Add two methods to tui_data_window
[external/binutils.git] / gdb / macrotab.c
1 /* C preprocessor macro tables for GDB.
2    Copyright (C) 2002-2019 Free Software Foundation, Inc.
3    Contributed by Red Hat, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "splay-tree.h"
23 #include "filenames.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "macrotab.h"
28 #include "bcache.h"
29 #include "complaints.h"
30 #include "macroexp.h"
31
32 \f
33 /* The macro table structure.  */
34
35 struct macro_table
36 {
37   /* The obstack this table's data should be allocated in, or zero if
38      we should use xmalloc.  */
39   struct obstack *obstack;
40
41   /* The bcache we should use to hold macro names, argument names, and
42      definitions, or zero if we should use xmalloc.  */
43   struct bcache *bcache;
44
45   /* The main source file for this compilation unit --- the one whose
46      name was given to the compiler.  This is the root of the
47      #inclusion tree; everything else is #included from here.  */
48   struct macro_source_file *main_source;
49
50   /* Backlink to containing compilation unit, or NULL if there isn't one.  */
51   struct compunit_symtab *compunit_symtab;
52
53   /* True if macros in this table can be redefined without issuing an
54      error.  */
55   int redef_ok;
56
57   /* The table of macro definitions.  This is a splay tree (an ordered
58      binary tree that stays balanced, effectively), sorted by macro
59      name.  Where a macro gets defined more than once (presumably with
60      an #undefinition in between), we sort the definitions by the
61      order they would appear in the preprocessor's output.  That is,
62      if `a.c' #includes `m.h' and then #includes `n.h', and both
63      header files #define X (with an #undef somewhere in between),
64      then the definition from `m.h' appears in our splay tree before
65      the one from `n.h'.
66
67      The splay tree's keys are `struct macro_key' pointers;
68      the values are `struct macro_definition' pointers.
69
70      The splay tree, its nodes, and the keys and values are allocated
71      in obstack, if it's non-zero, or with xmalloc otherwise.  The
72      macro names, argument names, argument name arrays, and definition
73      strings are all allocated in bcache, if non-zero, or with xmalloc
74      otherwise.  */
75   splay_tree definitions;
76 };
77
78
79 \f
80 /* Allocation and freeing functions.  */
81
82 /* Allocate SIZE bytes of memory appropriately for the macro table T.
83    This just checks whether T has an obstack, or whether its pieces
84    should be allocated with xmalloc.  */
85 static void *
86 macro_alloc (int size, struct macro_table *t)
87 {
88   if (t->obstack)
89     return obstack_alloc (t->obstack, size);
90   else
91     return xmalloc (size);
92 }
93
94
95 static void
96 macro_free (void *object, struct macro_table *t)
97 {
98   if (t->obstack)
99     /* There are cases where we need to remove entries from a macro
100        table, even when reading debugging information.  This should be
101        rare, and there's no easy way to free arbitrary data from an
102        obstack, so we just leak it.  */
103     ;
104   else
105     xfree (object);
106 }
107
108
109 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR
110    there, and return the cached copy.  Otherwise, just xmalloc a copy
111    of the bytes, and return a pointer to that.  */
112 static const void *
113 macro_bcache (struct macro_table *t, const void *addr, int len)
114 {
115   if (t->bcache)
116     return t->bcache->insert (addr, len);
117   else
118     {
119       void *copy = xmalloc (len);
120
121       memcpy (copy, addr, len);
122       return copy;
123     }
124 }
125
126
127 /* If the macro table T has a bcache, cache the null-terminated string
128    S there, and return a pointer to the cached copy.  Otherwise,
129    xmalloc a copy and return that.  */
130 static const char *
131 macro_bcache_str (struct macro_table *t, const char *s)
132 {
133   return (const char *) macro_bcache (t, s, strlen (s) + 1);
134 }
135
136
137 /* Free a possibly bcached object OBJ.  That is, if the macro table T
138    has a bcache, do nothing; otherwise, xfree OBJ.  */
139 static void
140 macro_bcache_free (struct macro_table *t, void *obj)
141 {
142   if (t->bcache)
143     /* There are cases where we need to remove entries from a macro
144        table, even when reading debugging information.  This should be
145        rare, and there's no easy way to free data from a bcache, so we
146        just leak it.  */
147     ;
148   else
149     xfree (obj);
150 }
151
152
153 \f
154 /* Macro tree keys, w/their comparison, allocation, and freeing functions.  */
155
156 /* A key in the splay tree.  */
157 struct macro_key
158 {
159   /* The table we're in.  We only need this in order to free it, since
160      the splay tree library's key and value freeing functions require
161      that the key or value contain all the information needed to free
162      themselves.  */
163   struct macro_table *table;
164
165   /* The name of the macro.  This is in the table's bcache, if it has
166      one.  */
167   const char *name;
168
169   /* The source file and line number where the definition's scope
170      begins.  This is also the line of the definition itself.  */
171   struct macro_source_file *start_file;
172   int start_line;
173
174   /* The first source file and line after the definition's scope.
175      (That is, the scope does not include this endpoint.)  If end_file
176      is zero, then the definition extends to the end of the
177      compilation unit.  */
178   struct macro_source_file *end_file;
179   int end_line;
180 };
181
182
183 /* Return the #inclusion depth of the source file FILE.  This is the
184    number of #inclusions it took to reach this file.  For the main
185    source file, the #inclusion depth is zero; for a file it #includes
186    directly, the depth would be one; and so on.  */
187 static int
188 inclusion_depth (struct macro_source_file *file)
189 {
190   int depth;
191
192   for (depth = 0; file->included_by; depth++)
193     file = file->included_by;
194
195   return depth;
196 }
197
198
199 /* Compare two source locations (from the same compilation unit).
200    This is part of the comparison function for the tree of
201    definitions.
202
203    LINE1 and LINE2 are line numbers in the source files FILE1 and
204    FILE2.  Return a value:
205    - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
206    - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
207    - zero if they are equal.
208
209    When the two locations are in different source files --- perhaps
210    one is in a header, while another is in the main source file --- we
211    order them by where they would appear in the fully pre-processed
212    sources, where all the #included files have been substituted into
213    their places.  */
214 static int
215 compare_locations (struct macro_source_file *file1, int line1, 
216                    struct macro_source_file *file2, int line2)
217 {
218   /* We want to treat positions in an #included file as coming *after*
219      the line containing the #include, but *before* the line after the
220      include.  As we walk up the #inclusion tree toward the main
221      source file, we update fileX and lineX as we go; includedX
222      indicates whether the original position was from the #included
223      file.  */
224   int included1 = 0;
225   int included2 = 0;
226
227   /* If a file is zero, that means "end of compilation unit."  Handle
228      that specially.  */
229   if (! file1)
230     {
231       if (! file2)
232         return 0;
233       else
234         return 1;
235     }
236   else if (! file2)
237     return -1;
238
239   /* If the two files are not the same, find their common ancestor in
240      the #inclusion tree.  */
241   if (file1 != file2)
242     {
243       /* If one file is deeper than the other, walk up the #inclusion
244          chain until the two files are at least at the same *depth*.
245          Then, walk up both files in synchrony until they're the same
246          file.  That file is the common ancestor.  */
247       int depth1 = inclusion_depth (file1);
248       int depth2 = inclusion_depth (file2);
249
250       /* Only one of these while loops will ever execute in any given
251          case.  */
252       while (depth1 > depth2)
253         {
254           line1 = file1->included_at_line;
255           file1 = file1->included_by;
256           included1 = 1;
257           depth1--;
258         }
259       while (depth2 > depth1)
260         {
261           line2 = file2->included_at_line;
262           file2 = file2->included_by;
263           included2 = 1;
264           depth2--;
265         }
266
267       /* Now both file1 and file2 are at the same depth.  Walk toward
268          the root of the tree until we find where the branches meet.  */
269       while (file1 != file2)
270         {
271           line1 = file1->included_at_line;
272           file1 = file1->included_by;
273           /* At this point, we know that the case the includedX flags
274              are trying to deal with won't come up, but we'll just
275              maintain them anyway.  */
276           included1 = 1;
277
278           line2 = file2->included_at_line;
279           file2 = file2->included_by;
280           included2 = 1;
281
282           /* Sanity check.  If file1 and file2 are really from the
283              same compilation unit, then they should both be part of
284              the same tree, and this shouldn't happen.  */
285           gdb_assert (file1 && file2);
286         }
287     }
288
289   /* Now we've got two line numbers in the same file.  */
290   if (line1 == line2)
291     {
292       /* They can't both be from #included files.  Then we shouldn't
293          have walked up this far.  */
294       gdb_assert (! included1 || ! included2);
295
296       /* Any #included position comes after a non-#included position
297          with the same line number in the #including file.  */
298       if (included1)
299         return 1;
300       else if (included2)
301         return -1;
302       else
303         return 0;
304     }
305   else
306     return line1 - line2;
307 }
308
309
310 /* Compare a macro key KEY against NAME, the source file FILE, and
311    line number LINE.
312
313    Sort definitions by name; for two definitions with the same name,
314    place the one whose definition comes earlier before the one whose
315    definition comes later.
316
317    Return -1, 0, or 1 if key comes before, is identical to, or comes
318    after NAME, FILE, and LINE.  */
319 static int
320 key_compare (struct macro_key *key,
321              const char *name, struct macro_source_file *file, int line)
322 {
323   int names = strcmp (key->name, name);
324
325   if (names)
326     return names;
327
328   return compare_locations (key->start_file, key->start_line,
329                             file, line);
330 }
331
332
333 /* The macro tree comparison function, typed for the splay tree
334    library's happiness.  */
335 static int
336 macro_tree_compare (splay_tree_key untyped_key1,
337                     splay_tree_key untyped_key2)
338 {
339   struct macro_key *key1 = (struct macro_key *) untyped_key1;
340   struct macro_key *key2 = (struct macro_key *) untyped_key2;
341
342   return key_compare (key1, key2->name, key2->start_file, key2->start_line);
343 }
344
345
346 /* Construct a new macro key node for a macro in table T whose name is
347    NAME, and whose scope starts at LINE in FILE; register the name in
348    the bcache.  */
349 static struct macro_key *
350 new_macro_key (struct macro_table *t,
351                const char *name,
352                struct macro_source_file *file,
353                int line)
354 {
355   struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t);
356
357   memset (k, 0, sizeof (*k));
358   k->table = t;
359   k->name = macro_bcache_str (t, name);
360   k->start_file = file;
361   k->start_line = line;
362   k->end_file = 0;
363
364   return k;
365 }
366
367
368 static void
369 macro_tree_delete_key (void *untyped_key)
370 {
371   struct macro_key *key = (struct macro_key *) untyped_key;
372
373   macro_bcache_free (key->table, (char *) key->name);
374   macro_free (key, key->table);
375 }
376
377
378 \f
379 /* Building and querying the tree of #included files.  */
380
381
382 /* Allocate and initialize a new source file structure.  */
383 static struct macro_source_file *
384 new_source_file (struct macro_table *t,
385                  const char *filename)
386 {
387   /* Get space for the source file structure itself.  */
388   struct macro_source_file *f
389     = (struct macro_source_file *) macro_alloc (sizeof (*f), t);
390
391   memset (f, 0, sizeof (*f));
392   f->table = t;
393   f->filename = macro_bcache_str (t, filename);
394   f->includes = 0;
395
396   return f;
397 }
398
399
400 /* Free a source file, and all the source files it #included.  */
401 static void
402 free_macro_source_file (struct macro_source_file *src)
403 {
404   struct macro_source_file *child, *next_child;
405
406   /* Free this file's children.  */
407   for (child = src->includes; child; child = next_child)
408     {
409       next_child = child->next_included;
410       free_macro_source_file (child);
411     }
412
413   macro_bcache_free (src->table, (char *) src->filename);
414   macro_free (src, src->table);
415 }
416
417
418 struct macro_source_file *
419 macro_set_main (struct macro_table *t,
420                 const char *filename)
421 {
422   /* You can't change a table's main source file.  What would that do
423      to the tree?  */
424   gdb_assert (! t->main_source);
425
426   t->main_source = new_source_file (t, filename);
427
428   return t->main_source;
429 }
430
431
432 struct macro_source_file *
433 macro_main (struct macro_table *t)
434 {
435   gdb_assert (t->main_source);
436
437   return t->main_source;
438 }
439
440
441 void
442 macro_allow_redefinitions (struct macro_table *t)
443 {
444   gdb_assert (! t->obstack);
445   t->redef_ok = 1;
446 }
447
448
449 struct macro_source_file *
450 macro_include (struct macro_source_file *source,
451                int line,
452                const char *included)
453 {
454   struct macro_source_file *newobj;
455   struct macro_source_file **link;
456
457   /* Find the right position in SOURCE's `includes' list for the new
458      file.  Skip inclusions at earlier lines, until we find one at the
459      same line or later --- or until the end of the list.  */
460   for (link = &source->includes;
461        *link && (*link)->included_at_line < line;
462        link = &(*link)->next_included)
463     ;
464
465   /* Did we find another file already #included at the same line as
466      the new one?  */
467   if (*link && line == (*link)->included_at_line)
468     {
469       /* This means the compiler is emitting bogus debug info.  (GCC
470          circa March 2002 did this.)  It also means that the splay
471          tree ordering function, macro_tree_compare, will abort,
472          because it can't tell which #inclusion came first.  But GDB
473          should tolerate bad debug info.  So:
474
475          First, squawk.  */
476
477       std::string link_fullname = macro_source_fullname (*link);
478       std::string source_fullname = macro_source_fullname (source);
479       complaint (_("both `%s' and `%s' allegedly #included at %s:%d"),
480                  included, link_fullname.c_str (), source_fullname.c_str (),
481                  line);
482
483       /* Now, choose a new, unoccupied line number for this
484          #inclusion, after the alleged #inclusion line.  */
485       while (*link && line == (*link)->included_at_line)
486         {
487           /* This line number is taken, so try the next line.  */
488           line++;
489           link = &(*link)->next_included;
490         }
491     }
492
493   /* At this point, we know that LINE is an unused line number, and
494      *LINK points to the entry an #inclusion at that line should
495      precede.  */
496   newobj = new_source_file (source->table, included);
497   newobj->included_by = source;
498   newobj->included_at_line = line;
499   newobj->next_included = *link;
500   *link = newobj;
501
502   return newobj;
503 }
504
505
506 struct macro_source_file *
507 macro_lookup_inclusion (struct macro_source_file *source, const char *name)
508 {
509   /* Is SOURCE itself named NAME?  */
510   if (filename_cmp (name, source->filename) == 0)
511     return source;
512
513   /* It's not us.  Try all our children, and return the lowest.  */
514   {
515     struct macro_source_file *child;
516     struct macro_source_file *best = NULL;
517     int best_depth = 0;
518
519     for (child = source->includes; child; child = child->next_included)
520       {
521         struct macro_source_file *result
522           = macro_lookup_inclusion (child, name);
523
524         if (result)
525           {
526             int result_depth = inclusion_depth (result);
527
528             if (! best || result_depth < best_depth)
529               {
530                 best = result;
531                 best_depth = result_depth;
532               }
533           }
534       }
535
536     return best;
537   }
538 }
539
540
541 \f
542 /* Registering and looking up macro definitions.  */
543
544
545 /* Construct a definition for a macro in table T.  Cache all strings,
546    and the macro_definition structure itself, in T's bcache.  */
547 static struct macro_definition *
548 new_macro_definition (struct macro_table *t,
549                       enum macro_kind kind,
550                       int argc, const char **argv,
551                       const char *replacement)
552 {
553   struct macro_definition *d
554     = (struct macro_definition *) macro_alloc (sizeof (*d), t);
555
556   memset (d, 0, sizeof (*d));
557   d->table = t;
558   d->kind = kind;
559   d->replacement = macro_bcache_str (t, replacement);
560   d->argc = argc;
561
562   if (kind == macro_function_like)
563     {
564       int i;
565       const char **cached_argv;
566       int cached_argv_size = argc * sizeof (*cached_argv);
567
568       /* Bcache all the arguments.  */
569       cached_argv = (const char **) alloca (cached_argv_size);
570       for (i = 0; i < argc; i++)
571         cached_argv[i] = macro_bcache_str (t, argv[i]);
572
573       /* Now bcache the array of argument pointers itself.  */
574       d->argv = ((const char * const *)
575                  macro_bcache (t, cached_argv, cached_argv_size));
576     }
577
578   /* We don't bcache the entire definition structure because it's got
579      a pointer to the macro table in it; since each compilation unit
580      has its own macro table, you'd only get bcache hits for identical
581      definitions within a compilation unit, which seems unlikely.
582
583      "So, why do macro definitions have pointers to their macro tables
584      at all?"  Well, when the splay tree library wants to free a
585      node's value, it calls the value freeing function with nothing
586      but the value itself.  It makes the (apparently reasonable)
587      assumption that the value carries enough information to free
588      itself.  But not all macro tables have bcaches, so not all macro
589      definitions would be bcached.  There's no way to tell whether a
590      given definition is bcached without knowing which table the
591      definition belongs to.  ...  blah.  The thing's only sixteen
592      bytes anyway, and we can still bcache the name, args, and
593      definition, so we just don't bother bcaching the definition
594      structure itself.  */
595   return d;
596 }
597
598
599 /* Free a macro definition.  */
600 static void
601 macro_tree_delete_value (void *untyped_definition)
602 {
603   struct macro_definition *d = (struct macro_definition *) untyped_definition;
604   struct macro_table *t = d->table;
605
606   if (d->kind == macro_function_like)
607     {
608       int i;
609
610       for (i = 0; i < d->argc; i++)
611         macro_bcache_free (t, (char *) d->argv[i]);
612       macro_bcache_free (t, (char **) d->argv);
613     }
614   
615   macro_bcache_free (t, (char *) d->replacement);
616   macro_free (d, t);
617 }
618
619
620 /* Find the splay tree node for the definition of NAME at LINE in
621    SOURCE, or zero if there is none.  */
622 static splay_tree_node
623 find_definition (const char *name,
624                  struct macro_source_file *file,
625                  int line)
626 {
627   struct macro_table *t = file->table;
628   splay_tree_node n;
629
630   /* Construct a macro_key object, just for the query.  */
631   struct macro_key query;
632
633   query.name = name;
634   query.start_file = file;
635   query.start_line = line;
636   query.end_file = NULL;
637
638   n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
639   if (! n)
640     {
641       /* It's okay for us to do two queries like this: the real work
642          of the searching is done when we splay, and splaying the tree
643          a second time at the same key is a constant time operation.
644          If this still bugs you, you could always just extend the
645          splay tree library with a predecessor-or-equal operation, and
646          use that.  */
647       splay_tree_node pred = splay_tree_predecessor (t->definitions,
648                                                      (splay_tree_key) &query);
649      
650       if (pred)
651         {
652           /* Make sure this predecessor actually has the right name.
653              We just want to search within a given name's definitions.  */
654           struct macro_key *found = (struct macro_key *) pred->key;
655
656           if (strcmp (found->name, name) == 0)
657             n = pred;
658         }
659     }
660
661   if (n)
662     {
663       struct macro_key *found = (struct macro_key *) n->key;
664
665       /* Okay, so this definition has the right name, and its scope
666          begins before the given source location.  But does its scope
667          end after the given source location?  */
668       if (compare_locations (file, line, found->end_file, found->end_line) < 0)
669         return n;
670       else
671         return 0;
672     }
673   else
674     return 0;
675 }
676
677
678 /* If NAME already has a definition in scope at LINE in SOURCE, return
679    the key.  If the old definition is different from the definition
680    given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
681    Otherwise, return zero.  (ARGC and ARGV are meaningless unless KIND
682    is `macro_function_like'.)  */
683 static struct macro_key *
684 check_for_redefinition (struct macro_source_file *source, int line,
685                         const char *name, enum macro_kind kind,
686                         int argc, const char **argv,
687                         const char *replacement)
688 {
689   splay_tree_node n = find_definition (name, source, line);
690
691   if (n)
692     {
693       struct macro_key *found_key = (struct macro_key *) n->key;
694       struct macro_definition *found_def
695         = (struct macro_definition *) n->value;
696       int same = 1;
697
698       /* Is this definition the same as the existing one?
699          According to the standard, this comparison needs to be done
700          on lists of tokens, not byte-by-byte, as we do here.  But
701          that's too hard for us at the moment, and comparing
702          byte-by-byte will only yield false negatives (i.e., extra
703          warning messages), not false positives (i.e., unnoticed
704          definition changes).  */
705       if (kind != found_def->kind)
706         same = 0;
707       else if (strcmp (replacement, found_def->replacement))
708         same = 0;
709       else if (kind == macro_function_like)
710         {
711           if (argc != found_def->argc)
712             same = 0;
713           else
714             {
715               int i;
716
717               for (i = 0; i < argc; i++)
718                 if (strcmp (argv[i], found_def->argv[i]))
719                   same = 0;
720             }
721         }
722
723       if (! same)
724         {
725           std::string source_fullname = macro_source_fullname (source);
726           std::string found_key_fullname
727             = macro_source_fullname (found_key->start_file);
728           complaint (_("macro `%s' redefined at %s:%d; "
729                        "original definition at %s:%d"),
730                      name, source_fullname.c_str (), line,
731                      found_key_fullname.c_str (),
732                      found_key->start_line);
733         }
734
735       return found_key;
736     }
737   else
738     return 0;
739 }
740
741 /* A helper function to define a new object-like or function-like macro
742    according to KIND.  When KIND is macro_object_like,
743    the macro_special_kind must be provided as ARGC, and ARGV must be NULL.
744    When KIND is macro_function_like, ARGC and ARGV are giving the function
745    arguments.  */
746
747 static void
748 macro_define_internal (struct macro_source_file *source, int line,
749                        const char *name, enum macro_kind kind,
750                        int argc, const char **argv,
751                        const char *replacement)
752 {
753   struct macro_table *t = source->table;
754   struct macro_key *k = NULL;
755   struct macro_definition *d;
756
757   if (! t->redef_ok)
758     k = check_for_redefinition (source, line,
759                                 name, kind,
760                                 argc, argv,
761                                 replacement);
762
763   /* If we're redefining a symbol, and the existing key would be
764      identical to our new key, then the splay_tree_insert function
765      will try to delete the old definition.  When the definition is
766      living on an obstack, this isn't a happy thing.
767
768      Since this only happens in the presence of questionable debug
769      info, we just ignore all definitions after the first.  The only
770      case I know of where this arises is in GCC's output for
771      predefined macros, and all the definitions are the same in that
772      case.  */
773   if (k && ! key_compare (k, name, source, line))
774     return;
775
776   k = new_macro_key (t, name, source, line);
777   d = new_macro_definition (t, kind, argc, argv, replacement);
778   splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
779 }
780
781 /* A helper function to define a new object-like macro.  */
782
783 static void
784 macro_define_object_internal (struct macro_source_file *source, int line,
785                               const char *name, const char *replacement,
786                               enum macro_special_kind special_kind)
787 {
788   macro_define_internal (source, line,
789                          name, macro_object_like,
790                          special_kind, NULL,
791                          replacement);
792 }
793
794 void
795 macro_define_object (struct macro_source_file *source, int line,
796                      const char *name, const char *replacement)
797 {
798   macro_define_object_internal (source, line, name, replacement,
799                                 macro_ordinary);
800 }
801
802 /* See macrotab.h.  */
803
804 void
805 macro_define_special (struct macro_table *table)
806 {
807   macro_define_object_internal (table->main_source, -1, "__FILE__", "",
808                                 macro_FILE);
809   macro_define_object_internal (table->main_source, -1, "__LINE__", "",
810                                 macro_LINE);
811 }
812
813 void
814 macro_define_function (struct macro_source_file *source, int line,
815                        const char *name, int argc, const char **argv,
816                        const char *replacement)
817 {
818   macro_define_internal (source, line,
819                          name, macro_function_like,
820                          argc, argv,
821                          replacement);
822 }
823
824 void
825 macro_undef (struct macro_source_file *source, int line,
826              const char *name)
827 {
828   splay_tree_node n = find_definition (name, source, line);
829
830   if (n)
831     {
832       struct macro_key *key = (struct macro_key *) n->key;
833
834       /* If we're removing a definition at exactly the same point that
835          we defined it, then just delete the entry altogether.  GCC
836          4.1.2 will generate DWARF that says to do this if you pass it
837          arguments like '-DFOO -UFOO -DFOO=2'.  */
838       if (source == key->start_file
839           && line == key->start_line)
840         splay_tree_remove (source->table->definitions, n->key);
841
842       else
843         {
844           /* This function is the only place a macro's end-of-scope
845              location gets set to anything other than "end of the
846              compilation unit" (i.e., end_file is zero).  So if this
847              macro already has its end-of-scope set, then we're
848              probably seeing a second #undefinition for the same
849              #definition.  */
850           if (key->end_file)
851             {
852               std::string source_fullname = macro_source_fullname (source);
853               std::string key_fullname = macro_source_fullname (key->end_file);
854               complaint (_("macro '%s' is #undefined twice,"
855                            " at %s:%d and %s:%d"),
856                          name, source_fullname.c_str (), line,
857                          key_fullname.c_str (),
858                          key->end_line);
859             }
860
861           /* Whether or not we've seen a prior #undefinition, wipe out
862              the old ending point, and make this the ending point.  */
863           key->end_file = source;
864           key->end_line = line;
865         }
866     }
867   else
868     {
869       /* According to the ISO C standard, an #undef for a symbol that
870          has no macro definition in scope is ignored.  So we should
871          ignore it too.  */
872 #if 0
873       complaint (_("no definition for macro `%s' in scope to #undef at %s:%d"),
874                  name, source->filename, line);
875 #endif
876     }
877 }
878
879 /* A helper function that rewrites the definition of a special macro,
880    when needed.  */
881
882 static struct macro_definition *
883 fixup_definition (const char *filename, int line, struct macro_definition *def)
884 {
885   static char *saved_expansion;
886
887   if (saved_expansion)
888     {
889       xfree (saved_expansion);
890       saved_expansion = NULL;
891     }
892
893   if (def->kind == macro_object_like)
894     {
895       if (def->argc == macro_FILE)
896         {
897           saved_expansion = macro_stringify (filename);
898           def->replacement = saved_expansion;
899         }
900       else if (def->argc == macro_LINE)
901         {
902           saved_expansion = xstrprintf ("%d", line);
903           def->replacement = saved_expansion;
904         }
905     }
906
907   return def;
908 }
909
910 struct macro_definition *
911 macro_lookup_definition (struct macro_source_file *source,
912                          int line, const char *name)
913 {
914   splay_tree_node n = find_definition (name, source, line);
915
916   if (n)
917     {
918       std::string source_fullname = macro_source_fullname (source);
919       return fixup_definition (source_fullname.c_str (), line,
920                                (struct macro_definition *) n->value);
921     }
922   else
923     return 0;
924 }
925
926
927 struct macro_source_file *
928 macro_definition_location (struct macro_source_file *source,
929                            int line,
930                            const char *name,
931                            int *definition_line)
932 {
933   splay_tree_node n = find_definition (name, source, line);
934
935   if (n)
936     {
937       struct macro_key *key = (struct macro_key *) n->key;
938
939       *definition_line = key->start_line;
940       return key->start_file;
941     }
942   else
943     return 0;
944 }
945
946
947 /* The type for callback data for iterating the splay tree in
948    macro_for_each and macro_for_each_in_scope.  Only the latter uses
949    the FILE and LINE fields.  */
950 struct macro_for_each_data
951 {
952   gdb::function_view<macro_callback_fn> fn;
953   struct macro_source_file *file;
954   int line;
955 };
956
957 /* Helper function for macro_for_each.  */
958 static int
959 foreach_macro (splay_tree_node node, void *arg)
960 {
961   struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
962   struct macro_key *key = (struct macro_key *) node->key;
963   struct macro_definition *def;
964
965   std::string key_fullname = macro_source_fullname (key->start_file);
966   def = fixup_definition (key_fullname.c_str (), key->start_line,
967                           (struct macro_definition *) node->value);
968
969   datum->fn (key->name, def, key->start_file, key->start_line);
970   return 0;
971 }
972
973 /* Call FN for every macro in TABLE.  */
974 void
975 macro_for_each (struct macro_table *table,
976                 gdb::function_view<macro_callback_fn> fn)
977 {
978   struct macro_for_each_data datum;
979
980   datum.fn = fn;
981   datum.file = NULL;
982   datum.line = 0;
983   splay_tree_foreach (table->definitions, foreach_macro, &datum);
984 }
985
986 static int
987 foreach_macro_in_scope (splay_tree_node node, void *info)
988 {
989   struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
990   struct macro_key *key = (struct macro_key *) node->key;
991   struct macro_definition *def;
992
993   std::string datum_fullname = macro_source_fullname (datum->file);
994   def = fixup_definition (datum_fullname.c_str (), datum->line,
995                           (struct macro_definition *) node->value);
996
997   /* See if this macro is defined before the passed-in line, and
998      extends past that line.  */
999   if (compare_locations (key->start_file, key->start_line,
1000                          datum->file, datum->line) < 0
1001       && (!key->end_file
1002           || compare_locations (key->end_file, key->end_line,
1003                                 datum->file, datum->line) >= 0))
1004     datum->fn (key->name, def, key->start_file, key->start_line);
1005   return 0;
1006 }
1007
1008 /* Call FN for every macro is visible in SCOPE.  */
1009 void
1010 macro_for_each_in_scope (struct macro_source_file *file, int line,
1011                          gdb::function_view<macro_callback_fn> fn)
1012 {
1013   struct macro_for_each_data datum;
1014
1015   datum.fn = fn;
1016   datum.file = file;
1017   datum.line = line;
1018   splay_tree_foreach (file->table->definitions,
1019                       foreach_macro_in_scope, &datum);
1020 }
1021
1022
1023 \f
1024 /* Creating and freeing macro tables.  */
1025
1026
1027 struct macro_table *
1028 new_macro_table (struct obstack *obstack, struct bcache *b,
1029                  struct compunit_symtab *cust)
1030 {
1031   struct macro_table *t;
1032
1033   /* First, get storage for the `struct macro_table' itself.  */
1034   if (obstack)
1035     t = XOBNEW (obstack, struct macro_table);
1036   else
1037     t = XNEW (struct macro_table);
1038
1039   memset (t, 0, sizeof (*t));
1040   t->obstack = obstack;
1041   t->bcache = b;
1042   t->main_source = NULL;
1043   t->compunit_symtab = cust;
1044   t->redef_ok = 0;
1045   t->definitions = (splay_tree_new_with_allocator
1046                     (macro_tree_compare,
1047                      ((splay_tree_delete_key_fn) macro_tree_delete_key),
1048                      ((splay_tree_delete_value_fn) macro_tree_delete_value),
1049                      ((splay_tree_allocate_fn) macro_alloc),
1050                      ((splay_tree_deallocate_fn) macro_free),
1051                      t));
1052   
1053   return t;
1054 }
1055
1056
1057 void
1058 free_macro_table (struct macro_table *table)
1059 {
1060   /* Free the source file tree.  */
1061   free_macro_source_file (table->main_source);
1062
1063   /* Free the table of macro definitions.  */
1064   splay_tree_delete (table->definitions);
1065 }
1066
1067 /* See macrotab.h for the comment.  */
1068
1069 std::string
1070 macro_source_fullname (struct macro_source_file *file)
1071 {
1072   const char *comp_dir = NULL;
1073
1074   if (file->table->compunit_symtab != NULL)
1075     comp_dir = COMPUNIT_DIRNAME (file->table->compunit_symtab);
1076
1077   if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename))
1078     return file->filename;
1079
1080   return std::string (comp_dir) + SLASH_STRING + file->filename;
1081 }