1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
36 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "sim-regno.h"
42 #include "trad-frame.h"
43 #include "reggroups.h"
46 #include "prologue-value.h"
47 #include "cgen/bitset.h"
50 /* Get the user's customized MeP coprocessor register names from
52 #include "opcodes/mep-desc.h"
53 #include "opcodes/mep-opc.h"
56 /* The gdbarch_tdep structure. */
58 /* A quick recap for GDB hackers not familiar with the whole Toshiba
59 Media Processor story:
61 The MeP media engine is a configureable processor: users can design
62 their own coprocessors, implement custom instructions, adjust cache
63 sizes, select optional standard facilities like add-and-saturate
64 instructions, and so on. Then, they can build custom versions of
65 the GNU toolchain to support their customized chips. The
66 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
67 tree, and a config file pointing to various files provided by the
68 user describing their customizations, and edits the source tree to
69 produce a compiler that can generate their custom instructions, an
70 assembler that can assemble them and recognize their custom
71 register names, and so on.
73 Furthermore, the user can actually specify several of these custom
74 configurations, called 'me_modules', and get a toolchain which can
75 produce code for any of them, given a compiler/assembler switch;
76 you say something like 'gcc -mconfig=mm_max' to generate code for
77 the me_module named 'mm_max'.
79 GDB, in particular, needs to:
81 - use the coprocessor control register names provided by the user
82 in their hardware description, in expressions, 'info register'
83 output, and disassembly,
85 - know the number, names, and types of the coprocessor's
86 general-purpose registers, adjust the 'info all-registers' output
87 accordingly, and print error messages if the user refers to one
90 - allow access to the control bus space only when the configuration
91 actually has a control bus, and recognize which regions of the
92 control bus space are actually populated,
94 - disassemble using the user's provided mnemonics for their custom
97 - recognize whether the $hi and $lo registers are present, and
98 allow access to them only when they are actually there.
100 There are three sources of information about what sort of me_module
101 we're actually dealing with:
103 - A MeP executable file indicates which me_module it was compiled
104 for, and libopcodes has tables describing each module. So, given
105 an executable file, we can find out about the processor it was
108 - There are SID command-line options to select a particular
109 me_module, overriding the one specified in the ELF file. SID
110 provides GDB with a fake read-only register, 'module', which
111 indicates which me_module GDB is communicating with an instance
114 - There are SID command-line options to enable or disable certain
115 optional processor features, overriding the defaults for the
116 selected me_module. The MeP $OPT register indicates which
117 options are present on the current processor. */
122 /* A CGEN cpu descriptor for this BFD architecture and machine.
124 Note: this is *not* customized for any particular me_module; the
125 MeP libopcodes machinery actually puts off module-specific
126 customization until the last minute. So this contains
127 information about all supported me_modules. */
128 CGEN_CPU_DESC cpu_desc;
130 /* The me_module index from the ELF file we used to select this
131 architecture, or CONFIG_NONE if there was none.
133 Note that we should prefer to use the me_module number available
134 via the 'module' register, whenever we're actually talking to a
137 In the absence of live information, we'd like to get the
138 me_module number from the ELF file. But which ELF file: the
139 executable file, the core file, ... ? The answer is, "the last
140 ELF file we used to set the current architecture". Thus, we
141 create a separate instance of the gdbarch structure for each
142 me_module value mep_gdbarch_init sees, and store the me_module
143 value from the ELF file here. */
144 CONFIG_ATTR me_module;
149 /* Getting me_module information from the CGEN tables. */
152 /* Find an entry in the DESC's hardware table whose name begins with
153 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
154 intersect with GENERIC_ISA_MASK. If there is no matching entry,
156 static const CGEN_HW_ENTRY *
157 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
159 CGEN_BITSET *copro_isa_mask,
160 CGEN_BITSET *generic_isa_mask)
162 int prefix_len = strlen (prefix);
165 for (i = 0; i < desc->hw_table.num_entries; i++)
167 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
168 if (strncmp (prefix, hw->name, prefix_len) == 0)
170 CGEN_BITSET *hw_isa_mask
172 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
174 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
175 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
184 /* Find an entry in DESC's hardware table whose type is TYPE. Return
185 zero if there is none. */
186 static const CGEN_HW_ENTRY *
187 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
191 for (i = 0; i < desc->hw_table.num_entries; i++)
193 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
195 if (hw->type == type)
203 /* Return the CGEN hardware table entry for the coprocessor register
204 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
205 no such register set, return zero. If ME_MODULE is the generic
206 me_module CONFIG_NONE, return the table entry for the register set
207 whose hardware type is GENERIC_TYPE. */
208 static const CGEN_HW_ENTRY *
209 me_module_register_set (CONFIG_ATTR me_module,
211 CGEN_HW_TYPE generic_type)
213 /* This is kind of tricky, because the hardware table is constructed
214 in a way that isn't very helpful. Perhaps we can fix that, but
215 here's how it works at the moment:
217 The configuration map, `mep_config_map', is indexed by me_module
218 number, and indicates which coprocessor and core ISAs that
219 me_module supports. The 'core_isa' mask includes all the core
220 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
221 The entry for the generic me_module, CONFIG_NONE, has an empty
222 'cop_isa', and its 'core_isa' selects only the standard MeP
225 The CGEN CPU descriptor's hardware table, desc->hw_table, has
226 entries for all the register sets, for all me_modules. Each
227 entry has a mask indicating which ISAs use that register set.
228 So, if an me_module supports some coprocessor ISA, we can find
229 applicable register sets by scanning the hardware table for
230 register sets whose masks include (at least some of) those ISAs.
232 Each hardware table entry also has a name, whose prefix says
233 whether it's a general-purpose ("h-cr") or control ("h-ccr")
234 coprocessor register set. It might be nicer to have an attribute
235 indicating what sort of register set it was, that we could use
236 instead of pattern-matching on the name.
238 When there is no hardware table entry whose mask includes a
239 particular coprocessor ISA and whose name starts with a given
240 prefix, then that means that that coprocessor doesn't have any
241 registers of that type. In such cases, this function must return
244 Coprocessor register sets' masks may or may not include the core
245 ISA for the me_module they belong to. Those generated by a2cgen
246 do, but the sample me_module included in the unconfigured tree,
249 There are generic coprocessor register sets, intended only for
250 use with the generic me_module. Unfortunately, their masks
251 include *all* ISAs --- even those for coprocessors that don't
252 have such register sets. This makes detecting the case where a
253 coprocessor lacks a particular register set more complicated.
255 So, here's the approach we take:
257 - For CONFIG_NONE, we return the generic coprocessor register set.
259 - For any other me_module, we search for a register set whose
260 mask contains any of the me_module's coprocessor ISAs,
261 specifically excluding the generic coprocessor register sets. */
263 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
264 const CGEN_HW_ENTRY *hw;
266 if (me_module == CONFIG_NONE)
267 hw = find_hw_entry_by_type (desc, generic_type);
270 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
271 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
272 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
273 CGEN_BITSET *cop_and_core;
275 /* The coprocessor ISAs include the ISA for the specific core which
276 has that coprocessor. */
277 cop_and_core = cgen_bitset_copy (cop);
278 cgen_bitset_union (cop, core, cop_and_core);
279 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
286 /* Given a hardware table entry HW representing a register set, return
287 a pointer to the keyword table with all the register names. If HW
288 is NULL, return NULL, to propage the "no such register set" info
290 static CGEN_KEYWORD *
291 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
296 /* Check that HW is actually a keyword table. */
297 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
299 /* The 'asm_data' field of a register set's hardware table entry
300 refers to a keyword table. */
301 return (CGEN_KEYWORD *) hw->asm_data;
305 /* Given a keyword table KEYWORD and a register number REGNUM, return
306 the name of the register, or "" if KEYWORD contains no register
307 whose number is REGNUM. */
309 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
311 const CGEN_KEYWORD_ENTRY *entry
312 = cgen_keyword_lookup_value (keyword_table, regnum);
316 char *name = entry->name;
318 /* The CGEN keyword entries for register names include the
319 leading $, which appears in MeP assembly as well as in GDB.
320 But we don't want to return that; GDB core code adds that
332 /* Masks for option bits in the OPT special-purpose register. */
334 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
335 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
336 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
337 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
338 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
339 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
340 MEP_OPT_AVE = 1 << 19, /* average instruction option */
341 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
342 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
343 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
344 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
345 MEP_OPT_COP = 1 << 4, /* coprocessor option */
346 MEP_OPT_DSP = 1 << 2, /* DSP option */
347 MEP_OPT_UCI = 1 << 1, /* UCI option */
348 MEP_OPT_DBG = 1 << 0, /* DBG function option */
352 /* Given the option_mask value for a particular entry in
353 mep_config_map, produce the value the processor's OPT register
354 would use to represent the same set of options. */
356 opt_from_option_mask (unsigned int option_mask)
358 /* A table mapping OPT register bits onto CGEN config map option
361 unsigned int opt_bit, option_mask_bit;
363 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
364 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
365 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
366 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
367 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
368 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
369 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
370 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
371 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
372 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
373 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
374 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
375 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
379 unsigned int opt = 0;
381 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
382 if (option_mask & bits[i].option_mask_bit)
383 opt |= bits[i].opt_bit;
389 /* Return the value the $OPT register would use to represent the set
390 of options for ME_MODULE. */
392 me_module_opt (CONFIG_ATTR me_module)
394 return opt_from_option_mask (mep_config_map[me_module].option_mask);
398 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
399 This is either 32 or 64. */
401 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
403 if (mep_config_map[me_module].option_mask
404 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
411 /* Return true if ME_MODULE is big-endian, false otherwise. */
413 me_module_big_endian (CONFIG_ATTR me_module)
415 return mep_config_map[me_module].big_endian;
419 /* Return the name of ME_MODULE, or NULL if it has no name. */
421 me_module_name (CONFIG_ATTR me_module)
423 /* The default me_module has "" as its name, but it's easier for our
424 callers to test for NULL. */
425 if (! mep_config_map[me_module].name
426 || mep_config_map[me_module].name[0] == '\0')
429 return mep_config_map[me_module].name;
435 /* The MeP spec defines the following registers:
436 16 general purpose registers (r0-r15)
437 32 control/special registers (csr0-csr31)
438 32 coprocessor general-purpose registers (c0 -- c31)
439 64 coprocessor control registers (ccr0 -- ccr63)
441 For the raw registers, we assign numbers here explicitly, instead
442 of letting the enum assign them for us; the numbers are a matter of
443 external protocol, and shouldn't shift around as things are edited.
445 We access the control/special registers via pseudoregisters, to
446 enforce read-only portions that some registers have.
448 We access the coprocessor general purpose and control registers via
449 pseudoregisters, to make sure they appear in the proper order in
450 the 'info all-registers' command (which uses the register number
451 ordering), and also to allow them to be renamed and resized
452 depending on the me_module in use.
454 The MeP allows coprocessor general-purpose registers to be either
455 32 or 64 bits long, depending on the configuration. Since we don't
456 want the format of the 'g' packet to vary from one core to another,
457 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
458 types of registers to change (see the implementation of
459 register_type), so we have four banks of pseudoregisters for the
460 coprocessor gprs --- 32-bit vs. 64-bit, and integer
461 vs. floating-point --- and we show or hide them depending on the
465 MEP_FIRST_RAW_REGNUM = 0,
467 MEP_FIRST_GPR_REGNUM = 0,
481 MEP_FP_REGNUM = MEP_R8_REGNUM,
483 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
485 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
487 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
488 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
490 /* The raw control registers. These are the values as received via
491 the remote protocol, directly from the target; we only let user
492 code touch the via the pseudoregisters, which enforce read-only
494 MEP_FIRST_RAW_CSR_REGNUM = 16,
495 MEP_RAW_PC_REGNUM = 16, /* Program counter */
496 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
497 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
498 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
499 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
500 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
501 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
502 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
503 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
504 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
505 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
506 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
507 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
508 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
509 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
510 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
511 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
512 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
513 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
514 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
515 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
516 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
517 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
518 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
519 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
520 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
521 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
522 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
523 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
524 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
525 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
526 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
527 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
529 /* The raw coprocessor general-purpose registers. These are all 64
531 MEP_FIRST_RAW_CR_REGNUM = 48,
532 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
534 MEP_FIRST_RAW_CCR_REGNUM = 80,
535 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
537 /* The module number register. This is the index of the me_module
538 of which the current target is an instance. (This is not a real
539 MeP-specified register; it's provided by SID.) */
542 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
544 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
546 /* Pseudoregisters. See mep_pseudo_register_read and
547 mep_pseudo_register_write. */
548 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
550 /* We have a pseudoregister for every control/special register, to
551 implement registers with read-only bits. */
552 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
553 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
554 MEP_LP_REGNUM, /* Link pointer */
555 MEP_SAR_REGNUM, /* shift amount */
556 MEP_CSR3_REGNUM, /* csr3: reserved */
557 MEP_RPB_REGNUM, /* repeat begin address */
558 MEP_RPE_REGNUM, /* Repeat end address */
559 MEP_RPC_REGNUM, /* Repeat count */
560 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
561 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
562 MEP_CSR9_REGNUM, /* csr3: reserved */
563 MEP_CSR10_REGNUM, /* csr3: reserved */
564 MEP_CSR11_REGNUM, /* csr3: reserved */
565 MEP_MB0_REGNUM, /* modulo begin address 0 */
566 MEP_ME0_REGNUM, /* modulo end address 0 */
567 MEP_MB1_REGNUM, /* modulo begin address 1 */
568 MEP_ME1_REGNUM, /* modulo end address 1 */
569 MEP_PSW_REGNUM, /* program status word */
570 MEP_ID_REGNUM, /* processor ID/revision */
571 MEP_TMP_REGNUM, /* Temporary */
572 MEP_EPC_REGNUM, /* Exception program counter */
573 MEP_EXC_REGNUM, /* exception cause */
574 MEP_CFG_REGNUM, /* processor configuration*/
575 MEP_CSR22_REGNUM, /* csr3: reserved */
576 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
577 MEP_DBG_REGNUM, /* debug */
578 MEP_DEPC_REGNUM, /* Debug exception PC */
579 MEP_OPT_REGNUM, /* options */
580 MEP_RCFG_REGNUM, /* local ram config */
581 MEP_CCFG_REGNUM, /* cache config */
582 MEP_CSR29_REGNUM, /* csr3: reserved */
583 MEP_CSR30_REGNUM, /* csr3: reserved */
584 MEP_CSR31_REGNUM, /* csr3: reserved */
585 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
587 /* The 32-bit integer view of the coprocessor GPR's. */
588 MEP_FIRST_CR32_REGNUM,
589 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
591 /* The 32-bit floating-point view of the coprocessor GPR's. */
592 MEP_FIRST_FP_CR32_REGNUM,
593 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
595 /* The 64-bit integer view of the coprocessor GPR's. */
596 MEP_FIRST_CR64_REGNUM,
597 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
599 /* The 64-bit floating-point view of the coprocessor GPR's. */
600 MEP_FIRST_FP_CR64_REGNUM,
601 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
603 MEP_FIRST_CCR_REGNUM,
604 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
606 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
608 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
610 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
614 #define IN_SET(set, n) \
615 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
617 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
618 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
619 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
620 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
622 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
623 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
624 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
625 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
626 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
627 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
628 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
629 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
631 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
632 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
634 #define NUM_REGS_IN_SET(set) \
635 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
637 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
638 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
639 #define MEP_LP_SIZE (4) /* Size of the LP register. */
642 /* Many of the control/special registers contain bits that cannot be
643 written to; some are entirely read-only. So we present them all as
646 The following table describes the special properties of each CSR. */
647 struct mep_csr_register
649 /* The number of this CSR's raw register. */
652 /* The number of this CSR's pseudoregister. */
655 /* A mask of the bits that are writeable: if a bit is set here, then
656 it can be modified; if the bit is clear, then it cannot. */
657 LONGEST writeable_bits;
661 /* mep_csr_registers[i] describes the i'th CSR.
662 We just list the register numbers here explicitly to help catch
664 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
665 struct mep_csr_register mep_csr_registers[] = {
666 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
667 { CSR(LP), 0xffffffff },
668 { CSR(SAR), 0x0000003f },
669 { CSR(CSR3), 0xffffffff },
670 { CSR(RPB), 0xfffffffe },
671 { CSR(RPE), 0xffffffff },
672 { CSR(RPC), 0xffffffff },
673 { CSR(HI), 0xffffffff },
674 { CSR(LO), 0xffffffff },
675 { CSR(CSR9), 0xffffffff },
676 { CSR(CSR10), 0xffffffff },
677 { CSR(CSR11), 0xffffffff },
678 { CSR(MB0), 0x0000ffff },
679 { CSR(ME0), 0x0000ffff },
680 { CSR(MB1), 0x0000ffff },
681 { CSR(ME1), 0x0000ffff },
682 { CSR(PSW), 0x000003ff },
683 { CSR(ID), 0x00000000 },
684 { CSR(TMP), 0xffffffff },
685 { CSR(EPC), 0xffffffff },
686 { CSR(EXC), 0x000030f0 },
687 { CSR(CFG), 0x00c0001b },
688 { CSR(CSR22), 0xffffffff },
689 { CSR(NPC), 0xffffffff },
690 { CSR(DBG), 0x00000580 },
691 { CSR(DEPC), 0xffffffff },
692 { CSR(OPT), 0x00000000 },
693 { CSR(RCFG), 0x00000000 },
694 { CSR(CCFG), 0x00000000 },
695 { CSR(CSR29), 0xffffffff },
696 { CSR(CSR30), 0xffffffff },
697 { CSR(CSR31), 0xffffffff },
701 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
702 the number of the corresponding pseudoregister. Otherwise,
703 mep_raw_to_pseudo[R] == R. */
704 static int mep_raw_to_pseudo[MEP_NUM_REGS];
706 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
707 is the number of the underlying raw register. Otherwise
708 mep_pseudo_to_raw[R] == R. */
709 static int mep_pseudo_to_raw[MEP_NUM_REGS];
712 mep_init_pseudoregister_maps (void)
716 /* Verify that mep_csr_registers covers all the CSRs, in order. */
717 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
718 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
720 /* Verify that the raw and pseudo ranges have matching sizes. */
721 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
722 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
723 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
724 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
726 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
728 struct mep_csr_register *r = &mep_csr_registers[i];
730 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
731 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
734 /* Set up the initial raw<->pseudo mappings. */
735 for (i = 0; i < MEP_NUM_REGS; i++)
737 mep_raw_to_pseudo[i] = i;
738 mep_pseudo_to_raw[i] = i;
741 /* Add the CSR raw<->pseudo mappings. */
742 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
744 struct mep_csr_register *r = &mep_csr_registers[i];
746 mep_raw_to_pseudo[r->raw] = r->pseudo;
747 mep_pseudo_to_raw[r->pseudo] = r->raw;
750 /* Add the CR raw<->pseudo mappings. */
751 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
753 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
754 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
755 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
756 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
757 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
759 /* Truly, the raw->pseudo mapping depends on the current module.
760 But we use the raw->pseudo mapping when we read the debugging
761 info; at that point, we don't know what module we'll actually
762 be running yet. So, we always supply the 64-bit register
763 numbers; GDB knows how to pick a smaller value out of a
764 larger register properly. */
765 mep_raw_to_pseudo[raw] = pseudo64;
766 mep_pseudo_to_raw[pseudo32] = raw;
767 mep_pseudo_to_raw[pseudofp32] = raw;
768 mep_pseudo_to_raw[pseudo64] = raw;
769 mep_pseudo_to_raw[pseudofp64] = raw;
772 /* Add the CCR raw<->pseudo mappings. */
773 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
775 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
776 int pseudo = MEP_FIRST_CCR_REGNUM + i;
777 mep_raw_to_pseudo[raw] = pseudo;
778 mep_pseudo_to_raw[pseudo] = raw;
784 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
786 /* The debug info uses the raw register numbers. */
787 return mep_raw_to_pseudo[debug_reg];
791 /* Return the size, in bits, of the coprocessor pseudoregister
794 mep_pseudo_cr_size (int pseudo)
796 if (IS_CR32_REGNUM (pseudo)
797 || IS_FP_CR32_REGNUM (pseudo))
799 else if (IS_CR64_REGNUM (pseudo)
800 || IS_FP_CR64_REGNUM (pseudo))
803 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
807 /* If the coprocessor pseudoregister numbered PSEUDO is a
808 floating-point register, return non-zero; if it is an integer
809 register, return zero. */
811 mep_pseudo_cr_is_float (int pseudo)
813 return (IS_FP_CR32_REGNUM (pseudo)
814 || IS_FP_CR64_REGNUM (pseudo));
818 /* Given a coprocessor GPR pseudoregister number, return its index
819 within that register bank. */
821 mep_pseudo_cr_index (int pseudo)
823 if (IS_CR32_REGNUM (pseudo))
824 return pseudo - MEP_FIRST_CR32_REGNUM;
825 else if (IS_FP_CR32_REGNUM (pseudo))
826 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
827 else if (IS_CR64_REGNUM (pseudo))
828 return pseudo - MEP_FIRST_CR64_REGNUM;
829 else if (IS_FP_CR64_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
832 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
836 /* Return the me_module index describing the current target.
838 If the current target has registers (e.g., simulator, remote
839 target), then this uses the value of the 'module' register, raw
840 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
841 from the ELF header's e_flags field of the current executable
844 current_me_module (void)
846 if (target_has_registers)
849 regcache_cooked_read_unsigned (get_current_regcache (),
850 MEP_MODULE_REGNUM, ®val);
854 return gdbarch_tdep (target_gdbarch ())->me_module;
858 /* Return the set of options for the current target, in the form that
859 the OPT register would use.
861 If the current target has registers (e.g., simulator, remote
862 target), then this is the actual value of the OPT register. If the
863 current target does not have registers (e.g., an executable file),
864 then use the 'module_opt' field we computed when we build the
865 gdbarch object for this module. */
867 current_options (void)
869 if (target_has_registers)
872 regcache_cooked_read_unsigned (get_current_regcache (),
873 MEP_OPT_REGNUM, ®val);
877 return me_module_opt (current_me_module ());
881 /* Return the width of the current me_module's coprocessor data bus,
882 in bits. This is either 32 or 64. */
884 current_cop_data_bus_width (void)
886 return me_module_cop_data_bus_width (current_me_module ());
890 /* Return the keyword table of coprocessor general-purpose register
891 names appropriate for the me_module we're dealing with. */
892 static CGEN_KEYWORD *
893 current_cr_names (void)
895 const CGEN_HW_ENTRY *hw
896 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
898 return register_set_keyword_table (hw);
902 /* Return non-zero if the coprocessor general-purpose registers are
903 floating-point values, zero otherwise. */
905 current_cr_is_float (void)
907 const CGEN_HW_ENTRY *hw
908 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
910 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
914 /* Return the keyword table of coprocessor control register names
915 appropriate for the me_module we're dealing with. */
916 static CGEN_KEYWORD *
917 current_ccr_names (void)
919 const CGEN_HW_ENTRY *hw
920 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
922 return register_set_keyword_table (hw);
927 mep_register_name (struct gdbarch *gdbarch, int regnr)
929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
931 /* General-purpose registers. */
932 static const char *gpr_names[] = {
933 "r0", "r1", "r2", "r3", /* 0 */
934 "r4", "r5", "r6", "r7", /* 4 */
935 "fp", "r9", "r10", "r11", /* 8 */
936 "r12", "tp", "gp", "sp" /* 12 */
939 /* Special-purpose registers. */
940 static const char *csr_names[] = {
941 "pc", "lp", "sar", "", /* 0 csr3: reserved */
942 "rpb", "rpe", "rpc", "hi", /* 4 */
943 "lo", "", "", "", /* 8 csr9-csr11: reserved */
944 "mb0", "me0", "mb1", "me1", /* 12 */
946 "psw", "id", "tmp", "epc", /* 16 */
947 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
948 "dbg", "depc", "opt", "rcfg", /* 24 */
949 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
952 if (IS_GPR_REGNUM (regnr))
953 return gpr_names[regnr - MEP_R0_REGNUM];
954 else if (IS_CSR_REGNUM (regnr))
956 /* The 'hi' and 'lo' registers are only present on processors
957 that have the 'MUL' or 'DIV' instructions enabled. */
958 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
959 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
962 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
964 else if (IS_CR_REGNUM (regnr))
970 /* Does this module have a coprocessor at all? */
971 if (! (current_options () & MEP_OPT_COP))
974 names = current_cr_names ();
976 /* This module's coprocessor has no general-purpose registers. */
979 cr_size = current_cop_data_bus_width ();
980 if (cr_size != mep_pseudo_cr_size (regnr))
981 /* This module's coprocessor's GPR's are of a different size. */
984 cr_is_float = current_cr_is_float ();
985 /* The extra ! operators ensure we get boolean equality, not
987 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
988 /* This module's coprocessor's GPR's are of a different type. */
991 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
993 else if (IS_CCR_REGNUM (regnr))
995 /* Does this module have a coprocessor at all? */
996 if (! (current_options () & MEP_OPT_COP))
1000 CGEN_KEYWORD *names = current_ccr_names ();
1003 /* This me_module's coprocessor has no control registers. */
1006 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1010 /* It might be nice to give the 'module' register a name, but that
1011 would affect the output of 'info all-registers', which would
1012 disturb the test suites. So we leave it invisible. */
1018 /* Custom register groups for the MeP. */
1019 static struct reggroup *mep_csr_reggroup; /* control/special */
1020 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1021 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1025 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1026 struct reggroup *group)
1028 /* Filter reserved or unused register numbers. */
1030 const char *name = mep_register_name (gdbarch, regnum);
1032 if (! name || name[0] == '\0')
1036 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1037 the existing behavior, so we'd want to run that by them. */
1038 if (group == general_reggroup)
1039 return (IS_GPR_REGNUM (regnum)
1040 || IS_CSR_REGNUM (regnum));
1042 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1043 else if (group == all_reggroup)
1044 return (IS_GPR_REGNUM (regnum)
1045 || IS_CSR_REGNUM (regnum)
1046 || IS_CR_REGNUM (regnum)
1047 || IS_CCR_REGNUM (regnum));
1049 /* All registers should be saved and restored, except for the raw
1052 This is probably right if the coprocessor is something like a
1053 floating-point unit, but would be wrong if the coprocessor is
1054 something that does I/O, where register accesses actually cause
1055 externally-visible actions. But I get the impression that the
1056 coprocessor isn't supposed to do things like that --- you'd use a
1057 hardware engine, perhaps. */
1058 else if (group == save_reggroup || group == restore_reggroup)
1059 return (IS_GPR_REGNUM (regnum)
1060 || IS_CSR_REGNUM (regnum)
1061 || IS_CR_REGNUM (regnum)
1062 || IS_CCR_REGNUM (regnum));
1064 else if (group == mep_csr_reggroup)
1065 return IS_CSR_REGNUM (regnum);
1066 else if (group == mep_cr_reggroup)
1067 return IS_CR_REGNUM (regnum);
1068 else if (group == mep_ccr_reggroup)
1069 return IS_CCR_REGNUM (regnum);
1075 static struct type *
1076 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1078 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1079 long. So for them, the raw registers are always 64 bits long (to
1080 keep the 'g' packet format fixed), and the pseudoregisters vary
1082 if (IS_RAW_CR_REGNUM (reg_nr))
1083 return builtin_type (gdbarch)->builtin_uint64;
1085 /* Since GDB doesn't allow registers to change type, we have two
1086 banks of pseudoregisters for the coprocessor general-purpose
1087 registers: one that gives a 32-bit view, and one that gives a
1088 64-bit view. We hide or show one or the other depending on the
1090 if (IS_CR_REGNUM (reg_nr))
1092 int size = mep_pseudo_cr_size (reg_nr);
1095 if (mep_pseudo_cr_is_float (reg_nr))
1096 return builtin_type (gdbarch)->builtin_float;
1098 return builtin_type (gdbarch)->builtin_uint32;
1100 else if (size == 64)
1102 if (mep_pseudo_cr_is_float (reg_nr))
1103 return builtin_type (gdbarch)->builtin_double;
1105 return builtin_type (gdbarch)->builtin_uint64;
1108 gdb_assert_not_reached ("unexpected cr size");
1111 /* All other registers are 32 bits long. */
1113 return builtin_type (gdbarch)->builtin_uint32;
1118 mep_read_pc (struct regcache *regcache)
1121 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1125 static enum register_status
1126 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1127 struct regcache *regcache,
1131 enum register_status status;
1132 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1133 /* Read the raw register into a 64-bit buffer, and then return the
1134 appropriate end of that buffer. */
1135 int rawnum = mep_pseudo_to_raw[cookednum];
1138 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1139 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1140 status = regcache_raw_read (regcache, rawnum, buf64);
1141 if (status == REG_VALID)
1143 /* Slow, but legible. */
1144 store_unsigned_integer (buf, 4, byte_order,
1145 extract_unsigned_integer (buf64, 8, byte_order));
1151 static enum register_status
1152 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1153 struct regcache *regcache,
1157 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1161 static enum register_status
1162 mep_pseudo_register_read (struct gdbarch *gdbarch,
1163 struct regcache *regcache,
1167 if (IS_CSR_REGNUM (cookednum)
1168 || IS_CCR_REGNUM (cookednum))
1169 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1170 else if (IS_CR32_REGNUM (cookednum)
1171 || IS_FP_CR32_REGNUM (cookednum))
1172 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1173 else if (IS_CR64_REGNUM (cookednum)
1174 || IS_FP_CR64_REGNUM (cookednum))
1175 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1177 gdb_assert_not_reached ("unexpected pseudo register");
1182 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1183 struct regcache *regcache,
1187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1188 int size = register_size (gdbarch, cookednum);
1189 struct mep_csr_register *r
1190 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1192 if (r->writeable_bits == 0)
1193 /* A completely read-only register; avoid the read-modify-
1194 write cycle, and juts ignore the entire write. */
1198 /* A partially writeable register; do a read-modify-write cycle. */
1201 ULONGEST mixed_bits;
1203 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1204 new_bits = extract_unsigned_integer (buf, size, byte_order);
1205 mixed_bits = ((r->writeable_bits & new_bits)
1206 | (~r->writeable_bits & old_bits));
1207 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1213 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1214 struct regcache *regcache,
1218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1219 /* Expand the 32-bit value into a 64-bit value, and write that to
1220 the pseudoregister. */
1221 int rawnum = mep_pseudo_to_raw[cookednum];
1224 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1225 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1226 /* Slow, but legible. */
1227 store_unsigned_integer (buf64, 8, byte_order,
1228 extract_unsigned_integer (buf, 4, byte_order));
1229 regcache_raw_write (regcache, rawnum, buf64);
1234 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1235 struct regcache *regcache,
1239 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1244 mep_pseudo_register_write (struct gdbarch *gdbarch,
1245 struct regcache *regcache,
1247 const gdb_byte *buf)
1249 if (IS_CSR_REGNUM (cookednum))
1250 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1251 else if (IS_CR32_REGNUM (cookednum)
1252 || IS_FP_CR32_REGNUM (cookednum))
1253 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1254 else if (IS_CR64_REGNUM (cookednum)
1255 || IS_FP_CR64_REGNUM (cookednum))
1256 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1257 else if (IS_CCR_REGNUM (cookednum))
1258 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1260 gdb_assert_not_reached ("unexpected pseudo register");
1267 /* The mep disassembler needs to know about the section in order to
1270 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1272 struct obj_section * s = find_pc_section (pc);
1276 /* The libopcodes disassembly code uses the section to find the
1277 BFD, the BFD to find the ELF header, the ELF header to find
1278 the me_module index, and the me_module index to select the
1279 right instructions to print. */
1280 info->section = s->the_bfd_section;
1281 info->arch = bfd_arch_mep;
1283 return print_insn_mep (pc, info);
1290 /* Prologue analysis. */
1293 /* The MeP has two classes of instructions: "core" instructions, which
1294 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1295 which are mostly concerned with moving data in and out of
1296 coprocessor registers, and branching on coprocessor condition
1297 codes. There's space in the instruction set for custom coprocessor
1300 Instructions can be 16 or 32 bits long; the top two bits of the
1301 first byte indicate the length. The coprocessor instructions are
1302 mixed in with the core instructions, and there's no easy way to
1303 distinguish them; you have to completely decode them to tell one
1306 The MeP also supports a "VLIW" operation mode, where instructions
1307 always occur in fixed-width bundles. The bundles are either 32
1308 bits or 64 bits long, depending on a fixed configuration flag. You
1309 decode the first part of the bundle as normal; if it's a core
1310 instruction, and there's any space left in the bundle, the
1311 remainder of the bundle is a coprocessor instruction, which will
1312 execute in parallel with the core instruction. If the first part
1313 of the bundle is a coprocessor instruction, it occupies the entire
1316 So, here are all the cases:
1319 Every bundle is four bytes long, and naturally aligned, and can hold
1320 one or two instructions:
1321 - 16-bit core instruction; 16-bit coprocessor instruction
1322 These execute in parallel.
1323 - 32-bit core instruction
1324 - 32-bit coprocessor instruction
1327 Every bundle is eight bytes long, and naturally aligned, and can hold
1328 one or two instructions:
1329 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1330 These execute in parallel.
1331 - 32-bit core instruction; 32-bit coprocessor instruction
1332 These execute in parallel.
1333 - 64-bit coprocessor instruction
1335 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1336 instruction, so I don't really know what's up there; perhaps these
1337 are always the user-defined coprocessor instructions. */
1340 /* Return non-zero if PC is in a VLIW code section, zero
1343 mep_pc_in_vliw_section (CORE_ADDR pc)
1345 struct obj_section *s = find_pc_section (pc);
1347 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1352 /* Set *INSN to the next core instruction at PC, and return the
1353 address of the next instruction.
1355 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1356 instructions are encoded as one or two two-byte parts, and each
1357 part is byte-swapped independently. Thus:
1362 asm ("movu $1, 0x123456");
1363 asm ("sb $1,0x5678($2)");
1364 asm ("clip $1, 19");
1367 compiles to this big-endian code:
1369 0: d1 56 12 34 movu $1,0x123456
1370 4: c1 28 56 78 sb $1,22136($2)
1371 8: f1 01 10 98 clip $1,0x13
1374 and this little-endian code:
1376 0: 56 d1 34 12 movu $1,0x123456
1377 4: 28 c1 78 56 sb $1,22136($2)
1378 8: 01 f1 98 10 clip $1,0x13
1381 Instructions are returned in *INSN in an endian-independent form: a
1382 given instruction always appears in *INSN the same way, regardless
1383 of whether the instruction stream is big-endian or little-endian.
1385 *INSN's most significant 16 bits are the first (i.e., at lower
1386 addresses) 16 bit part of the instruction. Its least significant
1387 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1388 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1389 are fetched using the current endianness.
1391 So, the *INSN values for the instruction sequence above would be
1392 the following, in either endianness:
1394 0xd1561234 movu $1,0x123456
1395 0xc1285678 sb $1,22136($2)
1396 0xf1011098 clip $1,0x13
1399 (In a sense, it would be more natural to return 16-bit instructions
1400 in the least significant 16 bits of *INSN, but that would be
1401 ambiguous. In order to tell whether you're looking at a 16- or a
1402 32-bit instruction, you have to consult the major opcode field ---
1403 the most significant four bits of the instruction's first 16-bit
1404 part. But if we put 16-bit instructions at the least significant
1405 end of *INSN, then you don't know where to find the major opcode
1406 field until you know if it's a 16- or a 32-bit instruction ---
1407 which is where we started.)
1409 If PC points to a core / coprocessor bundle in a VLIW section, set
1410 *INSN to the core instruction, and return the address of the next
1411 bundle. This has the effect of skipping the bundled coprocessor
1412 instruction. That's okay, since coprocessor instructions aren't
1413 significant to prologue analysis --- for the time being,
1417 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1420 int pc_in_vliw_section;
1427 /* Are we in a VLIW section? */
1428 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1429 if (pc_in_vliw_section)
1431 /* Yes, find out which bundle size. */
1432 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1434 /* If PC is in a VLIW section, but the current core doesn't say
1435 that it supports either VLIW mode, then we don't have enough
1436 information to parse the instruction stream it contains.
1437 Since the "undifferentiated" standard core doesn't have
1438 either VLIW mode bit set, this could happen.
1440 But it shouldn't be an error to (say) set a breakpoint in a
1441 VLIW section, if you know you'll never reach it. (Perhaps
1442 you have a script that sets a bunch of standard breakpoints.)
1444 So we'll just return zero here, and hope for the best. */
1445 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1448 /* If both VL32 and VL64 are set, that's bogus, too. */
1449 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1455 read_memory (pc, buf, sizeof (buf));
1456 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1458 /* The major opcode --- the top four bits of the first 16-bit
1459 part --- indicates whether this instruction is 16 or 32 bits
1460 long. All 32-bit instructions have a major opcode whose top
1461 two bits are 11; all the rest are 16-bit instructions. */
1462 if ((*insn & 0xc0000000) == 0xc0000000)
1464 /* Fetch the second 16-bit part of the instruction. */
1465 read_memory (pc + 2, buf, sizeof (buf));
1466 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1469 /* If we're in VLIW code, then the VLIW width determines the address
1470 of the next instruction. */
1473 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1474 coprocessor half of a core / copro bundle. */
1475 if (vliw_mode == MEP_OPT_VL32)
1478 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1479 coprocessor half of a core / copro bundle. */
1480 else if (vliw_mode == MEP_OPT_VL64)
1483 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1485 gdb_assert_not_reached ("unexpected vliw mode");
1488 /* Otherwise, the top two bits of the major opcode are (again) what
1489 we need to check. */
1490 else if ((*insn & 0xc0000000) == 0xc0000000)
1495 return pc + insn_len;
1499 /* Sign-extend the LEN-bit value N. */
1500 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1502 /* Return the LEN-bit field at POS from I. */
1503 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1505 /* Like FIELD, but sign-extend the field's value. */
1506 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1509 /* Macros for decoding instructions.
1511 Remember that 16-bit instructions are placed in bits 16..31 of i,
1512 not at the least significant end; this means that the major opcode
1513 field is always in the same place, regardless of the width of the
1514 instruction. As a reminder of this, we show the lower 16 bits of a
1515 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1517 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1518 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1519 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1521 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1522 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1523 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1524 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1525 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1526 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1527 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1528 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1529 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1531 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1532 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1533 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1534 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1536 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1537 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1538 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1539 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1541 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1542 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1543 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1544 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1546 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1547 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1548 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1549 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1550 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1552 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1553 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1554 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1555 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1557 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1558 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1559 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1560 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1562 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1564 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1565 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1566 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1568 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1569 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1570 #define LW_TARGET(i) (FIELD (i, 24, 4))
1571 #define LW_BASE(i) (FIELD (i, 20, 4))
1572 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1574 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1575 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1576 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1577 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1579 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1580 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1581 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1584 /* This structure holds the results of a prologue analysis. */
1587 /* The architecture for which we generated this prologue info. */
1588 struct gdbarch *gdbarch;
1590 /* The offset from the frame base to the stack pointer --- always
1593 Calling this a "size" is a bit misleading, but given that the
1594 stack grows downwards, using offsets for everything keeps one
1595 from going completely sign-crazy: you never change anything's
1596 sign for an ADD instruction; always change the second operand's
1597 sign for a SUB instruction; and everything takes care of
1601 /* Non-zero if this function has initialized the frame pointer from
1602 the stack pointer, zero otherwise. */
1605 /* If has_frame_ptr is non-zero, this is the offset from the frame
1606 base to where the frame pointer points. This is always zero or
1608 int frame_ptr_offset;
1610 /* The address of the first instruction at which the frame has been
1611 set up and the arguments are where the debug info says they are
1612 --- as best as we can tell. */
1613 CORE_ADDR prologue_end;
1615 /* reg_offset[R] is the offset from the CFA at which register R is
1616 saved, or 1 if register R has not been saved. (Real values are
1617 always zero or negative.) */
1618 int reg_offset[MEP_NUM_REGS];
1621 /* Return non-zero if VALUE is an incoming argument register. */
1624 is_arg_reg (pv_t value)
1626 return (value.kind == pvk_register
1627 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1631 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1632 probably spilling an argument register to its stack slot in STACK.
1633 Such instructions should be included in the prologue, if possible.
1635 The store is a spill if:
1636 - the value being stored is REG's original value;
1637 - the value has not already been stored somewhere in STACK; and
1638 - ADDR is a stack slot's address (e.g., relative to the original
1639 value of the SP). */
1641 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1642 struct pv_area *stack)
1644 return (is_arg_reg (value)
1645 && pv_is_register (addr, MEP_SP_REGNUM)
1646 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1650 /* Function for finding saved registers in a 'struct pv_area'; we pass
1651 this to pv_area_scan.
1653 If VALUE is a saved register, ADDR says it was saved at a constant
1654 offset from the frame base, and SIZE indicates that the whole
1655 register was saved, record its offset in RESULT_UNTYPED. */
1657 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1659 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1661 if (value.kind == pvk_register
1663 && pv_is_register (addr, MEP_SP_REGNUM)
1664 && size == register_size (result->gdbarch, value.reg))
1665 result->reg_offset[value.reg] = addr.k;
1669 /* Analyze a prologue starting at START_PC, going no further than
1670 LIMIT_PC. Fill in RESULT as appropriate. */
1672 mep_analyze_prologue (struct gdbarch *gdbarch,
1673 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1674 struct mep_prologue *result)
1680 pv_t reg[MEP_NUM_REGS];
1681 struct pv_area *stack;
1682 struct cleanup *back_to;
1683 CORE_ADDR after_last_frame_setup_insn = start_pc;
1685 memset (result, 0, sizeof (*result));
1686 result->gdbarch = gdbarch;
1688 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1690 reg[rn] = pv_register (rn, 0);
1691 result->reg_offset[rn] = 1;
1694 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1695 back_to = make_cleanup_free_pv_area (stack);
1698 while (pc < limit_pc)
1701 pv_t pre_insn_fp, pre_insn_sp;
1703 next_pc = mep_get_insn (gdbarch, pc, &insn);
1705 /* A zero return from mep_get_insn means that either we weren't
1706 able to read the instruction from memory, or that we don't
1707 have enough information to be able to reliably decode it. So
1708 we'll store here and hope for the best. */
1712 /* Note the current values of the SP and FP, so we can tell if
1713 this instruction changed them, below. */
1714 pre_insn_fp = reg[MEP_FP_REGNUM];
1715 pre_insn_sp = reg[MEP_SP_REGNUM];
1719 int rn = ADD_TARGET (insn);
1720 CORE_ADDR imm6 = ADD_OFFSET (insn);
1722 reg[rn] = pv_add_constant (reg[rn], imm6);
1724 else if (IS_ADD3_16 (insn))
1726 int rn = ADD3_16_TARGET (insn);
1727 int imm7 = ADD3_16_OFFSET (insn);
1729 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1731 else if (IS_ADD3_32 (insn))
1733 int rn = ADD3_32_TARGET (insn);
1734 int rm = ADD3_32_SOURCE (insn);
1735 int imm16 = ADD3_32_OFFSET (insn);
1737 reg[rn] = pv_add_constant (reg[rm], imm16);
1739 else if (IS_SW_REG (insn))
1741 int rn = SW_REG_SOURCE (insn);
1742 int rm = SW_REG_BASE (insn);
1744 /* If simulating this store would require us to forget
1745 everything we know about the stack frame in the name of
1746 accuracy, it would be better to just quit now. */
1747 if (pv_area_store_would_trash (stack, reg[rm]))
1750 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1751 after_last_frame_setup_insn = next_pc;
1753 pv_area_store (stack, reg[rm], 4, reg[rn]);
1755 else if (IS_SW_IMMD (insn))
1757 int rn = SW_IMMD_SOURCE (insn);
1758 int offset = SW_IMMD_OFFSET (insn);
1759 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1761 /* If simulating this store would require us to forget
1762 everything we know about the stack frame in the name of
1763 accuracy, it would be better to just quit now. */
1764 if (pv_area_store_would_trash (stack, addr))
1767 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1768 after_last_frame_setup_insn = next_pc;
1770 pv_area_store (stack, addr, 4, reg[rn]);
1772 else if (IS_MOV (insn))
1774 int rn = MOV_TARGET (insn);
1775 int rm = MOV_SOURCE (insn);
1779 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1780 after_last_frame_setup_insn = next_pc;
1782 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1784 int rn = SWBH_32_SOURCE (insn);
1785 int rm = SWBH_32_BASE (insn);
1786 int disp = SWBH_32_OFFSET (insn);
1787 int size = (IS_SB (insn) ? 1
1789 : (gdb_assert (IS_SW (insn)), 4));
1790 pv_t addr = pv_add_constant (reg[rm], disp);
1792 if (pv_area_store_would_trash (stack, addr))
1795 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1796 after_last_frame_setup_insn = next_pc;
1798 pv_area_store (stack, addr, size, reg[rn]);
1800 else if (IS_LDC (insn))
1802 int rn = LDC_TARGET (insn);
1803 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1807 else if (IS_LW (insn))
1809 int rn = LW_TARGET (insn);
1810 int rm = LW_BASE (insn);
1811 int offset = LW_OFFSET (insn);
1812 pv_t addr = pv_add_constant (reg[rm], offset);
1814 reg[rn] = pv_area_fetch (stack, addr, 4);
1816 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1818 /* When a loop appears as the first statement of a function
1819 body, gcc 4.x will use a BRA instruction to branch to the
1820 loop condition checking code. This BRA instruction is
1821 marked as part of the prologue. We therefore set next_pc
1822 to this branch target and also stop the prologue scan.
1823 The instructions at and beyond the branch target should
1824 no longer be associated with the prologue.
1826 Note that we only consider forward branches here. We
1827 presume that a forward branch is being used to skip over
1830 A backwards branch is covered by the default case below.
1831 If we were to encounter a backwards branch, that would
1832 most likely mean that we've scanned through a loop body.
1833 We definitely want to stop the prologue scan when this
1834 happens and that is precisely what is done by the default
1836 next_pc = pc + BRA_DISP (insn);
1837 after_last_frame_setup_insn = next_pc;
1841 /* We've hit some instruction we don't know how to simulate.
1842 Strictly speaking, we should set every value we're
1843 tracking to "unknown". But we'll be optimistic, assume
1844 that we have enough information already, and stop
1848 /* If this instruction changed the FP or decreased the SP (i.e.,
1849 allocated more stack space), then this may be a good place to
1850 declare the prologue finished. However, there are some
1853 - If the instruction just changed the FP back to its original
1854 value, then that's probably a restore instruction. The
1855 prologue should definitely end before that.
1857 - If the instruction increased the value of the SP (that is,
1858 shrunk the frame), then it's probably part of a frame
1859 teardown sequence, and the prologue should end before that. */
1861 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1863 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1864 after_last_frame_setup_insn = next_pc;
1866 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1868 /* The comparison of constants looks odd, there, because .k
1869 is unsigned. All it really means is that the new value
1870 is lower than it was before the instruction. */
1871 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1872 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1873 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1874 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1875 after_last_frame_setup_insn = next_pc;
1881 /* Is the frame size (offset, really) a known constant? */
1882 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1883 result->frame_size = reg[MEP_SP_REGNUM].k;
1885 /* Was the frame pointer initialized? */
1886 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1888 result->has_frame_ptr = 1;
1889 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1892 /* Record where all the registers were saved. */
1893 pv_area_scan (stack, check_for_saved, (void *) result);
1895 result->prologue_end = after_last_frame_setup_insn;
1897 do_cleanups (back_to);
1902 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905 CORE_ADDR func_addr, func_end;
1906 struct mep_prologue p;
1908 /* Try to find the extent of the function that contains PC. */
1909 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1912 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1913 return p.prologue_end;
1920 static const unsigned char *
1921 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1923 static unsigned char breakpoint[] = { 0x70, 0x32 };
1924 *lenptr = sizeof (breakpoint);
1930 /* Frames and frame unwinding. */
1933 static struct mep_prologue *
1934 mep_analyze_frame_prologue (struct frame_info *this_frame,
1935 void **this_prologue_cache)
1937 if (! *this_prologue_cache)
1939 CORE_ADDR func_start, stop_addr;
1941 *this_prologue_cache
1942 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1944 func_start = get_frame_func (this_frame);
1945 stop_addr = get_frame_pc (this_frame);
1947 /* If we couldn't find any function containing the PC, then
1948 just initialize the prologue cache, but don't do anything. */
1950 stop_addr = func_start;
1952 mep_analyze_prologue (get_frame_arch (this_frame),
1953 func_start, stop_addr, *this_prologue_cache);
1956 return *this_prologue_cache;
1960 /* Given the next frame and a prologue cache, return this frame's
1963 mep_frame_base (struct frame_info *this_frame,
1964 void **this_prologue_cache)
1966 struct mep_prologue *p
1967 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1969 /* In functions that use alloca, the distance between the stack
1970 pointer and the frame base varies dynamically, so we can't use
1971 the SP plus static information like prologue analysis to find the
1972 frame base. However, such functions must have a frame pointer,
1973 to be able to restore the SP on exit. So whenever we do have a
1974 frame pointer, use that to find the base. */
1975 if (p->has_frame_ptr)
1978 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1979 return fp - p->frame_ptr_offset;
1984 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1985 return sp - p->frame_size;
1991 mep_frame_this_id (struct frame_info *this_frame,
1992 void **this_prologue_cache,
1993 struct frame_id *this_id)
1995 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1996 get_frame_func (this_frame));
2000 static struct value *
2001 mep_frame_prev_register (struct frame_info *this_frame,
2002 void **this_prologue_cache, int regnum)
2004 struct mep_prologue *p
2005 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2007 /* There are a number of complications in unwinding registers on the
2008 MeP, having to do with core functions calling VLIW functions and
2011 The least significant bit of the link register, LP.LTOM, is the
2012 VLIW mode toggle bit: it's set if a core function called a VLIW
2013 function, or vice versa, and clear when the caller and callee
2014 were both in the same mode.
2016 So, if we're asked to unwind the PC, then we really want to
2017 unwind the LP and clear the least significant bit. (Real return
2018 addresses are always even.) And if we want to unwind the program
2019 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2021 Tweaking the register values we return in this way means that the
2022 bits in BUFFERP[] are not the same as the bits you'd find at
2023 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2025 if (regnum == MEP_PC_REGNUM)
2027 struct value *value;
2029 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2031 lp = value_as_long (value);
2032 release_value (value);
2035 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2039 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2040 struct value *value;
2042 /* Our caller's SP is our frame base. */
2043 if (regnum == MEP_SP_REGNUM)
2044 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2046 /* If prologue analysis says we saved this register somewhere,
2047 return a description of the stack slot holding it. */
2048 if (p->reg_offset[regnum] != 1)
2049 value = frame_unwind_got_memory (this_frame, regnum,
2050 frame_base + p->reg_offset[regnum]);
2052 /* Otherwise, presume we haven't changed the value of this
2053 register, and get it from the next frame. */
2055 value = frame_unwind_got_register (this_frame, regnum, regnum);
2057 /* If we need to toggle the operating mode, do so. */
2058 if (regnum == MEP_PSW_REGNUM)
2062 psw = value_as_long (value);
2063 release_value (value);
2066 /* Get the LP's value, too. */
2067 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2068 lp = value_as_long (value);
2069 release_value (value);
2072 /* If LP.LTOM is set, then toggle PSW.OM. */
2076 return frame_unwind_got_constant (this_frame, regnum, psw);
2084 static const struct frame_unwind mep_frame_unwind = {
2086 default_frame_unwind_stop_reason,
2088 mep_frame_prev_register,
2090 default_frame_sniffer
2094 /* Our general unwinding function can handle unwinding the PC. */
2096 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2098 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2102 /* Our general unwinding function can handle unwinding the SP. */
2104 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2106 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2111 /* Return values. */
2115 mep_use_struct_convention (struct type *type)
2117 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2122 mep_extract_return_value (struct gdbarch *arch,
2124 struct regcache *regcache,
2127 int byte_order = gdbarch_byte_order (arch);
2129 /* Values that don't occupy a full register appear at the less
2130 significant end of the value. This is the offset to where the
2134 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2135 pointed to by R0. */
2136 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2138 if (byte_order == BFD_ENDIAN_BIG)
2139 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2143 /* Return values that do fit in a single register are returned in R0. */
2144 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2145 offset, TYPE_LENGTH (type),
2151 mep_store_return_value (struct gdbarch *arch,
2153 struct regcache *regcache,
2154 const gdb_byte *valbuf)
2156 int byte_order = gdbarch_byte_order (arch);
2158 /* Values that fit in a single register go in R0. */
2159 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2161 /* Values that don't occupy a full register appear at the least
2162 significant end of the value. This is the offset to where the
2166 if (byte_order == BFD_ENDIAN_BIG)
2167 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2171 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2172 offset, TYPE_LENGTH (type),
2176 /* Return values larger than a single register are returned in
2177 memory, pointed to by R0. Unfortunately, we can't count on R0
2178 pointing to the return buffer, so we raise an error here. */
2181 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2182 calling conventions do not provide enough information to do this.\n\
2183 Try using the 'return' command with no argument."));
2186 static enum return_value_convention
2187 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2188 struct type *type, struct regcache *regcache,
2189 gdb_byte *readbuf, const gdb_byte *writebuf)
2191 if (mep_use_struct_convention (type))
2196 /* Although the address of the struct buffer gets passed in R1, it's
2197 returned in R0. Fetch R0's value and then read the memory
2199 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2200 read_memory (addr, readbuf, TYPE_LENGTH (type));
2204 /* Return values larger than a single register are returned in
2205 memory, pointed to by R0. Unfortunately, we can't count on R0
2206 pointing to the return buffer, so we raise an error here. */
2208 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2209 calling conventions do not provide enough information to do this.\n\
2210 Try using the 'return' command with no argument."));
2212 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2216 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2218 mep_store_return_value (gdbarch, type, regcache, writebuf);
2220 return RETURN_VALUE_REGISTER_CONVENTION;
2224 /* Inferior calls. */
2228 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2230 /* Require word alignment. */
2235 /* From "lang_spec2.txt":
2237 4.2 Calling conventions
2239 4.2.1 Core register conventions
2241 - Parameters should be evaluated from left to right, and they
2242 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2243 after should be held in the stack. If the size is larger than 4
2244 bytes in the first four parameters, the pointer should be held in
2245 the registers instead. If the size is larger than 4 bytes in the
2246 fifth parameter or after, the pointer should be held in the stack.
2248 - Return value of a function should be held in register $0. If the
2249 size of return value is larger than 4 bytes, $1 should hold the
2250 pointer pointing memory that would hold the return value. In this
2251 case, the first parameter should be held in $2, the second one in
2252 $3, and the third one in $4, and the forth parameter or after
2253 should be held in the stack.
2255 [This doesn't say so, but arguments shorter than four bytes are
2256 passed in the least significant end of a four-byte word when
2257 they're passed on the stack.] */
2260 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2261 large to fit in a register, save it on the stack, and place its
2262 address in COPY[i]. SP is the initial stack pointer; return the
2263 new stack pointer. */
2265 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2270 for (i = 0; i < argc; i++)
2272 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2274 if (arg_len > MEP_GPR_SIZE)
2276 /* Reserve space for the copy, and then round the SP down, to
2277 make sure it's all aligned properly. */
2278 sp = (sp - arg_len) & -4;
2279 write_memory (sp, value_contents (argv[i]), arg_len);
2289 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2290 struct regcache *regcache, CORE_ADDR bp_addr,
2291 int argc, struct value **argv, CORE_ADDR sp,
2293 CORE_ADDR struct_addr)
2295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2296 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2297 CORE_ADDR func_addr = find_function_addr (function, NULL);
2300 /* The number of the next register available to hold an argument. */
2303 /* The address of the next stack slot available to hold an argument. */
2304 CORE_ADDR arg_stack;
2306 /* The address of the end of the stack area for arguments. This is
2307 just for error checking. */
2308 CORE_ADDR arg_stack_end;
2310 sp = push_large_arguments (sp, argc, argv, copy);
2312 /* Reserve space for the stack arguments, if any. */
2314 if (argc + (struct_addr ? 1 : 0) > 4)
2315 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2317 arg_reg = MEP_R1_REGNUM;
2320 /* If we're returning a structure by value, push the pointer to the
2321 buffer as the first argument. */
2324 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2328 for (i = 0; i < argc; i++)
2332 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2333 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2334 value = extract_unsigned_integer (value_contents (argv[i]),
2335 TYPE_LENGTH (value_type (argv[i])),
2338 /* Arguments too large to fit in a GPR get copied to the stack,
2339 and we pass a pointer to the copy. */
2343 /* We use $1 -- $4 for passing arguments, then use the stack. */
2344 if (arg_reg <= MEP_R4_REGNUM)
2346 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2351 gdb_byte buf[MEP_GPR_SIZE];
2352 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2353 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2354 arg_stack += MEP_GPR_SIZE;
2358 gdb_assert (arg_stack <= arg_stack_end);
2360 /* Set the return address. */
2361 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2363 /* Update the stack pointer. */
2364 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2370 static struct frame_id
2371 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2373 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2374 return frame_id_build (sp, get_frame_pc (this_frame));
2379 /* Initialization. */
2382 static struct gdbarch *
2383 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2385 struct gdbarch *gdbarch;
2386 struct gdbarch_tdep *tdep;
2388 /* Which me_module are we building a gdbarch object for? */
2389 CONFIG_ATTR me_module;
2391 /* If we have a BFD in hand, figure out which me_module it was built
2392 for. Otherwise, use the no-particular-me_module code. */
2395 /* The way to get the me_module code depends on the object file
2396 format. At the moment, we only know how to handle ELF. */
2397 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2398 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2400 me_module = CONFIG_NONE;
2403 me_module = CONFIG_NONE;
2405 /* If we're setting the architecture from a file, check the
2406 endianness of the file against that of the me_module. */
2409 /* The negations on either side make the comparison treat all
2410 non-zero (true) values as equal. */
2411 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2413 const char *module_name = me_module_name (me_module);
2414 const char *module_endianness
2415 = me_module_big_endian (me_module) ? "big" : "little";
2416 const char *file_name = bfd_get_filename (info.abfd);
2417 const char *file_endianness
2418 = bfd_big_endian (info.abfd) ? "big" : "little";
2420 fputc_unfiltered ('\n', gdb_stderr);
2422 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2423 "%s is %s-endian."),
2424 module_name, module_endianness,
2425 file_name, file_endianness);
2427 warning (_("the selected MeP module is %s-endian, but the "
2429 "%s is %s-endian."),
2430 module_endianness, file_name, file_endianness);
2434 /* Find a candidate among the list of architectures we've created
2435 already. info->bfd_arch_info needs to match, but we also want
2436 the right me_module: the ELF header's e_flags field needs to
2438 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2440 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2441 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2442 return arches->gdbarch;
2444 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2445 gdbarch = gdbarch_alloc (&info, tdep);
2447 /* Get a CGEN CPU descriptor for this architecture. */
2449 const char *mach_name = info.bfd_arch_info->printable_name;
2450 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2452 : CGEN_ENDIAN_LITTLE);
2454 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2455 CGEN_CPU_OPEN_ENDIAN, endian,
2459 tdep->me_module = me_module;
2462 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2463 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2464 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2465 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2466 set_gdbarch_register_name (gdbarch, mep_register_name);
2467 set_gdbarch_register_type (gdbarch, mep_register_type);
2468 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2469 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2470 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2471 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2472 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2474 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2475 reggroup_add (gdbarch, all_reggroup);
2476 reggroup_add (gdbarch, general_reggroup);
2477 reggroup_add (gdbarch, save_reggroup);
2478 reggroup_add (gdbarch, restore_reggroup);
2479 reggroup_add (gdbarch, mep_csr_reggroup);
2480 reggroup_add (gdbarch, mep_cr_reggroup);
2481 reggroup_add (gdbarch, mep_ccr_reggroup);
2484 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2487 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2488 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2489 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2491 /* Frames and frame unwinding. */
2492 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2493 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2494 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2495 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2496 set_gdbarch_frame_args_skip (gdbarch, 0);
2498 /* Return values. */
2499 set_gdbarch_return_value (gdbarch, mep_return_value);
2501 /* Inferior function calls. */
2502 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2503 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2504 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2509 /* Provide a prototype to silence -Wmissing-prototypes. */
2510 extern initialize_file_ftype _initialize_mep_tdep;
2513 _initialize_mep_tdep (void)
2515 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2516 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2517 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2519 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2521 mep_init_pseudoregister_maps ();