1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb_obstack.h"
25 #include "gdb_assert.h"
30 /* A resizeable, substringable string type. */
33 /* A string type that we can resize, quickly append to, and use to
34 refer to substrings of other strings. */
37 /* An array of characters. The first LEN bytes are the real text,
38 but there are SIZE bytes allocated to the array. If SIZE is
39 zero, then this doesn't point to a malloc'ed block. If SHARED is
40 non-zero, then this buffer is actually a pointer into some larger
41 string, and we shouldn't append characters to it, etc. Because
42 of sharing, we can't assume in general that the text is
46 /* The number of characters in the string. */
49 /* The number of characters allocated to the string. If SHARED is
50 non-zero, this is meaningless; in this case, we set it to zero so
51 that any "do we have room to append something?" tests will fail,
52 so we don't always have to check SHARED before using this field. */
55 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56 block). Non-zero if TEXT is actually pointing into the middle of
57 some other block, and we shouldn't reallocate it. */
60 /* For detecting token splicing.
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
81 init_buffer (struct macro_buffer *b, int n)
85 b->text = (char *) xmalloc (n);
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
103 buf->last_token = -1;
107 /* Free the text of the buffer B. Raise an error if B is shared. */
109 free_buffer (struct macro_buffer *b)
111 gdb_assert (! b->shared);
116 /* Like free_buffer, but return the text as an xstrdup()d string.
117 This only exists to try to make the API relatively clean. */
120 free_buffer_return_text (struct macro_buffer *b)
122 gdb_assert (! b->shared);
123 gdb_assert (b->size);
128 /* A cleanup function for macro buffers. */
130 cleanup_macro_buffer (void *untyped_buf)
132 free_buffer ((struct macro_buffer *) untyped_buf);
136 /* Resize the buffer B to be at least N bytes long. Raise an error if
137 B shouldn't be resized. */
139 resize_buffer (struct macro_buffer *b, int n)
141 /* We shouldn't be trying to resize shared strings. */
142 gdb_assert (! b->shared);
150 b->text = xrealloc (b->text, b->size);
154 /* Append the character C to the buffer B. */
156 appendc (struct macro_buffer *b, int c)
158 int new_len = b->len + 1;
160 if (new_len > b->size)
161 resize_buffer (b, new_len);
168 /* Append the LEN bytes at ADDR to the buffer B. */
170 appendmem (struct macro_buffer *b, char *addr, int len)
172 int new_len = b->len + len;
174 if (new_len > b->size)
175 resize_buffer (b, new_len);
177 memcpy (b->text + b->len, addr, len);
183 /* Recognizing preprocessor tokens. */
187 macro_is_whitespace (int c)
198 macro_is_digit (int c)
200 return ('0' <= c && c <= '9');
205 macro_is_identifier_nondigit (int c)
208 || ('a' <= c && c <= 'z')
209 || ('A' <= c && c <= 'Z'));
214 set_token (struct macro_buffer *tok, char *start, char *end)
216 init_shared_buffer (tok, start, end - start);
219 /* Presumed; get_identifier may overwrite this. */
220 tok->is_identifier = 0;
225 get_comment (struct macro_buffer *tok, char *p, char *end)
242 set_token (tok, tok_start, p);
246 error (_("Unterminated comment in macro expansion."));
258 set_token (tok, tok_start, p);
267 get_identifier (struct macro_buffer *tok, char *p, char *end)
270 && macro_is_identifier_nondigit (*p))
275 && (macro_is_identifier_nondigit (*p)
276 || macro_is_digit (*p)))
279 set_token (tok, tok_start, p);
280 tok->is_identifier = 1;
289 get_pp_number (struct macro_buffer *tok, char *p, char *end)
292 && (macro_is_digit (*p)
295 && macro_is_digit (p[1]))))
302 && strchr ("eEpP", *p)
303 && (p[1] == '+' || p[1] == '-'))
305 else if (macro_is_digit (*p)
306 || macro_is_identifier_nondigit (*p)
313 set_token (tok, tok_start, p);
322 /* If the text starting at P going up to (but not including) END
323 starts with a character constant, set *TOK to point to that
324 character constant, and return 1. Otherwise, return zero.
325 Signal an error if it contains a malformed or incomplete character
328 get_character_constant (struct macro_buffer *tok, char *p, char *end)
330 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
331 But of course, what really matters is that we handle it the same
332 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
333 to handle escape sequences. */
334 if ((p + 1 <= end && *p == '\'')
336 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
345 else if (*p == 'L' || *p == 'u' || *p == 'U')
348 gdb_assert_not_reached ("unexpected character constant");
354 error (_("Unmatched single quote."));
358 error (_("A character constant must contain at least one "
366 char_count += c_parse_escape (&p, NULL);
375 set_token (tok, tok_start, p);
383 /* If the text starting at P going up to (but not including) END
384 starts with a string literal, set *TOK to point to that string
385 literal, and return 1. Otherwise, return zero. Signal an error if
386 it contains a malformed or incomplete string literal. */
388 get_string_literal (struct macro_buffer *tok, char *p, char *end)
393 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
400 else if (*p == 'L' || *p == 'u' || *p == 'U')
403 gdb_assert_not_reached ("unexpected string literal");
408 error (_("Unterminated string in expression."));
415 error (_("Newline characters may not appear in string "
420 c_parse_escape (&p, NULL);
426 set_token (tok, tok_start, p);
435 get_punctuator (struct macro_buffer *tok, char *p, char *end)
437 /* Here, speed is much less important than correctness and clarity. */
439 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
440 Note that this table is ordered in a special way. A punctuator
441 which is a prefix of another punctuator must appear after its
442 "extension". Otherwise, the wrong token will be returned. */
443 static const char * const punctuators[] = {
444 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
446 "->", "--", "-=", "-",
452 "%>", "%:%:", "%:", "%=", "%",
457 "<<=", "<<", "<=", "<:", "<%", "<",
458 ">>=", ">>", ">=", ">",
467 for (i = 0; punctuators[i]; i++)
469 const char *punctuator = punctuators[i];
471 if (p[0] == punctuator[0])
473 int len = strlen (punctuator);
476 && ! memcmp (p, punctuator, len))
478 set_token (tok, p, p + len);
489 /* Peel the next preprocessor token off of SRC, and put it in TOK.
490 Mutate TOK to refer to the first token in SRC, and mutate SRC to
491 refer to the text after that token. SRC must be a shared buffer;
492 the resulting TOK will be shared, pointing into the same string SRC
493 does. Initialize TOK's last_token field. Return non-zero if we
494 succeed, or 0 if we didn't find any more tokens in SRC. */
496 get_token (struct macro_buffer *tok,
497 struct macro_buffer *src)
500 char *end = p + src->len;
502 gdb_assert (src->shared);
504 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
513 each non-white-space character that cannot be one of the above
515 We don't have to deal with header-name tokens, since those can
516 only occur after a #include, which we will never see. */
519 if (macro_is_whitespace (*p))
521 else if (get_comment (tok, p, end))
523 else if (get_pp_number (tok, p, end)
524 || get_character_constant (tok, p, end)
525 || get_string_literal (tok, p, end)
526 /* Note: the grammar in the standard seems to be
527 ambiguous: L'x' can be either a wide character
528 constant, or an identifier followed by a normal
529 character constant. By trying `get_identifier' after
530 we try get_character_constant and get_string_literal,
531 we give the wide character syntax precedence. Now,
532 since GDB doesn't handle wide character constants
533 anyway, is this the right thing to do? */
534 || get_identifier (tok, p, end)
535 || get_punctuator (tok, p, end))
537 /* How many characters did we consume, including whitespace? */
538 int consumed = p - src->text + tok->len;
540 src->text += consumed;
541 src->len -= consumed;
546 /* We have found a "non-whitespace character that cannot be
547 one of the above." Make a token out of it. */
550 set_token (tok, p, p + 1);
551 consumed = p - src->text + tok->len;
552 src->text += consumed;
553 src->len -= consumed;
562 /* Appending token strings, with and without splicing */
565 /* Append the macro buffer SRC to the end of DEST, and ensure that
566 doing so doesn't splice the token at the end of SRC with the token
567 at the beginning of DEST. SRC and DEST must have their last_token
568 fields set. Upon return, DEST's last_token field is set correctly.
572 If DEST is "(" and SRC is "y", then we can return with
573 DEST set to "(y" --- we've simply appended the two buffers.
575 However, if DEST is "x" and SRC is "y", then we must not return
576 with DEST set to "xy" --- that would splice the two tokens "x" and
577 "y" together to make a single token "xy". However, it would be
578 fine to return with DEST set to "x y". Similarly, "<" and "<" must
579 yield "< <", not "<<", etc. */
581 append_tokens_without_splicing (struct macro_buffer *dest,
582 struct macro_buffer *src)
584 int original_dest_len = dest->len;
585 struct macro_buffer dest_tail, new_token;
587 gdb_assert (src->last_token != -1);
588 gdb_assert (dest->last_token != -1);
590 /* First, just try appending the two, and call get_token to see if
592 appendmem (dest, src->text, src->len);
594 /* If DEST originally had no token abutting its end, then we can't
595 have spliced anything, so we're done. */
596 if (dest->last_token == original_dest_len)
598 dest->last_token = original_dest_len + src->last_token;
602 /* Set DEST_TAIL to point to the last token in DEST, followed by
603 all the stuff we just appended. */
604 init_shared_buffer (&dest_tail,
605 dest->text + dest->last_token,
606 dest->len - dest->last_token);
608 /* Re-parse DEST's last token. We know that DEST used to contain
609 at least one token, so if it doesn't contain any after the
610 append, then we must have spliced "/" and "*" or "/" and "/" to
611 make a comment start. (Just for the record, I got this right
612 the first time. This is not a bug fix.) */
613 if (get_token (&new_token, &dest_tail)
614 && (new_token.text + new_token.len
615 == dest->text + original_dest_len))
617 /* No splice, so we're done. */
618 dest->last_token = original_dest_len + src->last_token;
622 /* Okay, a simple append caused a splice. Let's chop dest back to
623 its original length and try again, but separate the texts with a
625 dest->len = original_dest_len;
627 appendmem (dest, src->text, src->len);
629 init_shared_buffer (&dest_tail,
630 dest->text + dest->last_token,
631 dest->len - dest->last_token);
633 /* Try to re-parse DEST's last token, as above. */
634 if (get_token (&new_token, &dest_tail)
635 && (new_token.text + new_token.len
636 == dest->text + original_dest_len))
638 /* No splice, so we're done. */
639 dest->last_token = original_dest_len + 1 + src->last_token;
643 /* As far as I know, there's no case where inserting a space isn't
644 enough to prevent a splice. */
645 internal_error (__FILE__, __LINE__,
646 _("unable to avoid splicing tokens during macro expansion"));
649 /* Stringify an argument, and insert it into DEST. ARG is the text to
650 stringify; it is LEN bytes long. */
653 stringify (struct macro_buffer *dest, const char *arg, int len)
655 /* Trim initial whitespace from ARG. */
656 while (len > 0 && macro_is_whitespace (*arg))
662 /* Trim trailing whitespace from ARG. */
663 while (len > 0 && macro_is_whitespace (arg[len - 1]))
666 /* Insert the string. */
670 /* We could try to handle strange cases here, like control
671 characters, but there doesn't seem to be much point. */
672 if (macro_is_whitespace (*arg))
674 /* Replace a sequence of whitespace with a single space. */
676 while (len > 1 && macro_is_whitespace (arg[1]))
682 else if (*arg == '\\' || *arg == '"')
684 appendc (dest, '\\');
685 appendc (dest, *arg);
688 appendc (dest, *arg);
693 dest->last_token = dest->len;
696 /* See macroexp.h. */
699 macro_stringify (const char *str)
701 struct macro_buffer buffer;
702 int len = strlen (str);
705 init_buffer (&buffer, len);
706 stringify (&buffer, str, len);
707 appendc (&buffer, '\0');
709 return free_buffer_return_text (&buffer);
713 /* Expanding macros! */
716 /* A singly-linked list of the names of the macros we are currently
717 expanding --- for detecting expansion loops. */
718 struct macro_name_list {
720 struct macro_name_list *next;
724 /* Return non-zero if we are currently expanding the macro named NAME,
725 according to LIST; otherwise, return zero.
727 You know, it would be possible to get rid of all the NO_LOOP
728 arguments to these functions by simply generating a new lookup
729 function and baton which refuses to find the definition for a
730 particular macro, and otherwise delegates the decision to another
731 function/baton pair. But that makes the linked list of excluded
732 macros chained through untyped baton pointers, which will make it
733 harder to debug. :( */
735 currently_rescanning (struct macro_name_list *list, const char *name)
737 for (; list; list = list->next)
738 if (strcmp (name, list->name) == 0)
745 /* Gather the arguments to a macro expansion.
747 NAME is the name of the macro being invoked. (It's only used for
748 printing error messages.)
750 Assume that SRC is the text of the macro invocation immediately
751 following the macro name. For example, if we're processing the
752 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
755 If SRC doesn't start with an open paren ( token at all, return
756 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
758 If SRC doesn't contain a properly terminated argument list, then
761 For a variadic macro, NARGS holds the number of formal arguments to
762 the macro. For a GNU-style variadic macro, this should be the
763 number of named arguments. For a non-variadic macro, NARGS should
766 Otherwise, return a pointer to the first element of an array of
767 macro buffers referring to the argument texts, and set *ARGC_P to
768 the number of arguments we found --- the number of elements in the
769 array. The macro buffers share their text with SRC, and their
770 last_token fields are initialized. The array is allocated with
771 xmalloc, and the caller is responsible for freeing it.
773 NOTE WELL: if SRC starts with a open paren ( token followed
774 immediately by a close paren ) token (e.g., the invocation looks
775 like "foo()"), we treat that as one argument, which happens to be
776 the empty list of tokens. The caller should keep in mind that such
777 a sequence of tokens is a valid way to invoke one-parameter
778 function-like macros, but also a valid way to invoke zero-parameter
779 function-like macros. Eeew.
781 Consume the tokens from SRC; after this call, SRC contains the text
782 following the invocation. */
784 static struct macro_buffer *
785 gather_arguments (const char *name, struct macro_buffer *src,
786 int nargs, int *argc_p)
788 struct macro_buffer tok;
789 int args_len, args_size;
790 struct macro_buffer *args = NULL;
791 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
793 /* Does SRC start with an opening paren token? Read from a copy of
794 SRC, so SRC itself is unaffected if we don't find an opening
797 struct macro_buffer temp;
799 init_shared_buffer (&temp, src->text, src->len);
801 if (! get_token (&tok, &temp)
803 || tok.text[0] != '(')
805 discard_cleanups (back_to);
810 /* Consume SRC's opening paren. */
811 get_token (&tok, src);
815 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
819 struct macro_buffer *arg;
822 /* Make sure we have room for the next argument. */
823 if (args_len >= args_size)
826 args = xrealloc (args, sizeof (*args) * args_size);
829 /* Initialize the next argument. */
830 arg = &args[args_len++];
831 set_token (arg, src->text, src->text);
833 /* Gather the argument's tokens. */
837 if (! get_token (&tok, src))
838 error (_("Malformed argument list for macro `%s'."), name);
840 /* Is tok an opening paren? */
841 if (tok.len == 1 && tok.text[0] == '(')
844 /* Is tok is a closing paren? */
845 else if (tok.len == 1 && tok.text[0] == ')')
847 /* If it's a closing paren at the top level, then that's
848 the end of the argument list. */
851 /* In the varargs case, the last argument may be
852 missing. Add an empty argument in this case. */
853 if (nargs != -1 && args_len == nargs - 1)
855 /* Make sure we have room for the argument. */
856 if (args_len >= args_size)
859 args = xrealloc (args, sizeof (*args) * args_size);
861 arg = &args[args_len++];
862 set_token (arg, src->text, src->text);
865 discard_cleanups (back_to);
873 /* If tok is a comma at top level, then that's the end of
874 the current argument. However, if we are handling a
875 variadic macro and we are computing the last argument, we
876 want to include the comma and remaining tokens. */
877 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
878 && (nargs == -1 || args_len < nargs))
881 /* Extend the current argument to enclose this token. If
882 this is the current argument's first token, leave out any
883 leading whitespace, just for aesthetics. */
886 arg->text = tok.text;
892 arg->len = (tok.text + tok.len) - arg->text;
893 arg->last_token = tok.text - arg->text;
900 /* The `expand' and `substitute_args' functions both invoke `scan'
901 recursively, so we need a forward declaration somewhere. */
902 static void scan (struct macro_buffer *dest,
903 struct macro_buffer *src,
904 struct macro_name_list *no_loop,
905 macro_lookup_ftype *lookup_func,
909 /* A helper function for substitute_args.
911 ARGV is a vector of all the arguments; ARGC is the number of
912 arguments. IS_VARARGS is true if the macro being substituted is a
913 varargs macro; in this case VA_ARG_NAME is the name of the
914 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
917 If the token TOK is the name of a parameter, return the parameter's
918 index. If TOK is not an argument, return -1. */
921 find_parameter (const struct macro_buffer *tok,
922 int is_varargs, const struct macro_buffer *va_arg_name,
923 int argc, const char * const *argv)
927 if (! tok->is_identifier)
930 for (i = 0; i < argc; ++i)
931 if (tok->len == strlen (argv[i])
932 && !memcmp (tok->text, argv[i], tok->len))
935 if (is_varargs && tok->len == va_arg_name->len
936 && ! memcmp (tok->text, va_arg_name->text, tok->len))
942 /* Given the macro definition DEF, being invoked with the actual
943 arguments given by ARGC and ARGV, substitute the arguments into the
944 replacement list, and store the result in DEST.
946 IS_VARARGS should be true if DEF is a varargs macro. In this case,
947 VA_ARG_NAME should be the name of the "variable" argument -- either
948 __VA_ARGS__ for c99-style varargs, or the final argument name, for
949 GNU-style varargs. If IS_VARARGS is false, this parameter is
952 If it is necessary to expand macro invocations in one of the
953 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
954 definitions, and don't expand invocations of the macros listed in
958 substitute_args (struct macro_buffer *dest,
959 struct macro_definition *def,
960 int is_varargs, const struct macro_buffer *va_arg_name,
961 int argc, struct macro_buffer *argv,
962 struct macro_name_list *no_loop,
963 macro_lookup_ftype *lookup_func,
966 /* A macro buffer for the macro's replacement list. */
967 struct macro_buffer replacement_list;
968 /* The token we are currently considering. */
969 struct macro_buffer tok;
970 /* The replacement list's pointer from just before TOK was lexed. */
971 char *original_rl_start;
972 /* We have a single lookahead token to handle token splicing. */
973 struct macro_buffer lookahead;
974 /* The lookahead token might not be valid. */
976 /* The replacement list's pointer from just before LOOKAHEAD was
978 char *lookahead_rl_start;
980 init_shared_buffer (&replacement_list, (char *) def->replacement,
981 strlen (def->replacement));
983 gdb_assert (dest->len == 0);
984 dest->last_token = 0;
986 original_rl_start = replacement_list.text;
987 if (! get_token (&tok, &replacement_list))
989 lookahead_rl_start = replacement_list.text;
990 lookahead_valid = get_token (&lookahead, &replacement_list);
994 /* Just for aesthetics. If we skipped some whitespace, copy
996 if (tok.text > original_rl_start)
998 appendmem (dest, original_rl_start, tok.text - original_rl_start);
999 dest->last_token = dest->len;
1002 /* Is this token the stringification operator? */
1004 && tok.text[0] == '#')
1008 if (!lookahead_valid)
1009 error (_("Stringification operator requires an argument."));
1011 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1012 def->argc, def->argv);
1014 error (_("Argument to stringification operator must name "
1015 "a macro parameter."));
1017 stringify (dest, argv[arg].text, argv[arg].len);
1019 /* Read one token and let the loop iteration code handle the
1021 lookahead_rl_start = replacement_list.text;
1022 lookahead_valid = get_token (&lookahead, &replacement_list);
1024 /* Is this token the splicing operator? */
1025 else if (tok.len == 2
1026 && tok.text[0] == '#'
1027 && tok.text[1] == '#')
1028 error (_("Stray splicing operator"));
1029 /* Is the next token the splicing operator? */
1030 else if (lookahead_valid
1031 && lookahead.len == 2
1032 && lookahead.text[0] == '#'
1033 && lookahead.text[1] == '#')
1036 int prev_was_comma = 0;
1038 /* Note that GCC warns if the result of splicing is not a
1039 token. In the debugger there doesn't seem to be much
1040 benefit from doing this. */
1042 /* Insert the first token. */
1043 if (tok.len == 1 && tok.text[0] == ',')
1047 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1048 def->argc, def->argv);
1051 appendmem (dest, argv[arg].text, argv[arg].len);
1053 appendmem (dest, tok.text, tok.len);
1056 /* Apply a possible sequence of ## operators. */
1059 if (! get_token (&tok, &replacement_list))
1060 error (_("Splicing operator at end of macro"));
1062 /* Handle a comma before a ##. If we are handling
1063 varargs, and the token on the right hand side is the
1064 varargs marker, and the final argument is empty or
1065 missing, then drop the comma. This is a GNU
1066 extension. There is one ambiguous case here,
1067 involving pedantic behavior with an empty argument,
1068 but we settle that in favor of GNU-style (GCC uses an
1069 option). If we aren't dealing with varargs, we
1070 simply insert the comma. */
1074 && tok.len == va_arg_name->len
1075 && !memcmp (tok.text, va_arg_name->text, tok.len)
1076 && argv[argc - 1].len == 0))
1077 appendmem (dest, ",", 1);
1081 /* Insert the token. If it is a parameter, insert the
1082 argument. If it is a comma, treat it specially. */
1083 if (tok.len == 1 && tok.text[0] == ',')
1087 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1088 def->argc, def->argv);
1091 appendmem (dest, argv[arg].text, argv[arg].len);
1093 appendmem (dest, tok.text, tok.len);
1096 /* Now read another token. If it is another splice, we
1098 original_rl_start = replacement_list.text;
1099 if (! get_token (&tok, &replacement_list))
1106 && tok.text[0] == '#'
1107 && tok.text[1] == '#'))
1113 /* We saw a comma. Insert it now. */
1114 appendmem (dest, ",", 1);
1117 dest->last_token = dest->len;
1119 lookahead_valid = 0;
1122 /* Set up for the loop iterator. */
1124 lookahead_rl_start = original_rl_start;
1125 lookahead_valid = 1;
1130 /* Is this token an identifier? */
1131 int substituted = 0;
1132 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1133 def->argc, def->argv);
1137 struct macro_buffer arg_src;
1139 /* Expand any macro invocations in the argument text,
1140 and append the result to dest. Remember that scan
1141 mutates its source, so we need to scan a new buffer
1142 referring to the argument's text, not the argument
1144 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1145 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1149 /* If it wasn't a parameter, then just copy it across. */
1151 append_tokens_without_splicing (dest, &tok);
1154 if (! lookahead_valid)
1158 original_rl_start = lookahead_rl_start;
1160 lookahead_rl_start = replacement_list.text;
1161 lookahead_valid = get_token (&lookahead, &replacement_list);
1166 /* Expand a call to a macro named ID, whose definition is DEF. Append
1167 its expansion to DEST. SRC is the input text following the ID
1168 token. We are currently rescanning the expansions of the macros
1169 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1170 LOOKUP_BATON to find definitions for any nested macro references.
1172 Return 1 if we decided to expand it, zero otherwise. (If it's a
1173 function-like macro name that isn't followed by an argument list,
1174 we don't expand it.) If we return zero, leave SRC unchanged. */
1176 expand (const char *id,
1177 struct macro_definition *def,
1178 struct macro_buffer *dest,
1179 struct macro_buffer *src,
1180 struct macro_name_list *no_loop,
1181 macro_lookup_ftype *lookup_func,
1184 struct macro_name_list new_no_loop;
1186 /* Create a new node to be added to the front of the no-expand list.
1187 This list is appropriate for re-scanning replacement lists, but
1188 it is *not* appropriate for scanning macro arguments; invocations
1189 of the macro whose arguments we are gathering *do* get expanded
1191 new_no_loop.name = id;
1192 new_no_loop.next = no_loop;
1194 /* What kind of macro are we expanding? */
1195 if (def->kind == macro_object_like)
1197 struct macro_buffer replacement_list;
1199 init_shared_buffer (&replacement_list, (char *) def->replacement,
1200 strlen (def->replacement));
1202 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1205 else if (def->kind == macro_function_like)
1207 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1209 struct macro_buffer *argv = NULL;
1210 struct macro_buffer substituted;
1211 struct macro_buffer substituted_src;
1212 struct macro_buffer va_arg_name = {0};
1217 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1219 /* In C99-style varargs, substitution is done using
1221 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1222 strlen ("__VA_ARGS__"));
1227 int len = strlen (def->argv[def->argc - 1]);
1230 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1232 /* In GNU-style varargs, the name of the
1233 substitution parameter is the name of the formal
1234 argument without the "...". */
1235 init_shared_buffer (&va_arg_name,
1236 (char *) def->argv[def->argc - 1],
1243 make_cleanup (free_current_contents, &argv);
1244 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1247 /* If we couldn't find any argument list, then we don't expand
1251 do_cleanups (back_to);
1255 /* Check that we're passing an acceptable number of arguments for
1257 if (argc != def->argc)
1259 if (is_varargs && argc >= def->argc - 1)
1263 /* Remember that a sequence of tokens like "foo()" is a
1264 valid invocation of a macro expecting either zero or one
1266 else if (! (argc == 1
1269 error (_("Wrong number of arguments to macro `%s' "
1270 "(expected %d, got %d)."),
1271 id, def->argc, argc);
1274 /* Note that we don't expand macro invocations in the arguments
1275 yet --- we let subst_args take care of that. Parameters that
1276 appear as operands of the stringifying operator "#" or the
1277 splicing operator "##" don't get macro references expanded,
1278 so we can't really tell whether it's appropriate to macro-
1279 expand an argument until we see how it's being used. */
1280 init_buffer (&substituted, 0);
1281 make_cleanup (cleanup_macro_buffer, &substituted);
1282 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1283 argc, argv, no_loop, lookup_func, lookup_baton);
1285 /* Now `substituted' is the macro's replacement list, with all
1286 argument values substituted into it properly. Re-scan it for
1287 macro references, but don't expand invocations of this macro.
1289 We create a new buffer, `substituted_src', which points into
1290 `substituted', and scan that. We can't scan `substituted'
1291 itself, since the tokenization process moves the buffer's
1292 text pointer around, and we still need to be able to find
1293 `substituted's original text buffer after scanning it so we
1295 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1296 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1298 do_cleanups (back_to);
1303 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1307 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1308 constitute a macro invokation not forbidden in NO_LOOP, append its
1309 expansion to DEST and return non-zero. Otherwise, return zero, and
1310 leave DEST unchanged.
1312 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1313 SRC_FIRST must be a string built by get_token. */
1315 maybe_expand (struct macro_buffer *dest,
1316 struct macro_buffer *src_first,
1317 struct macro_buffer *src_rest,
1318 struct macro_name_list *no_loop,
1319 macro_lookup_ftype *lookup_func,
1322 gdb_assert (src_first->shared);
1323 gdb_assert (src_rest->shared);
1324 gdb_assert (! dest->shared);
1326 /* Is this token an identifier? */
1327 if (src_first->is_identifier)
1329 /* Make a null-terminated copy of it, since that's what our
1330 lookup function expects. */
1331 char *id = xmalloc (src_first->len + 1);
1332 struct cleanup *back_to = make_cleanup (xfree, id);
1334 memcpy (id, src_first->text, src_first->len);
1335 id[src_first->len] = 0;
1337 /* If we're currently re-scanning the result of expanding
1338 this macro, don't expand it again. */
1339 if (! currently_rescanning (no_loop, id))
1341 /* Does this identifier have a macro definition in scope? */
1342 struct macro_definition *def = lookup_func (id, lookup_baton);
1344 if (def && expand (id, def, dest, src_rest, no_loop,
1345 lookup_func, lookup_baton))
1347 do_cleanups (back_to);
1352 do_cleanups (back_to);
1359 /* Expand macro references in SRC, appending the results to DEST.
1360 Assume we are re-scanning the result of expanding the macros named
1361 in NO_LOOP, and don't try to re-expand references to them.
1363 SRC must be a shared buffer; DEST must not be one. */
1365 scan (struct macro_buffer *dest,
1366 struct macro_buffer *src,
1367 struct macro_name_list *no_loop,
1368 macro_lookup_ftype *lookup_func,
1371 gdb_assert (src->shared);
1372 gdb_assert (! dest->shared);
1376 struct macro_buffer tok;
1377 char *original_src_start = src->text;
1379 /* Find the next token in SRC. */
1380 if (! get_token (&tok, src))
1383 /* Just for aesthetics. If we skipped some whitespace, copy
1385 if (tok.text > original_src_start)
1387 appendmem (dest, original_src_start, tok.text - original_src_start);
1388 dest->last_token = dest->len;
1391 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1392 /* We didn't end up expanding tok as a macro reference, so
1393 simply append it to dest. */
1394 append_tokens_without_splicing (dest, &tok);
1397 /* Just for aesthetics. If there was any trailing whitespace in
1398 src, copy it to dest. */
1401 appendmem (dest, src->text, src->len);
1402 dest->last_token = dest->len;
1408 macro_expand (const char *source,
1409 macro_lookup_ftype *lookup_func,
1410 void *lookup_func_baton)
1412 struct macro_buffer src, dest;
1413 struct cleanup *back_to;
1415 init_shared_buffer (&src, (char *) source, strlen (source));
1417 init_buffer (&dest, 0);
1418 dest.last_token = 0;
1419 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1421 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1423 appendc (&dest, '\0');
1425 discard_cleanups (back_to);
1431 macro_expand_once (const char *source,
1432 macro_lookup_ftype *lookup_func,
1433 void *lookup_func_baton)
1435 error (_("Expand-once not implemented yet."));
1440 macro_expand_next (char **lexptr,
1441 macro_lookup_ftype *lookup_func,
1444 struct macro_buffer src, dest, tok;
1445 struct cleanup *back_to;
1447 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1448 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1450 /* Set up DEST to receive the expansion, if there is one. */
1451 init_buffer (&dest, 0);
1452 dest.last_token = 0;
1453 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1455 /* Get the text's first preprocessing token. */
1456 if (! get_token (&tok, &src))
1458 do_cleanups (back_to);
1462 /* If it's a macro invocation, expand it. */
1463 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1465 /* It was a macro invocation! Package up the expansion as a
1466 null-terminated string and return it. Set *lexptr to the
1467 start of the next token in the input. */
1468 appendc (&dest, '\0');
1469 discard_cleanups (back_to);
1475 /* It wasn't a macro invocation. */
1476 do_cleanups (back_to);