1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002, 2007-2012 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb_obstack.h"
25 #include "gdb_assert.h"
30 /* A resizeable, substringable string type. */
33 /* A string type that we can resize, quickly append to, and use to
34 refer to substrings of other strings. */
37 /* An array of characters. The first LEN bytes are the real text,
38 but there are SIZE bytes allocated to the array. If SIZE is
39 zero, then this doesn't point to a malloc'ed block. If SHARED is
40 non-zero, then this buffer is actually a pointer into some larger
41 string, and we shouldn't append characters to it, etc. Because
42 of sharing, we can't assume in general that the text is
46 /* The number of characters in the string. */
49 /* The number of characters allocated to the string. If SHARED is
50 non-zero, this is meaningless; in this case, we set it to zero so
51 that any "do we have room to append something?" tests will fail,
52 so we don't always have to check SHARED before using this field. */
55 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56 block). Non-zero if TEXT is actually pointing into the middle of
57 some other block, and we shouldn't reallocate it. */
60 /* For detecting token splicing.
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
81 init_buffer (struct macro_buffer *b, int n)
85 b->text = (char *) xmalloc (n);
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
103 buf->last_token = -1;
107 /* Free the text of the buffer B. Raise an error if B is shared. */
109 free_buffer (struct macro_buffer *b)
111 gdb_assert (! b->shared);
117 /* A cleanup function for macro buffers. */
119 cleanup_macro_buffer (void *untyped_buf)
121 free_buffer ((struct macro_buffer *) untyped_buf);
125 /* Resize the buffer B to be at least N bytes long. Raise an error if
126 B shouldn't be resized. */
128 resize_buffer (struct macro_buffer *b, int n)
130 /* We shouldn't be trying to resize shared strings. */
131 gdb_assert (! b->shared);
139 b->text = xrealloc (b->text, b->size);
143 /* Append the character C to the buffer B. */
145 appendc (struct macro_buffer *b, int c)
147 int new_len = b->len + 1;
149 if (new_len > b->size)
150 resize_buffer (b, new_len);
157 /* Append the LEN bytes at ADDR to the buffer B. */
159 appendmem (struct macro_buffer *b, char *addr, int len)
161 int new_len = b->len + len;
163 if (new_len > b->size)
164 resize_buffer (b, new_len);
166 memcpy (b->text + b->len, addr, len);
172 /* Recognizing preprocessor tokens. */
176 macro_is_whitespace (int c)
187 macro_is_digit (int c)
189 return ('0' <= c && c <= '9');
194 macro_is_identifier_nondigit (int c)
197 || ('a' <= c && c <= 'z')
198 || ('A' <= c && c <= 'Z'));
203 set_token (struct macro_buffer *tok, char *start, char *end)
205 init_shared_buffer (tok, start, end - start);
208 /* Presumed; get_identifier may overwrite this. */
209 tok->is_identifier = 0;
214 get_comment (struct macro_buffer *tok, char *p, char *end)
231 set_token (tok, tok_start, p);
235 error (_("Unterminated comment in macro expansion."));
247 set_token (tok, tok_start, p);
256 get_identifier (struct macro_buffer *tok, char *p, char *end)
259 && macro_is_identifier_nondigit (*p))
264 && (macro_is_identifier_nondigit (*p)
265 || macro_is_digit (*p)))
268 set_token (tok, tok_start, p);
269 tok->is_identifier = 1;
278 get_pp_number (struct macro_buffer *tok, char *p, char *end)
281 && (macro_is_digit (*p)
284 && macro_is_digit (p[1]))))
291 && strchr ("eEpP", *p)
292 && (p[1] == '+' || p[1] == '-'))
294 else if (macro_is_digit (*p)
295 || macro_is_identifier_nondigit (*p)
302 set_token (tok, tok_start, p);
311 /* If the text starting at P going up to (but not including) END
312 starts with a character constant, set *TOK to point to that
313 character constant, and return 1. Otherwise, return zero.
314 Signal an error if it contains a malformed or incomplete character
317 get_character_constant (struct macro_buffer *tok, char *p, char *end)
319 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
320 But of course, what really matters is that we handle it the same
321 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
322 to handle escape sequences. */
323 if ((p + 1 <= end && *p == '\'')
325 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
334 else if (*p == 'L' || *p == 'u' || *p == 'U')
337 gdb_assert_not_reached ("unexpected character constant");
343 error (_("Unmatched single quote."));
347 error (_("A character constant must contain at least one "
355 char_count += c_parse_escape (&p, NULL);
364 set_token (tok, tok_start, p);
372 /* If the text starting at P going up to (but not including) END
373 starts with a string literal, set *TOK to point to that string
374 literal, and return 1. Otherwise, return zero. Signal an error if
375 it contains a malformed or incomplete string literal. */
377 get_string_literal (struct macro_buffer *tok, char *p, char *end)
382 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
389 else if (*p == 'L' || *p == 'u' || *p == 'U')
392 gdb_assert_not_reached ("unexpected string literal");
397 error (_("Unterminated string in expression."));
404 error (_("Newline characters may not appear in string "
409 c_parse_escape (&p, NULL);
415 set_token (tok, tok_start, p);
424 get_punctuator (struct macro_buffer *tok, char *p, char *end)
426 /* Here, speed is much less important than correctness and clarity. */
428 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
429 Note that this table is ordered in a special way. A punctuator
430 which is a prefix of another punctuator must appear after its
431 "extension". Otherwise, the wrong token will be returned. */
432 static const char * const punctuators[] = {
433 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
435 "->", "--", "-=", "-",
441 "%>", "%:%:", "%:", "%=", "%",
446 "<<=", "<<", "<=", "<:", "<%", "<",
447 ">>=", ">>", ">=", ">",
456 for (i = 0; punctuators[i]; i++)
458 const char *punctuator = punctuators[i];
460 if (p[0] == punctuator[0])
462 int len = strlen (punctuator);
465 && ! memcmp (p, punctuator, len))
467 set_token (tok, p, p + len);
478 /* Peel the next preprocessor token off of SRC, and put it in TOK.
479 Mutate TOK to refer to the first token in SRC, and mutate SRC to
480 refer to the text after that token. SRC must be a shared buffer;
481 the resulting TOK will be shared, pointing into the same string SRC
482 does. Initialize TOK's last_token field. Return non-zero if we
483 succeed, or 0 if we didn't find any more tokens in SRC. */
485 get_token (struct macro_buffer *tok,
486 struct macro_buffer *src)
489 char *end = p + src->len;
491 gdb_assert (src->shared);
493 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
502 each non-white-space character that cannot be one of the above
504 We don't have to deal with header-name tokens, since those can
505 only occur after a #include, which we will never see. */
508 if (macro_is_whitespace (*p))
510 else if (get_comment (tok, p, end))
512 else if (get_pp_number (tok, p, end)
513 || get_character_constant (tok, p, end)
514 || get_string_literal (tok, p, end)
515 /* Note: the grammar in the standard seems to be
516 ambiguous: L'x' can be either a wide character
517 constant, or an identifier followed by a normal
518 character constant. By trying `get_identifier' after
519 we try get_character_constant and get_string_literal,
520 we give the wide character syntax precedence. Now,
521 since GDB doesn't handle wide character constants
522 anyway, is this the right thing to do? */
523 || get_identifier (tok, p, end)
524 || get_punctuator (tok, p, end))
526 /* How many characters did we consume, including whitespace? */
527 int consumed = p - src->text + tok->len;
529 src->text += consumed;
530 src->len -= consumed;
535 /* We have found a "non-whitespace character that cannot be
536 one of the above." Make a token out of it. */
539 set_token (tok, p, p + 1);
540 consumed = p - src->text + tok->len;
541 src->text += consumed;
542 src->len -= consumed;
551 /* Appending token strings, with and without splicing */
554 /* Append the macro buffer SRC to the end of DEST, and ensure that
555 doing so doesn't splice the token at the end of SRC with the token
556 at the beginning of DEST. SRC and DEST must have their last_token
557 fields set. Upon return, DEST's last_token field is set correctly.
561 If DEST is "(" and SRC is "y", then we can return with
562 DEST set to "(y" --- we've simply appended the two buffers.
564 However, if DEST is "x" and SRC is "y", then we must not return
565 with DEST set to "xy" --- that would splice the two tokens "x" and
566 "y" together to make a single token "xy". However, it would be
567 fine to return with DEST set to "x y". Similarly, "<" and "<" must
568 yield "< <", not "<<", etc. */
570 append_tokens_without_splicing (struct macro_buffer *dest,
571 struct macro_buffer *src)
573 int original_dest_len = dest->len;
574 struct macro_buffer dest_tail, new_token;
576 gdb_assert (src->last_token != -1);
577 gdb_assert (dest->last_token != -1);
579 /* First, just try appending the two, and call get_token to see if
581 appendmem (dest, src->text, src->len);
583 /* If DEST originally had no token abutting its end, then we can't
584 have spliced anything, so we're done. */
585 if (dest->last_token == original_dest_len)
587 dest->last_token = original_dest_len + src->last_token;
591 /* Set DEST_TAIL to point to the last token in DEST, followed by
592 all the stuff we just appended. */
593 init_shared_buffer (&dest_tail,
594 dest->text + dest->last_token,
595 dest->len - dest->last_token);
597 /* Re-parse DEST's last token. We know that DEST used to contain
598 at least one token, so if it doesn't contain any after the
599 append, then we must have spliced "/" and "*" or "/" and "/" to
600 make a comment start. (Just for the record, I got this right
601 the first time. This is not a bug fix.) */
602 if (get_token (&new_token, &dest_tail)
603 && (new_token.text + new_token.len
604 == dest->text + original_dest_len))
606 /* No splice, so we're done. */
607 dest->last_token = original_dest_len + src->last_token;
611 /* Okay, a simple append caused a splice. Let's chop dest back to
612 its original length and try again, but separate the texts with a
614 dest->len = original_dest_len;
616 appendmem (dest, src->text, src->len);
618 init_shared_buffer (&dest_tail,
619 dest->text + dest->last_token,
620 dest->len - dest->last_token);
622 /* Try to re-parse DEST's last token, as above. */
623 if (get_token (&new_token, &dest_tail)
624 && (new_token.text + new_token.len
625 == dest->text + original_dest_len))
627 /* No splice, so we're done. */
628 dest->last_token = original_dest_len + 1 + src->last_token;
632 /* As far as I know, there's no case where inserting a space isn't
633 enough to prevent a splice. */
634 internal_error (__FILE__, __LINE__,
635 _("unable to avoid splicing tokens during macro expansion"));
638 /* Stringify an argument, and insert it into DEST. ARG is the text to
639 stringify; it is LEN bytes long. */
642 stringify (struct macro_buffer *dest, char *arg, int len)
644 /* Trim initial whitespace from ARG. */
645 while (len > 0 && macro_is_whitespace (*arg))
651 /* Trim trailing whitespace from ARG. */
652 while (len > 0 && macro_is_whitespace (arg[len - 1]))
655 /* Insert the string. */
659 /* We could try to handle strange cases here, like control
660 characters, but there doesn't seem to be much point. */
661 if (macro_is_whitespace (*arg))
663 /* Replace a sequence of whitespace with a single space. */
665 while (len > 1 && macro_is_whitespace (arg[1]))
671 else if (*arg == '\\' || *arg == '"')
673 appendc (dest, '\\');
674 appendc (dest, *arg);
677 appendc (dest, *arg);
682 dest->last_token = dest->len;
686 /* Expanding macros! */
689 /* A singly-linked list of the names of the macros we are currently
690 expanding --- for detecting expansion loops. */
691 struct macro_name_list {
693 struct macro_name_list *next;
697 /* Return non-zero if we are currently expanding the macro named NAME,
698 according to LIST; otherwise, return zero.
700 You know, it would be possible to get rid of all the NO_LOOP
701 arguments to these functions by simply generating a new lookup
702 function and baton which refuses to find the definition for a
703 particular macro, and otherwise delegates the decision to another
704 function/baton pair. But that makes the linked list of excluded
705 macros chained through untyped baton pointers, which will make it
706 harder to debug. :( */
708 currently_rescanning (struct macro_name_list *list, const char *name)
710 for (; list; list = list->next)
711 if (strcmp (name, list->name) == 0)
718 /* Gather the arguments to a macro expansion.
720 NAME is the name of the macro being invoked. (It's only used for
721 printing error messages.)
723 Assume that SRC is the text of the macro invocation immediately
724 following the macro name. For example, if we're processing the
725 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
728 If SRC doesn't start with an open paren ( token at all, return
729 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
731 If SRC doesn't contain a properly terminated argument list, then
734 For a variadic macro, NARGS holds the number of formal arguments to
735 the macro. For a GNU-style variadic macro, this should be the
736 number of named arguments. For a non-variadic macro, NARGS should
739 Otherwise, return a pointer to the first element of an array of
740 macro buffers referring to the argument texts, and set *ARGC_P to
741 the number of arguments we found --- the number of elements in the
742 array. The macro buffers share their text with SRC, and their
743 last_token fields are initialized. The array is allocated with
744 xmalloc, and the caller is responsible for freeing it.
746 NOTE WELL: if SRC starts with a open paren ( token followed
747 immediately by a close paren ) token (e.g., the invocation looks
748 like "foo()"), we treat that as one argument, which happens to be
749 the empty list of tokens. The caller should keep in mind that such
750 a sequence of tokens is a valid way to invoke one-parameter
751 function-like macros, but also a valid way to invoke zero-parameter
752 function-like macros. Eeew.
754 Consume the tokens from SRC; after this call, SRC contains the text
755 following the invocation. */
757 static struct macro_buffer *
758 gather_arguments (const char *name, struct macro_buffer *src,
759 int nargs, int *argc_p)
761 struct macro_buffer tok;
762 int args_len, args_size;
763 struct macro_buffer *args = NULL;
764 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
766 /* Does SRC start with an opening paren token? Read from a copy of
767 SRC, so SRC itself is unaffected if we don't find an opening
770 struct macro_buffer temp;
772 init_shared_buffer (&temp, src->text, src->len);
774 if (! get_token (&tok, &temp)
776 || tok.text[0] != '(')
778 discard_cleanups (back_to);
783 /* Consume SRC's opening paren. */
784 get_token (&tok, src);
788 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
792 struct macro_buffer *arg;
795 /* Make sure we have room for the next argument. */
796 if (args_len >= args_size)
799 args = xrealloc (args, sizeof (*args) * args_size);
802 /* Initialize the next argument. */
803 arg = &args[args_len++];
804 set_token (arg, src->text, src->text);
806 /* Gather the argument's tokens. */
810 if (! get_token (&tok, src))
811 error (_("Malformed argument list for macro `%s'."), name);
813 /* Is tok an opening paren? */
814 if (tok.len == 1 && tok.text[0] == '(')
817 /* Is tok is a closing paren? */
818 else if (tok.len == 1 && tok.text[0] == ')')
820 /* If it's a closing paren at the top level, then that's
821 the end of the argument list. */
824 /* In the varargs case, the last argument may be
825 missing. Add an empty argument in this case. */
826 if (nargs != -1 && args_len == nargs - 1)
828 /* Make sure we have room for the argument. */
829 if (args_len >= args_size)
832 args = xrealloc (args, sizeof (*args) * args_size);
834 arg = &args[args_len++];
835 set_token (arg, src->text, src->text);
838 discard_cleanups (back_to);
846 /* If tok is a comma at top level, then that's the end of
847 the current argument. However, if we are handling a
848 variadic macro and we are computing the last argument, we
849 want to include the comma and remaining tokens. */
850 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
851 && (nargs == -1 || args_len < nargs))
854 /* Extend the current argument to enclose this token. If
855 this is the current argument's first token, leave out any
856 leading whitespace, just for aesthetics. */
859 arg->text = tok.text;
865 arg->len = (tok.text + tok.len) - arg->text;
866 arg->last_token = tok.text - arg->text;
873 /* The `expand' and `substitute_args' functions both invoke `scan'
874 recursively, so we need a forward declaration somewhere. */
875 static void scan (struct macro_buffer *dest,
876 struct macro_buffer *src,
877 struct macro_name_list *no_loop,
878 macro_lookup_ftype *lookup_func,
882 /* A helper function for substitute_args.
884 ARGV is a vector of all the arguments; ARGC is the number of
885 arguments. IS_VARARGS is true if the macro being substituted is a
886 varargs macro; in this case VA_ARG_NAME is the name of the
887 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
890 If the token TOK is the name of a parameter, return the parameter's
891 index. If TOK is not an argument, return -1. */
894 find_parameter (const struct macro_buffer *tok,
895 int is_varargs, const struct macro_buffer *va_arg_name,
896 int argc, const char * const *argv)
900 if (! tok->is_identifier)
903 for (i = 0; i < argc; ++i)
904 if (tok->len == strlen (argv[i])
905 && !memcmp (tok->text, argv[i], tok->len))
908 if (is_varargs && tok->len == va_arg_name->len
909 && ! memcmp (tok->text, va_arg_name->text, tok->len))
915 /* Given the macro definition DEF, being invoked with the actual
916 arguments given by ARGC and ARGV, substitute the arguments into the
917 replacement list, and store the result in DEST.
919 IS_VARARGS should be true if DEF is a varargs macro. In this case,
920 VA_ARG_NAME should be the name of the "variable" argument -- either
921 __VA_ARGS__ for c99-style varargs, or the final argument name, for
922 GNU-style varargs. If IS_VARARGS is false, this parameter is
925 If it is necessary to expand macro invocations in one of the
926 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
927 definitions, and don't expand invocations of the macros listed in
931 substitute_args (struct macro_buffer *dest,
932 struct macro_definition *def,
933 int is_varargs, const struct macro_buffer *va_arg_name,
934 int argc, struct macro_buffer *argv,
935 struct macro_name_list *no_loop,
936 macro_lookup_ftype *lookup_func,
939 /* A macro buffer for the macro's replacement list. */
940 struct macro_buffer replacement_list;
941 /* The token we are currently considering. */
942 struct macro_buffer tok;
943 /* The replacement list's pointer from just before TOK was lexed. */
944 char *original_rl_start;
945 /* We have a single lookahead token to handle token splicing. */
946 struct macro_buffer lookahead;
947 /* The lookahead token might not be valid. */
949 /* The replacement list's pointer from just before LOOKAHEAD was
951 char *lookahead_rl_start;
953 init_shared_buffer (&replacement_list, (char *) def->replacement,
954 strlen (def->replacement));
956 gdb_assert (dest->len == 0);
957 dest->last_token = 0;
959 original_rl_start = replacement_list.text;
960 if (! get_token (&tok, &replacement_list))
962 lookahead_rl_start = replacement_list.text;
963 lookahead_valid = get_token (&lookahead, &replacement_list);
967 /* Just for aesthetics. If we skipped some whitespace, copy
969 if (tok.text > original_rl_start)
971 appendmem (dest, original_rl_start, tok.text - original_rl_start);
972 dest->last_token = dest->len;
975 /* Is this token the stringification operator? */
977 && tok.text[0] == '#')
981 if (!lookahead_valid)
982 error (_("Stringification operator requires an argument."));
984 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
985 def->argc, def->argv);
987 error (_("Argument to stringification operator must name "
988 "a macro parameter."));
990 stringify (dest, argv[arg].text, argv[arg].len);
992 /* Read one token and let the loop iteration code handle the
994 lookahead_rl_start = replacement_list.text;
995 lookahead_valid = get_token (&lookahead, &replacement_list);
997 /* Is this token the splicing operator? */
998 else if (tok.len == 2
999 && tok.text[0] == '#'
1000 && tok.text[1] == '#')
1001 error (_("Stray splicing operator"));
1002 /* Is the next token the splicing operator? */
1003 else if (lookahead_valid
1004 && lookahead.len == 2
1005 && lookahead.text[0] == '#'
1006 && lookahead.text[1] == '#')
1009 int prev_was_comma = 0;
1011 /* Note that GCC warns if the result of splicing is not a
1012 token. In the debugger there doesn't seem to be much
1013 benefit from doing this. */
1015 /* Insert the first token. */
1016 if (tok.len == 1 && tok.text[0] == ',')
1020 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1021 def->argc, def->argv);
1024 appendmem (dest, argv[arg].text, argv[arg].len);
1026 appendmem (dest, tok.text, tok.len);
1029 /* Apply a possible sequence of ## operators. */
1032 if (! get_token (&tok, &replacement_list))
1033 error (_("Splicing operator at end of macro"));
1035 /* Handle a comma before a ##. If we are handling
1036 varargs, and the token on the right hand side is the
1037 varargs marker, and the final argument is empty or
1038 missing, then drop the comma. This is a GNU
1039 extension. There is one ambiguous case here,
1040 involving pedantic behavior with an empty argument,
1041 but we settle that in favor of GNU-style (GCC uses an
1042 option). If we aren't dealing with varargs, we
1043 simply insert the comma. */
1047 && tok.len == va_arg_name->len
1048 && !memcmp (tok.text, va_arg_name->text, tok.len)
1049 && argv[argc - 1].len == 0))
1050 appendmem (dest, ",", 1);
1054 /* Insert the token. If it is a parameter, insert the
1055 argument. If it is a comma, treat it specially. */
1056 if (tok.len == 1 && tok.text[0] == ',')
1060 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1061 def->argc, def->argv);
1064 appendmem (dest, argv[arg].text, argv[arg].len);
1066 appendmem (dest, tok.text, tok.len);
1069 /* Now read another token. If it is another splice, we
1071 original_rl_start = replacement_list.text;
1072 if (! get_token (&tok, &replacement_list))
1079 && tok.text[0] == '#'
1080 && tok.text[1] == '#'))
1086 /* We saw a comma. Insert it now. */
1087 appendmem (dest, ",", 1);
1090 dest->last_token = dest->len;
1092 lookahead_valid = 0;
1095 /* Set up for the loop iterator. */
1097 lookahead_rl_start = original_rl_start;
1098 lookahead_valid = 1;
1103 /* Is this token an identifier? */
1104 int substituted = 0;
1105 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1106 def->argc, def->argv);
1110 struct macro_buffer arg_src;
1112 /* Expand any macro invocations in the argument text,
1113 and append the result to dest. Remember that scan
1114 mutates its source, so we need to scan a new buffer
1115 referring to the argument's text, not the argument
1117 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1118 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1122 /* If it wasn't a parameter, then just copy it across. */
1124 append_tokens_without_splicing (dest, &tok);
1127 if (! lookahead_valid)
1131 original_rl_start = lookahead_rl_start;
1133 lookahead_rl_start = replacement_list.text;
1134 lookahead_valid = get_token (&lookahead, &replacement_list);
1139 /* Expand a call to a macro named ID, whose definition is DEF. Append
1140 its expansion to DEST. SRC is the input text following the ID
1141 token. We are currently rescanning the expansions of the macros
1142 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1143 LOOKUP_BATON to find definitions for any nested macro references.
1145 Return 1 if we decided to expand it, zero otherwise. (If it's a
1146 function-like macro name that isn't followed by an argument list,
1147 we don't expand it.) If we return zero, leave SRC unchanged. */
1149 expand (const char *id,
1150 struct macro_definition *def,
1151 struct macro_buffer *dest,
1152 struct macro_buffer *src,
1153 struct macro_name_list *no_loop,
1154 macro_lookup_ftype *lookup_func,
1157 struct macro_name_list new_no_loop;
1159 /* Create a new node to be added to the front of the no-expand list.
1160 This list is appropriate for re-scanning replacement lists, but
1161 it is *not* appropriate for scanning macro arguments; invocations
1162 of the macro whose arguments we are gathering *do* get expanded
1164 new_no_loop.name = id;
1165 new_no_loop.next = no_loop;
1167 /* What kind of macro are we expanding? */
1168 if (def->kind == macro_object_like)
1170 struct macro_buffer replacement_list;
1172 init_shared_buffer (&replacement_list, (char *) def->replacement,
1173 strlen (def->replacement));
1175 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1178 else if (def->kind == macro_function_like)
1180 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1182 struct macro_buffer *argv = NULL;
1183 struct macro_buffer substituted;
1184 struct macro_buffer substituted_src;
1185 struct macro_buffer va_arg_name = {0};
1190 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1192 /* In C99-style varargs, substitution is done using
1194 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1195 strlen ("__VA_ARGS__"));
1200 int len = strlen (def->argv[def->argc - 1]);
1203 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1205 /* In GNU-style varargs, the name of the
1206 substitution parameter is the name of the formal
1207 argument without the "...". */
1208 init_shared_buffer (&va_arg_name,
1209 (char *) def->argv[def->argc - 1],
1216 make_cleanup (free_current_contents, &argv);
1217 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1220 /* If we couldn't find any argument list, then we don't expand
1224 do_cleanups (back_to);
1228 /* Check that we're passing an acceptable number of arguments for
1230 if (argc != def->argc)
1232 if (is_varargs && argc >= def->argc - 1)
1236 /* Remember that a sequence of tokens like "foo()" is a
1237 valid invocation of a macro expecting either zero or one
1239 else if (! (argc == 1
1242 error (_("Wrong number of arguments to macro `%s' "
1243 "(expected %d, got %d)."),
1244 id, def->argc, argc);
1247 /* Note that we don't expand macro invocations in the arguments
1248 yet --- we let subst_args take care of that. Parameters that
1249 appear as operands of the stringifying operator "#" or the
1250 splicing operator "##" don't get macro references expanded,
1251 so we can't really tell whether it's appropriate to macro-
1252 expand an argument until we see how it's being used. */
1253 init_buffer (&substituted, 0);
1254 make_cleanup (cleanup_macro_buffer, &substituted);
1255 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1256 argc, argv, no_loop, lookup_func, lookup_baton);
1258 /* Now `substituted' is the macro's replacement list, with all
1259 argument values substituted into it properly. Re-scan it for
1260 macro references, but don't expand invocations of this macro.
1262 We create a new buffer, `substituted_src', which points into
1263 `substituted', and scan that. We can't scan `substituted'
1264 itself, since the tokenization process moves the buffer's
1265 text pointer around, and we still need to be able to find
1266 `substituted's original text buffer after scanning it so we
1268 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1269 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1271 do_cleanups (back_to);
1276 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1280 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1281 constitute a macro invokation not forbidden in NO_LOOP, append its
1282 expansion to DEST and return non-zero. Otherwise, return zero, and
1283 leave DEST unchanged.
1285 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1286 SRC_FIRST must be a string built by get_token. */
1288 maybe_expand (struct macro_buffer *dest,
1289 struct macro_buffer *src_first,
1290 struct macro_buffer *src_rest,
1291 struct macro_name_list *no_loop,
1292 macro_lookup_ftype *lookup_func,
1295 gdb_assert (src_first->shared);
1296 gdb_assert (src_rest->shared);
1297 gdb_assert (! dest->shared);
1299 /* Is this token an identifier? */
1300 if (src_first->is_identifier)
1302 /* Make a null-terminated copy of it, since that's what our
1303 lookup function expects. */
1304 char *id = xmalloc (src_first->len + 1);
1305 struct cleanup *back_to = make_cleanup (xfree, id);
1307 memcpy (id, src_first->text, src_first->len);
1308 id[src_first->len] = 0;
1310 /* If we're currently re-scanning the result of expanding
1311 this macro, don't expand it again. */
1312 if (! currently_rescanning (no_loop, id))
1314 /* Does this identifier have a macro definition in scope? */
1315 struct macro_definition *def = lookup_func (id, lookup_baton);
1317 if (def && expand (id, def, dest, src_rest, no_loop,
1318 lookup_func, lookup_baton))
1320 do_cleanups (back_to);
1325 do_cleanups (back_to);
1332 /* Expand macro references in SRC, appending the results to DEST.
1333 Assume we are re-scanning the result of expanding the macros named
1334 in NO_LOOP, and don't try to re-expand references to them.
1336 SRC must be a shared buffer; DEST must not be one. */
1338 scan (struct macro_buffer *dest,
1339 struct macro_buffer *src,
1340 struct macro_name_list *no_loop,
1341 macro_lookup_ftype *lookup_func,
1344 gdb_assert (src->shared);
1345 gdb_assert (! dest->shared);
1349 struct macro_buffer tok;
1350 char *original_src_start = src->text;
1352 /* Find the next token in SRC. */
1353 if (! get_token (&tok, src))
1356 /* Just for aesthetics. If we skipped some whitespace, copy
1358 if (tok.text > original_src_start)
1360 appendmem (dest, original_src_start, tok.text - original_src_start);
1361 dest->last_token = dest->len;
1364 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1365 /* We didn't end up expanding tok as a macro reference, so
1366 simply append it to dest. */
1367 append_tokens_without_splicing (dest, &tok);
1370 /* Just for aesthetics. If there was any trailing whitespace in
1371 src, copy it to dest. */
1374 appendmem (dest, src->text, src->len);
1375 dest->last_token = dest->len;
1381 macro_expand (const char *source,
1382 macro_lookup_ftype *lookup_func,
1383 void *lookup_func_baton)
1385 struct macro_buffer src, dest;
1386 struct cleanup *back_to;
1388 init_shared_buffer (&src, (char *) source, strlen (source));
1390 init_buffer (&dest, 0);
1391 dest.last_token = 0;
1392 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1394 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1396 appendc (&dest, '\0');
1398 discard_cleanups (back_to);
1404 macro_expand_once (const char *source,
1405 macro_lookup_ftype *lookup_func,
1406 void *lookup_func_baton)
1408 error (_("Expand-once not implemented yet."));
1413 macro_expand_next (char **lexptr,
1414 macro_lookup_ftype *lookup_func,
1417 struct macro_buffer src, dest, tok;
1418 struct cleanup *back_to;
1420 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1421 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1423 /* Set up DEST to receive the expansion, if there is one. */
1424 init_buffer (&dest, 0);
1425 dest.last_token = 0;
1426 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1428 /* Get the text's first preprocessing token. */
1429 if (! get_token (&tok, &src))
1431 do_cleanups (back_to);
1435 /* If it's a macro invocation, expand it. */
1436 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1438 /* It was a macro invocation! Package up the expansion as a
1439 null-terminated string and return it. Set *lexptr to the
1440 start of the next token in the input. */
1441 appendc (&dest, '\0');
1442 discard_cleanups (back_to);
1448 /* It wasn't a macro invocation. */
1449 do_cleanups (back_to);