139      real target.
140
141      In the absence of live information, we'd like to get the
142      me_module number from the ELF file.  But which ELF file: the
143      executable file, the core file, ... ?  The answer is, "the last
144      ELF file we used to set the current architecture".  Thus, we
145      create a separate instance of the gdbarch structure for each
146      me_module value mep_gdbarch_init sees, and store the me_module
147      value from the ELF file here.  */
148   CONFIG_ATTR me_module;
149 };
150
151
152 \f
153 /* Getting me_module information from the CGEN tables.  */
154
155
156 /* Find an entry in the DESC's hardware table whose name begins with
157    PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
158    intersect with GENERIC_ISA_MASK.  If there is no matching entry,
159    return zero.  */
160 static const CGEN_HW_ENTRY *
161 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
162                                  const char *prefix,
163                                  CGEN_BITSET *copro_isa_mask,
164                                  CGEN_BITSET *generic_isa_mask)
165 {
166   int prefix_len = strlen (prefix);
167   int i;
168
169   for (i = 0; i < desc->hw_table.num_entries; i++)
170     {
171       const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
172       if (strncmp (prefix, hw->name, prefix_len) == 0)
173         {
174           CGEN_BITSET *hw_isa_mask
175             = ((CGEN_BITSET *)
176                &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
177
178           if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
179               && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
180             return hw;
181         }
182     }
183
184   return 0;
185 }
186
187
188 /* Find an entry in DESC's hardware table whose type is TYPE.  Return
189    zero if there is none.  */
190 static const CGEN_HW_ENTRY *
191 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
192 {
193   int i;
194
195   for (i = 0; i < desc->hw_table.num_entries; i++)
196     {
197       const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
198
199       if (hw->type == type)
200         return hw;
201     }
202
203   return 0;
204 }
205
206
207 /* Return the CGEN hardware table entry for the coprocessor register
208    set for ME_MODULE, whose name prefix is PREFIX.  If ME_MODULE has
209    no such register set, return zero.  If ME_MODULE is the generic
210    me_module CONFIG_NONE, return the table entry for the register set
211    whose hardware type is GENERIC_TYPE.  */
212 static const CGEN_HW_ENTRY *
213 me_module_register_set (CONFIG_ATTR me_module,
214                         const char *prefix,
215                         CGEN_HW_TYPE generic_type)
216 {
217   /* This is kind of tricky, because the hardware table is constructed
218      in a way that isn't very helpful.  Perhaps we can fix that, but
219      here's how it works at the moment:
220
221      The configuration map, `mep_config_map', is indexed by me_module
222      number, and indicates which coprocessor and core ISAs that
223      me_module supports.  The 'core_isa' mask includes all the core
224      ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
225      The entry for the generic me_module, CONFIG_NONE, has an empty
226      'cop_isa', and its 'core_isa' selects only the standard MeP
227      instruction set.
228
229      The CGEN CPU descriptor's hardware table, desc->hw_table, has
230      entries for all the register sets, for all me_modules.  Each
231      entry has a mask indicating which ISAs use that register set.
232      So, if an me_module supports some coprocessor ISA, we can find
233      applicable register sets by scanning the hardware table for
234      register sets whose masks include (at least some of) those ISAs.
235
236      Each hardware table entry also has a name, whose prefix says
237      whether it's a general-purpose ("h-cr") or control ("h-ccr")
238      coprocessor register set.  It might be nicer to have an attribute
239      indicating what sort of register set it was, that we could use
240      instead of pattern-matching on the name.
241
242      When there is no hardware table entry whose mask includes a
243      particular coprocessor ISA and whose name starts with a given
244      prefix, then that means that that coprocessor doesn't have any
245      registers of that type.  In such cases, this function must return
246      a null pointer.
247
248      Coprocessor register sets' masks may or may not include the core
249      ISA for the me_module they belong to.  Those generated by a2cgen
250      do, but the sample me_module included in the unconfigured tree,
251      'ccfx', does not.
252
253      There are generic coprocessor register sets, intended only for
254      use with the generic me_module.  Unfortunately, their masks
255      include *all* ISAs --- even those for coprocessors that don't
256      have such register sets.  This makes detecting the case where a
257      coprocessor lacks a particular register set more complicated.
258
259      So, here's the approach we take:
260
261      - For CONFIG_NONE, we return the generic coprocessor register set.
262
263      - For any other me_module, we search for a register set whose
264        mask contains any of the me_module's coprocessor ISAs,
265        specifically excluding the generic coprocessor register sets.  */
266
267   CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch)->cpu_desc;
268   const CGEN_HW_ENTRY *hw;
269
270   if (me_module == CONFIG_NONE)
271     hw = find_hw_entry_by_type (desc, generic_type);
272   else
273     {
274       CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
275       CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
276       CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
277       CGEN_BITSET *cop_and_core;
278
279       /* The coprocessor ISAs include the ISA for the specific core which
280          has that coprocessor.  */
281       cop_and_core = cgen_bitset_copy (cop);
282       cgen_bitset_union (cop, core, cop_and_core);
283       hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
284     }
285
286   return hw;
287 }
288
289
290 /* Given a hardware table entry HW representing a register set, return
291    a pointer to the keyword table with all the register names.  If HW
292    is NULL, return NULL, to propage the "no such register set" info
293    along.  */
294 static CGEN_KEYWORD *
295 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
296 {
297   if (! hw)
298     return NULL;
299
300   /* Check that HW is actually a keyword table.  */
301   gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
302
303   /* The 'asm_data' field of a register set's hardware table entry
304      refers to a keyword table.  */
305   return (CGEN_KEYWORD *) hw->asm_data;
306 }
307
308
309 /* Given a keyword table KEYWORD and a register number REGNUM, return
310    the name of the register, or "" if KEYWORD contains no register
311    whose number is REGNUM.  */
312 static char *
313 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
314 {
315   const CGEN_KEYWORD_ENTRY *entry
316     = cgen_keyword_lookup_value (keyword_table, regnum);
317
318   if (entry)
319     {
320       char *name = entry->name;
321
322       /* The CGEN keyword entries for register names include the
323          leading $, which appears in MeP assembly as well as in GDB.
324          But we don't want to return that; GDB core code adds that
325          itself.  */
326       if (name[0] == '$')
327         name++;
328
329       return name;
330     }
331   else
332     return "";
333 }
334
335   
336 /* Masks for option bits in the OPT special-purpose register.  */
337 enum {
338   MEP_OPT_DIV = 1 << 25,        /* 32-bit divide instruction option */
339   MEP_OPT_MUL = 1 << 24,        /* 32-bit multiply instruction option */
340   MEP_OPT_BIT = 1 << 23,        /* bit manipulation instruction option */
341   MEP_OPT_SAT = 1 << 22,        /* saturation instruction option */
342   MEP_OPT_CLP = 1 << 21,        /* clip instruction option */
343   MEP_OPT_MIN = 1 << 20,        /* min/max instruction option */
344   MEP_OPT_AVE = 1 << 19,        /* average instruction option */
345   MEP_OPT_ABS = 1 << 18,        /* absolute difference instruction option */
346   MEP_OPT_LDZ = 1 << 16,        /* leading zero instruction option */
347   MEP_OPT_VL64 = 1 << 6,        /* 64-bit VLIW operation mode option */
348   MEP_OPT_VL32 = 1 << 5,        /* 32-bit VLIW operation mode option */
349   MEP_OPT_COP = 1 << 4,         /* coprocessor option */
350   MEP_OPT_DSP = 1 << 2,         /* DSP option */
351   MEP_OPT_UCI = 1 << 1,         /* UCI option */
352   MEP_OPT_DBG = 1 << 0,         /* DBG function option */
353 };
354
355
356 /* Given the option_mask value for a particular entry in
357    mep_config_map, produce the value the processor's OPT register
358    would use to represent the same set of options.  */
359 static unsigned int
360 opt_from_option_mask (unsigned int option_mask)
361 {
362   /* A table mapping OPT register bits onto CGEN config map option
363      bits.  */
364   struct {
365     unsigned int opt_bit, option_mask_bit;
366   } bits[] = {
367     { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368     { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
369     { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370     { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
371     { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
372     { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
373     { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
374     { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
375     { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
376     { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
377     { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
378     { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
379     { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
380   };
381
382   int i;
383   unsigned int opt = 0;
384
385   for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
386     if (option_mask & bits[i].option_mask_bit)
387       opt |= bits[i].opt_bit;
388
389   return opt;
390 }
391
392
393 /* Return the value the $OPT register would use to represent the set
394    of options for ME_MODULE.  */
395 static unsigned int
396 me_module_opt (CONFIG_ATTR me_module)
397 {
398   return opt_from_option_mask (mep_config_map[me_module].option_mask);
399 }
400
401
402 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
403    This is either 32 or 64.  */
404 static int
405 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
406 {
407   if (mep_config_map[me_module].option_mask
408       & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
409     return 64;
410   else
411     return 32;
412 }
413
414
415 /* Return true if ME_MODULE is big-endian, false otherwise.  */
416 static int
417 me_module_big_endian (CONFIG_ATTR me_module)
418 {
419   return mep_config_map[me_module].big_endian;
420 }
421
422
423 /* Return the name of ME_MODULE, or NULL if it has no name.  */
424 static const char *
425 me_module_name (CONFIG_ATTR me_module)
426 {
427   /* The default me_module has "" as its name, but it's easier for our
428      callers to test for NULL.  */
429   if (! mep_config_map[me_module].name
430       || mep_config_map[me_module].name[0] == '\0')
431     return NULL;
432   else
433     return mep_config_map[me_module].name;
434 }
435 \f
436 /* Register set.  */
437
438
439 /* The MeP spec defines the following registers:
440    16 general purpose registers (r0-r15) 
441    32 control/special registers (csr0-csr31)
442    32 coprocessor general-purpose registers (c0 -- c31)
443    64 coprocessor control registers (ccr0 -- ccr63)
444
445    For the raw registers, we assign numbers here explicitly, instead
446    of letting the enum assign them for us; the numbers are a matter of
447    external protocol, and shouldn't shift around as things are edited.
448
449    We access the control/special registers via pseudoregisters, to
450    enforce read-only portions that some registers have.
451
452    We access the coprocessor general purpose and control registers via
453    pseudoregisters, to make sure they appear in the proper order in
454    the 'info all-registers' command (which uses the register number
455    ordering), and also to allow them to be renamed and resized
456    depending on the me_module in use.
457
458    The MeP allows coprocessor general-purpose registers to be either
459    32 or 64 bits long, depending on the configuration.  Since we don't
460    want the format of the 'g' packet to vary from one core to another,
461    the raw coprocessor GPRs are always 64 bits.  GDB doesn't allow the
462    types of registers to change (see the implementation of
463    register_type), so we have four banks of pseudoregisters for the
464    coprocessor gprs --- 32-bit vs. 64-bit, and integer
465    vs. floating-point --- and we show or hide them depending on the
466    configuration.  */
467 enum
468 {
469   MEP_FIRST_RAW_REGNUM = 0,
470
471   MEP_FIRST_GPR_REGNUM = 0,
472   MEP_R0_REGNUM = 0,
473   MEP_R1_REGNUM = 1,
474   MEP_R2_REGNUM = 2,
475   MEP_R3_REGNUM = 3,
476   MEP_R4_REGNUM = 4,
477   MEP_R5_REGNUM = 5,
478   MEP_R6_REGNUM = 6,
479   MEP_R7_REGNUM = 7,
480   MEP_R8_REGNUM = 8,
481   MEP_R9_REGNUM = 9,
482   MEP_R10_REGNUM = 10,
483   MEP_R11_REGNUM = 11,
484   MEP_R12_REGNUM = 12,
485   MEP_FP_REGNUM = MEP_R8_REGNUM,
486   MEP_R13_REGNUM = 13,
487   MEP_TP_REGNUM = MEP_R13_REGNUM,       /* (r13) Tiny data pointer */
488   MEP_R14_REGNUM = 14,
489   MEP_GP_REGNUM = MEP_R14_REGNUM,       /* (r14) Global pointer */
490   MEP_R15_REGNUM = 15,
491   MEP_SP_REGNUM = MEP_R15_REGNUM,       /* (r15) Stack pointer */
492   MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
493
494   /* The raw control registers.  These are the values as received via
495      the remote protocol, directly from the target; we only let user
496      code touch the via the pseudoregisters, which enforce read-only
497      bits.  */
498   MEP_FIRST_RAW_CSR_REGNUM = 16,
499   MEP_RAW_PC_REGNUM    = 16,    /* Program counter */
500   MEP_RAW_LP_REGNUM    = 17,    /* Link pointer */
501   MEP_RAW_SAR_REGNUM   = 18,    /* Raw shift amount */
502   MEP_RAW_CSR3_REGNUM  = 19,    /* csr3: reserved */
503   MEP_RAW_RPB_REGNUM   = 20,    /* Raw repeat begin address */
504   MEP_RAW_RPE_REGNUM   = 21,    /* Repeat end address */
505   MEP_RAW_RPC_REGNUM   = 22,    /* Repeat count */
506   MEP_RAW_HI_REGNUM    = 23, /* Upper 32 bits of result of 64 bit mult/div */
507   MEP_RAW_LO_REGNUM    = 24, /* Lower 32 bits of result of 64 bit mult/div */
508   MEP_RAW_CSR9_REGNUM  = 25,    /* csr3: reserved */
509   MEP_RAW_CSR10_REGNUM = 26,    /* csr3: reserved */
510   MEP_RAW_CSR11_REGNUM = 27,    /* csr3: reserved */
511   MEP_RAW_MB0_REGNUM   = 28,    /* Raw modulo begin address 0 */
512   MEP_RAW_ME0_REGNUM   = 29,    /* Raw modulo end address 0 */
513   MEP_RAW_MB1_REGNUM   = 30,    /* Raw modulo begin address 1 */
514   MEP_RAW_ME1_REGNUM   = 31,    /* Raw modulo end address 1 */
515   MEP_RAW_PSW_REGNUM   = 32,    /* Raw program status word */
516   MEP_RAW_ID_REGNUM    = 33,    /* Raw processor ID/revision */
517   MEP_RAW_TMP_REGNUM   = 34,    /* Temporary */
518   MEP_RAW_EPC_REGNUM   = 35,    /* Exception program counter */
519   MEP_RAW_EXC_REGNUM   = 36,    /* Raw exception cause */
520   MEP_RAW_CFG_REGNUM   = 37,    /* Raw processor configuration*/
521   MEP_RAW_CSR22_REGNUM = 38,    /* csr3: reserved */
522   MEP_RAW_NPC_REGNUM   = 39,    /* Nonmaskable interrupt PC */
523   MEP_RAW_DBG_REGNUM   = 40,    /* Raw debug */
524   MEP_RAW_DEPC_REGNUM  = 41,    /* Debug exception PC */
525   MEP_RAW_OPT_REGNUM   = 42,    /* Raw options */
526   MEP_RAW_RCFG_REGNUM  = 43,    /* Raw local ram config */
527   MEP_RAW_CCFG_REGNUM  = 44,    /* Raw cache config */
528   MEP_RAW_CSR29_REGNUM = 45,    /* csr3: reserved */
529   MEP_RAW_CSR30_REGNUM = 46,    /* csr3: reserved */
530   MEP_RAW_CSR31_REGNUM = 47,    /* csr3: reserved */
531   MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
532
533   /* The raw coprocessor general-purpose registers.  These are all 64
534      bits wide.  */
535   MEP_FIRST_RAW_CR_REGNUM = 48,
536   MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
537
538   MEP_FIRST_RAW_CCR_REGNUM = 80,
539   MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
540
541   /* The module number register.  This is the index of the me_module
542      of which the current target is an instance.  (This is not a real
543      MeP-specified register; it's provided by SID.)  */
544   MEP_MODULE_REGNUM,
545
546   MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
547
548   MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
549
550   /* Pseudoregisters.  See mep_pseudo_register_read and
551      mep_pseudo_register_write.  */
552   MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
553
554   /* We have a pseudoregister for every control/special register, to
555      implement registers with read-only bits.  */
556   MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
557   MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
558   MEP_LP_REGNUM,                /* Link pointer */
559   MEP_SAR_REGNUM,               /* shift amount */
560   MEP_CSR3_REGNUM,              /* csr3: reserved */
561   MEP_RPB_REGNUM,               /* repeat begin address */
562   MEP_RPE_REGNUM,               /* Repeat end address */
563   MEP_RPC_REGNUM,               /* Repeat count */
564   MEP_HI_REGNUM,  /* Upper 32 bits of the result of 64 bit mult/div */
565   MEP_LO_REGNUM,  /* Lower 32 bits of the result of 64 bit mult/div */
566   MEP_CSR9_REGNUM,              /* csr3: reserved */
567   MEP_CSR10_REGNUM,             /* csr3: reserved */
568   MEP_CSR11_REGNUM,             /* csr3: reserved */
569   MEP_MB0_REGNUM,               /* modulo begin address 0 */
570   MEP_ME0_REGNUM,               /* modulo end address 0 */
571   MEP_MB1_REGNUM,               /* modulo begin address 1 */
572   MEP_ME1_REGNUM,               /* modulo end address 1 */
573   MEP_PSW_REGNUM,               /* program status word */
574   MEP_ID_REGNUM,                /* processor ID/revision */
575   MEP_TMP_REGNUM,               /* Temporary */
576   MEP_EPC_REGNUM,               /* Exception program counter */
577   MEP_EXC_REGNUM,               /* exception cause */
578   MEP_CFG_REGNUM,               /* processor configuration*/
579   MEP_CSR22_REGNUM,             /* csr3: reserved */
580   MEP_NPC_REGNUM,               /* Nonmaskable interrupt PC */
581   MEP_DBG_REGNUM,               /* debug */
582   MEP_DEPC_REGNUM,              /* Debug exception PC */
583   MEP_OPT_REGNUM,               /* options */
584   MEP_RCFG_REGNUM,              /* local ram config */
585   MEP_CCFG_REGNUM,              /* cache config */
586   MEP_CSR29_REGNUM,             /* csr3: reserved */
587   MEP_CSR30_REGNUM,             /* csr3: reserved */
588   MEP_CSR31_REGNUM,             /* csr3: reserved */
589   MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
590
591   /* The 32-bit integer view of the coprocessor GPR's.  */
592   MEP_FIRST_CR32_REGNUM,
593   MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
594
595   /* The 32-bit floating-point view of the coprocessor GPR's.  */
596   MEP_FIRST_FP_CR32_REGNUM,
597   MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
598
599   /* The 64-bit integer view of the coprocessor GPR's.  */
600   MEP_FIRST_CR64_REGNUM,
601   MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
602
603   /* The 64-bit floating-point view of the coprocessor GPR's.  */
604   MEP_FIRST_FP_CR64_REGNUM,
605   MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
606
607   MEP_FIRST_CCR_REGNUM,
608   MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
609
610   MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
611
612   MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
613
614   MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
615 };
616
617
618 #define IN_SET(set, n) \
619   (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
620
621 #define IS_GPR_REGNUM(n)     (IN_SET (GPR,     (n)))
622 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
623 #define IS_RAW_CR_REGNUM(n)  (IN_SET (RAW_CR,  (n)))
624 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
625
626 #define IS_CSR_REGNUM(n)     (IN_SET (CSR,     (n)))
627 #define IS_CR32_REGNUM(n)    (IN_SET (CR32,    (n)))
628 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
629 #define IS_CR64_REGNUM(n)    (IN_SET (CR64,    (n)))
630 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
631 #define IS_CR_REGNUM(n)      (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
632                               || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
633 #define IS_CCR_REGNUM(n)     (IN_SET (CCR,     (n)))
634
635 #define IS_RAW_REGNUM(n)     (IN_SET (RAW,     (n)))
636 #define IS_PSEUDO_REGNUM(n)  (IN_SET (PSEUDO,  (n)))
637
638 #define NUM_REGS_IN_SET(set) \
639   (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
640
641 #define MEP_GPR_SIZE (4)        /* Size of a MeP general-purpose register.  */
642 #define MEP_PSW_SIZE (4)        /* Size of the PSW register.  */
643 #define MEP_LP_SIZE (4)         /* Size of the LP register.  */
644
645
646 /* Many of the control/special registers contain bits that cannot be
647    written to; some are entirely read-only.  So we present them all as
648    pseudoregisters.
649
650    The following table describes the special properties of each CSR.  */
651 struct mep_csr_register
652 {
653   /* The number of this CSR's raw register.  */
654   int raw;
655
656   /* The number of this CSR's pseudoregister.  */
657   int pseudo;
658
659   /* A mask of the bits that are writeable: if a bit is set here, then
660      it can be modified; if the bit is clear, then it cannot.  */
661   LONGEST writeable_bits;
662 };
663
664
665 /* mep_csr_registers[i] describes the i'th CSR.
666    We just list the register numbers here explicitly to help catch
667    typos.  */
668 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
669 struct mep_csr_register mep_csr_registers[] = {
670   { CSR(PC),    0xffffffff },   /* manual says r/o, but we can write it */
671   { CSR(LP),    0xffffffff },
672   { CSR(SAR),   0x0000003f },
673   { CSR(CSR3),  0xffffffff },
674   { CSR(RPB),   0xfffffffe },
675   { CSR(RPE),   0xffffffff },
676   { CSR(RPC),   0xffffffff },
677   { CSR(HI),    0xffffffff },
678   { CSR(LO),    0xffffffff },
679   { CSR(CSR9),  0xffffffff },
680   { CSR(CSR10), 0xffffffff },
681   { CSR(CSR11), 0xffffffff },
682   { CSR(MB0),   0x0000ffff },
683   { CSR(ME0),   0x0000ffff },
684   { CSR(MB1),   0x0000ffff },
685   { CSR(ME1),   0x0000ffff },
686   { CSR(PSW),   0x000003ff },
687   { CSR(ID),    0x00000000 },
688   { CSR(TMP),   0xffffffff },
689   { CSR(EPC),   0xffffffff },
690   { CSR(EXC),   0x000030f0 },
691   { CSR(CFG),   0x00c0001b },
692   { CSR(CSR22), 0xffffffff },
693   { CSR(NPC),   0xffffffff },
694   { CSR(DBG),   0x00000580 },
695   { CSR(DEPC),  0xffffffff },
696   { CSR(OPT),   0x00000000 },
697   { CSR(RCFG),  0x00000000 },
698   { CSR(CCFG),  0x00000000 },
699   { CSR(CSR29), 0xffffffff },
700   { CSR(CSR30), 0xffffffff },
701   { CSR(CSR31), 0xffffffff },
702 };
703
704
705 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
706    the number of the corresponding pseudoregister.  Otherwise,
707    mep_raw_to_pseudo[R] == R.  */
708 static int mep_raw_to_pseudo[MEP_NUM_REGS];
709
710 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
711    is the number of the underlying raw register.  Otherwise
712    mep_pseudo_to_raw[R] == R.  */
713 static int mep_pseudo_to_raw[MEP_NUM_REGS];
714
715 static void
716 mep_init_pseudoregister_maps (void)
717 {
718   int i;
719
720   /* Verify that mep_csr_registers covers all the CSRs, in order.  */
721   gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
722   gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
723
724   /* Verify that the raw and pseudo ranges have matching sizes.  */
725   gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
726   gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR32));
727   gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR64));
728   gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
729
730   for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
731     {
732       struct mep_csr_register *r = &mep_csr_registers[i];
733
734       gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
735       gdb_assert (r->raw    == MEP_FIRST_RAW_CSR_REGNUM + i);
736     }
737
738   /* Set up the initial  raw<->pseudo mappings.  */
739   for (i = 0; i < MEP_NUM_REGS; i++)
740     {
741       mep_raw_to_pseudo[i] = i;
742       mep_pseudo_to_raw[i] = i;
743     }
744
745   /* Add the CSR raw<->pseudo mappings.  */
746   for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
747     {
748       struct mep_csr_register *r = &mep_csr_registers[i];
749
750       mep_raw_to_pseudo[r->raw] = r->pseudo;
751       mep_pseudo_to_raw[r->pseudo] = r->raw;
752     }
753
754   /* Add the CR raw<->pseudo mappings.  */
755   for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
756     {
757       int raw = MEP_FIRST_RAW_CR_REGNUM + i;
758       int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
759       int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
760       int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
761       int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
762
763       /* Truly, the raw->pseudo mapping depends on the current module.
764          But we use the raw->pseudo mapping when we read the debugging
765          info; at that point, we don't know what module we'll actually
766          be running yet.  So, we always supply the 64-bit register
767          numbers; GDB knows how to pick a smaller value out of a
768          larger register properly.  */
769       mep_raw_to_pseudo[raw] = pseudo64;
770       mep_pseudo_to_raw[pseudo32] = raw;
771       mep_pseudo_to_raw[pseudofp32] = raw;
772       mep_pseudo_to_raw[pseudo64] = raw;
773       mep_pseudo_to_raw[pseudofp64] = raw;
774     }
775
776   /* Add the CCR raw<->pseudo mappings.  */
777   for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
778     {
779       int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
780       int pseudo = MEP_FIRST_CCR_REGNUM + i;
781       mep_raw_to_pseudo[raw] = pseudo;
782       mep_pseudo_to_raw[pseudo] = raw;
783     }
784 }
785
786
787 static int
788 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
789 {
790   /* The debug info uses the raw register numbers.  */
791   return mep_raw_to_pseudo[debug_reg];
792 }
793
794
795 /* Return the size, in bits, of the coprocessor pseudoregister
796    numbered PSEUDO.  */
797 static int
798 mep_pseudo_cr_size (int pseudo)
799 {
800   if (IS_CR32_REGNUM (pseudo)
801       || IS_FP_CR32_REGNUM (pseudo))
802     return 32;
803   else if (IS_CR64_REGNUM (pseudo)
804            || IS_FP_CR64_REGNUM (pseudo))
805     return 64;
806   else
807     gdb_assert_not_reached ("unexpected coprocessor pseudo register");
808 }
809
810
811 /* If the coprocessor pseudoregister numbered PSEUDO is a
812    floating-point register, return non-zero; if it is an integer
813    register, return zero.  */
814 static int
815 mep_pseudo_cr_is_float (int pseudo)
816 {
817   return (IS_FP_CR32_REGNUM (pseudo)
818           || IS_FP_CR64_REGNUM (pseudo));
819 }
820
821
822 /* Given a coprocessor GPR pseudoregister number, return its index
823    within that register bank.  */
824 static int
825 mep_pseudo_cr_index (int pseudo)
826 {
827   if (IS_CR32_REGNUM (pseudo))
828     return pseudo - MEP_FIRST_CR32_REGNUM;
829   else if (IS_FP_CR32_REGNUM (pseudo))
830       return pseudo - MEP_FIRST_FP_CR32_REGNUM;
831   else if (IS_CR64_REGNUM (pseudo))
832       return pseudo - MEP_FIRST_CR64_REGNUM;
833   else if (IS_FP_CR64_REGNUM (pseudo))
834       return pseudo - MEP_FIRST_FP_CR64_REGNUM;
835   else
836     gdb_assert_not_reached ("unexpected coprocessor pseudo register");
837 }
838
839
840 /* Return the me_module index describing the current target.
841
842    If the current target has registers (e.g., simulator, remote
843    target), then this uses the value of the 'module' register, raw
844    register MEP_MODULE_REGNUM.  Otherwise, this retrieves the value
845    from the ELF header's e_flags field of the current executable
846    file.  */
847 static CONFIG_ATTR
848 current_me_module (void)
849 {
850   if (target_has_registers)
851     {
852       ULONGEST regval;
853       regcache_cooked_read_unsigned (get_current_regcache (),
854                                      MEP_MODULE_REGNUM, &regval);
855       return regval;
856     }
857   else
858     return gdbarch_tdep (target_gdbarch)->me_module;
859 }
860
861
862 /* Return the set of options for the current target, in the form that
863    the OPT register would use.
864
865    If the current target has registers (e.g., simulator, remote
866    target), then this is the actual value of the OPT register.  If the
867    current target does not have registers (e.g., an executable file),
868    then use the 'module_opt' field we computed when we build the
869    gdbarch object for this module.  */
870 static unsigned int
871 current_options (void)
872 {
873   if (target_has_registers)
874     {
875       ULONGEST regval;
876       regcache_cooked_read_unsigned (get_current_regcache (),
877                                      MEP_OPT_REGNUM, &regval);
878       return regval;
879     }
880   else
881     return me_module_opt (current_me_module ());
882 }
883
884
885 /* Return the width of the current me_module's coprocessor data bus,
886    in bits.  This is either 32 or 64.  */
887 static int
888 current_cop_data_bus_width (void)
889 {
890   return me_module_cop_data_bus_width (current_me_module ());
891 }
892
893
894 /* Return the keyword table of coprocessor general-purpose register
895    names appropriate for the me_module we're dealing with.  */
896 static CGEN_KEYWORD *
897 current_cr_names (void)
898 {
899   const CGEN_HW_ENTRY *hw
900     = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
901
902   return register_set_keyword_table (hw);
903 }
904
905
906 /* Return non-zero if the coprocessor general-purpose registers are
907    floating-point values, zero otherwise.  */
908 static int
909 current_cr_is_float (void)
910 {
911   const CGEN_HW_ENTRY *hw
912     = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
913
914   return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
915 }
916
917
918 /* Return the keyword table of coprocessor control register names
919    appropriate for the me_module we're dealing with.  */
920 static CGEN_KEYWORD *
921 current_ccr_names (void)
922 {
923   const CGEN_HW_ENTRY *hw
924     = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
925
926   return register_set_keyword_table (hw);
927 }
928
929
930 static const char *
931 mep_register_name (struct gdbarch *gdbarch, int regnr)
932 {
933   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);  
934
935   /* General-purpose registers.  */
936   static const char *gpr_names[] = {
937     "r0",   "r1",   "r2",   "r3",   /* 0 */
938     "r4",   "r5",   "r6",   "r7",   /* 4 */
939     "fp",   "r9",   "r10",  "r11",  /* 8 */
940     "r12",  "tp",   "gp",   "sp"    /* 12 */
941   };
942
943   /* Special-purpose registers.  */
944   static const char *csr_names[] = {
945     "pc",   "lp",   "sar",  "",     /* 0  csr3: reserved */ 
946     "rpb",  "rpe",  "rpc",  "hi",   /* 4 */
947     "lo",   "",     "",     "",     /* 8  csr9-csr11: reserved */
948     "mb0",  "me0",  "mb1",  "me1",  /* 12 */
949
950     "psw",  "id",   "tmp",  "epc",  /* 16 */
951     "exc",  "cfg",  "",     "npc",  /* 20  csr22: reserved */
952     "dbg",  "depc", "opt",  "rcfg", /* 24 */
953     "ccfg", "",     "",     ""      /* 28  csr29-csr31: reserved */
954   };
955
956   if (IS_GPR_REGNUM (regnr))
957     return gpr_names[regnr - MEP_R0_REGNUM];
958   else if (IS_CSR_REGNUM (regnr))
959     {
960       /* The 'hi' and 'lo' registers are only present on processors
961          that have the 'MUL' or 'DIV' instructions enabled.  */
962       if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
963           && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
964         return "";
965
966       return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
967     }
968   else if (IS_CR_REGNUM (regnr))
969     {
970       CGEN_KEYWORD *names;
971       int cr_size;
972       int cr_is_float;
973
974       /* Does this module have a coprocessor at all?  */
975       if (! (current_options () & MEP_OPT_COP))
976         return "";
977
978       names = current_cr_names ();
979       if (! names)
980         /* This module's coprocessor has no general-purpose registers.  */
981         return "";
982
983       cr_size = current_cop_data_bus_width ();
984       if (cr_size != mep_pseudo_cr_size (regnr))
985         /* This module's coprocessor's GPR's are of a different size.  */
986         return "";
987
988       cr_is_float = current_cr_is_float ();
989       /* The extra ! operators ensure we get boolean equality, not
990          numeric equality.  */
991       if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
992         /* This module's coprocessor's GPR's are of a different type.  */
993         return "";
994
995       return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
996     }
997   else if (IS_CCR_REGNUM (regnr))
998     {
999       /* Does this module have a coprocessor at all?  */
1000       if (! (current_options () & MEP_OPT_COP))
1001         return "";
1002
1003       {
1004         CGEN_KEYWORD *names = current_ccr_names ();
1005
1006         if (! names)
1007           /* This me_module's coprocessor has no control registers.  */
1008           return "";
1009
1010         return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1011       }
1012     }
1013
1014   /* It might be nice to give the 'module' register a name, but that
1015      would affect the output of 'info all-registers', which would
1016      disturb the test suites.  So we leave it invisible.  */
1017   else
1018     return NULL;
1019 }
1020
1021
1022 /* Custom register groups for the MeP.  */
1023 static struct reggroup *mep_csr_reggroup; /* control/special */
1024 static struct reggroup *mep_cr_reggroup;  /* coprocessor general-purpose */
1025 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1026
1027
1028 static int
1029 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1030                          struct reggroup *group)
1031 {
1032   /* Filter reserved or unused register numbers.  */
1033   {
1034     const char *name = mep_register_name (gdbarch, regnum);
1035
1036     if (! name || name[0] == '\0')
1037       return 0;
1038   }
1039
1040   /* We could separate the GPRs and the CSRs.  Toshiba has approved of
1041      the existing behavior, so we'd want to run that by them.  */
1042   if (group == general_reggroup)
1043     return (IS_GPR_REGNUM (regnum)
1044             || IS_CSR_REGNUM (regnum));
1045
1046   /* Everything is in the 'all' reggroup, except for the raw CSR's.  */
1047   else if (group == all_reggroup)
1048     return (IS_GPR_REGNUM (regnum)
1049             || IS_CSR_REGNUM (regnum)
1050             || IS_CR_REGNUM (regnum)
1051             || IS_CCR_REGNUM (regnum));
1052
1053   /* All registers should be saved and restored, except for the raw
1054      CSR's.
1055
1056      This is probably right if the coprocessor is something like a
1057      floating-point unit, but would be wrong if the coprocessor is
1058      something that does I/O, where register accesses actually cause
1059      externally-visible actions.  But I get the impression that the
1060      coprocessor isn't supposed to do things like that --- you'd use a
1061      hardware engine, perhaps.  */
1062   else if (group == save_reggroup || group == restore_reggroup)
1063     return (IS_GPR_REGNUM (regnum)
1064             || IS_CSR_REGNUM (regnum)
1065             || IS_CR_REGNUM (regnum)
1066             || IS_CCR_REGNUM (regnum));
1067
1068   else if (group == mep_csr_reggroup)
1069     return IS_CSR_REGNUM (regnum);
1070   else if (group == mep_cr_reggroup)
1071     return IS_CR_REGNUM (regnum);
1072   else if (group == mep_ccr_reggroup)
1073     return IS_CCR_REGNUM (regnum);
1074   else
1075     return 0;
1076 }
1077
1078
1079 static struct type *
1080 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1081 {
1082   /* Coprocessor general-purpose registers may be either 32 or 64 bits
1083      long.  So for them, the raw registers are always 64 bits long (to
1084      keep the 'g' packet format fixed), and the pseudoregisters vary
1085      in length.  */
1086   if (IS_RAW_CR_REGNUM (reg_nr))
1087     return builtin_type (gdbarch)->builtin_uint64;
1088
1089   /* Since GDB doesn't allow registers to change type, we have two
1090      banks of pseudoregisters for the coprocessor general-purpose
1091      registers: one that gives a 32-bit view, and one that gives a
1092      64-bit view.  We hide or show one or the other depending on the
1093      current module.  */
1094   if (IS_CR_REGNUM (reg_nr))
1095     {
1096       int size = mep_pseudo_cr_size (reg_nr);
1097       if (size == 32)
1098         {
1099           if (mep_pseudo_cr_is_float (reg_nr))
1100             return builtin_type (gdbarch)->builtin_float;
1101           else
1102             return builtin_type (gdbarch)->builtin_uint32;
1103         }
1104       else if (size == 64)
1105         {
1106           if (mep_pseudo_cr_is_float (reg_nr))
1107             return builtin_type (gdbarch)->builtin_double;
1108           else
1109             return builtin_type (gdbarch)->builtin_uint64;
1110         }
1111       else
1112         gdb_assert_not_reached ("unexpected cr size");
1113     }
1114
1115   /* All other registers are 32 bits long.  */
1116   else
1117     return builtin_type (gdbarch)->builtin_uint32;
1118 }
1119
1120
1121 static CORE_ADDR
1122 mep_read_pc (struct regcache *regcache)
1123 {
1124   ULONGEST pc;
1125   regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1126   return pc;
1127 }
1128
1129 static void
1130 mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
1131 {
1132   regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
1133 }
1134
1135
1136 static enum register_status
1137 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1138                       struct regcache *regcache,
1139                       int cookednum,
1140                       void *buf)
1141 {
1142   enum register_status status;
1143   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1144   /* Read the raw register into a 64-bit buffer, and then return the
1145      appropriate end of that buffer.  */
1146   int rawnum = mep_pseudo_to_raw[cookednum];
1147   char buf64[8];
1148
1149   gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1150   gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1151   status = regcache_raw_read (regcache, rawnum, buf64);
1152   if (status == REG_VALID)
1153     {
1154       /* Slow, but legible.  */
1155       store_unsigned_integer (buf, 4, byte_order,
1156                               extract_unsigned_integer (buf64, 8, byte_order));
1157     }
1158   return status;
1159 }
1160
1161
1162 static enum register_status
1163 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1164                       struct regcache *regcache,
1165                       int cookednum,
1166                       void *buf)
1167 {
1168   return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1169 }
1170
1171
1172 static enum register_status
1173 mep_pseudo_register_read (struct gdbarch *gdbarch,
1174                           struct regcache *regcache,
1175                           int cookednum,
1176                           gdb_byte *buf)
1177 {
1178   if (IS_CSR_REGNUM (cookednum)
1179       || IS_CCR_REGNUM (cookednum))
1180     return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1181   else if (IS_CR32_REGNUM (cookednum)
1182            || IS_FP_CR32_REGNUM (cookednum))
1183     return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1184   else if (IS_CR64_REGNUM (cookednum)
1185            || IS_FP_CR64_REGNUM (cookednum))
1186     return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1187   else
1188     gdb_assert_not_reached ("unexpected pseudo register");
1189 }
1190
1191
1192 static void
1193 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1194                       struct regcache *regcache,
1195                       int cookednum,
1196                       const void *buf)
1197 {
1198   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1199   int size = register_size (gdbarch, cookednum);
1200   struct mep_csr_register *r
1201     = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1202
1203   if (r->writeable_bits == 0)
1204     /* A completely read-only register; avoid the read-modify-
1205        write cycle, and juts ignore the entire write.  */
1206     ;
1207   else
1208     {
1209       /* A partially writeable register; do a read-modify-write cycle.  */
1210       ULONGEST old_bits;
1211       ULONGEST new_bits;
1212       ULONGEST mixed_bits;
1213           
1214       regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1215       new_bits = extract_unsigned_integer (buf, size, byte_order);
1216       mixed_bits = ((r->writeable_bits & new_bits)
1217                     | (~r->writeable_bits & old_bits));
1218       regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1219     }
1220 }
1221                       
1222
1223 static void
1224 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1225                        struct regcache *regcache,
1226                        int cookednum,
1227                        const void *buf)
1228 {
1229   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1230   /* Expand the 32-bit value into a 64-bit value, and write that to
1231      the pseudoregister.  */
1232   int rawnum = mep_pseudo_to_raw[cookednum];
1233   char buf64[8];
1234   
1235   gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1236   gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1237   /* Slow, but legible.  */
1238   store_unsigned_integer (buf64, 8, byte_order,
1239                           extract_unsigned_integer (buf, 4, byte_order));
1240   regcache_raw_write (regcache, rawnum, buf64);
1241 }
1242
1243
1244 static void
1245 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1246                      struct regcache *regcache,
1247                      int cookednum,
1248                      const void *buf)
1249 {
1250   regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1251 }
1252
1253
1254 static void
1255 mep_pseudo_register_write (struct gdbarch *gdbarch,
1256                            struct regcache *regcache,
1257                            int cookednum,
1258                            const gdb_byte *buf)
1259 {
1260   if (IS_CSR_REGNUM (cookednum))
1261     mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1262   else if (IS_CR32_REGNUM (cookednum)
1263            || IS_FP_CR32_REGNUM (cookednum))
1264     mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1265   else if (IS_CR64_REGNUM (cookednum)
1266            || IS_FP_CR64_REGNUM (cookednum))
1267     mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1268   else if (IS_CCR_REGNUM (cookednum))
1269     regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1270   else
1271     gdb_assert_not_reached ("unexpected pseudo register");
1272 }
1273
1274
1275 \f
1276 /* Disassembly.  */
1277
1278 /* The mep disassembler needs to know about the section in order to
1279    work correctly.  */
1280 static int
1281 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1282 {
1283   struct obj_section * s = find_pc_section (pc);
1284
1285   if (s)
1286     {
1287       /* The libopcodes disassembly code uses the section to find the
1288          BFD, the BFD to find the ELF header, the ELF header to find
1289          the me_module index, and the me_module index to select the
1290          right instructions to print.  */
1291       info->section = s->the_bfd_section;
1292       info->arch = bfd_arch_mep;
1293         
1294       return print_insn_mep (pc, info);
1295     }
1296   
1297   return 0;
1298 }
1299
1300 \f
1301 /* Prologue analysis.  */
1302
1303
1304 /* The MeP has two classes of instructions: "core" instructions, which
1305    are pretty normal RISC chip stuff, and "coprocessor" instructions,
1306    which are mostly concerned with moving data in and out of
1307    coprocessor registers, and branching on coprocessor condition
1308    codes.  There's space in the instruction set for custom coprocessor
1309    instructions, too.
1310
1311    Instructions can be 16 or 32 bits long; the top two bits of the
1312    first byte indicate the length.  The coprocessor instructions are
1313    mixed in with the core instructions, and there's no easy way to
1314    distinguish them; you have to completely decode them to tell one
1315    from the other.
1316
1317    The MeP also supports a "VLIW" operation mode, where instructions
1318    always occur in fixed-width bundles.  The bundles are either 32
1319    bits or 64 bits long, depending on a fixed configuration flag.  You
1320    decode the first part of the bundle as normal; if it's a core
1321    instruction, and there's any space left in the bundle, the
1322    remainder of the bundle is a coprocessor instruction, which will
1323    execute in parallel with the core instruction.  If the first part
1324    of the bundle is a coprocessor instruction, it occupies the entire
1325    bundle.
1326
1327    So, here are all the cases:
1328
1329    - 32-bit VLIW mode:
1330      Every bundle is four bytes long, and naturally aligned, and can hold
1331      one or two instructions:
1332      - 16-bit core instruction; 16-bit coprocessor instruction
1333        These execute in parallel.
1334      - 32-bit core instruction
1335      - 32-bit coprocessor instruction
1336
1337    - 64-bit VLIW mode:
1338      Every bundle is eight bytes long, and naturally aligned, and can hold
1339      one or two instructions:
1340      - 16-bit core instruction; 48-bit (!) coprocessor instruction
1341        These execute in parallel.
1342      - 32-bit core instruction; 32-bit coprocessor instruction
1343        These execute in parallel.
1344      - 64-bit coprocessor instruction
1345
1346    Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1347    instruction, so I don't really know what's up there; perhaps these
1348    are always the user-defined coprocessor instructions.  */
1349
1350
1351 /* Return non-zero if PC is in a VLIW code section, zero
1352    otherwise.  */
1353 static int
1354 mep_pc_in_vliw_section (CORE_ADDR pc)
1355 {
1356   struct obj_section *s = find_pc_section (pc);
1357   if (s)
1358     return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1359   return 0;
1360 }
1361
1362
1363 /* Set *INSN to the next core instruction at PC, and return the
1364    address of the next instruction.
1365
1366    The MeP instruction encoding is endian-dependent.  16- and 32-bit
1367    instructions are encoded as one or two two-byte parts, and each
1368    part is byte-swapped independently.  Thus:
1369
1370       void
1371       foo (void)
1372       {
1373         asm ("movu $1, 0x123456");
1374         asm ("sb $1,0x5678($2)");
1375         asm ("clip $1, 19");
1376       }
1377
1378    compiles to this big-endian code:
1379
1380        0:       d1 56 12 34     movu $1,0x123456
1381        4:       c1 28 56 78     sb $1,22136($2)
1382        8:       f1 01 10 98     clip $1,0x13
1383        c:       70 02           ret
1384
1385    and this little-endian code:
1386
1387        0:       56 d1 34 12     movu $1,0x123456
1388        4:       28 c1 78 56     sb $1,22136($2)
1389        8:       01 f1 98 10     clip $1,0x13
1390        c:       02 70           ret
1391
1392    Instructions are returned in *INSN in an endian-independent form: a
1393    given instruction always appears in *INSN the same way, regardless
1394    of whether the instruction stream is big-endian or little-endian.
1395
1396    *INSN's most significant 16 bits are the first (i.e., at lower
1397    addresses) 16 bit part of the instruction.  Its least significant
1398    16 bits are the second (i.e., higher-addressed) 16 bit part of the
1399    instruction, or zero for a 16-bit instruction.  Both 16-bit parts
1400    are fetched using the current endianness.
1401
1402    So, the *INSN values for the instruction sequence above would be
1403    the following, in either endianness:
1404
1405        0xd1561234       movu $1,0x123456     
1406        0xc1285678       sb $1,22136($2)
1407        0xf1011098       clip $1,0x13
1408        0x70020000       ret
1409
1410    (In a sense, it would be more natural to return 16-bit instructions
1411    in the least significant 16 bits of *INSN, but that would be
1412    ambiguous.  In order to tell whether you're looking at a 16- or a
1413    32-bit instruction, you have to consult the major opcode field ---
1414    the most significant four bits of the instruction's first 16-bit
1415    part.  But if we put 16-bit instructions at the least significant
1416    end of *INSN, then you don't know where to find the major opcode
1417    field until you know if it's a 16- or a 32-bit instruction ---
1418    which is where we started.)
1419
1420    If PC points to a core / coprocessor bundle in a VLIW section, set
1421    *INSN to the core instruction, and return the address of the next
1422    bundle.  This has the effect of skipping the bundled coprocessor
1423    instruction.  That's okay, since coprocessor instructions aren't
1424    significant to prologue analysis --- for the time being,
1425    anyway.  */
1426
1427 static CORE_ADDR 
1428 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, long *insn)
1429 {
1430   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1431   int pc_in_vliw_section;
1432   int vliw_mode;
1433   int insn_len;
1434   char buf[2];
1435
1436   *insn = 0;
1437
1438   /* Are we in a VLIW section?  */
1439   pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1440   if (pc_in_vliw_section)
1441     {
1442       /* Yes, find out which bundle size.  */
1443       vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1444
1445       /* If PC is in a VLIW section, but the current core doesn't say
1446          that it supports either VLIW mode, then we don't have enough
1447          information to parse the instruction stream it contains.
1448          Since the "undifferentiated" standard core doesn't have
1449          either VLIW mode bit set, this could happen.
1450
1451          But it shouldn't be an error to (say) set a breakpoint in a
1452          VLIW section, if you know you'll never reach it.  (Perhaps
1453          you have a script that sets a bunch of standard breakpoints.)
1454
1455          So we'll just return zero here, and hope for the best.  */
1456       if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1457         return 0;
1458
1459       /* If both VL32 and VL64 are set, that's bogus, too.  */
1460       if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1461         return 0;
1462     }
1463   else
1464     vliw_mode = 0;
1465
1466   read_memory (pc, buf, sizeof (buf));
1467   *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1468
1469   /* The major opcode --- the top four bits of the first 16-bit
1470      part --- indicates whether this instruction is 16 or 32 bits
1471      long.  All 32-bit instructions have a major opcode whose top
1472      two bits are 11; all the rest are 16-bit instructions.  */
1473   if ((*insn & 0xc0000000) == 0xc0000000)
1474     {
1475       /* Fetch the second 16-bit part of the instruction.  */
1476       read_memory (pc + 2, buf, sizeof (buf));
1477       *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1478     }
1479
1480   /* If we're in VLIW code, then the VLIW width determines the address
1481      of the next instruction.  */
1482   if (vliw_mode)
1483     {
1484       /* In 32-bit VLIW code, all bundles are 32 bits long.  We ignore the
1485          coprocessor half of a core / copro bundle.  */
1486       if (vliw_mode == MEP_OPT_VL32)
1487         insn_len = 4;
1488
1489       /* In 64-bit VLIW code, all bundles are 64 bits long.  We ignore the
1490          coprocessor half of a core / copro bundle.  */
1491       else if (vliw_mode == MEP_OPT_VL64)
1492         insn_len = 8;
1493
1494       /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode.  */
1495       else
1496         gdb_assert_not_reached ("unexpected vliw mode");
1497     }
1498   
1499   /* Otherwise, the top two bits of the major opcode are (again) what
1500      we need to check.  */
1501   else if ((*insn & 0xc0000000) == 0xc0000000)
1502     insn_len = 4;
1503   else
1504     insn_len = 2;
1505
1506   return pc + insn_len;
1507 }
1508
1509
1510 /* Sign-extend the LEN-bit value N.  */
1511 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1512
1513 /* Return the LEN-bit field at POS from I.  */
1514 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1515
1516 /* Like FIELD, but sign-extend the field's value.  */
1517 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1518
1519
1520 /* Macros for decoding instructions.
1521
1522    Remember that 16-bit instructions are placed in bits 16..31 of i,
1523    not at the least significant end; this means that the major opcode
1524    field is always in the same place, regardless of the width of the
1525    instruction.  As a reminder of this, we show the lower 16 bits of a
1526    16-bit instruction as xxxx_xxxx_xxxx_xxxx.  */
1527
1528 /* SB Rn,(Rm)                 0000_nnnn_mmmm_1000 */
1529 /* SH Rn,(Rm)                 0000_nnnn_mmmm_1001 */
1530 /* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 */
1531
1532 /* SW Rn,disp16(Rm)           1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1533 #define IS_SW(i)              (((i) & 0xf00f0000) == 0xc00a0000)
1534 /* SB Rn,disp16(Rm)           1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1535 #define IS_SB(i)              (((i) & 0xf00f0000) == 0xc0080000)
1536 /* SH Rn,disp16(Rm)           1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1537 #define IS_SH(i)              (((i) & 0xf00f0000) == 0xc0090000)
1538 #define SWBH_32_BASE(i)       (FIELD (i, 20, 4))
1539 #define SWBH_32_SOURCE(i)     (FIELD (i, 24, 4))
1540 #define SWBH_32_OFFSET(i)     (SFIELD (i, 0, 16))
1541
1542 /* SW Rn,disp7.align4(SP)     0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1543 #define IS_SW_IMMD(i)         (((i) & 0xf0830000) == 0x40020000)
1544 #define SW_IMMD_SOURCE(i)     (FIELD (i, 24, 4))
1545 #define SW_IMMD_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1546
1547 /* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1548 #define IS_SW_REG(i)          (((i) & 0xf00f0000) == 0x000a0000)
1549 #define SW_REG_SOURCE(i)      (FIELD (i, 24, 4))
1550 #define SW_REG_BASE(i)        (FIELD (i, 20, 4))
1551
1552 /* ADD3 Rl,Rn,Rm              1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1553 #define IS_ADD3_16_REG(i)     (((i) & 0xf0000000) == 0x90000000)
1554 #define ADD3_16_REG_SRC1(i)   (FIELD (i, 20, 4))               /* n */
1555 #define ADD3_16_REG_SRC2(i)   (FIELD (i, 24, 4))               /* m */
1556
1557 /* ADD3 Rn,Rm,imm16           1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1558 #define IS_ADD3_32(i)         (((i) & 0xf00f0000) == 0xc0000000)
1559 #define ADD3_32_TARGET(i)     (FIELD (i, 24, 4))
1560 #define ADD3_32_SOURCE(i)     (FIELD (i, 20, 4))
1561 #define ADD3_32_OFFSET(i)     (SFIELD (i, 0, 16))
1562
1563 /* ADD3 Rn,SP,imm7.align4     0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1564 #define IS_ADD3_16(i)         (((i) & 0xf0830000) == 0x40000000)
1565 #define ADD3_16_TARGET(i)     (FIELD (i, 24, 4))
1566 #define ADD3_16_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1567
1568 /* ADD Rn,imm6                0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1569 #define IS_ADD(i)             (((i) & 0xf0030000) == 0x60000000)
1570 #define ADD_TARGET(i)         (FIELD (i, 24, 4))
1571 #define ADD_OFFSET(i)         (SFIELD (i, 18, 6))
1572
1573 /* LDC Rn,imm5                0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1574                               imm5 = I||i[7:4] */
1575 #define IS_LDC(i)             (((i) & 0xf00e0000) == 0x700a0000)
1576 #define LDC_IMM(i)            ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1577 #define LDC_TARGET(i)         (FIELD (i, 24, 4))
1578
1579 /* LW Rn,disp16(Rm)           1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd  */
1580 #define IS_LW(i)              (((i) & 0xf00f0000) == 0xc00e0000)
1581 #define LW_TARGET(i)          (FIELD (i, 24, 4))
1582 #define LW_BASE(i)            (FIELD (i, 20, 4))
1583 #define LW_OFFSET(i)          (SFIELD (i, 0, 16))
1584
1585 /* MOV Rn,Rm                  0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1586 #define IS_MOV(i)             (((i) & 0xf00f0000) == 0x00000000)
1587 #define MOV_TARGET(i)         (FIELD (i, 24, 4))
1588 #define MOV_SOURCE(i)         (FIELD (i, 20, 4))
1589
1590 /* BRA disp12.align2          1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1591 #define IS_BRA(i)             (((i) & 0xf0010000) == 0xb0000000)
1592 #define BRA_DISP(i)           (SFIELD (i, 17, 11) << 1)
1593
1594
1595 /* This structure holds the results of a prologue analysis.  */
1596 struct mep_prologue
1597 {
1598   /* The architecture for which we generated this prologue info.  */
1599   struct gdbarch *gdbarch;
1600
1601   /* The offset from the frame base to the stack pointer --- always
1602      zero or negative.
1603
1604      Calling this a "size" is a bit misleading, but given that the
1605      stack grows downwards, using offsets for everything keeps one
1606      from going completely sign-crazy: you never change anything's
1607      sign for an ADD instruction; always change the second operand's
1608      sign for a SUB instruction; and everything takes care of
1609      itself.  */
1610   int frame_size;
1611
1612   /* Non-zero if this function has initialized the frame pointer from
1613      the stack pointer, zero otherwise.  */
1614   int has_frame_ptr;
1615
1616   /* If has_frame_ptr is non-zero, this is the offset from the frame
1617      base to where the frame pointer points.  This is always zero or
1618      negative.  */
1619   int frame_ptr_offset;
1620
1621   /* The address of the first instruction at which the frame has been
1622      set up and the arguments are where the debug info says they are
1623      --- as best as we can tell.  */
1624   CORE_ADDR prologue_end;
1625
1626   /* reg_offset[R] is the offset from the CFA at which register R is
1627      saved, or 1 if register R has not been saved.  (Real values are
1628      always zero or negative.)  */
1629   int reg_offset[MEP_NUM_REGS];
1630 };
1631
1632 /* Return non-zero if VALUE is an incoming argument register.  */
1633
1634 static int
1635 is_arg_reg (pv_t value)
1636 {
1637   return (value.kind == pvk_register
1638           && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1639           && value.k == 0);
1640 }
1641
1642 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1643    probably spilling an argument register to its stack slot in STACK.
1644    Such instructions should be included in the prologue, if possible.
1645
1646    The store is a spill if:
1647    - the value being stored is REG's original value;
1648    - the value has not already been stored somewhere in STACK; and
1649    - ADDR is a stack slot's address (e.g., relative to the original
1650      value of the SP).  */
1651 static int
1652 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1653               struct pv_area *stack)
1654 {
1655   return (is_arg_reg (value)
1656           && pv_is_register (addr, MEP_SP_REGNUM)
1657           && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1658 }
1659
1660
1661 /* Function for finding saved registers in a 'struct pv_area'; we pass
1662    this to pv_area_scan.
1663
1664    If VALUE is a saved register, ADDR says it was saved at a constant
1665    offset from the frame base, and SIZE indicates that the whole
1666    register was saved, record its offset in RESULT_UNTYPED.  */
1667 static void
1668 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1669 {
1670   struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1671
1672   if (value.kind == pvk_register
1673       && value.k == 0
1674       && pv_is_register (addr, MEP_SP_REGNUM)
1675       && size == register_size (result->gdbarch, value.reg))
1676     result->reg_offset[value.reg] = addr.k;
1677 }
1678
1679
1680 /* Analyze a prologue starting at START_PC, going no further than
1681    LIMIT_PC.  Fill in RESULT as appropriate.  */
1682 static void
1683 mep_analyze_prologue (struct gdbarch *gdbarch,
1684                       CORE_ADDR start_pc, CORE_ADDR limit_pc,
1685                       struct mep_prologue *result)
1686 {
1687   CORE_ADDR pc;
1688   unsigned long insn;
1689   int rn;
1690   int found_lp = 0;
1691   pv_t reg[MEP_NUM_REGS];
1692   struct pv_area *stack;
1693   struct cleanup *back_to;
1694   CORE_ADDR after_last_frame_setup_insn = start_pc;
1695
1696   memset (result, 0, sizeof (*result));
1697   result->gdbarch = gdbarch;
1698
1699   for (rn = 0; rn < MEP_NUM_REGS; rn++)
1700     {
1701       reg[rn] = pv_register (rn, 0);
1702       result->reg_offset[rn] = 1;
1703     }
1704
1705   stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1706   back_to = make_cleanup_free_pv_area (stack);
1707
1708   pc = start_pc;
1709   while (pc < limit_pc)
1710     {
1711       CORE_ADDR next_pc;
1712       pv_t pre_insn_fp, pre_insn_sp;
1713
1714       next_pc = mep_get_insn (gdbarch, pc, &insn);
1715
1716       /* A zero return from mep_get_insn means that either we weren't
1717          able to read the instruction from memory, or that we don't
1718          have enough information to be able to reliably decode it.  So
1719          we'll store here and hope for the best.  */
1720       if (! next_pc)
1721         break;
1722
1723       /* Note the current values of the SP and FP, so we can tell if
1724          this instruction changed them, below.  */
1725       pre_insn_fp = reg[MEP_FP_REGNUM];
1726       pre_insn_sp = reg[MEP_SP_REGNUM];
1727
1728       if (IS_ADD (insn))
1729         {
1730           int rn = ADD_TARGET (insn);
1731           CORE_ADDR imm6 = ADD_OFFSET (insn);
1732
1733           reg[rn] = pv_add_constant (reg[rn], imm6);
1734         }
1735       else if (IS_ADD3_16 (insn))
1736         {
1737           int rn = ADD3_16_TARGET (insn);
1738           int imm7 = ADD3_16_OFFSET (insn);
1739
1740           reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1741         }
1742       else if (IS_ADD3_32 (insn))
1743         {
1744           int rn = ADD3_32_TARGET (insn);
1745           int rm = ADD3_32_SOURCE (insn);
1746           int imm16 = ADD3_32_OFFSET (insn);
1747
1748           reg[rn] = pv_add_constant (reg[rm], imm16);
1749         }
1750       else if (IS_SW_REG (insn))
1751         {
1752           int rn = SW_REG_SOURCE (insn);
1753           int rm = SW_REG_BASE (insn);
1754
1755           /* If simulating this store would require us to forget
1756              everything we know about the stack frame in the name of
1757              accuracy, it would be better to just quit now.  */
1758           if (pv_area_store_would_trash (stack, reg[rm]))
1759             break;
1760           
1761           if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1762             after_last_frame_setup_insn = next_pc;
1763
1764           pv_area_store (stack, reg[rm], 4, reg[rn]);
1765         }
1766       else if (IS_SW_IMMD (insn))
1767         {
1768           int rn = SW_IMMD_SOURCE (insn);
1769           int offset = SW_IMMD_OFFSET (insn);
1770           pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1771
1772           /* If simulating this store would require us to forget
1773              everything we know about the stack frame in the name of
1774              accuracy, it would be better to just quit now.  */
1775           if (pv_area_store_would_trash (stack, addr))
1776             break;
1777
1778           if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1779             after_last_frame_setup_insn = next_pc;
1780
1781           pv_area_store (stack, addr, 4, reg[rn]);
1782         }
1783       else if (IS_MOV (insn))
1784         {
1785           int rn = MOV_TARGET (insn);
1786           int rm = MOV_SOURCE (insn);
1787
1788           reg[rn] = reg[rm];
1789
1790           if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1791             after_last_frame_setup_insn = next_pc;
1792         }
1793       else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1794         {
1795           int rn = SWBH_32_SOURCE (insn);
1796           int rm = SWBH_32_BASE (insn);
1797           int disp = SWBH_32_OFFSET (insn);
1798           int size = (IS_SB (insn) ? 1
1799                       : IS_SH (insn) ? 2
1800                       : (gdb_assert (IS_SW (insn)), 4));
1801           pv_t addr = pv_add_constant (reg[rm], disp);
1802
1803           if (pv_area_store_would_trash (stack, addr))
1804             break;
1805
1806           if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1807             after_last_frame_setup_insn = next_pc;
1808
1809           pv_area_store (stack, addr, size, reg[rn]);
1810         }
1811       else if (IS_LDC (insn))
1812         {
1813           int rn = LDC_TARGET (insn);
1814           int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1815
1816           reg[rn] = reg[cr];
1817         }
1818       else if (IS_LW (insn))
1819         {
1820           int rn = LW_TARGET (insn);
1821           int rm = LW_BASE (insn);
1822           int offset = LW_OFFSET (insn);
1823           pv_t addr = pv_add_constant (reg[rm], offset);
1824
1825           reg[rn] = pv_area_fetch (stack, addr, 4);
1826         }
1827       else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1828         {
1829           /* When a loop appears as the first statement of a function
1830              body, gcc 4.x will use a BRA instruction to branch to the
1831              loop condition checking code.  This BRA instruction is
1832              marked as part of the prologue.  We therefore set next_pc
1833              to this branch target and also stop the prologue scan.
1834              The instructions at and beyond the branch target should
1835              no longer be associated with the prologue.
1836              
1837              Note that we only consider forward branches here.  We
1838              presume that a forward branch is being used to skip over
1839              a loop body.
1840              
1841              A backwards branch is covered by the default case below.
1842              If we were to encounter a backwards branch, that would
1843              most likely mean that we've scanned through a loop body.
1844              We definitely want to stop the prologue scan when this
1845              happens and that is precisely what is done by the default
1846              case below.  */
1847           next_pc = pc + BRA_DISP (insn);
1848           after_last_frame_setup_insn = next_pc;
1849           break;
1850         }
1851       else
1852         /* We've hit some instruction we don't know how to simulate.
1853            Strictly speaking, we should set every value we're
1854            tracking to "unknown".  But we'll be optimistic, assume
1855            that we have enough information already, and stop
1856            analysis here.  */
1857         break;
1858
1859       /* If this instruction changed the FP or decreased the SP (i.e.,
1860          allocated more stack space), then this may be a good place to
1861          declare the prologue finished.  However, there are some
1862          exceptions:
1863
1864          - If the instruction just changed the FP back to its original
1865            value, then that's probably a restore instruction.  The
1866            prologue should definitely end before that.  
1867
1868          - If the instruction increased the value of the SP (that is,
1869            shrunk the frame), then it's probably part of a frame
1870            teardown sequence, and the prologue should end before that.  */
1871
1872       if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1873         {
1874           if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1875             after_last_frame_setup_insn = next_pc;
1876         }
1877       else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1878         {
1879           /* The comparison of constants looks odd, there, because .k
1880              is unsigned.  All it really means is that the new value
1881              is lower than it was before the instruction.  */
1882           if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1883               && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1884               && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1885                   < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1886             after_last_frame_setup_insn = next_pc;
1887         }
1888
1889       pc = next_pc;
1890     }
1891
1892   /* Is the frame size (offset, really) a known constant?  */
1893   if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1894     result->frame_size = reg[MEP_SP_REGNUM].k;
1895
1896   /* Was the frame pointer initialized?  */
1897   if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1898     {
1899       result->has_frame_ptr = 1;
1900       result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1901     }
1902
1903   /* Record where all the registers were saved.  */
1904   pv_area_scan (stack, check_for_saved, (void *) result);
1905
1906   result->prologue_end = after_last_frame_setup_insn;
1907
1908   do_cleanups (back_to);
1909 }
1910
1911
1912 static CORE_ADDR
1913 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1914 {
1915   char *name;
1916   CORE_ADDR func_addr, func_end;
1917   struct mep_prologue p;
1918
1919   /* Try to find the extent of the function that contains PC.  */
1920   if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1921     return pc;
1922
1923   mep_analyze_prologue (gdbarch, pc, func_end, &p);
1924   return p.prologue_end;
1925 }
1926
1927
1928 \f
1929 /* Breakpoints.  */
1930
1931 static const unsigned char *
1932 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1933 {
1934   static unsigned char breakpoint[] = { 0x70, 0x32 };
1935   *lenptr = sizeof (breakpoint);
1936   return breakpoint;
1937 }
1938
1939
1940 \f
1941 /* Frames and frame unwinding.  */
1942
1943
1944 static struct mep_prologue *
1945 mep_analyze_frame_prologue (struct frame_info *this_frame,
1946                             void **this_prologue_cache)
1947 {
1948   if (! *this_prologue_cache)
1949     {
1950       CORE_ADDR func_start, stop_addr;
1951
1952       *this_prologue_cache 
1953         = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1954
1955       func_start = get_frame_func (this_frame);
1956       stop_addr = get_frame_pc (this_frame);
1957
1958       /* If we couldn't find any function containing the PC, then
1959          just initialize the prologue cache, but don't do anything.  */
1960       if (! func_start)
1961         stop_addr = func_start;
1962
1963       mep_analyze_prologue (get_frame_arch (this_frame),
1964                             func_start, stop_addr, *this_prologue_cache);
1965     }
1966
1967   return *this_prologue_cache;
1968 }
1969
1970
1971 /* Given the next frame and a prologue cache, return this frame's
1972    base.  */
1973 static CORE_ADDR
1974 mep_frame_base (struct frame_info *this_frame,
1975                 void **this_prologue_cache)
1976 {
1977   struct mep_prologue *p
1978     = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1979
1980   /* In functions that use alloca, the distance between the stack
1981      pointer and the frame base varies dynamically, so we can't use
1982      the SP plus static information like prologue analysis to find the
1983      frame base.  However, such functions must have a frame pointer,
1984      to be able to restore the SP on exit.  So whenever we do have a
1985      frame pointer, use that to find the base.  */
1986   if (p->has_frame_ptr)
1987     {
1988       CORE_ADDR fp
1989         = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1990       return fp - p->frame_ptr_offset;
1991     }
1992   else
1993     {
1994       CORE_ADDR sp
1995         = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1996       return sp - p->frame_size;
1997     }
1998 }
1999
2000
2001 static void
2002 mep_frame_this_id (struct frame_info *this_frame,
2003                    void **this_prologue_cache,
2004                    struct frame_id *this_id)
2005 {
2006   *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
2007                              get_frame_func (this_frame));
2008 }
2009
2010
2011 static struct value *
2012 mep_frame_prev_register (struct frame_info *this_frame,
2013                          void **this_prologue_cache, int regnum)
2014 {
2015   struct mep_prologue *p
2016     = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2017
2018   /* There are a number of complications in unwinding registers on the
2019      MeP, having to do with core functions calling VLIW functions and
2020      vice versa.
2021
2022      The least significant bit of the link register, LP.LTOM, is the
2023      VLIW mode toggle bit: it's set if a core function called a VLIW
2024      function, or vice versa, and clear when the caller and callee
2025      were both in the same mode.
2026
2027      So, if we're asked to unwind the PC, then we really want to
2028      unwind the LP and clear the least significant bit.  (Real return
2029      addresses are always even.)  And if we want to unwind the program
2030      status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2031
2032      Tweaking the register values we return in this way means that the
2033      bits in BUFFERP[] are not the same as the bits you'd find at
2034      ADDRP in the inferior, so we make sure lvalp is not_lval when we
2035      do this.  */
2036   if (regnum == MEP_PC_REGNUM)
2037     {
2038       struct value *value;
2039       CORE_ADDR lp;
2040       value = mep_frame_prev_register (this_frame, this_prologue_cache,
2041                                        MEP_LP_REGNUM);
2042       lp = value_as_long (value);
2043       release_value (value);
2044       value_free (value);
2045
2046       return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2047     }
2048   else
2049     {
2050       CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2051       struct value *value;
2052
2053       /* Our caller's SP is our frame base.  */
2054       if (regnum == MEP_SP_REGNUM)
2055         return frame_unwind_got_constant (this_frame, regnum, frame_base);
2056
2057       /* If prologue analysis says we saved this register somewhere,
2058          return a description of the stack slot holding it.  */
2059       if (p->reg_offset[regnum] != 1)
2060         value = frame_unwind_got_memory (this_frame, regnum,
2061                                          frame_base + p->reg_offset[regnum]);
2062
2063       /* Otherwise, presume we haven't changed the value of this
2064          register, and get it from the next frame.  */
2065       else
2066         value = frame_unwind_got_register (this_frame, regnum, regnum);
2067
2068       /* If we need to toggle the operating mode, do so.  */
2069       if (regnum == MEP_PSW_REGNUM)
2070         {
2071           CORE_ADDR psw, lp;
2072
2073           psw = value_as_long (value);
2074           release_value (value);
2075           value_free (value);
2076
2077           /* Get the LP's value, too.  */
2078           value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2079           lp = value_as_long (value);
2080           release_value (value);
2081           value_free (value);
2082
2083           /* If LP.LTOM is set, then toggle PSW.OM.  */
2084           if (lp & 0x1)
2085             psw ^= 0x1000;
2086
2087           return frame_unwind_got_constant (this_frame, regnum, psw);
2088         }
2089
2090       return value;
2091     }
2092 }
2093
2094
2095 static const struct frame_unwind mep_frame_unwind = {
2096   NORMAL_FRAME,
2097   default_frame_unwind_stop_reason,
2098   mep_frame_this_id,
2099   mep_frame_prev_register,
2100   NULL,
2101   default_frame_sniffer
2102 };
2103
2104
2105 /* Our general unwinding function can handle unwinding the PC.  */
2106 static CORE_ADDR
2107 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2108 {
2109   return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2110 }
2111
2112
2113 /* Our general unwinding function can handle unwinding the SP.  */
2114 static CORE_ADDR
2115 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2116 {
2117   return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2118 }
2119
2120
2121 \f
2122 /* Return values.  */
2123
2124
2125 static int
2126 mep_use_struct_convention (struct type *type)
2127 {
2128   return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2129 }
2130
2131
2132 static void
2133 mep_extract_return_value (struct gdbarch *arch,
2134                           struct type *type,
2135                           struct regcache *regcache,
2136                           gdb_byte *valbuf)
2137 {
2138   int byte_order = gdbarch_byte_order (arch);
2139
2140   /* Values that don't occupy a full register appear at the less
2141      significant end of the value.  This is the offset to where the
2142      value starts.  */
2143   int offset;
2144
2145   /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2146      pointed to by R0.  */
2147   gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2148
2149   if (byte_order == BFD_ENDIAN_BIG)
2150     offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2151   else
2152     offset = 0;
2153
2154   /* Return values that do fit in a single register are returned in R0.  */
2155   regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2156                              offset, TYPE_LENGTH (type),
2157                              valbuf);
2158 }
2159
2160
2161 static void
2162 mep_store_return_value (struct gdbarch *arch,
2163                         struct type *type,
2164                         struct regcache *regcache,
2165                         const gdb_byte *valbuf)
2166 {
2167   int byte_order = gdbarch_byte_order (arch);
2168
2169   /* Values that fit in a single register go in R0.  */
2170   if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2171     {
2172       /* Values that don't occupy a full register appear at the least
2173          significant end of the value.  This is the offset to where the
2174          value starts.  */
2175       int offset;
2176
2177       if (byte_order == BFD_ENDIAN_BIG)
2178         offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2179       else
2180         offset = 0;
2181
2182       regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2183                                   offset, TYPE_LENGTH (type),
2184                                   valbuf);
2185     }
2186
2187   /* Return values larger than a single register are returned in
2188      memory, pointed to by R0.  Unfortunately, we can't count on R0
2189      pointing to the return buffer, so we raise an error here.  */
2190   else
2191     error (_("\
2192 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2193 calling conventions do not provide enough information to do this.\n\
2194 Try using the 'return' command with no argument."));
2195 }
2196
2197 static enum return_value_convention
2198 mep_return_value (struct gdbarch *gdbarch, struct type *func_type,
2199                   struct type *type, struct regcache *regcache,
2200                   gdb_byte *readbuf, const gdb_byte *writebuf)
2201 {
2202   if (mep_use_struct_convention (type))
2203     {
2204       if (readbuf)
2205         {
2206           ULONGEST addr;
2207           /* Although the address of the struct buffer gets passed in R1, it's
2208              returned in R0.  Fetch R0's value and then read the memory
2209              at that address.  */
2210           regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2211           read_memory (addr, readbuf, TYPE_LENGTH (type));
2212         }
2213       if (writebuf)
2214         {
2215           /* Return values larger than a single register are returned in
2216              memory, pointed to by R0.  Unfortunately, we can't count on R0
2217              pointing to the return buffer, so we raise an error here.  */
2218           error (_("\
2219 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2220 calling conventions do not provide enough information to do this.\n\
2221 Try using the 'return' command with no argument."));
2222         }
2223       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2224     }
2225
2226   if (readbuf)
2227     mep_extract_return_value (gdbarch, type, regcache, readbuf);
2228   if (writebuf)
2229     mep_store_return_value (gdbarch, type, regcache, writebuf);
2230
2231   return RETURN_VALUE_REGISTER_CONVENTION;
2232 }
2233
2234 \f
2235 /* Inferior calls.  */
2236
2237
2238 static CORE_ADDR
2239 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2240 {
2241   /* Require word alignment.  */
2242   return sp & -4;
2243 }
2244
2245
2246 /* From "lang_spec2.txt":
2247
2248    4.2 Calling conventions
2249
2250    4.2.1 Core register conventions
2251
2252    - Parameters should be evaluated from left to right, and they
2253      should be held in $1,$2,$3,$4 in order.  The fifth parameter or
2254      after should be held in the stack.  If the size is larger than 4
2255      bytes in the first four parameters, the pointer should be held in
2256      the registers instead.  If the size is larger than 4 bytes in the
2257      fifth parameter or after, the pointer should be held in the stack.
2258
2259    - Return value of a function should be held in register $0.  If the
2260      size of return value is larger than 4 bytes, $1 should hold the
2261      pointer pointing memory that would hold the return value.  In this
2262      case, the first parameter should be held in $2, the second one in
2263      $3, and the third one in $4, and the forth parameter or after
2264      should be held in the stack.
2265
2266    [This doesn't say so, but arguments shorter than four bytes are
2267    passed in the least significant end of a four-byte word when
2268    they're passed on the stack.]  */
2269
2270
2271 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2272    large to fit in a register, save it on the stack, and place its
2273    address in COPY[i].  SP is the initial stack pointer; return the
2274    new stack pointer.  */
2275 static CORE_ADDR
2276 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2277                       CORE_ADDR copy[])
2278 {
2279   int i;
2280
2281   for (i = 0; i < argc; i++)
2282     {
2283       unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2284
2285       if (arg_len > MEP_GPR_SIZE)
2286         {
2287           /* Reserve space for the copy, and then round the SP down, to
2288              make sure it's all aligned properly.  */
2289           sp = (sp - arg_len) & -4;
2290           write_memory (sp, value_contents (argv[i]), arg_len);
2291           copy[i] = sp;
2292         }
2293     }
2294
2295   return sp;
2296 }
2297
2298
2299 static CORE_ADDR
2300 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2301                      struct regcache *regcache, CORE_ADDR bp_addr,
2302                      int argc, struct value **argv, CORE_ADDR sp,
2303                      int struct_return,
2304                      CORE_ADDR struct_addr)
2305 {
2306   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2307   CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2308   CORE_ADDR func_addr = find_function_addr (function, NULL);
2309   int i;
2310
2311   /* The number of the next register available to hold an argument.  */
2312   int arg_reg;
2313
2314   /* The address of the next stack slot available to hold an argument.  */
2315   CORE_ADDR arg_stack;
2316
2317   /* The address of the end of the stack area for arguments.  This is
2318      just for error checking.  */
2319   CORE_ADDR arg_stack_end;
2320   
2321   sp = push_large_arguments (sp, argc, argv, copy);
2322
2323   /* Reserve space for the stack arguments, if any.  */
2324   arg_stack_end = sp;
2325   if (argc + (struct_addr ? 1 : 0) > 4)
2326     sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2327
2328   arg_reg = MEP_R1_REGNUM;
2329   arg_stack = sp;
2330
2331   /* If we're returning a structure by value, push the pointer to the
2332      buffer as the first argument.  */
2333   if (struct_return)
2334     {
2335       regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2336       arg_reg++;
2337     }
2338
2339   for (i = 0; i < argc; i++)
2340     {
2341       unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2342       ULONGEST value;
2343
2344       /* Arguments that fit in a GPR get expanded to fill the GPR.  */
2345       if (arg_size <= MEP_GPR_SIZE)
2346         value = extract_unsigned_integer (value_contents (argv[i]),
2347                                           TYPE_LENGTH (value_type (argv[i])),
2348                                           byte_order);
2349
2350       /* Arguments too large to fit in a GPR get copied to the stack,
2351          and we pass a pointer to the copy.  */
2352       else
2353         value = copy[i];
2354
2355       /* We use $1 -- $4 for passing arguments, then use the stack.  */
2356       if (arg_reg <= MEP_R4_REGNUM)
2357         {
2358           regcache_cooked_write_unsigned (regcache, arg_reg, value);
2359           arg_reg++;
2360         }
2361       else
2362         {
2363           char buf[MEP_GPR_SIZE];
2364           store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2365           write_memory (arg_stack, buf, MEP_GPR_SIZE);
2366           arg_stack += MEP_GPR_SIZE;
2367         }
2368     }
2369
2370   gdb_assert (arg_stack <= arg_stack_end);
2371
2372   /* Set the return address.  */
2373   regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2374
2375   /* Update the stack pointer.  */
2376   regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2377   
2378   return sp;
2379 }
2380
2381
2382 static struct frame_id
2383 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2384 {
2385   CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2386   return frame_id_build (sp, get_frame_pc (this_frame));
2387 }
2388
2389
2390 \f
2391 /* Initialization.  */
2392
2393
2394 static struct gdbarch *
2395 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2396 {
2397   struct gdbarch *gdbarch;
2398   struct gdbarch_tdep *tdep;
2399
2400   /* Which me_module are we building a gdbarch object for?  */
2401   CONFIG_ATTR me_module;
2402
2403   /* If we have a BFD in hand, figure out which me_module it was built
2404      for.  Otherwise, use the no-particular-me_module code.  */
2405   if (info.abfd)
2406     {
2407       /* The way to get the me_module code depends on the object file
2408          format.  At the moment, we only know how to handle ELF.  */
2409       if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2410         me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2411       else
2412         me_module = CONFIG_NONE;
2413     }
2414   else
2415     me_module = CONFIG_NONE;
2416
2417   /* If we're setting the architecture from a file, check the
2418      endianness of the file against that of the me_module.  */
2419   if (info.abfd)
2420     {
2421       /* The negations on either side make the comparison treat all
2422          non-zero (true) values as equal.  */
2423       if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2424         {
2425           const char *module_name = me_module_name (me_module);
2426           const char *module_endianness
2427             = me_module_big_endian (me_module) ? "big" : "little";
2428           const char *file_name = bfd_get_filename (info.abfd);
2429           const char *file_endianness
2430             = bfd_big_endian (info.abfd) ? "big" : "little";
2431           
2432           fputc_unfiltered ('\n', gdb_stderr);
2433           if (module_name)
2434             warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2435                        "%s is %s-endian."),
2436                      module_name, module_endianness,
2437                      file_name, file_endianness);
2438           else
2439             warning (_("the selected MeP module is %s-endian, but the "
2440                        "executable\n"
2441                        "%s is %s-endian."),
2442                      module_endianness, file_name, file_endianness);
2443         }
2444     }
2445
2446   /* Find a candidate among the list of architectures we've created
2447      already.  info->bfd_arch_info needs to match, but we also want
2448      the right me_module: the ELF header's e_flags field needs to
2449      match as well.  */
2450   for (arches = gdbarch_list_lookup_by_info (arches, &info); 
2451        arches != NULL;
2452        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2453     if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2454       return arches->gdbarch;
2455
2456   tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2457   gdbarch = gdbarch_alloc (&info, tdep);
2458
2459   /* Get a CGEN CPU descriptor for this architecture.  */
2460   {
2461     const char *mach_name = info.bfd_arch_info->printable_name;
2462     enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2463                                ? CGEN_ENDIAN_BIG
2464                                : CGEN_ENDIAN_LITTLE);
2465
2466     tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2467                                         CGEN_CPU_OPEN_ENDIAN, endian,
2468                                         CGEN_CPU_OPEN_END);
2469   }
2470
2471   tdep->me_module = me_module;
2472
2473   /* Register set.  */
2474   set_gdbarch_read_pc (gdbarch, mep_read_pc);
2475   set_gdbarch_write_pc (gdbarch, mep_write_pc);
2476   set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2477   set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2478   set_gdbarch_register_name (gdbarch, mep_register_name);
2479   set_gdbarch_register_type (gdbarch, mep_register_type);
2480   set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2481   set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2482   set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2483   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2484   set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2485
2486   set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2487   reggroup_add (gdbarch, all_reggroup);
2488   reggroup_add (gdbarch, general_reggroup);
2489   reggroup_add (gdbarch, save_reggroup);
2490   reggroup_add (gdbarch, restore_reggroup);
2491   reggroup_add (gdbarch, mep_csr_reggroup);
2492   reggroup_add (gdbarch, mep_cr_reggroup);
2493   reggroup_add (gdbarch, mep_ccr_reggroup);
2494
2495   /* Disassembly.  */
2496   set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn); 
2497
2498   /* Breakpoints.  */
2499   set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2500   set_gdbarch_decr_pc_after_break (gdbarch, 0);
2501   set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2502
2503   /* Frames and frame unwinding.  */
2504   frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2505   set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2506   set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2507   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2508   set_gdbarch_frame_args_skip (gdbarch, 0);
2509
2510   /* Return values.  */
2511   set_gdbarch_return_value (gdbarch, mep_return_value);
2512   
2513   /* Inferior function calls.  */
2514   set_gdbarch_frame_align (gdbarch, mep_frame_align);
2515   set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2516   set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2517
2518   return gdbarch;
2519 }
2520
2521 /* Provide a prototype to silence -Wmissing-prototypes.  */
2522 extern initialize_file_ftype _initialize_mep_tdep;
2523
2524 void
2525 _initialize_mep_tdep (void)
2526 {
2527   mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2528   mep_cr_reggroup  = reggroup_new ("cr", USER_REGGROUP); 
2529   mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2530
2531   register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2532
2533   mep_init_pseudoregister_maps ();
2534 }