Make the kernel dwarf stack unwinder work for ARC targets.
[external/binutils.git] / gdb / macrotab.c
1 /* C preprocessor macro tables for GDB.
2    Copyright (C) 2002-2016 Free Software Foundation, Inc.
3    Contributed by Red Hat, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "splay-tree.h"
23 #include "filenames.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "macrotab.h"
28 #include "bcache.h"
29 #include "complaints.h"
30 #include "macroexp.h"
31
32 \f
33 /* The macro table structure.  */
34
35 struct macro_table
36 {
37   /* The obstack this table's data should be allocated in, or zero if
38      we should use xmalloc.  */
39   struct obstack *obstack;
40
41   /* The bcache we should use to hold macro names, argument names, and
42      definitions, or zero if we should use xmalloc.  */
43   struct bcache *bcache;
44
45   /* The main source file for this compilation unit --- the one whose
46      name was given to the compiler.  This is the root of the
47      #inclusion tree; everything else is #included from here.  */
48   struct macro_source_file *main_source;
49
50   /* Backlink to containing compilation unit, or NULL if there isn't one.  */
51   struct compunit_symtab *compunit_symtab;
52
53   /* True if macros in this table can be redefined without issuing an
54      error.  */
55   int redef_ok;
56
57   /* The table of macro definitions.  This is a splay tree (an ordered
58      binary tree that stays balanced, effectively), sorted by macro
59      name.  Where a macro gets defined more than once (presumably with
60      an #undefinition in between), we sort the definitions by the
61      order they would appear in the preprocessor's output.  That is,
62      if `a.c' #includes `m.h' and then #includes `n.h', and both
63      header files #define X (with an #undef somewhere in between),
64      then the definition from `m.h' appears in our splay tree before
65      the one from `n.h'.
66
67      The splay tree's keys are `struct macro_key' pointers;
68      the values are `struct macro_definition' pointers.
69
70      The splay tree, its nodes, and the keys and values are allocated
71      in obstack, if it's non-zero, or with xmalloc otherwise.  The
72      macro names, argument names, argument name arrays, and definition
73      strings are all allocated in bcache, if non-zero, or with xmalloc
74      otherwise.  */
75   splay_tree definitions;
76 };
77
78
79 \f
80 /* Allocation and freeing functions.  */
81
82 /* Allocate SIZE bytes of memory appropriately for the macro table T.
83    This just checks whether T has an obstack, or whether its pieces
84    should be allocated with xmalloc.  */
85 static void *
86 macro_alloc (int size, struct macro_table *t)
87 {
88   if (t->obstack)
89     return obstack_alloc (t->obstack, size);
90   else
91     return xmalloc (size);
92 }
93
94
95 static void
96 macro_free (void *object, struct macro_table *t)
97 {
98   if (t->obstack)
99     /* There are cases where we need to remove entries from a macro
100        table, even when reading debugging information.  This should be
101        rare, and there's no easy way to free arbitrary data from an
102        obstack, so we just leak it.  */
103     ;
104   else
105     xfree (object);
106 }
107
108
109 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR
110    there, and return the cached copy.  Otherwise, just xmalloc a copy
111    of the bytes, and return a pointer to that.  */
112 static const void *
113 macro_bcache (struct macro_table *t, const void *addr, int len)
114 {
115   if (t->bcache)
116     return bcache (addr, len, t->bcache);
117   else
118     {
119       void *copy = xmalloc (len);
120
121       memcpy (copy, addr, len);
122       return copy;
123     }
124 }
125
126
127 /* If the macro table T has a bcache, cache the null-terminated string
128    S there, and return a pointer to the cached copy.  Otherwise,
129    xmalloc a copy and return that.  */
130 static const char *
131 macro_bcache_str (struct macro_table *t, const char *s)
132 {
133   return (const char *) macro_bcache (t, s, strlen (s) + 1);
134 }
135
136
137 /* Free a possibly bcached object OBJ.  That is, if the macro table T
138    has a bcache, do nothing; otherwise, xfree OBJ.  */
139 static void
140 macro_bcache_free (struct macro_table *t, void *obj)
141 {
142   if (t->bcache)
143     /* There are cases where we need to remove entries from a macro
144        table, even when reading debugging information.  This should be
145        rare, and there's no easy way to free data from a bcache, so we
146        just leak it.  */
147     ;
148   else
149     xfree (obj);
150 }
151
152
153 \f
154 /* Macro tree keys, w/their comparison, allocation, and freeing functions.  */
155
156 /* A key in the splay tree.  */
157 struct macro_key
158 {
159   /* The table we're in.  We only need this in order to free it, since
160      the splay tree library's key and value freeing functions require
161      that the key or value contain all the information needed to free
162      themselves.  */
163   struct macro_table *table;
164
165   /* The name of the macro.  This is in the table's bcache, if it has
166      one.  */
167   const char *name;
168
169   /* The source file and line number where the definition's scope
170      begins.  This is also the line of the definition itself.  */
171   struct macro_source_file *start_file;
172   int start_line;
173
174   /* The first source file and line after the definition's scope.
175      (That is, the scope does not include this endpoint.)  If end_file
176      is zero, then the definition extends to the end of the
177      compilation unit.  */
178   struct macro_source_file *end_file;
179   int end_line;
180 };
181
182
183 /* Return the #inclusion depth of the source file FILE.  This is the
184    number of #inclusions it took to reach this file.  For the main
185    source file, the #inclusion depth is zero; for a file it #includes
186    directly, the depth would be one; and so on.  */
187 static int
188 inclusion_depth (struct macro_source_file *file)
189 {
190   int depth;
191
192   for (depth = 0; file->included_by; depth++)
193     file = file->included_by;
194
195   return depth;
196 }
197
198
199 /* Compare two source locations (from the same compilation unit).
200    This is part of the comparison function for the tree of
201    definitions.
202
203    LINE1 and LINE2 are line numbers in the source files FILE1 and
204    FILE2.  Return a value:
205    - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
206    - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
207    - zero if they are equal.
208
209    When the two locations are in different source files --- perhaps
210    one is in a header, while another is in the main source file --- we
211    order them by where they would appear in the fully pre-processed
212    sources, where all the #included files have been substituted into
213    their places.  */
214 static int
215 compare_locations (struct macro_source_file *file1, int line1, 
216                    struct macro_source_file *file2, int line2)
217 {
218   /* We want to treat positions in an #included file as coming *after*
219      the line containing the #include, but *before* the line after the
220      include.  As we walk up the #inclusion tree toward the main
221      source file, we update fileX and lineX as we go; includedX
222      indicates whether the original position was from the #included
223      file.  */
224   int included1 = 0;
225   int included2 = 0;
226
227   /* If a file is zero, that means "end of compilation unit."  Handle
228      that specially.  */
229   if (! file1)
230     {
231       if (! file2)
232         return 0;
233       else
234         return 1;
235     }
236   else if (! file2)
237     return -1;
238
239   /* If the two files are not the same, find their common ancestor in
240      the #inclusion tree.  */
241   if (file1 != file2)
242     {
243       /* If one file is deeper than the other, walk up the #inclusion
244          chain until the two files are at least at the same *depth*.
245          Then, walk up both files in synchrony until they're the same
246          file.  That file is the common ancestor.  */
247       int depth1 = inclusion_depth (file1);
248       int depth2 = inclusion_depth (file2);
249
250       /* Only one of these while loops will ever execute in any given
251          case.  */
252       while (depth1 > depth2)
253         {
254           line1 = file1->included_at_line;
255           file1 = file1->included_by;
256           included1 = 1;
257           depth1--;
258         }
259       while (depth2 > depth1)
260         {
261           line2 = file2->included_at_line;
262           file2 = file2->included_by;
263           included2 = 1;
264           depth2--;
265         }
266
267       /* Now both file1 and file2 are at the same depth.  Walk toward
268          the root of the tree until we find where the branches meet.  */
269       while (file1 != file2)
270         {
271           line1 = file1->included_at_line;
272           file1 = file1->included_by;
273           /* At this point, we know that the case the includedX flags
274              are trying to deal with won't come up, but we'll just
275              maintain them anyway.  */
276           included1 = 1;
277
278           line2 = file2->included_at_line;
279           file2 = file2->included_by;
280           included2 = 1;
281
282           /* Sanity check.  If file1 and file2 are really from the
283              same compilation unit, then they should both be part of
284              the same tree, and this shouldn't happen.  */
285           gdb_assert (file1 && file2);
286         }
287     }
288
289   /* Now we've got two line numbers in the same file.  */
290   if (line1 == line2)
291     {
292       /* They can't both be from #included files.  Then we shouldn't
293          have walked up this far.  */
294       gdb_assert (! included1 || ! included2);
295
296       /* Any #included position comes after a non-#included position
297          with the same line number in the #including file.  */
298       if (included1)
299         return 1;
300       else if (included2)
301         return -1;
302       else
303         return 0;
304     }
305   else
306     return line1 - line2;
307 }
308
309
310 /* Compare a macro key KEY against NAME, the source file FILE, and
311    line number LINE.
312
313    Sort definitions by name; for two definitions with the same name,
314    place the one whose definition comes earlier before the one whose
315    definition comes later.
316
317    Return -1, 0, or 1 if key comes before, is identical to, or comes
318    after NAME, FILE, and LINE.  */
319 static int
320 key_compare (struct macro_key *key,
321              const char *name, struct macro_source_file *file, int line)
322 {
323   int names = strcmp (key->name, name);
324
325   if (names)
326     return names;
327
328   return compare_locations (key->start_file, key->start_line,
329                             file, line);
330 }
331
332
333 /* The macro tree comparison function, typed for the splay tree
334    library's happiness.  */
335 static int
336 macro_tree_compare (splay_tree_key untyped_key1,
337                     splay_tree_key untyped_key2)
338 {
339   struct macro_key *key1 = (struct macro_key *) untyped_key1;
340   struct macro_key *key2 = (struct macro_key *) untyped_key2;
341
342   return key_compare (key1, key2->name, key2->start_file, key2->start_line);
343 }
344
345
346 /* Construct a new macro key node for a macro in table T whose name is
347    NAME, and whose scope starts at LINE in FILE; register the name in
348    the bcache.  */
349 static struct macro_key *
350 new_macro_key (struct macro_table *t,
351                const char *name,
352                struct macro_source_file *file,
353                int line)
354 {
355   struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t);
356
357   memset (k, 0, sizeof (*k));
358   k->table = t;
359   k->name = macro_bcache_str (t, name);
360   k->start_file = file;
361   k->start_line = line;
362   k->end_file = 0;
363
364   return k;
365 }
366
367
368 static void
369 macro_tree_delete_key (void *untyped_key)
370 {
371   struct macro_key *key = (struct macro_key *) untyped_key;
372
373   macro_bcache_free (key->table, (char *) key->name);
374   macro_free (key, key->table);
375 }
376
377
378 \f
379 /* Building and querying the tree of #included files.  */
380
381
382 /* Allocate and initialize a new source file structure.  */
383 static struct macro_source_file *
384 new_source_file (struct macro_table *t,
385                  const char *filename)
386 {
387   /* Get space for the source file structure itself.  */
388   struct macro_source_file *f
389     = (struct macro_source_file *) macro_alloc (sizeof (*f), t);
390
391   memset (f, 0, sizeof (*f));
392   f->table = t;
393   f->filename = macro_bcache_str (t, filename);
394   f->includes = 0;
395
396   return f;
397 }
398
399
400 /* Free a source file, and all the source files it #included.  */
401 static void
402 free_macro_source_file (struct macro_source_file *src)
403 {
404   struct macro_source_file *child, *next_child;
405
406   /* Free this file's children.  */
407   for (child = src->includes; child; child = next_child)
408     {
409       next_child = child->next_included;
410       free_macro_source_file (child);
411     }
412
413   macro_bcache_free (src->table, (char *) src->filename);
414   macro_free (src, src->table);
415 }
416
417
418 struct macro_source_file *
419 macro_set_main (struct macro_table *t,
420                 const char *filename)
421 {
422   /* You can't change a table's main source file.  What would that do
423      to the tree?  */
424   gdb_assert (! t->main_source);
425
426   t->main_source = new_source_file (t, filename);
427
428   return t->main_source;
429 }
430
431
432 struct macro_source_file *
433 macro_main (struct macro_table *t)
434 {
435   gdb_assert (t->main_source);
436
437   return t->main_source;
438 }
439
440
441 void
442 macro_allow_redefinitions (struct macro_table *t)
443 {
444   gdb_assert (! t->obstack);
445   t->redef_ok = 1;
446 }
447
448
449 struct macro_source_file *
450 macro_include (struct macro_source_file *source,
451                int line,
452                const char *included)
453 {
454   struct macro_source_file *newobj;
455   struct macro_source_file **link;
456
457   /* Find the right position in SOURCE's `includes' list for the new
458      file.  Skip inclusions at earlier lines, until we find one at the
459      same line or later --- or until the end of the list.  */
460   for (link = &source->includes;
461        *link && (*link)->included_at_line < line;
462        link = &(*link)->next_included)
463     ;
464
465   /* Did we find another file already #included at the same line as
466      the new one?  */
467   if (*link && line == (*link)->included_at_line)
468     {
469       char *link_fullname, *source_fullname;
470
471       /* This means the compiler is emitting bogus debug info.  (GCC
472          circa March 2002 did this.)  It also means that the splay
473          tree ordering function, macro_tree_compare, will abort,
474          because it can't tell which #inclusion came first.  But GDB
475          should tolerate bad debug info.  So:
476
477          First, squawk.  */
478
479       link_fullname = macro_source_fullname (*link);
480       source_fullname = macro_source_fullname (source);
481       complaint (&symfile_complaints,
482                  _("both `%s' and `%s' allegedly #included at %s:%d"),
483                  included, link_fullname, source_fullname, line);
484       xfree (source_fullname);
485       xfree (link_fullname);
486
487       /* Now, choose a new, unoccupied line number for this
488          #inclusion, after the alleged #inclusion line.  */
489       while (*link && line == (*link)->included_at_line)
490         {
491           /* This line number is taken, so try the next line.  */
492           line++;
493           link = &(*link)->next_included;
494         }
495     }
496
497   /* At this point, we know that LINE is an unused line number, and
498      *LINK points to the entry an #inclusion at that line should
499      precede.  */
500   newobj = new_source_file (source->table, included);
501   newobj->included_by = source;
502   newobj->included_at_line = line;
503   newobj->next_included = *link;
504   *link = newobj;
505
506   return newobj;
507 }
508
509
510 struct macro_source_file *
511 macro_lookup_inclusion (struct macro_source_file *source, const char *name)
512 {
513   /* Is SOURCE itself named NAME?  */
514   if (filename_cmp (name, source->filename) == 0)
515     return source;
516
517   /* It's not us.  Try all our children, and return the lowest.  */
518   {
519     struct macro_source_file *child;
520     struct macro_source_file *best = NULL;
521     int best_depth = 0;
522
523     for (child = source->includes; child; child = child->next_included)
524       {
525         struct macro_source_file *result
526           = macro_lookup_inclusion (child, name);
527
528         if (result)
529           {
530             int result_depth = inclusion_depth (result);
531
532             if (! best || result_depth < best_depth)
533               {
534                 best = result;
535                 best_depth = result_depth;
536               }
537           }
538       }
539
540     return best;
541   }
542 }
543
544
545 \f
546 /* Registering and looking up macro definitions.  */
547
548
549 /* Construct a definition for a macro in table T.  Cache all strings,
550    and the macro_definition structure itself, in T's bcache.  */
551 static struct macro_definition *
552 new_macro_definition (struct macro_table *t,
553                       enum macro_kind kind,
554                       int argc, const char **argv,
555                       const char *replacement)
556 {
557   struct macro_definition *d
558     = (struct macro_definition *) macro_alloc (sizeof (*d), t);
559
560   memset (d, 0, sizeof (*d));
561   d->table = t;
562   d->kind = kind;
563   d->replacement = macro_bcache_str (t, replacement);
564   d->argc = argc;
565
566   if (kind == macro_function_like)
567     {
568       int i;
569       const char **cached_argv;
570       int cached_argv_size = argc * sizeof (*cached_argv);
571
572       /* Bcache all the arguments.  */
573       cached_argv = (const char **) alloca (cached_argv_size);
574       for (i = 0; i < argc; i++)
575         cached_argv[i] = macro_bcache_str (t, argv[i]);
576
577       /* Now bcache the array of argument pointers itself.  */
578       d->argv = ((const char * const *)
579                  macro_bcache (t, cached_argv, cached_argv_size));
580     }
581
582   /* We don't bcache the entire definition structure because it's got
583      a pointer to the macro table in it; since each compilation unit
584      has its own macro table, you'd only get bcache hits for identical
585      definitions within a compilation unit, which seems unlikely.
586
587      "So, why do macro definitions have pointers to their macro tables
588      at all?"  Well, when the splay tree library wants to free a
589      node's value, it calls the value freeing function with nothing
590      but the value itself.  It makes the (apparently reasonable)
591      assumption that the value carries enough information to free
592      itself.  But not all macro tables have bcaches, so not all macro
593      definitions would be bcached.  There's no way to tell whether a
594      given definition is bcached without knowing which table the
595      definition belongs to.  ...  blah.  The thing's only sixteen
596      bytes anyway, and we can still bcache the name, args, and
597      definition, so we just don't bother bcaching the definition
598      structure itself.  */
599   return d;
600 }
601
602
603 /* Free a macro definition.  */
604 static void
605 macro_tree_delete_value (void *untyped_definition)
606 {
607   struct macro_definition *d = (struct macro_definition *) untyped_definition;
608   struct macro_table *t = d->table;
609
610   if (d->kind == macro_function_like)
611     {
612       int i;
613
614       for (i = 0; i < d->argc; i++)
615         macro_bcache_free (t, (char *) d->argv[i]);
616       macro_bcache_free (t, (char **) d->argv);
617     }
618   
619   macro_bcache_free (t, (char *) d->replacement);
620   macro_free (d, t);
621 }
622
623
624 /* Find the splay tree node for the definition of NAME at LINE in
625    SOURCE, or zero if there is none.  */
626 static splay_tree_node
627 find_definition (const char *name,
628                  struct macro_source_file *file,
629                  int line)
630 {
631   struct macro_table *t = file->table;
632   splay_tree_node n;
633
634   /* Construct a macro_key object, just for the query.  */
635   struct macro_key query;
636
637   query.name = name;
638   query.start_file = file;
639   query.start_line = line;
640   query.end_file = NULL;
641
642   n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
643   if (! n)
644     {
645       /* It's okay for us to do two queries like this: the real work
646          of the searching is done when we splay, and splaying the tree
647          a second time at the same key is a constant time operation.
648          If this still bugs you, you could always just extend the
649          splay tree library with a predecessor-or-equal operation, and
650          use that.  */
651       splay_tree_node pred = splay_tree_predecessor (t->definitions,
652                                                      (splay_tree_key) &query);
653      
654       if (pred)
655         {
656           /* Make sure this predecessor actually has the right name.
657              We just want to search within a given name's definitions.  */
658           struct macro_key *found = (struct macro_key *) pred->key;
659
660           if (strcmp (found->name, name) == 0)
661             n = pred;
662         }
663     }
664
665   if (n)
666     {
667       struct macro_key *found = (struct macro_key *) n->key;
668
669       /* Okay, so this definition has the right name, and its scope
670          begins before the given source location.  But does its scope
671          end after the given source location?  */
672       if (compare_locations (file, line, found->end_file, found->end_line) < 0)
673         return n;
674       else
675         return 0;
676     }
677   else
678     return 0;
679 }
680
681
682 /* If NAME already has a definition in scope at LINE in SOURCE, return
683    the key.  If the old definition is different from the definition
684    given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
685    Otherwise, return zero.  (ARGC and ARGV are meaningless unless KIND
686    is `macro_function_like'.)  */
687 static struct macro_key *
688 check_for_redefinition (struct macro_source_file *source, int line,
689                         const char *name, enum macro_kind kind,
690                         int argc, const char **argv,
691                         const char *replacement)
692 {
693   splay_tree_node n = find_definition (name, source, line);
694
695   if (n)
696     {
697       struct macro_key *found_key = (struct macro_key *) n->key;
698       struct macro_definition *found_def
699         = (struct macro_definition *) n->value;
700       int same = 1;
701
702       /* Is this definition the same as the existing one?
703          According to the standard, this comparison needs to be done
704          on lists of tokens, not byte-by-byte, as we do here.  But
705          that's too hard for us at the moment, and comparing
706          byte-by-byte will only yield false negatives (i.e., extra
707          warning messages), not false positives (i.e., unnoticed
708          definition changes).  */
709       if (kind != found_def->kind)
710         same = 0;
711       else if (strcmp (replacement, found_def->replacement))
712         same = 0;
713       else if (kind == macro_function_like)
714         {
715           if (argc != found_def->argc)
716             same = 0;
717           else
718             {
719               int i;
720
721               for (i = 0; i < argc; i++)
722                 if (strcmp (argv[i], found_def->argv[i]))
723                   same = 0;
724             }
725         }
726
727       if (! same)
728         {
729           char *source_fullname, *found_key_fullname;
730           
731           source_fullname = macro_source_fullname (source);
732           found_key_fullname = macro_source_fullname (found_key->start_file);
733           complaint (&symfile_complaints,
734                      _("macro `%s' redefined at %s:%d; "
735                        "original definition at %s:%d"),
736                      name, source_fullname, line, found_key_fullname,
737                      found_key->start_line);
738           xfree (found_key_fullname);
739           xfree (source_fullname);
740         }
741
742       return found_key;
743     }
744   else
745     return 0;
746 }
747
748 /* A helper function to define a new object-like macro.  */
749
750 static void
751 macro_define_object_internal (struct macro_source_file *source, int line,
752                               const char *name, const char *replacement,
753                               enum macro_special_kind kind)
754 {
755   struct macro_table *t = source->table;
756   struct macro_key *k = NULL;
757   struct macro_definition *d;
758
759   if (! t->redef_ok)
760     k = check_for_redefinition (source, line, 
761                                 name, macro_object_like,
762                                 0, 0,
763                                 replacement);
764
765   /* If we're redefining a symbol, and the existing key would be
766      identical to our new key, then the splay_tree_insert function
767      will try to delete the old definition.  When the definition is
768      living on an obstack, this isn't a happy thing.
769
770      Since this only happens in the presence of questionable debug
771      info, we just ignore all definitions after the first.  The only
772      case I know of where this arises is in GCC's output for
773      predefined macros, and all the definitions are the same in that
774      case.  */
775   if (k && ! key_compare (k, name, source, line))
776     return;
777
778   k = new_macro_key (t, name, source, line);
779   d = new_macro_definition (t, macro_object_like, kind, 0, replacement);
780   splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
781 }
782
783 void
784 macro_define_object (struct macro_source_file *source, int line,
785                      const char *name, const char *replacement)
786 {
787   macro_define_object_internal (source, line, name, replacement,
788                                 macro_ordinary);
789 }
790
791 /* See macrotab.h.  */
792
793 void
794 macro_define_special (struct macro_table *table)
795 {
796   macro_define_object_internal (table->main_source, -1, "__FILE__", "",
797                                 macro_FILE);
798   macro_define_object_internal (table->main_source, -1, "__LINE__", "",
799                                 macro_LINE);
800 }
801
802 void
803 macro_define_function (struct macro_source_file *source, int line,
804                        const char *name, int argc, const char **argv,
805                        const char *replacement)
806 {
807   struct macro_table *t = source->table;
808   struct macro_key *k = NULL;
809   struct macro_definition *d;
810
811   if (! t->redef_ok)
812     k = check_for_redefinition (source, line,
813                                 name, macro_function_like,
814                                 argc, argv,
815                                 replacement);
816
817   /* See comments about duplicate keys in macro_define_object.  */
818   if (k && ! key_compare (k, name, source, line))
819     return;
820
821   /* We should also check here that all the argument names in ARGV are
822      distinct.  */
823
824   k = new_macro_key (t, name, source, line);
825   d = new_macro_definition (t, macro_function_like, argc, argv, replacement);
826   splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
827 }
828
829
830 void
831 macro_undef (struct macro_source_file *source, int line,
832              const char *name)
833 {
834   splay_tree_node n = find_definition (name, source, line);
835
836   if (n)
837     {
838       struct macro_key *key = (struct macro_key *) n->key;
839
840       /* If we're removing a definition at exactly the same point that
841          we defined it, then just delete the entry altogether.  GCC
842          4.1.2 will generate DWARF that says to do this if you pass it
843          arguments like '-DFOO -UFOO -DFOO=2'.  */
844       if (source == key->start_file
845           && line == key->start_line)
846         splay_tree_remove (source->table->definitions, n->key);
847
848       else
849         {
850           /* This function is the only place a macro's end-of-scope
851              location gets set to anything other than "end of the
852              compilation unit" (i.e., end_file is zero).  So if this
853              macro already has its end-of-scope set, then we're
854              probably seeing a second #undefinition for the same
855              #definition.  */
856           if (key->end_file)
857             {
858               char *source_fullname, *key_fullname;
859
860               source_fullname = macro_source_fullname (source);
861               key_fullname = macro_source_fullname (key->end_file);
862               complaint (&symfile_complaints,
863                          _("macro '%s' is #undefined twice,"
864                            " at %s:%d and %s:%d"),
865                          name, source_fullname, line, key_fullname,
866                          key->end_line);
867               xfree (key_fullname);
868               xfree (source_fullname);
869             }
870
871           /* Whether or not we've seen a prior #undefinition, wipe out
872              the old ending point, and make this the ending point.  */
873           key->end_file = source;
874           key->end_line = line;
875         }
876     }
877   else
878     {
879       /* According to the ISO C standard, an #undef for a symbol that
880          has no macro definition in scope is ignored.  So we should
881          ignore it too.  */
882 #if 0
883       complaint (&symfile_complaints,
884                  _("no definition for macro `%s' in scope to #undef at %s:%d"),
885                  name, source->filename, line);
886 #endif
887     }
888 }
889
890 /* A helper function that rewrites the definition of a special macro,
891    when needed.  */
892
893 static struct macro_definition *
894 fixup_definition (const char *filename, int line, struct macro_definition *def)
895 {
896   static char *saved_expansion;
897
898   if (saved_expansion)
899     {
900       xfree (saved_expansion);
901       saved_expansion = NULL;
902     }
903
904   if (def->kind == macro_object_like)
905     {
906       if (def->argc == macro_FILE)
907         {
908           saved_expansion = macro_stringify (filename);
909           def->replacement = saved_expansion;
910         }
911       else if (def->argc == macro_LINE)
912         {
913           saved_expansion = xstrprintf ("%d", line);
914           def->replacement = saved_expansion;
915         }
916     }
917
918   return def;
919 }
920
921 struct macro_definition *
922 macro_lookup_definition (struct macro_source_file *source,
923                          int line, const char *name)
924 {
925   splay_tree_node n = find_definition (name, source, line);
926
927   if (n)
928     {
929       struct macro_definition *retval;
930       char *source_fullname;
931
932       source_fullname = macro_source_fullname (source);
933       retval = fixup_definition (source_fullname, line,
934                                  (struct macro_definition *) n->value);
935       xfree (source_fullname);
936       return retval;
937     }
938   else
939     return 0;
940 }
941
942
943 struct macro_source_file *
944 macro_definition_location (struct macro_source_file *source,
945                            int line,
946                            const char *name,
947                            int *definition_line)
948 {
949   splay_tree_node n = find_definition (name, source, line);
950
951   if (n)
952     {
953       struct macro_key *key = (struct macro_key *) n->key;
954
955       *definition_line = key->start_line;
956       return key->start_file;
957     }
958   else
959     return 0;
960 }
961
962
963 /* The type for callback data for iterating the splay tree in
964    macro_for_each and macro_for_each_in_scope.  Only the latter uses
965    the FILE and LINE fields.  */
966 struct macro_for_each_data
967 {
968   macro_callback_fn fn;
969   void *user_data;
970   struct macro_source_file *file;
971   int line;
972 };
973
974 /* Helper function for macro_for_each.  */
975 static int
976 foreach_macro (splay_tree_node node, void *arg)
977 {
978   struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
979   struct macro_key *key = (struct macro_key *) node->key;
980   struct macro_definition *def;
981   char *key_fullname;
982
983   key_fullname = macro_source_fullname (key->start_file);
984   def = fixup_definition (key_fullname, key->start_line,
985                           (struct macro_definition *) node->value);
986   xfree (key_fullname);
987
988   (*datum->fn) (key->name, def, key->start_file, key->start_line,
989                 datum->user_data);
990   return 0;
991 }
992
993 /* Call FN for every macro in TABLE.  */
994 void
995 macro_for_each (struct macro_table *table, macro_callback_fn fn,
996                 void *user_data)
997 {
998   struct macro_for_each_data datum;
999
1000   datum.fn = fn;
1001   datum.user_data = user_data;
1002   datum.file = NULL;
1003   datum.line = 0;
1004   splay_tree_foreach (table->definitions, foreach_macro, &datum);
1005 }
1006
1007 static int
1008 foreach_macro_in_scope (splay_tree_node node, void *info)
1009 {
1010   struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
1011   struct macro_key *key = (struct macro_key *) node->key;
1012   struct macro_definition *def;
1013   char *datum_fullname;
1014
1015   datum_fullname = macro_source_fullname (datum->file);
1016   def = fixup_definition (datum_fullname, datum->line,
1017                           (struct macro_definition *) node->value);
1018   xfree (datum_fullname);
1019
1020   /* See if this macro is defined before the passed-in line, and
1021      extends past that line.  */
1022   if (compare_locations (key->start_file, key->start_line,
1023                          datum->file, datum->line) < 0
1024       && (!key->end_file
1025           || compare_locations (key->end_file, key->end_line,
1026                                 datum->file, datum->line) >= 0))
1027     (*datum->fn) (key->name, def, key->start_file, key->start_line,
1028                   datum->user_data);
1029   return 0;
1030 }
1031
1032 /* Call FN for every macro is visible in SCOPE.  */
1033 void
1034 macro_for_each_in_scope (struct macro_source_file *file, int line,
1035                          macro_callback_fn fn, void *user_data)
1036 {
1037   struct macro_for_each_data datum;
1038
1039   datum.fn = fn;
1040   datum.user_data = user_data;
1041   datum.file = file;
1042   datum.line = line;
1043   splay_tree_foreach (file->table->definitions,
1044                       foreach_macro_in_scope, &datum);
1045 }
1046
1047
1048 \f
1049 /* Creating and freeing macro tables.  */
1050
1051
1052 struct macro_table *
1053 new_macro_table (struct obstack *obstack, struct bcache *b,
1054                  struct compunit_symtab *cust)
1055 {
1056   struct macro_table *t;
1057
1058   /* First, get storage for the `struct macro_table' itself.  */
1059   if (obstack)
1060     t = XOBNEW (obstack, struct macro_table);
1061   else
1062     t = XNEW (struct macro_table);
1063
1064   memset (t, 0, sizeof (*t));
1065   t->obstack = obstack;
1066   t->bcache = b;
1067   t->main_source = NULL;
1068   t->compunit_symtab = cust;
1069   t->redef_ok = 0;
1070   t->definitions = (splay_tree_new_with_allocator
1071                     (macro_tree_compare,
1072                      ((splay_tree_delete_key_fn) macro_tree_delete_key),
1073                      ((splay_tree_delete_value_fn) macro_tree_delete_value),
1074                      ((splay_tree_allocate_fn) macro_alloc),
1075                      ((splay_tree_deallocate_fn) macro_free),
1076                      t));
1077   
1078   return t;
1079 }
1080
1081
1082 void
1083 free_macro_table (struct macro_table *table)
1084 {
1085   /* Free the source file tree.  */
1086   free_macro_source_file (table->main_source);
1087
1088   /* Free the table of macro definitions.  */
1089   splay_tree_delete (table->definitions);
1090 }
1091
1092 /* See macrotab.h for the comment.  */
1093
1094 char *
1095 macro_source_fullname (struct macro_source_file *file)
1096 {
1097   const char *comp_dir = NULL;
1098
1099   if (file->table->compunit_symtab != NULL)
1100     comp_dir = COMPUNIT_DIRNAME (file->table->compunit_symtab);
1101
1102   if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename))
1103     return xstrdup (file->filename);
1104
1105   return concat (comp_dir, SLASH_STRING, file->filename, (char *) NULL);
1106 }