1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 Contributed by Red Hat, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "frame-unwind.h"
26 #include "frame-base.h"
31 #include "gdb_string.h"
38 #include "arch-utils.h"
41 #include "floatformat.h"
42 #include "sim-regno.h"
44 #include "trad-frame.h"
45 #include "reggroups.h"
48 #include "prologue-value.h"
49 #include "cgen/bitset.h"
52 #include "gdb_assert.h"
54 /* Get the user's customized MeP coprocessor register names from
56 #include "opcodes/mep-desc.h"
57 #include "opcodes/mep-opc.h"
60 /* The gdbarch_tdep structure. */
62 /* A quick recap for GDB hackers not familiar with the whole Toshiba
63 Media Processor story:
65 The MeP media engine is a configureable processor: users can design
66 their own coprocessors, implement custom instructions, adjust cache
67 sizes, select optional standard facilities like add-and-saturate
68 instructions, and so on. Then, they can build custom versions of
69 the GNU toolchain to support their customized chips. The
70 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
71 tree, and a config file pointing to various files provided by the
72 user describing their customizations, and edits the source tree to
73 produce a compiler that can generate their custom instructions, an
74 assembler that can assemble them and recognize their custom
75 register names, and so on.
77 Furthermore, the user can actually specify several of these custom
78 configurations, called 'me_modules', and get a toolchain which can
79 produce code for any of them, given a compiler/assembler switch;
80 you say something like 'gcc -mconfig=mm_max' to generate code for
81 the me_module named 'mm_max'.
83 GDB, in particular, needs to:
85 - use the coprocessor control register names provided by the user
86 in their hardware description, in expressions, 'info register'
87 output, and disassembly,
89 - know the number, names, and types of the coprocessor's
90 general-purpose registers, adjust the 'info all-registers' output
91 accordingly, and print error messages if the user refers to one
94 - allow access to the control bus space only when the configuration
95 actually has a control bus, and recognize which regions of the
96 control bus space are actually populated,
98 - disassemble using the user's provided mnemonics for their custom
101 - recognize whether the $hi and $lo registers are present, and
102 allow access to them only when they are actually there.
104 There are three sources of information about what sort of me_module
105 we're actually dealing with:
107 - A MeP executable file indicates which me_module it was compiled
108 for, and libopcodes has tables describing each module. So, given
109 an executable file, we can find out about the processor it was
112 - There are SID command-line options to select a particular
113 me_module, overriding the one specified in the ELF file. SID
114 provides GDB with a fake read-only register, 'module', which
115 indicates which me_module GDB is communicating with an instance
118 - There are SID command-line options to enable or disable certain
119 optional processor features, overriding the defaults for the
120 selected me_module. The MeP $OPT register indicates which
121 options are present on the current processor. */
126 /* A CGEN cpu descriptor for this BFD architecture and machine.
128 Note: this is *not* customized for any particular me_module; the
129 MeP libopcodes machinery actually puts off module-specific
130 customization until the last minute. So this contains
131 information about all supported me_modules. */
132 CGEN_CPU_DESC cpu_desc;
134 /* The me_module index from the ELF file we used to select this
135 architecture, or CONFIG_NONE if there was none.
137 Note that we should prefer to use the me_module number available
138 via the 'module' register, whenever we're actually talking to a
141 In the absence of live information, we'd like to get the
142 me_module number from the ELF file. But which ELF file: the
143 executable file, the core file, ... ? The answer is, "the last
144 ELF file we used to set the current architecture". Thus, we
145 create a separate instance of the gdbarch structure for each
146 me_module value mep_gdbarch_init sees, and store the me_module
147 value from the ELF file here. */
148 CONFIG_ATTR me_module;
153 /* Getting me_module information from the CGEN tables. */
156 /* Find an entry in the DESC's hardware table whose name begins with
157 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
158 intersect with GENERIC_ISA_MASK. If there is no matching entry,
160 static const CGEN_HW_ENTRY *
161 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
163 CGEN_BITSET *copro_isa_mask,
164 CGEN_BITSET *generic_isa_mask)
166 int prefix_len = strlen (prefix);
169 for (i = 0; i < desc->hw_table.num_entries; i++)
171 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
172 if (strncmp (prefix, hw->name, prefix_len) == 0)
174 CGEN_BITSET *hw_isa_mask
176 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
178 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
179 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
188 /* Find an entry in DESC's hardware table whose type is TYPE. Return
189 zero if there is none. */
190 static const CGEN_HW_ENTRY *
191 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
195 for (i = 0; i < desc->hw_table.num_entries; i++)
197 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
199 if (hw->type == type)
207 /* Return the CGEN hardware table entry for the coprocessor register
208 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
209 no such register set, return zero. If ME_MODULE is the generic
210 me_module CONFIG_NONE, return the table entry for the register set
211 whose hardware type is GENERIC_TYPE. */
212 static const CGEN_HW_ENTRY *
213 me_module_register_set (CONFIG_ATTR me_module,
215 CGEN_HW_TYPE generic_type)
217 /* This is kind of tricky, because the hardware table is constructed
218 in a way that isn't very helpful. Perhaps we can fix that, but
219 here's how it works at the moment:
221 The configuration map, `mep_config_map', is indexed by me_module
222 number, and indicates which coprocessor and core ISAs that
223 me_module supports. The 'core_isa' mask includes all the core
224 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
225 The entry for the generic me_module, CONFIG_NONE, has an empty
226 'cop_isa', and its 'core_isa' selects only the standard MeP
229 The CGEN CPU descriptor's hardware table, desc->hw_table, has
230 entries for all the register sets, for all me_modules. Each
231 entry has a mask indicating which ISAs use that register set.
232 So, if an me_module supports some coprocessor ISA, we can find
233 applicable register sets by scanning the hardware table for
234 register sets whose masks include (at least some of) those ISAs.
236 Each hardware table entry also has a name, whose prefix says
237 whether it's a general-purpose ("h-cr") or control ("h-ccr")
238 coprocessor register set. It might be nicer to have an attribute
239 indicating what sort of register set it was, that we could use
240 instead of pattern-matching on the name.
242 When there is no hardware table entry whose mask includes a
243 particular coprocessor ISA and whose name starts with a given
244 prefix, then that means that that coprocessor doesn't have any
245 registers of that type. In such cases, this function must return
248 Coprocessor register sets' masks may or may not include the core
249 ISA for the me_module they belong to. Those generated by a2cgen
250 do, but the sample me_module included in the unconfigured tree,
253 There are generic coprocessor register sets, intended only for
254 use with the generic me_module. Unfortunately, their masks
255 include *all* ISAs --- even those for coprocessors that don't
256 have such register sets. This makes detecting the case where a
257 coprocessor lacks a particular register set more complicated.
259 So, here's the approach we take:
261 - For CONFIG_NONE, we return the generic coprocessor register set.
263 - For any other me_module, we search for a register set whose
264 mask contains any of the me_module's coprocessor ISAs,
265 specifically excluding the generic coprocessor register sets. */
267 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch)->cpu_desc;
268 const CGEN_HW_ENTRY *hw;
270 if (me_module == CONFIG_NONE)
271 hw = find_hw_entry_by_type (desc, generic_type);
274 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
275 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
276 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
277 CGEN_BITSET *cop_and_core;
279 /* The coprocessor ISAs include the ISA for the specific core which
280 has that coprocessor. */
281 cop_and_core = cgen_bitset_copy (cop);
282 cgen_bitset_union (cop, core, cop_and_core);
283 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
290 /* Given a hardware table entry HW representing a register set, return
291 a pointer to the keyword table with all the register names. If HW
292 is NULL, return NULL, to propage the "no such register set" info
294 static CGEN_KEYWORD *
295 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
300 /* Check that HW is actually a keyword table. */
301 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
303 /* The 'asm_data' field of a register set's hardware table entry
304 refers to a keyword table. */
305 return (CGEN_KEYWORD *) hw->asm_data;
309 /* Given a keyword table KEYWORD and a register number REGNUM, return
310 the name of the register, or "" if KEYWORD contains no register
311 whose number is REGNUM. */
313 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
315 const CGEN_KEYWORD_ENTRY *entry
316 = cgen_keyword_lookup_value (keyword_table, regnum);
320 char *name = entry->name;
322 /* The CGEN keyword entries for register names include the
323 leading $, which appears in MeP assembly as well as in GDB.
324 But we don't want to return that; GDB core code adds that
336 /* Masks for option bits in the OPT special-purpose register. */
338 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
339 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
340 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
341 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
342 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
343 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
344 MEP_OPT_AVE = 1 << 19, /* average instruction option */
345 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
346 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
347 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
348 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
349 MEP_OPT_COP = 1 << 4, /* coprocessor option */
350 MEP_OPT_DSP = 1 << 2, /* DSP option */
351 MEP_OPT_UCI = 1 << 1, /* UCI option */
352 MEP_OPT_DBG = 1 << 0, /* DBG function option */
356 /* Given the option_mask value for a particular entry in
357 mep_config_map, produce the value the processor's OPT register
358 would use to represent the same set of options. */
360 opt_from_option_mask (unsigned int option_mask)
362 /* A table mapping OPT register bits onto CGEN config map option
365 unsigned int opt_bit, option_mask_bit;
367 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
369 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
371 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
372 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
373 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
374 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
375 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
376 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
377 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
378 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
379 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
383 unsigned int opt = 0;
385 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
386 if (option_mask & bits[i].option_mask_bit)
387 opt |= bits[i].opt_bit;
393 /* Return the value the $OPT register would use to represent the set
394 of options for ME_MODULE. */
396 me_module_opt (CONFIG_ATTR me_module)
398 return opt_from_option_mask (mep_config_map[me_module].option_mask);
402 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
403 This is either 32 or 64. */
405 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
407 if (mep_config_map[me_module].option_mask
408 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
415 /* Return true if ME_MODULE is big-endian, false otherwise. */
417 me_module_big_endian (CONFIG_ATTR me_module)
419 return mep_config_map[me_module].big_endian;
423 /* Return the name of ME_MODULE, or NULL if it has no name. */
425 me_module_name (CONFIG_ATTR me_module)
427 /* The default me_module has "" as its name, but it's easier for our
428 callers to test for NULL. */
429 if (! mep_config_map[me_module].name
430 || mep_config_map[me_module].name[0] == '\0')
433 return mep_config_map[me_module].name;
439 /* The MeP spec defines the following registers:
440 16 general purpose registers (r0-r15)
441 32 control/special registers (csr0-csr31)
442 32 coprocessor general-purpose registers (c0 -- c31)
443 64 coprocessor control registers (ccr0 -- ccr63)
445 For the raw registers, we assign numbers here explicitly, instead
446 of letting the enum assign them for us; the numbers are a matter of
447 external protocol, and shouldn't shift around as things are edited.
449 We access the control/special registers via pseudoregisters, to
450 enforce read-only portions that some registers have.
452 We access the coprocessor general purpose and control registers via
453 pseudoregisters, to make sure they appear in the proper order in
454 the 'info all-registers' command (which uses the register number
455 ordering), and also to allow them to be renamed and resized
456 depending on the me_module in use.
458 The MeP allows coprocessor general-purpose registers to be either
459 32 or 64 bits long, depending on the configuration. Since we don't
460 want the format of the 'g' packet to vary from one core to another,
461 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
462 types of registers to change (see the implementation of
463 register_type), so we have four banks of pseudoregisters for the
464 coprocessor gprs --- 32-bit vs. 64-bit, and integer
465 vs. floating-point --- and we show or hide them depending on the
469 MEP_FIRST_RAW_REGNUM = 0,
471 MEP_FIRST_GPR_REGNUM = 0,
485 MEP_FP_REGNUM = MEP_R8_REGNUM,
487 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
489 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
491 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
492 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
494 /* The raw control registers. These are the values as received via
495 the remote protocol, directly from the target; we only let user
496 code touch the via the pseudoregisters, which enforce read-only
498 MEP_FIRST_RAW_CSR_REGNUM = 16,
499 MEP_RAW_PC_REGNUM = 16, /* Program counter */
500 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
501 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
502 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
503 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
504 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
505 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
506 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
507 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
508 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
509 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
510 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
511 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
512 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
513 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
514 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
515 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
516 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
517 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
518 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
519 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
520 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
521 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
522 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
523 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
524 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
525 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
526 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
527 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
528 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
529 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
530 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
531 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
533 /* The raw coprocessor general-purpose registers. These are all 64
535 MEP_FIRST_RAW_CR_REGNUM = 48,
536 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
538 MEP_FIRST_RAW_CCR_REGNUM = 80,
539 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
541 /* The module number register. This is the index of the me_module
542 of which the current target is an instance. (This is not a real
543 MeP-specified register; it's provided by SID.) */
546 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
548 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
550 /* Pseudoregisters. See mep_pseudo_register_read and
551 mep_pseudo_register_write. */
552 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
554 /* We have a pseudoregister for every control/special register, to
555 implement registers with read-only bits. */
556 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
557 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
558 MEP_LP_REGNUM, /* Link pointer */
559 MEP_SAR_REGNUM, /* shift amount */
560 MEP_CSR3_REGNUM, /* csr3: reserved */
561 MEP_RPB_REGNUM, /* repeat begin address */
562 MEP_RPE_REGNUM, /* Repeat end address */
563 MEP_RPC_REGNUM, /* Repeat count */
564 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
565 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
566 MEP_CSR9_REGNUM, /* csr3: reserved */
567 MEP_CSR10_REGNUM, /* csr3: reserved */
568 MEP_CSR11_REGNUM, /* csr3: reserved */
569 MEP_MB0_REGNUM, /* modulo begin address 0 */
570 MEP_ME0_REGNUM, /* modulo end address 0 */
571 MEP_MB1_REGNUM, /* modulo begin address 1 */
572 MEP_ME1_REGNUM, /* modulo end address 1 */
573 MEP_PSW_REGNUM, /* program status word */
574 MEP_ID_REGNUM, /* processor ID/revision */
575 MEP_TMP_REGNUM, /* Temporary */
576 MEP_EPC_REGNUM, /* Exception program counter */
577 MEP_EXC_REGNUM, /* exception cause */
578 MEP_CFG_REGNUM, /* processor configuration*/
579 MEP_CSR22_REGNUM, /* csr3: reserved */
580 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
581 MEP_DBG_REGNUM, /* debug */
582 MEP_DEPC_REGNUM, /* Debug exception PC */
583 MEP_OPT_REGNUM, /* options */
584 MEP_RCFG_REGNUM, /* local ram config */
585 MEP_CCFG_REGNUM, /* cache config */
586 MEP_CSR29_REGNUM, /* csr3: reserved */
587 MEP_CSR30_REGNUM, /* csr3: reserved */
588 MEP_CSR31_REGNUM, /* csr3: reserved */
589 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
591 /* The 32-bit integer view of the coprocessor GPR's. */
592 MEP_FIRST_CR32_REGNUM,
593 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
595 /* The 32-bit floating-point view of the coprocessor GPR's. */
596 MEP_FIRST_FP_CR32_REGNUM,
597 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
599 /* The 64-bit integer view of the coprocessor GPR's. */
600 MEP_FIRST_CR64_REGNUM,
601 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
603 /* The 64-bit floating-point view of the coprocessor GPR's. */
604 MEP_FIRST_FP_CR64_REGNUM,
605 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
607 MEP_FIRST_CCR_REGNUM,
608 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
610 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
612 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
614 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
618 #define IN_SET(set, n) \
619 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
621 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
622 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
623 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
624 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
626 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
627 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
628 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
629 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
630 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
631 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
632 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
633 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
635 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
636 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
638 #define NUM_REGS_IN_SET(set) \
639 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
641 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
642 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
643 #define MEP_LP_SIZE (4) /* Size of the LP register. */
646 /* Many of the control/special registers contain bits that cannot be
647 written to; some are entirely read-only. So we present them all as
650 The following table describes the special properties of each CSR. */
651 struct mep_csr_register
653 /* The number of this CSR's raw register. */
656 /* The number of this CSR's pseudoregister. */
659 /* A mask of the bits that are writeable: if a bit is set here, then
660 it can be modified; if the bit is clear, then it cannot. */
661 LONGEST writeable_bits;
665 /* mep_csr_registers[i] describes the i'th CSR.
666 We just list the register numbers here explicitly to help catch
668 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
669 struct mep_csr_register mep_csr_registers[] = {
670 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
671 { CSR(LP), 0xffffffff },
672 { CSR(SAR), 0x0000003f },
673 { CSR(CSR3), 0xffffffff },
674 { CSR(RPB), 0xfffffffe },
675 { CSR(RPE), 0xffffffff },
676 { CSR(RPC), 0xffffffff },
677 { CSR(HI), 0xffffffff },
678 { CSR(LO), 0xffffffff },
679 { CSR(CSR9), 0xffffffff },
680 { CSR(CSR10), 0xffffffff },
681 { CSR(CSR11), 0xffffffff },
682 { CSR(MB0), 0x0000ffff },
683 { CSR(ME0), 0x0000ffff },
684 { CSR(MB1), 0x0000ffff },
685 { CSR(ME1), 0x0000ffff },
686 { CSR(PSW), 0x000003ff },
687 { CSR(ID), 0x00000000 },
688 { CSR(TMP), 0xffffffff },
689 { CSR(EPC), 0xffffffff },
690 { CSR(EXC), 0x000030f0 },
691 { CSR(CFG), 0x00c0001b },
692 { CSR(CSR22), 0xffffffff },
693 { CSR(NPC), 0xffffffff },
694 { CSR(DBG), 0x00000580 },
695 { CSR(DEPC), 0xffffffff },
696 { CSR(OPT), 0x00000000 },
697 { CSR(RCFG), 0x00000000 },
698 { CSR(CCFG), 0x00000000 },
699 { CSR(CSR29), 0xffffffff },
700 { CSR(CSR30), 0xffffffff },
701 { CSR(CSR31), 0xffffffff },
705 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
706 the number of the corresponding pseudoregister. Otherwise,
707 mep_raw_to_pseudo[R] == R. */
708 static int mep_raw_to_pseudo[MEP_NUM_REGS];
710 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
711 is the number of the underlying raw register. Otherwise
712 mep_pseudo_to_raw[R] == R. */
713 static int mep_pseudo_to_raw[MEP_NUM_REGS];
716 mep_init_pseudoregister_maps (void)
720 /* Verify that mep_csr_registers covers all the CSRs, in order. */
721 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
722 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
724 /* Verify that the raw and pseudo ranges have matching sizes. */
725 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
727 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
730 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
732 struct mep_csr_register *r = &mep_csr_registers[i];
734 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
735 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
738 /* Set up the initial raw<->pseudo mappings. */
739 for (i = 0; i < MEP_NUM_REGS; i++)
741 mep_raw_to_pseudo[i] = i;
742 mep_pseudo_to_raw[i] = i;
745 /* Add the CSR raw<->pseudo mappings. */
746 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
748 struct mep_csr_register *r = &mep_csr_registers[i];
750 mep_raw_to_pseudo[r->raw] = r->pseudo;
751 mep_pseudo_to_raw[r->pseudo] = r->raw;
754 /* Add the CR raw<->pseudo mappings. */
755 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
757 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
758 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
759 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
760 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
761 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
763 /* Truly, the raw->pseudo mapping depends on the current module.
764 But we use the raw->pseudo mapping when we read the debugging
765 info; at that point, we don't know what module we'll actually
766 be running yet. So, we always supply the 64-bit register
767 numbers; GDB knows how to pick a smaller value out of a
768 larger register properly. */
769 mep_raw_to_pseudo[raw] = pseudo64;
770 mep_pseudo_to_raw[pseudo32] = raw;
771 mep_pseudo_to_raw[pseudofp32] = raw;
772 mep_pseudo_to_raw[pseudo64] = raw;
773 mep_pseudo_to_raw[pseudofp64] = raw;
776 /* Add the CCR raw<->pseudo mappings. */
777 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
779 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
780 int pseudo = MEP_FIRST_CCR_REGNUM + i;
781 mep_raw_to_pseudo[raw] = pseudo;
782 mep_pseudo_to_raw[pseudo] = raw;
788 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
790 /* The debug info uses the raw register numbers. */
791 return mep_raw_to_pseudo[debug_reg];
795 /* Return the size, in bits, of the coprocessor pseudoregister
798 mep_pseudo_cr_size (int pseudo)
800 if (IS_CR32_REGNUM (pseudo)
801 || IS_FP_CR32_REGNUM (pseudo))
803 else if (IS_CR64_REGNUM (pseudo)
804 || IS_FP_CR64_REGNUM (pseudo))
807 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
811 /* If the coprocessor pseudoregister numbered PSEUDO is a
812 floating-point register, return non-zero; if it is an integer
813 register, return zero. */
815 mep_pseudo_cr_is_float (int pseudo)
817 return (IS_FP_CR32_REGNUM (pseudo)
818 || IS_FP_CR64_REGNUM (pseudo));
822 /* Given a coprocessor GPR pseudoregister number, return its index
823 within that register bank. */
825 mep_pseudo_cr_index (int pseudo)
827 if (IS_CR32_REGNUM (pseudo))
828 return pseudo - MEP_FIRST_CR32_REGNUM;
829 else if (IS_FP_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
831 else if (IS_CR64_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_CR64_REGNUM;
833 else if (IS_FP_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
836 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
840 /* Return the me_module index describing the current target.
842 If the current target has registers (e.g., simulator, remote
843 target), then this uses the value of the 'module' register, raw
844 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
845 from the ELF header's e_flags field of the current executable
848 current_me_module (void)
850 if (target_has_registers)
853 regcache_cooked_read_unsigned (get_current_regcache (),
854 MEP_MODULE_REGNUM, ®val);
858 return gdbarch_tdep (target_gdbarch)->me_module;
862 /* Return the set of options for the current target, in the form that
863 the OPT register would use.
865 If the current target has registers (e.g., simulator, remote
866 target), then this is the actual value of the OPT register. If the
867 current target does not have registers (e.g., an executable file),
868 then use the 'module_opt' field we computed when we build the
869 gdbarch object for this module. */
871 current_options (void)
873 if (target_has_registers)
876 regcache_cooked_read_unsigned (get_current_regcache (),
877 MEP_OPT_REGNUM, ®val);
881 return me_module_opt (current_me_module ());
885 /* Return the width of the current me_module's coprocessor data bus,
886 in bits. This is either 32 or 64. */
888 current_cop_data_bus_width (void)
890 return me_module_cop_data_bus_width (current_me_module ());
894 /* Return the keyword table of coprocessor general-purpose register
895 names appropriate for the me_module we're dealing with. */
896 static CGEN_KEYWORD *
897 current_cr_names (void)
899 const CGEN_HW_ENTRY *hw
900 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
902 return register_set_keyword_table (hw);
906 /* Return non-zero if the coprocessor general-purpose registers are
907 floating-point values, zero otherwise. */
909 current_cr_is_float (void)
911 const CGEN_HW_ENTRY *hw
912 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
914 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
918 /* Return the keyword table of coprocessor control register names
919 appropriate for the me_module we're dealing with. */
920 static CGEN_KEYWORD *
921 current_ccr_names (void)
923 const CGEN_HW_ENTRY *hw
924 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
926 return register_set_keyword_table (hw);
931 mep_register_name (struct gdbarch *gdbarch, int regnr)
933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
935 /* General-purpose registers. */
936 static const char *gpr_names[] = {
937 "r0", "r1", "r2", "r3", /* 0 */
938 "r4", "r5", "r6", "r7", /* 4 */
939 "fp", "r9", "r10", "r11", /* 8 */
940 "r12", "tp", "gp", "sp" /* 12 */
943 /* Special-purpose registers. */
944 static const char *csr_names[] = {
945 "pc", "lp", "sar", "", /* 0 csr3: reserved */
946 "rpb", "rpe", "rpc", "hi", /* 4 */
947 "lo", "", "", "", /* 8 csr9-csr11: reserved */
948 "mb0", "me0", "mb1", "me1", /* 12 */
950 "psw", "id", "tmp", "epc", /* 16 */
951 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
952 "dbg", "depc", "opt", "rcfg", /* 24 */
953 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
956 if (IS_GPR_REGNUM (regnr))
957 return gpr_names[regnr - MEP_R0_REGNUM];
958 else if (IS_CSR_REGNUM (regnr))
960 /* The 'hi' and 'lo' registers are only present on processors
961 that have the 'MUL' or 'DIV' instructions enabled. */
962 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
963 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
966 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
968 else if (IS_CR_REGNUM (regnr))
974 /* Does this module have a coprocessor at all? */
975 if (! (current_options () & MEP_OPT_COP))
978 names = current_cr_names ();
980 /* This module's coprocessor has no general-purpose registers. */
983 cr_size = current_cop_data_bus_width ();
984 if (cr_size != mep_pseudo_cr_size (regnr))
985 /* This module's coprocessor's GPR's are of a different size. */
988 cr_is_float = current_cr_is_float ();
989 /* The extra ! operators ensure we get boolean equality, not
991 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
992 /* This module's coprocessor's GPR's are of a different type. */
995 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
997 else if (IS_CCR_REGNUM (regnr))
999 /* Does this module have a coprocessor at all? */
1000 if (! (current_options () & MEP_OPT_COP))
1004 CGEN_KEYWORD *names = current_ccr_names ();
1007 /* This me_module's coprocessor has no control registers. */
1010 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1014 /* It might be nice to give the 'module' register a name, but that
1015 would affect the output of 'info all-registers', which would
1016 disturb the test suites. So we leave it invisible. */
1022 /* Custom register groups for the MeP. */
1023 static struct reggroup *mep_csr_reggroup; /* control/special */
1024 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1025 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1029 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1030 struct reggroup *group)
1032 /* Filter reserved or unused register numbers. */
1034 const char *name = mep_register_name (gdbarch, regnum);
1036 if (! name || name[0] == '\0')
1040 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1041 the existing behavior, so we'd want to run that by them. */
1042 if (group == general_reggroup)
1043 return (IS_GPR_REGNUM (regnum)
1044 || IS_CSR_REGNUM (regnum));
1046 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1047 else if (group == all_reggroup)
1048 return (IS_GPR_REGNUM (regnum)
1049 || IS_CSR_REGNUM (regnum)
1050 || IS_CR_REGNUM (regnum)
1051 || IS_CCR_REGNUM (regnum));
1053 /* All registers should be saved and restored, except for the raw
1056 This is probably right if the coprocessor is something like a
1057 floating-point unit, but would be wrong if the coprocessor is
1058 something that does I/O, where register accesses actually cause
1059 externally-visible actions. But I get the impression that the
1060 coprocessor isn't supposed to do things like that --- you'd use a
1061 hardware engine, perhaps. */
1062 else if (group == save_reggroup || group == restore_reggroup)
1063 return (IS_GPR_REGNUM (regnum)
1064 || IS_CSR_REGNUM (regnum)
1065 || IS_CR_REGNUM (regnum)
1066 || IS_CCR_REGNUM (regnum));
1068 else if (group == mep_csr_reggroup)
1069 return IS_CSR_REGNUM (regnum);
1070 else if (group == mep_cr_reggroup)
1071 return IS_CR_REGNUM (regnum);
1072 else if (group == mep_ccr_reggroup)
1073 return IS_CCR_REGNUM (regnum);
1079 static struct type *
1080 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1082 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1083 long. So for them, the raw registers are always 64 bits long (to
1084 keep the 'g' packet format fixed), and the pseudoregisters vary
1086 if (IS_RAW_CR_REGNUM (reg_nr))
1087 return builtin_type (gdbarch)->builtin_uint64;
1089 /* Since GDB doesn't allow registers to change type, we have two
1090 banks of pseudoregisters for the coprocessor general-purpose
1091 registers: one that gives a 32-bit view, and one that gives a
1092 64-bit view. We hide or show one or the other depending on the
1094 if (IS_CR_REGNUM (reg_nr))
1096 int size = mep_pseudo_cr_size (reg_nr);
1099 if (mep_pseudo_cr_is_float (reg_nr))
1100 return builtin_type (gdbarch)->builtin_float;
1102 return builtin_type (gdbarch)->builtin_uint32;
1104 else if (size == 64)
1106 if (mep_pseudo_cr_is_float (reg_nr))
1107 return builtin_type (gdbarch)->builtin_double;
1109 return builtin_type (gdbarch)->builtin_uint64;
1112 gdb_assert_not_reached ("unexpected cr size");
1115 /* All other registers are 32 bits long. */
1117 return builtin_type (gdbarch)->builtin_uint32;
1122 mep_read_pc (struct regcache *regcache)
1125 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1130 mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
1132 regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
1136 static enum register_status
1137 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1138 struct regcache *regcache,
1142 enum register_status status;
1143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1144 /* Read the raw register into a 64-bit buffer, and then return the
1145 appropriate end of that buffer. */
1146 int rawnum = mep_pseudo_to_raw[cookednum];
1149 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1150 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1151 status = regcache_raw_read (regcache, rawnum, buf64);
1152 if (status == REG_VALID)
1154 /* Slow, but legible. */
1155 store_unsigned_integer (buf, 4, byte_order,
1156 extract_unsigned_integer (buf64, 8, byte_order));
1162 static enum register_status
1163 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1164 struct regcache *regcache,
1168 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1172 static enum register_status
1173 mep_pseudo_register_read (struct gdbarch *gdbarch,
1174 struct regcache *regcache,
1178 if (IS_CSR_REGNUM (cookednum)
1179 || IS_CCR_REGNUM (cookednum))
1180 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1181 else if (IS_CR32_REGNUM (cookednum)
1182 || IS_FP_CR32_REGNUM (cookednum))
1183 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1184 else if (IS_CR64_REGNUM (cookednum)
1185 || IS_FP_CR64_REGNUM (cookednum))
1186 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1188 gdb_assert_not_reached ("unexpected pseudo register");
1193 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1194 struct regcache *regcache,
1198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1199 int size = register_size (gdbarch, cookednum);
1200 struct mep_csr_register *r
1201 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1203 if (r->writeable_bits == 0)
1204 /* A completely read-only register; avoid the read-modify-
1205 write cycle, and juts ignore the entire write. */
1209 /* A partially writeable register; do a read-modify-write cycle. */
1212 ULONGEST mixed_bits;
1214 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1215 new_bits = extract_unsigned_integer (buf, size, byte_order);
1216 mixed_bits = ((r->writeable_bits & new_bits)
1217 | (~r->writeable_bits & old_bits));
1218 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1224 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1225 struct regcache *regcache,
1229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1230 /* Expand the 32-bit value into a 64-bit value, and write that to
1231 the pseudoregister. */
1232 int rawnum = mep_pseudo_to_raw[cookednum];
1235 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1236 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1237 /* Slow, but legible. */
1238 store_unsigned_integer (buf64, 8, byte_order,
1239 extract_unsigned_integer (buf, 4, byte_order));
1240 regcache_raw_write (regcache, rawnum, buf64);
1245 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1246 struct regcache *regcache,
1250 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1255 mep_pseudo_register_write (struct gdbarch *gdbarch,
1256 struct regcache *regcache,
1258 const gdb_byte *buf)
1260 if (IS_CSR_REGNUM (cookednum))
1261 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1262 else if (IS_CR32_REGNUM (cookednum)
1263 || IS_FP_CR32_REGNUM (cookednum))
1264 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1265 else if (IS_CR64_REGNUM (cookednum)
1266 || IS_FP_CR64_REGNUM (cookednum))
1267 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1268 else if (IS_CCR_REGNUM (cookednum))
1269 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1271 gdb_assert_not_reached ("unexpected pseudo register");
1278 /* The mep disassembler needs to know about the section in order to
1281 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1283 struct obj_section * s = find_pc_section (pc);
1287 /* The libopcodes disassembly code uses the section to find the
1288 BFD, the BFD to find the ELF header, the ELF header to find
1289 the me_module index, and the me_module index to select the
1290 right instructions to print. */
1291 info->section = s->the_bfd_section;
1292 info->arch = bfd_arch_mep;
1294 return print_insn_mep (pc, info);
1301 /* Prologue analysis. */
1304 /* The MeP has two classes of instructions: "core" instructions, which
1305 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1306 which are mostly concerned with moving data in and out of
1307 coprocessor registers, and branching on coprocessor condition
1308 codes. There's space in the instruction set for custom coprocessor
1311 Instructions can be 16 or 32 bits long; the top two bits of the
1312 first byte indicate the length. The coprocessor instructions are
1313 mixed in with the core instructions, and there's no easy way to
1314 distinguish them; you have to completely decode them to tell one
1317 The MeP also supports a "VLIW" operation mode, where instructions
1318 always occur in fixed-width bundles. The bundles are either 32
1319 bits or 64 bits long, depending on a fixed configuration flag. You
1320 decode the first part of the bundle as normal; if it's a core
1321 instruction, and there's any space left in the bundle, the
1322 remainder of the bundle is a coprocessor instruction, which will
1323 execute in parallel with the core instruction. If the first part
1324 of the bundle is a coprocessor instruction, it occupies the entire
1327 So, here are all the cases:
1330 Every bundle is four bytes long, and naturally aligned, and can hold
1331 one or two instructions:
1332 - 16-bit core instruction; 16-bit coprocessor instruction
1333 These execute in parallel.
1334 - 32-bit core instruction
1335 - 32-bit coprocessor instruction
1338 Every bundle is eight bytes long, and naturally aligned, and can hold
1339 one or two instructions:
1340 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1341 These execute in parallel.
1342 - 32-bit core instruction; 32-bit coprocessor instruction
1343 These execute in parallel.
1344 - 64-bit coprocessor instruction
1346 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1347 instruction, so I don't really know what's up there; perhaps these
1348 are always the user-defined coprocessor instructions. */
1351 /* Return non-zero if PC is in a VLIW code section, zero
1354 mep_pc_in_vliw_section (CORE_ADDR pc)
1356 struct obj_section *s = find_pc_section (pc);
1358 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1363 /* Set *INSN to the next core instruction at PC, and return the
1364 address of the next instruction.
1366 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1367 instructions are encoded as one or two two-byte parts, and each
1368 part is byte-swapped independently. Thus:
1373 asm ("movu $1, 0x123456");
1374 asm ("sb $1,0x5678($2)");
1375 asm ("clip $1, 19");
1378 compiles to this big-endian code:
1380 0: d1 56 12 34 movu $1,0x123456
1381 4: c1 28 56 78 sb $1,22136($2)
1382 8: f1 01 10 98 clip $1,0x13
1385 and this little-endian code:
1387 0: 56 d1 34 12 movu $1,0x123456
1388 4: 28 c1 78 56 sb $1,22136($2)
1389 8: 01 f1 98 10 clip $1,0x13
1392 Instructions are returned in *INSN in an endian-independent form: a
1393 given instruction always appears in *INSN the same way, regardless
1394 of whether the instruction stream is big-endian or little-endian.
1396 *INSN's most significant 16 bits are the first (i.e., at lower
1397 addresses) 16 bit part of the instruction. Its least significant
1398 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1399 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1400 are fetched using the current endianness.
1402 So, the *INSN values for the instruction sequence above would be
1403 the following, in either endianness:
1405 0xd1561234 movu $1,0x123456
1406 0xc1285678 sb $1,22136($2)
1407 0xf1011098 clip $1,0x13
1410 (In a sense, it would be more natural to return 16-bit instructions
1411 in the least significant 16 bits of *INSN, but that would be
1412 ambiguous. In order to tell whether you're looking at a 16- or a
1413 32-bit instruction, you have to consult the major opcode field ---
1414 the most significant four bits of the instruction's first 16-bit
1415 part. But if we put 16-bit instructions at the least significant
1416 end of *INSN, then you don't know where to find the major opcode
1417 field until you know if it's a 16- or a 32-bit instruction ---
1418 which is where we started.)
1420 If PC points to a core / coprocessor bundle in a VLIW section, set
1421 *INSN to the core instruction, and return the address of the next
1422 bundle. This has the effect of skipping the bundled coprocessor
1423 instruction. That's okay, since coprocessor instructions aren't
1424 significant to prologue analysis --- for the time being,
1428 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, long *insn)
1430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1431 int pc_in_vliw_section;
1438 /* Are we in a VLIW section? */
1439 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1440 if (pc_in_vliw_section)
1442 /* Yes, find out which bundle size. */
1443 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1445 /* If PC is in a VLIW section, but the current core doesn't say
1446 that it supports either VLIW mode, then we don't have enough
1447 information to parse the instruction stream it contains.
1448 Since the "undifferentiated" standard core doesn't have
1449 either VLIW mode bit set, this could happen.
1451 But it shouldn't be an error to (say) set a breakpoint in a
1452 VLIW section, if you know you'll never reach it. (Perhaps
1453 you have a script that sets a bunch of standard breakpoints.)
1455 So we'll just return zero here, and hope for the best. */
1456 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1459 /* If both VL32 and VL64 are set, that's bogus, too. */
1460 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1466 read_memory (pc, buf, sizeof (buf));
1467 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1469 /* The major opcode --- the top four bits of the first 16-bit
1470 part --- indicates whether this instruction is 16 or 32 bits
1471 long. All 32-bit instructions have a major opcode whose top
1472 two bits are 11; all the rest are 16-bit instructions. */
1473 if ((*insn & 0xc0000000) == 0xc0000000)
1475 /* Fetch the second 16-bit part of the instruction. */
1476 read_memory (pc + 2, buf, sizeof (buf));
1477 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1480 /* If we're in VLIW code, then the VLIW width determines the address
1481 of the next instruction. */
1484 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1485 coprocessor half of a core / copro bundle. */
1486 if (vliw_mode == MEP_OPT_VL32)
1489 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1490 coprocessor half of a core / copro bundle. */
1491 else if (vliw_mode == MEP_OPT_VL64)
1494 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1496 gdb_assert_not_reached ("unexpected vliw mode");
1499 /* Otherwise, the top two bits of the major opcode are (again) what
1500 we need to check. */
1501 else if ((*insn & 0xc0000000) == 0xc0000000)
1506 return pc + insn_len;
1510 /* Sign-extend the LEN-bit value N. */
1511 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1513 /* Return the LEN-bit field at POS from I. */
1514 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1516 /* Like FIELD, but sign-extend the field's value. */
1517 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1520 /* Macros for decoding instructions.
1522 Remember that 16-bit instructions are placed in bits 16..31 of i,
1523 not at the least significant end; this means that the major opcode
1524 field is always in the same place, regardless of the width of the
1525 instruction. As a reminder of this, we show the lower 16 bits of a
1526 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1528 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1529 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1530 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1532 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1533 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1534 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1535 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1536 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1537 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1538 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1539 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1540 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1542 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1543 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1544 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1545 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1547 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1548 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1549 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1550 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1552 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1553 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1554 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1555 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1557 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1558 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1559 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1560 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1561 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1563 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1564 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1565 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1566 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1568 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1569 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1570 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1571 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1573 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1575 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1576 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1577 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1579 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1580 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1581 #define LW_TARGET(i) (FIELD (i, 24, 4))
1582 #define LW_BASE(i) (FIELD (i, 20, 4))
1583 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1585 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1586 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1587 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1588 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1590 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1591 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1592 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1595 /* This structure holds the results of a prologue analysis. */
1598 /* The architecture for which we generated this prologue info. */
1599 struct gdbarch *gdbarch;
1601 /* The offset from the frame base to the stack pointer --- always
1604 Calling this a "size" is a bit misleading, but given that the
1605 stack grows downwards, using offsets for everything keeps one
1606 from going completely sign-crazy: you never change anything's
1607 sign for an ADD instruction; always change the second operand's
1608 sign for a SUB instruction; and everything takes care of
1612 /* Non-zero if this function has initialized the frame pointer from
1613 the stack pointer, zero otherwise. */
1616 /* If has_frame_ptr is non-zero, this is the offset from the frame
1617 base to where the frame pointer points. This is always zero or
1619 int frame_ptr_offset;
1621 /* The address of the first instruction at which the frame has been
1622 set up and the arguments are where the debug info says they are
1623 --- as best as we can tell. */
1624 CORE_ADDR prologue_end;
1626 /* reg_offset[R] is the offset from the CFA at which register R is
1627 saved, or 1 if register R has not been saved. (Real values are
1628 always zero or negative.) */
1629 int reg_offset[MEP_NUM_REGS];
1632 /* Return non-zero if VALUE is an incoming argument register. */
1635 is_arg_reg (pv_t value)
1637 return (value.kind == pvk_register
1638 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1642 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1643 probably spilling an argument register to its stack slot in STACK.
1644 Such instructions should be included in the prologue, if possible.
1646 The store is a spill if:
1647 - the value being stored is REG's original value;
1648 - the value has not already been stored somewhere in STACK; and
1649 - ADDR is a stack slot's address (e.g., relative to the original
1650 value of the SP). */
1652 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1653 struct pv_area *stack)
1655 return (is_arg_reg (value)
1656 && pv_is_register (addr, MEP_SP_REGNUM)
1657 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1661 /* Function for finding saved registers in a 'struct pv_area'; we pass
1662 this to pv_area_scan.
1664 If VALUE is a saved register, ADDR says it was saved at a constant
1665 offset from the frame base, and SIZE indicates that the whole
1666 register was saved, record its offset in RESULT_UNTYPED. */
1668 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1670 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1672 if (value.kind == pvk_register
1674 && pv_is_register (addr, MEP_SP_REGNUM)
1675 && size == register_size (result->gdbarch, value.reg))
1676 result->reg_offset[value.reg] = addr.k;
1680 /* Analyze a prologue starting at START_PC, going no further than
1681 LIMIT_PC. Fill in RESULT as appropriate. */
1683 mep_analyze_prologue (struct gdbarch *gdbarch,
1684 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1685 struct mep_prologue *result)
1691 pv_t reg[MEP_NUM_REGS];
1692 struct pv_area *stack;
1693 struct cleanup *back_to;
1694 CORE_ADDR after_last_frame_setup_insn = start_pc;
1696 memset (result, 0, sizeof (*result));
1697 result->gdbarch = gdbarch;
1699 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1701 reg[rn] = pv_register (rn, 0);
1702 result->reg_offset[rn] = 1;
1705 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1706 back_to = make_cleanup_free_pv_area (stack);
1709 while (pc < limit_pc)
1712 pv_t pre_insn_fp, pre_insn_sp;
1714 next_pc = mep_get_insn (gdbarch, pc, &insn);
1716 /* A zero return from mep_get_insn means that either we weren't
1717 able to read the instruction from memory, or that we don't
1718 have enough information to be able to reliably decode it. So
1719 we'll store here and hope for the best. */
1723 /* Note the current values of the SP and FP, so we can tell if
1724 this instruction changed them, below. */
1725 pre_insn_fp = reg[MEP_FP_REGNUM];
1726 pre_insn_sp = reg[MEP_SP_REGNUM];
1730 int rn = ADD_TARGET (insn);
1731 CORE_ADDR imm6 = ADD_OFFSET (insn);
1733 reg[rn] = pv_add_constant (reg[rn], imm6);
1735 else if (IS_ADD3_16 (insn))
1737 int rn = ADD3_16_TARGET (insn);
1738 int imm7 = ADD3_16_OFFSET (insn);
1740 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1742 else if (IS_ADD3_32 (insn))
1744 int rn = ADD3_32_TARGET (insn);
1745 int rm = ADD3_32_SOURCE (insn);
1746 int imm16 = ADD3_32_OFFSET (insn);
1748 reg[rn] = pv_add_constant (reg[rm], imm16);
1750 else if (IS_SW_REG (insn))
1752 int rn = SW_REG_SOURCE (insn);
1753 int rm = SW_REG_BASE (insn);
1755 /* If simulating this store would require us to forget
1756 everything we know about the stack frame in the name of
1757 accuracy, it would be better to just quit now. */
1758 if (pv_area_store_would_trash (stack, reg[rm]))
1761 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1762 after_last_frame_setup_insn = next_pc;
1764 pv_area_store (stack, reg[rm], 4, reg[rn]);
1766 else if (IS_SW_IMMD (insn))
1768 int rn = SW_IMMD_SOURCE (insn);
1769 int offset = SW_IMMD_OFFSET (insn);
1770 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1772 /* If simulating this store would require us to forget
1773 everything we know about the stack frame in the name of
1774 accuracy, it would be better to just quit now. */
1775 if (pv_area_store_would_trash (stack, addr))
1778 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1779 after_last_frame_setup_insn = next_pc;
1781 pv_area_store (stack, addr, 4, reg[rn]);
1783 else if (IS_MOV (insn))
1785 int rn = MOV_TARGET (insn);
1786 int rm = MOV_SOURCE (insn);
1790 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1791 after_last_frame_setup_insn = next_pc;
1793 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1795 int rn = SWBH_32_SOURCE (insn);
1796 int rm = SWBH_32_BASE (insn);
1797 int disp = SWBH_32_OFFSET (insn);
1798 int size = (IS_SB (insn) ? 1
1800 : (gdb_assert (IS_SW (insn)), 4));
1801 pv_t addr = pv_add_constant (reg[rm], disp);
1803 if (pv_area_store_would_trash (stack, addr))
1806 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1807 after_last_frame_setup_insn = next_pc;
1809 pv_area_store (stack, addr, size, reg[rn]);
1811 else if (IS_LDC (insn))
1813 int rn = LDC_TARGET (insn);
1814 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1818 else if (IS_LW (insn))
1820 int rn = LW_TARGET (insn);
1821 int rm = LW_BASE (insn);
1822 int offset = LW_OFFSET (insn);
1823 pv_t addr = pv_add_constant (reg[rm], offset);
1825 reg[rn] = pv_area_fetch (stack, addr, 4);
1827 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1829 /* When a loop appears as the first statement of a function
1830 body, gcc 4.x will use a BRA instruction to branch to the
1831 loop condition checking code. This BRA instruction is
1832 marked as part of the prologue. We therefore set next_pc
1833 to this branch target and also stop the prologue scan.
1834 The instructions at and beyond the branch target should
1835 no longer be associated with the prologue.
1837 Note that we only consider forward branches here. We
1838 presume that a forward branch is being used to skip over
1841 A backwards branch is covered by the default case below.
1842 If we were to encounter a backwards branch, that would
1843 most likely mean that we've scanned through a loop body.
1844 We definitely want to stop the prologue scan when this
1845 happens and that is precisely what is done by the default
1847 next_pc = pc + BRA_DISP (insn);
1848 after_last_frame_setup_insn = next_pc;
1852 /* We've hit some instruction we don't know how to simulate.
1853 Strictly speaking, we should set every value we're
1854 tracking to "unknown". But we'll be optimistic, assume
1855 that we have enough information already, and stop
1859 /* If this instruction changed the FP or decreased the SP (i.e.,
1860 allocated more stack space), then this may be a good place to
1861 declare the prologue finished. However, there are some
1864 - If the instruction just changed the FP back to its original
1865 value, then that's probably a restore instruction. The
1866 prologue should definitely end before that.
1868 - If the instruction increased the value of the SP (that is,
1869 shrunk the frame), then it's probably part of a frame
1870 teardown sequence, and the prologue should end before that. */
1872 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1874 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1875 after_last_frame_setup_insn = next_pc;
1877 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1879 /* The comparison of constants looks odd, there, because .k
1880 is unsigned. All it really means is that the new value
1881 is lower than it was before the instruction. */
1882 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1883 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1884 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1885 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1886 after_last_frame_setup_insn = next_pc;
1892 /* Is the frame size (offset, really) a known constant? */
1893 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1894 result->frame_size = reg[MEP_SP_REGNUM].k;
1896 /* Was the frame pointer initialized? */
1897 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1899 result->has_frame_ptr = 1;
1900 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1903 /* Record where all the registers were saved. */
1904 pv_area_scan (stack, check_for_saved, (void *) result);
1906 result->prologue_end = after_last_frame_setup_insn;
1908 do_cleanups (back_to);
1913 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1916 CORE_ADDR func_addr, func_end;
1917 struct mep_prologue p;
1919 /* Try to find the extent of the function that contains PC. */
1920 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1923 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1924 return p.prologue_end;
1931 static const unsigned char *
1932 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1934 static unsigned char breakpoint[] = { 0x70, 0x32 };
1935 *lenptr = sizeof (breakpoint);
1941 /* Frames and frame unwinding. */
1944 static struct mep_prologue *
1945 mep_analyze_frame_prologue (struct frame_info *this_frame,
1946 void **this_prologue_cache)
1948 if (! *this_prologue_cache)
1950 CORE_ADDR func_start, stop_addr;
1952 *this_prologue_cache
1953 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1955 func_start = get_frame_func (this_frame);
1956 stop_addr = get_frame_pc (this_frame);
1958 /* If we couldn't find any function containing the PC, then
1959 just initialize the prologue cache, but don't do anything. */
1961 stop_addr = func_start;
1963 mep_analyze_prologue (get_frame_arch (this_frame),
1964 func_start, stop_addr, *this_prologue_cache);
1967 return *this_prologue_cache;
1971 /* Given the next frame and a prologue cache, return this frame's
1974 mep_frame_base (struct frame_info *this_frame,
1975 void **this_prologue_cache)
1977 struct mep_prologue *p
1978 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1980 /* In functions that use alloca, the distance between the stack
1981 pointer and the frame base varies dynamically, so we can't use
1982 the SP plus static information like prologue analysis to find the
1983 frame base. However, such functions must have a frame pointer,
1984 to be able to restore the SP on exit. So whenever we do have a
1985 frame pointer, use that to find the base. */
1986 if (p->has_frame_ptr)
1989 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1990 return fp - p->frame_ptr_offset;
1995 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1996 return sp - p->frame_size;
2002 mep_frame_this_id (struct frame_info *this_frame,
2003 void **this_prologue_cache,
2004 struct frame_id *this_id)
2006 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
2007 get_frame_func (this_frame));
2011 static struct value *
2012 mep_frame_prev_register (struct frame_info *this_frame,
2013 void **this_prologue_cache, int regnum)
2015 struct mep_prologue *p
2016 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2018 /* There are a number of complications in unwinding registers on the
2019 MeP, having to do with core functions calling VLIW functions and
2022 The least significant bit of the link register, LP.LTOM, is the
2023 VLIW mode toggle bit: it's set if a core function called a VLIW
2024 function, or vice versa, and clear when the caller and callee
2025 were both in the same mode.
2027 So, if we're asked to unwind the PC, then we really want to
2028 unwind the LP and clear the least significant bit. (Real return
2029 addresses are always even.) And if we want to unwind the program
2030 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2032 Tweaking the register values we return in this way means that the
2033 bits in BUFFERP[] are not the same as the bits you'd find at
2034 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2036 if (regnum == MEP_PC_REGNUM)
2038 struct value *value;
2040 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2042 lp = value_as_long (value);
2043 release_value (value);
2046 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2050 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2051 struct value *value;
2053 /* Our caller's SP is our frame base. */
2054 if (regnum == MEP_SP_REGNUM)
2055 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2057 /* If prologue analysis says we saved this register somewhere,
2058 return a description of the stack slot holding it. */
2059 if (p->reg_offset[regnum] != 1)
2060 value = frame_unwind_got_memory (this_frame, regnum,
2061 frame_base + p->reg_offset[regnum]);
2063 /* Otherwise, presume we haven't changed the value of this
2064 register, and get it from the next frame. */
2066 value = frame_unwind_got_register (this_frame, regnum, regnum);
2068 /* If we need to toggle the operating mode, do so. */
2069 if (regnum == MEP_PSW_REGNUM)
2073 psw = value_as_long (value);
2074 release_value (value);
2077 /* Get the LP's value, too. */
2078 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2079 lp = value_as_long (value);
2080 release_value (value);
2083 /* If LP.LTOM is set, then toggle PSW.OM. */
2087 return frame_unwind_got_constant (this_frame, regnum, psw);
2095 static const struct frame_unwind mep_frame_unwind = {
2097 default_frame_unwind_stop_reason,
2099 mep_frame_prev_register,
2101 default_frame_sniffer
2105 /* Our general unwinding function can handle unwinding the PC. */
2107 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2109 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2113 /* Our general unwinding function can handle unwinding the SP. */
2115 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2117 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2122 /* Return values. */
2126 mep_use_struct_convention (struct type *type)
2128 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2133 mep_extract_return_value (struct gdbarch *arch,
2135 struct regcache *regcache,
2138 int byte_order = gdbarch_byte_order (arch);
2140 /* Values that don't occupy a full register appear at the less
2141 significant end of the value. This is the offset to where the
2145 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2146 pointed to by R0. */
2147 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2149 if (byte_order == BFD_ENDIAN_BIG)
2150 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2154 /* Return values that do fit in a single register are returned in R0. */
2155 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2156 offset, TYPE_LENGTH (type),
2162 mep_store_return_value (struct gdbarch *arch,
2164 struct regcache *regcache,
2165 const gdb_byte *valbuf)
2167 int byte_order = gdbarch_byte_order (arch);
2169 /* Values that fit in a single register go in R0. */
2170 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2172 /* Values that don't occupy a full register appear at the least
2173 significant end of the value. This is the offset to where the
2177 if (byte_order == BFD_ENDIAN_BIG)
2178 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2182 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2183 offset, TYPE_LENGTH (type),
2187 /* Return values larger than a single register are returned in
2188 memory, pointed to by R0. Unfortunately, we can't count on R0
2189 pointing to the return buffer, so we raise an error here. */
2192 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2193 calling conventions do not provide enough information to do this.\n\
2194 Try using the 'return' command with no argument."));
2197 static enum return_value_convention
2198 mep_return_value (struct gdbarch *gdbarch, struct type *func_type,
2199 struct type *type, struct regcache *regcache,
2200 gdb_byte *readbuf, const gdb_byte *writebuf)
2202 if (mep_use_struct_convention (type))
2207 /* Although the address of the struct buffer gets passed in R1, it's
2208 returned in R0. Fetch R0's value and then read the memory
2210 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2211 read_memory (addr, readbuf, TYPE_LENGTH (type));
2215 /* Return values larger than a single register are returned in
2216 memory, pointed to by R0. Unfortunately, we can't count on R0
2217 pointing to the return buffer, so we raise an error here. */
2219 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2220 calling conventions do not provide enough information to do this.\n\
2221 Try using the 'return' command with no argument."));
2223 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2227 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2229 mep_store_return_value (gdbarch, type, regcache, writebuf);
2231 return RETURN_VALUE_REGISTER_CONVENTION;
2235 /* Inferior calls. */
2239 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2241 /* Require word alignment. */
2246 /* From "lang_spec2.txt":
2248 4.2 Calling conventions
2250 4.2.1 Core register conventions
2252 - Parameters should be evaluated from left to right, and they
2253 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2254 after should be held in the stack. If the size is larger than 4
2255 bytes in the first four parameters, the pointer should be held in
2256 the registers instead. If the size is larger than 4 bytes in the
2257 fifth parameter or after, the pointer should be held in the stack.
2259 - Return value of a function should be held in register $0. If the
2260 size of return value is larger than 4 bytes, $1 should hold the
2261 pointer pointing memory that would hold the return value. In this
2262 case, the first parameter should be held in $2, the second one in
2263 $3, and the third one in $4, and the forth parameter or after
2264 should be held in the stack.
2266 [This doesn't say so, but arguments shorter than four bytes are
2267 passed in the least significant end of a four-byte word when
2268 they're passed on the stack.] */
2271 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2272 large to fit in a register, save it on the stack, and place its
2273 address in COPY[i]. SP is the initial stack pointer; return the
2274 new stack pointer. */
2276 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2281 for (i = 0; i < argc; i++)
2283 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2285 if (arg_len > MEP_GPR_SIZE)
2287 /* Reserve space for the copy, and then round the SP down, to
2288 make sure it's all aligned properly. */
2289 sp = (sp - arg_len) & -4;
2290 write_memory (sp, value_contents (argv[i]), arg_len);
2300 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2301 struct regcache *regcache, CORE_ADDR bp_addr,
2302 int argc, struct value **argv, CORE_ADDR sp,
2304 CORE_ADDR struct_addr)
2306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2307 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2308 CORE_ADDR func_addr = find_function_addr (function, NULL);
2311 /* The number of the next register available to hold an argument. */
2314 /* The address of the next stack slot available to hold an argument. */
2315 CORE_ADDR arg_stack;
2317 /* The address of the end of the stack area for arguments. This is
2318 just for error checking. */
2319 CORE_ADDR arg_stack_end;
2321 sp = push_large_arguments (sp, argc, argv, copy);
2323 /* Reserve space for the stack arguments, if any. */
2325 if (argc + (struct_addr ? 1 : 0) > 4)
2326 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2328 arg_reg = MEP_R1_REGNUM;
2331 /* If we're returning a structure by value, push the pointer to the
2332 buffer as the first argument. */
2335 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2339 for (i = 0; i < argc; i++)
2341 unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2344 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2345 if (arg_size <= MEP_GPR_SIZE)
2346 value = extract_unsigned_integer (value_contents (argv[i]),
2347 TYPE_LENGTH (value_type (argv[i])),
2350 /* Arguments too large to fit in a GPR get copied to the stack,
2351 and we pass a pointer to the copy. */
2355 /* We use $1 -- $4 for passing arguments, then use the stack. */
2356 if (arg_reg <= MEP_R4_REGNUM)
2358 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2363 char buf[MEP_GPR_SIZE];
2364 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2365 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2366 arg_stack += MEP_GPR_SIZE;
2370 gdb_assert (arg_stack <= arg_stack_end);
2372 /* Set the return address. */
2373 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2375 /* Update the stack pointer. */
2376 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2382 static struct frame_id
2383 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2385 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2386 return frame_id_build (sp, get_frame_pc (this_frame));
2391 /* Initialization. */
2394 static struct gdbarch *
2395 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2397 struct gdbarch *gdbarch;
2398 struct gdbarch_tdep *tdep;
2400 /* Which me_module are we building a gdbarch object for? */
2401 CONFIG_ATTR me_module;
2403 /* If we have a BFD in hand, figure out which me_module it was built
2404 for. Otherwise, use the no-particular-me_module code. */
2407 /* The way to get the me_module code depends on the object file
2408 format. At the moment, we only know how to handle ELF. */
2409 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2410 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2412 me_module = CONFIG_NONE;
2415 me_module = CONFIG_NONE;
2417 /* If we're setting the architecture from a file, check the
2418 endianness of the file against that of the me_module. */
2421 /* The negations on either side make the comparison treat all
2422 non-zero (true) values as equal. */
2423 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2425 const char *module_name = me_module_name (me_module);
2426 const char *module_endianness
2427 = me_module_big_endian (me_module) ? "big" : "little";
2428 const char *file_name = bfd_get_filename (info.abfd);
2429 const char *file_endianness
2430 = bfd_big_endian (info.abfd) ? "big" : "little";
2432 fputc_unfiltered ('\n', gdb_stderr);
2434 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2435 "%s is %s-endian."),
2436 module_name, module_endianness,
2437 file_name, file_endianness);
2439 warning (_("the selected MeP module is %s-endian, but the "
2441 "%s is %s-endian."),
2442 module_endianness, file_name, file_endianness);
2446 /* Find a candidate among the list of architectures we've created
2447 already. info->bfd_arch_info needs to match, but we also want
2448 the right me_module: the ELF header's e_flags field needs to
2450 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2452 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2453 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2454 return arches->gdbarch;
2456 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2457 gdbarch = gdbarch_alloc (&info, tdep);
2459 /* Get a CGEN CPU descriptor for this architecture. */
2461 const char *mach_name = info.bfd_arch_info->printable_name;
2462 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2464 : CGEN_ENDIAN_LITTLE);
2466 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2467 CGEN_CPU_OPEN_ENDIAN, endian,
2471 tdep->me_module = me_module;
2474 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2475 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2476 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2477 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2478 set_gdbarch_register_name (gdbarch, mep_register_name);
2479 set_gdbarch_register_type (gdbarch, mep_register_type);
2480 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2481 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2482 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2483 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2484 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2486 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2487 reggroup_add (gdbarch, all_reggroup);
2488 reggroup_add (gdbarch, general_reggroup);
2489 reggroup_add (gdbarch, save_reggroup);
2490 reggroup_add (gdbarch, restore_reggroup);
2491 reggroup_add (gdbarch, mep_csr_reggroup);
2492 reggroup_add (gdbarch, mep_cr_reggroup);
2493 reggroup_add (gdbarch, mep_ccr_reggroup);
2496 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2499 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2500 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2501 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2503 /* Frames and frame unwinding. */
2504 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2505 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2506 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2507 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2508 set_gdbarch_frame_args_skip (gdbarch, 0);
2510 /* Return values. */
2511 set_gdbarch_return_value (gdbarch, mep_return_value);
2513 /* Inferior function calls. */
2514 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2515 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2516 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2521 /* Provide a prototype to silence -Wmissing-prototypes. */
2522 extern initialize_file_ftype _initialize_mep_tdep;
2525 _initialize_mep_tdep (void)
2527 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2528 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2529 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2531 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2533 mep_init_pseudoregister_maps ();