Add myself as a write-after-approval GDB maintainer.
[external/binutils.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2    Copyright (C) 2002-2017 Free Software Foundation, Inc.
3    Contributed by Red Hat, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "c-lang.h"
26
27
28 \f
29 /* A resizeable, substringable string type.  */
30
31
32 /* A string type that we can resize, quickly append to, and use to
33    refer to substrings of other strings.  */
34 struct macro_buffer
35 {
36   /* An array of characters.  The first LEN bytes are the real text,
37      but there are SIZE bytes allocated to the array.  If SIZE is
38      zero, then this doesn't point to a malloc'ed block.  If SHARED is
39      non-zero, then this buffer is actually a pointer into some larger
40      string, and we shouldn't append characters to it, etc.  Because
41      of sharing, we can't assume in general that the text is
42      null-terminated.  */
43   char *text;
44
45   /* The number of characters in the string.  */
46   int len;
47
48   /* The number of characters allocated to the string.  If SHARED is
49      non-zero, this is meaningless; in this case, we set it to zero so
50      that any "do we have room to append something?" tests will fail,
51      so we don't always have to check SHARED before using this field.  */
52   int size;
53
54   /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55      block).  Non-zero if TEXT is actually pointing into the middle of
56      some other block, or to a string literal, and we shouldn't
57      reallocate it.  */
58   bool shared;
59
60   /* For detecting token splicing. 
61
62      This is the index in TEXT of the first character of the token
63      that abuts the end of TEXT.  If TEXT contains no tokens, then we
64      set this equal to LEN.  If TEXT ends in whitespace, then there is
65      no token abutting the end of TEXT (it's just whitespace), and
66      again, we set this equal to LEN.  We set this to -1 if we don't
67      know the nature of TEXT.  */
68   int last_token;
69
70   /* If this buffer is holding the result from get_token, then this 
71      is non-zero if it is an identifier token, zero otherwise.  */
72   int is_identifier;
73 };
74
75
76 /* Set the macro buffer *B to the empty string, guessing that its
77    final contents will fit in N bytes.  (It'll get resized if it
78    doesn't, so the guess doesn't have to be right.)  Allocate the
79    initial storage with xmalloc.  */
80 static void
81 init_buffer (struct macro_buffer *b, int n)
82 {
83   b->size = n;
84   if (n > 0)
85     b->text = (char *) xmalloc (n);
86   else
87     b->text = NULL;
88   b->len = 0;
89   b->shared = false;
90   b->last_token = -1;
91 }
92
93
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
95    shared substring.  */
96
97 static void
98 init_shared_buffer (struct macro_buffer *buf, const char *addr, int len)
99 {
100   /* The function accept a "const char *" addr so that clients can
101      pass in string literals without casts.  */
102   buf->text = (char *) addr;
103   buf->len = len;
104   buf->shared = true;
105   buf->size = 0;
106   buf->last_token = -1;
107 }
108
109
110 /* Free the text of the buffer B.  Raise an error if B is shared.  */
111 static void
112 free_buffer (struct macro_buffer *b)
113 {
114   gdb_assert (! b->shared);
115   if (b->size)
116     xfree (b->text);
117 }
118
119 /* Like free_buffer, but return the text as an xstrdup()d string.
120    This only exists to try to make the API relatively clean.  */
121
122 static char *
123 free_buffer_return_text (struct macro_buffer *b)
124 {
125   gdb_assert (! b->shared);
126   gdb_assert (b->size);
127   /* Nothing to do.  */
128   return b->text;
129 }
130
131 /* A cleanup function for macro buffers.  */
132 static void
133 cleanup_macro_buffer (void *untyped_buf)
134 {
135   free_buffer ((struct macro_buffer *) untyped_buf);
136 }
137
138
139 /* Resize the buffer B to be at least N bytes long.  Raise an error if
140    B shouldn't be resized.  */
141 static void
142 resize_buffer (struct macro_buffer *b, int n)
143 {
144   /* We shouldn't be trying to resize shared strings.  */
145   gdb_assert (! b->shared);
146   
147   if (b->size == 0)
148     b->size = n;
149   else
150     while (b->size <= n)
151       b->size *= 2;
152
153   b->text = (char *) xrealloc (b->text, b->size);
154 }
155
156
157 /* Append the character C to the buffer B.  */
158 static void
159 appendc (struct macro_buffer *b, int c)
160 {
161   int new_len = b->len + 1;
162
163   if (new_len > b->size)
164     resize_buffer (b, new_len);
165
166   b->text[b->len] = c;
167   b->len = new_len;
168 }
169
170
171 /* Append the LEN bytes at ADDR to the buffer B.  */
172 static void
173 appendmem (struct macro_buffer *b, const char *addr, int len)
174 {
175   int new_len = b->len + len;
176
177   if (new_len > b->size)
178     resize_buffer (b, new_len);
179
180   memcpy (b->text + b->len, addr, len);
181   b->len = new_len;
182 }
183
184
185 \f
186 /* Recognizing preprocessor tokens.  */
187
188
189 int
190 macro_is_whitespace (int c)
191 {
192   return (c == ' '
193           || c == '\t'
194           || c == '\n'
195           || c == '\v'
196           || c == '\f');
197 }
198
199
200 int
201 macro_is_digit (int c)
202 {
203   return ('0' <= c && c <= '9');
204 }
205
206
207 int
208 macro_is_identifier_nondigit (int c)
209 {
210   return (c == '_'
211           || ('a' <= c && c <= 'z')
212           || ('A' <= c && c <= 'Z'));
213 }
214
215
216 static void
217 set_token (struct macro_buffer *tok, char *start, char *end)
218 {
219   init_shared_buffer (tok, start, end - start);
220   tok->last_token = 0;
221
222   /* Presumed; get_identifier may overwrite this.  */
223   tok->is_identifier = 0;
224 }
225
226
227 static int
228 get_comment (struct macro_buffer *tok, char *p, char *end)
229 {
230   if (p + 2 > end)
231     return 0;
232   else if (p[0] == '/'
233            && p[1] == '*')
234     {
235       char *tok_start = p;
236
237       p += 2;
238
239       for (; p < end; p++)
240         if (p + 2 <= end
241             && p[0] == '*'
242             && p[1] == '/')
243           {
244             p += 2;
245             set_token (tok, tok_start, p);
246             return 1;
247           }
248
249       error (_("Unterminated comment in macro expansion."));
250     }
251   else if (p[0] == '/'
252            && p[1] == '/')
253     {
254       char *tok_start = p;
255
256       p += 2;
257       for (; p < end; p++)
258         if (*p == '\n')
259           break;
260
261       set_token (tok, tok_start, p);
262       return 1;
263     }
264   else
265     return 0;
266 }
267
268
269 static int
270 get_identifier (struct macro_buffer *tok, char *p, char *end)
271 {
272   if (p < end
273       && macro_is_identifier_nondigit (*p))
274     {
275       char *tok_start = p;
276
277       while (p < end
278              && (macro_is_identifier_nondigit (*p)
279                  || macro_is_digit (*p)))
280         p++;
281
282       set_token (tok, tok_start, p);
283       tok->is_identifier = 1;
284       return 1;
285     }
286   else
287     return 0;
288 }
289
290
291 static int
292 get_pp_number (struct macro_buffer *tok, char *p, char *end)
293 {
294   if (p < end
295       && (macro_is_digit (*p)
296           || (*p == '.'
297               && p + 2 <= end
298               && macro_is_digit (p[1]))))
299     {
300       char *tok_start = p;
301
302       while (p < end)
303         {
304           if (p + 2 <= end
305               && strchr ("eEpP", *p)
306               && (p[1] == '+' || p[1] == '-'))
307             p += 2;
308           else if (macro_is_digit (*p)
309                    || macro_is_identifier_nondigit (*p)
310                    || *p == '.')
311             p++;
312           else
313             break;
314         }
315
316       set_token (tok, tok_start, p);
317       return 1;
318     }
319   else
320     return 0;
321 }
322
323
324
325 /* If the text starting at P going up to (but not including) END
326    starts with a character constant, set *TOK to point to that
327    character constant, and return 1.  Otherwise, return zero.
328    Signal an error if it contains a malformed or incomplete character
329    constant.  */
330 static int
331 get_character_constant (struct macro_buffer *tok, char *p, char *end)
332 {
333   /* ISO/IEC 9899:1999 (E)  Section 6.4.4.4  paragraph 1 
334      But of course, what really matters is that we handle it the same
335      way GDB's C/C++ lexer does.  So we call parse_escape in utils.c
336      to handle escape sequences.  */
337   if ((p + 1 <= end && *p == '\'')
338       || (p + 2 <= end
339           && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
340           && p[1] == '\''))
341     {
342       char *tok_start = p;
343       int char_count = 0;
344
345       if (*p == '\'')
346         p++;
347       else if (*p == 'L' || *p == 'u' || *p == 'U')
348         p += 2;
349       else
350         gdb_assert_not_reached ("unexpected character constant");
351
352       for (;;)
353         {
354           if (p >= end)
355             error (_("Unmatched single quote."));
356           else if (*p == '\'')
357             {
358               if (!char_count)
359                 error (_("A character constant must contain at least one "
360                        "character."));
361               p++;
362               break;
363             }
364           else if (*p == '\\')
365             {
366               const char *s, *o;
367
368               s = o = ++p;
369               char_count += c_parse_escape (&s, NULL);
370               p += s - o;
371             }
372           else
373             {
374               p++;
375               char_count++;
376             }
377         }
378
379       set_token (tok, tok_start, p);
380       return 1;
381     }
382   else
383     return 0;
384 }
385
386
387 /* If the text starting at P going up to (but not including) END
388    starts with a string literal, set *TOK to point to that string
389    literal, and return 1.  Otherwise, return zero.  Signal an error if
390    it contains a malformed or incomplete string literal.  */
391 static int
392 get_string_literal (struct macro_buffer *tok, char *p, char *end)
393 {
394   if ((p + 1 <= end
395        && *p == '"')
396       || (p + 2 <= end
397           && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
398           && p[1] == '"'))
399     {
400       char *tok_start = p;
401
402       if (*p == '"')
403         p++;
404       else if (*p == 'L' || *p == 'u' || *p == 'U')
405         p += 2;
406       else
407         gdb_assert_not_reached ("unexpected string literal");
408
409       for (;;)
410         {
411           if (p >= end)
412             error (_("Unterminated string in expression."));
413           else if (*p == '"')
414             {
415               p++;
416               break;
417             }
418           else if (*p == '\n')
419             error (_("Newline characters may not appear in string "
420                    "constants."));
421           else if (*p == '\\')
422             {
423               const char *s, *o;
424
425               s = o = ++p;
426               c_parse_escape (&s, NULL);
427               p += s - o;
428             }
429           else
430             p++;
431         }
432
433       set_token (tok, tok_start, p);
434       return 1;
435     }
436   else
437     return 0;
438 }
439
440
441 static int
442 get_punctuator (struct macro_buffer *tok, char *p, char *end)
443 {
444   /* Here, speed is much less important than correctness and clarity.  */
445
446   /* ISO/IEC 9899:1999 (E)  Section 6.4.6  Paragraph 1.
447      Note that this table is ordered in a special way.  A punctuator
448      which is a prefix of another punctuator must appear after its
449      "extension".  Otherwise, the wrong token will be returned.  */
450   static const char * const punctuators[] = {
451     "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
452     "...", ".",
453     "->", "--", "-=", "-",
454     "++", "+=", "+",
455     "*=", "*",
456     "!=", "!",
457     "&&", "&=", "&",
458     "/=", "/",
459     "%>", "%:%:", "%:", "%=", "%",
460     "^=", "^",
461     "##", "#",
462     ":>", ":",
463     "||", "|=", "|",
464     "<<=", "<<", "<=", "<:", "<%", "<",
465     ">>=", ">>", ">=", ">",
466     "==", "=",
467     0
468   };
469
470   int i;
471
472   if (p + 1 <= end)
473     {
474       for (i = 0; punctuators[i]; i++)
475         {
476           const char *punctuator = punctuators[i];
477
478           if (p[0] == punctuator[0])
479             {
480               int len = strlen (punctuator);
481
482               if (p + len <= end
483                   && ! memcmp (p, punctuator, len))
484                 {
485                   set_token (tok, p, p + len);
486                   return 1;
487                 }
488             }
489         }
490     }
491
492   return 0;
493 }
494
495
496 /* Peel the next preprocessor token off of SRC, and put it in TOK.
497    Mutate TOK to refer to the first token in SRC, and mutate SRC to
498    refer to the text after that token.  SRC must be a shared buffer;
499    the resulting TOK will be shared, pointing into the same string SRC
500    does.  Initialize TOK's last_token field.  Return non-zero if we
501    succeed, or 0 if we didn't find any more tokens in SRC.  */
502 static int
503 get_token (struct macro_buffer *tok,
504            struct macro_buffer *src)
505 {
506   char *p = src->text;
507   char *end = p + src->len;
508
509   gdb_assert (src->shared);
510
511   /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
512
513      preprocessing-token: 
514          header-name
515          identifier
516          pp-number
517          character-constant
518          string-literal
519          punctuator
520          each non-white-space character that cannot be one of the above
521
522      We don't have to deal with header-name tokens, since those can
523      only occur after a #include, which we will never see.  */
524
525   while (p < end)
526     if (macro_is_whitespace (*p))
527       p++;
528     else if (get_comment (tok, p, end))
529       p += tok->len;
530     else if (get_pp_number (tok, p, end)
531              || get_character_constant (tok, p, end)
532              || get_string_literal (tok, p, end)
533              /* Note: the grammar in the standard seems to be
534                 ambiguous: L'x' can be either a wide character
535                 constant, or an identifier followed by a normal
536                 character constant.  By trying `get_identifier' after
537                 we try get_character_constant and get_string_literal,
538                 we give the wide character syntax precedence.  Now,
539                 since GDB doesn't handle wide character constants
540                 anyway, is this the right thing to do?  */
541              || get_identifier (tok, p, end)
542              || get_punctuator (tok, p, end))
543       {
544         /* How many characters did we consume, including whitespace?  */
545         int consumed = p - src->text + tok->len;
546
547         src->text += consumed;
548         src->len -= consumed;
549         return 1;
550       }
551     else 
552       {
553         /* We have found a "non-whitespace character that cannot be
554            one of the above."  Make a token out of it.  */
555         int consumed;
556
557         set_token (tok, p, p + 1);
558         consumed = p - src->text + tok->len;
559         src->text += consumed;
560         src->len -= consumed;
561         return 1;
562       }
563
564   return 0;
565 }
566
567
568 \f
569 /* Appending token strings, with and without splicing  */
570
571
572 /* Append the macro buffer SRC to the end of DEST, and ensure that
573    doing so doesn't splice the token at the end of SRC with the token
574    at the beginning of DEST.  SRC and DEST must have their last_token
575    fields set.  Upon return, DEST's last_token field is set correctly.
576
577    For example:
578
579    If DEST is "(" and SRC is "y", then we can return with
580    DEST set to "(y" --- we've simply appended the two buffers.
581
582    However, if DEST is "x" and SRC is "y", then we must not return
583    with DEST set to "xy" --- that would splice the two tokens "x" and
584    "y" together to make a single token "xy".  However, it would be
585    fine to return with DEST set to "x y".  Similarly, "<" and "<" must
586    yield "< <", not "<<", etc.  */
587 static void
588 append_tokens_without_splicing (struct macro_buffer *dest,
589                                 struct macro_buffer *src)
590 {
591   int original_dest_len = dest->len;
592   struct macro_buffer dest_tail, new_token;
593
594   gdb_assert (src->last_token != -1);
595   gdb_assert (dest->last_token != -1);
596   
597   /* First, just try appending the two, and call get_token to see if
598      we got a splice.  */
599   appendmem (dest, src->text, src->len);
600
601   /* If DEST originally had no token abutting its end, then we can't
602      have spliced anything, so we're done.  */
603   if (dest->last_token == original_dest_len)
604     {
605       dest->last_token = original_dest_len + src->last_token;
606       return;
607     }
608
609   /* Set DEST_TAIL to point to the last token in DEST, followed by
610      all the stuff we just appended.  */
611   init_shared_buffer (&dest_tail,
612                       dest->text + dest->last_token,
613                       dest->len - dest->last_token);
614
615   /* Re-parse DEST's last token.  We know that DEST used to contain
616      at least one token, so if it doesn't contain any after the
617      append, then we must have spliced "/" and "*" or "/" and "/" to
618      make a comment start.  (Just for the record, I got this right
619      the first time.  This is not a bug fix.)  */
620   if (get_token (&new_token, &dest_tail)
621       && (new_token.text + new_token.len
622           == dest->text + original_dest_len))
623     {
624       /* No splice, so we're done.  */
625       dest->last_token = original_dest_len + src->last_token;
626       return;
627     }
628
629   /* Okay, a simple append caused a splice.  Let's chop dest back to
630      its original length and try again, but separate the texts with a
631      space.  */
632   dest->len = original_dest_len;
633   appendc (dest, ' ');
634   appendmem (dest, src->text, src->len);
635
636   init_shared_buffer (&dest_tail,
637                       dest->text + dest->last_token,
638                       dest->len - dest->last_token);
639
640   /* Try to re-parse DEST's last token, as above.  */
641   if (get_token (&new_token, &dest_tail)
642       && (new_token.text + new_token.len
643           == dest->text + original_dest_len))
644     {
645       /* No splice, so we're done.  */
646       dest->last_token = original_dest_len + 1 + src->last_token;
647       return;
648     }
649
650   /* As far as I know, there's no case where inserting a space isn't
651      enough to prevent a splice.  */
652   internal_error (__FILE__, __LINE__,
653                   _("unable to avoid splicing tokens during macro expansion"));
654 }
655
656 /* Stringify an argument, and insert it into DEST.  ARG is the text to
657    stringify; it is LEN bytes long.  */
658
659 static void
660 stringify (struct macro_buffer *dest, const char *arg, int len)
661 {
662   /* Trim initial whitespace from ARG.  */
663   while (len > 0 && macro_is_whitespace (*arg))
664     {
665       ++arg;
666       --len;
667     }
668
669   /* Trim trailing whitespace from ARG.  */
670   while (len > 0 && macro_is_whitespace (arg[len - 1]))
671     --len;
672
673   /* Insert the string.  */
674   appendc (dest, '"');
675   while (len > 0)
676     {
677       /* We could try to handle strange cases here, like control
678          characters, but there doesn't seem to be much point.  */
679       if (macro_is_whitespace (*arg))
680         {
681           /* Replace a sequence of whitespace with a single space.  */
682           appendc (dest, ' ');
683           while (len > 1 && macro_is_whitespace (arg[1]))
684             {
685               ++arg;
686               --len;
687             }
688         }
689       else if (*arg == '\\' || *arg == '"')
690         {
691           appendc (dest, '\\');
692           appendc (dest, *arg);
693         }
694       else
695         appendc (dest, *arg);
696       ++arg;
697       --len;
698     }
699   appendc (dest, '"');
700   dest->last_token = dest->len;
701 }
702
703 /* See macroexp.h.  */
704
705 char *
706 macro_stringify (const char *str)
707 {
708   struct macro_buffer buffer;
709   int len = strlen (str);
710
711   init_buffer (&buffer, len);
712   stringify (&buffer, str, len);
713   appendc (&buffer, '\0');
714
715   return free_buffer_return_text (&buffer);
716 }
717
718 \f
719 /* Expanding macros!  */
720
721
722 /* A singly-linked list of the names of the macros we are currently 
723    expanding --- for detecting expansion loops.  */
724 struct macro_name_list {
725   const char *name;
726   struct macro_name_list *next;
727 };
728
729
730 /* Return non-zero if we are currently expanding the macro named NAME,
731    according to LIST; otherwise, return zero.
732
733    You know, it would be possible to get rid of all the NO_LOOP
734    arguments to these functions by simply generating a new lookup
735    function and baton which refuses to find the definition for a
736    particular macro, and otherwise delegates the decision to another
737    function/baton pair.  But that makes the linked list of excluded
738    macros chained through untyped baton pointers, which will make it
739    harder to debug.  :(  */
740 static int
741 currently_rescanning (struct macro_name_list *list, const char *name)
742 {
743   for (; list; list = list->next)
744     if (strcmp (name, list->name) == 0)
745       return 1;
746
747   return 0;
748 }
749
750
751 /* Gather the arguments to a macro expansion.
752
753    NAME is the name of the macro being invoked.  (It's only used for
754    printing error messages.)
755
756    Assume that SRC is the text of the macro invocation immediately
757    following the macro name.  For example, if we're processing the
758    text foo(bar, baz), then NAME would be foo and SRC will be (bar,
759    baz).
760
761    If SRC doesn't start with an open paren ( token at all, return
762    zero, leave SRC unchanged, and don't set *ARGC_P to anything.
763
764    If SRC doesn't contain a properly terminated argument list, then
765    raise an error.
766    
767    For a variadic macro, NARGS holds the number of formal arguments to
768    the macro.  For a GNU-style variadic macro, this should be the
769    number of named arguments.  For a non-variadic macro, NARGS should
770    be -1.
771
772    Otherwise, return a pointer to the first element of an array of
773    macro buffers referring to the argument texts, and set *ARGC_P to
774    the number of arguments we found --- the number of elements in the
775    array.  The macro buffers share their text with SRC, and their
776    last_token fields are initialized.  The array is allocated with
777    xmalloc, and the caller is responsible for freeing it.
778
779    NOTE WELL: if SRC starts with a open paren ( token followed
780    immediately by a close paren ) token (e.g., the invocation looks
781    like "foo()"), we treat that as one argument, which happens to be
782    the empty list of tokens.  The caller should keep in mind that such
783    a sequence of tokens is a valid way to invoke one-parameter
784    function-like macros, but also a valid way to invoke zero-parameter
785    function-like macros.  Eeew.
786
787    Consume the tokens from SRC; after this call, SRC contains the text
788    following the invocation.  */
789
790 static struct macro_buffer *
791 gather_arguments (const char *name, struct macro_buffer *src,
792                   int nargs, int *argc_p)
793 {
794   struct macro_buffer tok;
795   int args_len, args_size;
796   struct macro_buffer *args = NULL;
797   struct cleanup *back_to = make_cleanup (free_current_contents, &args);
798
799   /* Does SRC start with an opening paren token?  Read from a copy of
800      SRC, so SRC itself is unaffected if we don't find an opening
801      paren.  */
802   {
803     struct macro_buffer temp;
804
805     init_shared_buffer (&temp, src->text, src->len);
806
807     if (! get_token (&tok, &temp)
808         || tok.len != 1
809         || tok.text[0] != '(')
810       {
811         discard_cleanups (back_to);
812         return 0;
813       }
814   }
815
816   /* Consume SRC's opening paren.  */
817   get_token (&tok, src);
818
819   args_len = 0;
820   args_size = 6;
821   args = XNEWVEC (struct macro_buffer, args_size);
822
823   for (;;)
824     {
825       struct macro_buffer *arg;
826       int depth;
827
828       /* Make sure we have room for the next argument.  */
829       if (args_len >= args_size)
830         {
831           args_size *= 2;
832           args = XRESIZEVEC (struct macro_buffer, args, args_size);
833         }
834
835       /* Initialize the next argument.  */
836       arg = &args[args_len++];
837       set_token (arg, src->text, src->text);
838
839       /* Gather the argument's tokens.  */
840       depth = 0;
841       for (;;)
842         {
843           if (! get_token (&tok, src))
844             error (_("Malformed argument list for macro `%s'."), name);
845       
846           /* Is tok an opening paren?  */
847           if (tok.len == 1 && tok.text[0] == '(')
848             depth++;
849
850           /* Is tok is a closing paren?  */
851           else if (tok.len == 1 && tok.text[0] == ')')
852             {
853               /* If it's a closing paren at the top level, then that's
854                  the end of the argument list.  */
855               if (depth == 0)
856                 {
857                   /* In the varargs case, the last argument may be
858                      missing.  Add an empty argument in this case.  */
859                   if (nargs != -1 && args_len == nargs - 1)
860                     {
861                       /* Make sure we have room for the argument.  */
862                       if (args_len >= args_size)
863                         {
864                           args_size++;
865                           args = XRESIZEVEC (struct macro_buffer, args,
866                                              args_size);
867                         }
868                       arg = &args[args_len++];
869                       set_token (arg, src->text, src->text);
870                     }
871
872                   discard_cleanups (back_to);
873                   *argc_p = args_len;
874                   return args;
875                 }
876
877               depth--;
878             }
879
880           /* If tok is a comma at top level, then that's the end of
881              the current argument.  However, if we are handling a
882              variadic macro and we are computing the last argument, we
883              want to include the comma and remaining tokens.  */
884           else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
885                    && (nargs == -1 || args_len < nargs))
886             break;
887
888           /* Extend the current argument to enclose this token.  If
889              this is the current argument's first token, leave out any
890              leading whitespace, just for aesthetics.  */
891           if (arg->len == 0)
892             {
893               arg->text = tok.text;
894               arg->len = tok.len;
895               arg->last_token = 0;
896             }
897           else
898             {
899               arg->len = (tok.text + tok.len) - arg->text;
900               arg->last_token = tok.text - arg->text;
901             }
902         }
903     }
904 }
905
906
907 /* The `expand' and `substitute_args' functions both invoke `scan'
908    recursively, so we need a forward declaration somewhere.  */
909 static void scan (struct macro_buffer *dest,
910                   struct macro_buffer *src,
911                   struct macro_name_list *no_loop,
912                   macro_lookup_ftype *lookup_func,
913                   void *lookup_baton);
914
915
916 /* A helper function for substitute_args.
917    
918    ARGV is a vector of all the arguments; ARGC is the number of
919    arguments.  IS_VARARGS is true if the macro being substituted is a
920    varargs macro; in this case VA_ARG_NAME is the name of the
921    "variable" argument.  VA_ARG_NAME is ignored if IS_VARARGS is
922    false.
923
924    If the token TOK is the name of a parameter, return the parameter's
925    index.  If TOK is not an argument, return -1.  */
926
927 static int
928 find_parameter (const struct macro_buffer *tok,
929                 int is_varargs, const struct macro_buffer *va_arg_name,
930                 int argc, const char * const *argv)
931 {
932   int i;
933
934   if (! tok->is_identifier)
935     return -1;
936
937   for (i = 0; i < argc; ++i)
938     if (tok->len == strlen (argv[i]) 
939         && !memcmp (tok->text, argv[i], tok->len))
940       return i;
941
942   if (is_varargs && tok->len == va_arg_name->len
943       && ! memcmp (tok->text, va_arg_name->text, tok->len))
944     return argc - 1;
945
946   return -1;
947 }
948  
949 /* Given the macro definition DEF, being invoked with the actual
950    arguments given by ARGC and ARGV, substitute the arguments into the
951    replacement list, and store the result in DEST.
952
953    IS_VARARGS should be true if DEF is a varargs macro.  In this case,
954    VA_ARG_NAME should be the name of the "variable" argument -- either
955    __VA_ARGS__ for c99-style varargs, or the final argument name, for
956    GNU-style varargs.  If IS_VARARGS is false, this parameter is
957    ignored.
958
959    If it is necessary to expand macro invocations in one of the
960    arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
961    definitions, and don't expand invocations of the macros listed in
962    NO_LOOP.  */
963
964 static void
965 substitute_args (struct macro_buffer *dest, 
966                  struct macro_definition *def,
967                  int is_varargs, const struct macro_buffer *va_arg_name,
968                  int argc, struct macro_buffer *argv,
969                  struct macro_name_list *no_loop,
970                  macro_lookup_ftype *lookup_func,
971                  void *lookup_baton)
972 {
973   /* A macro buffer for the macro's replacement list.  */
974   struct macro_buffer replacement_list;
975   /* The token we are currently considering.  */
976   struct macro_buffer tok;
977   /* The replacement list's pointer from just before TOK was lexed.  */
978   char *original_rl_start;
979   /* We have a single lookahead token to handle token splicing.  */
980   struct macro_buffer lookahead;
981   /* The lookahead token might not be valid.  */
982   int lookahead_valid;
983   /* The replacement list's pointer from just before LOOKAHEAD was
984      lexed.  */
985   char *lookahead_rl_start;
986
987   init_shared_buffer (&replacement_list, def->replacement,
988                       strlen (def->replacement));
989
990   gdb_assert (dest->len == 0);
991   dest->last_token = 0;
992
993   original_rl_start = replacement_list.text;
994   if (! get_token (&tok, &replacement_list))
995     return;
996   lookahead_rl_start = replacement_list.text;
997   lookahead_valid = get_token (&lookahead, &replacement_list);
998
999   for (;;)
1000     {
1001       /* Just for aesthetics.  If we skipped some whitespace, copy
1002          that to DEST.  */
1003       if (tok.text > original_rl_start)
1004         {
1005           appendmem (dest, original_rl_start, tok.text - original_rl_start);
1006           dest->last_token = dest->len;
1007         }
1008
1009       /* Is this token the stringification operator?  */
1010       if (tok.len == 1
1011           && tok.text[0] == '#')
1012         {
1013           int arg;
1014
1015           if (!lookahead_valid)
1016             error (_("Stringification operator requires an argument."));
1017
1018           arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1019                                 def->argc, def->argv);
1020           if (arg == -1)
1021             error (_("Argument to stringification operator must name "
1022                      "a macro parameter."));
1023
1024           stringify (dest, argv[arg].text, argv[arg].len);
1025
1026           /* Read one token and let the loop iteration code handle the
1027              rest.  */
1028           lookahead_rl_start = replacement_list.text;
1029           lookahead_valid = get_token (&lookahead, &replacement_list);
1030         }
1031       /* Is this token the splicing operator?  */
1032       else if (tok.len == 2
1033                && tok.text[0] == '#'
1034                && tok.text[1] == '#')
1035         error (_("Stray splicing operator"));
1036       /* Is the next token the splicing operator?  */
1037       else if (lookahead_valid
1038                && lookahead.len == 2
1039                && lookahead.text[0] == '#'
1040                && lookahead.text[1] == '#')
1041         {
1042           int finished = 0;
1043           int prev_was_comma = 0;
1044
1045           /* Note that GCC warns if the result of splicing is not a
1046              token.  In the debugger there doesn't seem to be much
1047              benefit from doing this.  */
1048
1049           /* Insert the first token.  */
1050           if (tok.len == 1 && tok.text[0] == ',')
1051             prev_was_comma = 1;
1052           else
1053             {
1054               int arg = find_parameter (&tok, is_varargs, va_arg_name,
1055                                         def->argc, def->argv);
1056
1057               if (arg != -1)
1058                 appendmem (dest, argv[arg].text, argv[arg].len);
1059               else
1060                 appendmem (dest, tok.text, tok.len);
1061             }
1062
1063           /* Apply a possible sequence of ## operators.  */
1064           for (;;)
1065             {
1066               if (! get_token (&tok, &replacement_list))
1067                 error (_("Splicing operator at end of macro"));
1068
1069               /* Handle a comma before a ##.  If we are handling
1070                  varargs, and the token on the right hand side is the
1071                  varargs marker, and the final argument is empty or
1072                  missing, then drop the comma.  This is a GNU
1073                  extension.  There is one ambiguous case here,
1074                  involving pedantic behavior with an empty argument,
1075                  but we settle that in favor of GNU-style (GCC uses an
1076                  option).  If we aren't dealing with varargs, we
1077                  simply insert the comma.  */
1078               if (prev_was_comma)
1079                 {
1080                   if (! (is_varargs
1081                          && tok.len == va_arg_name->len
1082                          && !memcmp (tok.text, va_arg_name->text, tok.len)
1083                          && argv[argc - 1].len == 0))
1084                     appendmem (dest, ",", 1);
1085                   prev_was_comma = 0;
1086                 }
1087
1088               /* Insert the token.  If it is a parameter, insert the
1089                  argument.  If it is a comma, treat it specially.  */
1090               if (tok.len == 1 && tok.text[0] == ',')
1091                 prev_was_comma = 1;
1092               else
1093                 {
1094                   int arg = find_parameter (&tok, is_varargs, va_arg_name,
1095                                             def->argc, def->argv);
1096
1097                   if (arg != -1)
1098                     appendmem (dest, argv[arg].text, argv[arg].len);
1099                   else
1100                     appendmem (dest, tok.text, tok.len);
1101                 }
1102
1103               /* Now read another token.  If it is another splice, we
1104                  loop.  */
1105               original_rl_start = replacement_list.text;
1106               if (! get_token (&tok, &replacement_list))
1107                 {
1108                   finished = 1;
1109                   break;
1110                 }
1111
1112               if (! (tok.len == 2
1113                      && tok.text[0] == '#'
1114                      && tok.text[1] == '#'))
1115                 break;
1116             }
1117
1118           if (prev_was_comma)
1119             {
1120               /* We saw a comma.  Insert it now.  */
1121               appendmem (dest, ",", 1);
1122             }
1123
1124           dest->last_token = dest->len;
1125           if (finished)
1126             lookahead_valid = 0;
1127           else
1128             {
1129               /* Set up for the loop iterator.  */
1130               lookahead = tok;
1131               lookahead_rl_start = original_rl_start;
1132               lookahead_valid = 1;
1133             }
1134         }
1135       else
1136         {
1137           /* Is this token an identifier?  */
1138           int substituted = 0;
1139           int arg = find_parameter (&tok, is_varargs, va_arg_name,
1140                                     def->argc, def->argv);
1141
1142           if (arg != -1)
1143             {
1144               struct macro_buffer arg_src;
1145
1146               /* Expand any macro invocations in the argument text,
1147                  and append the result to dest.  Remember that scan
1148                  mutates its source, so we need to scan a new buffer
1149                  referring to the argument's text, not the argument
1150                  itself.  */
1151               init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1152               scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1153               substituted = 1;
1154             }
1155
1156           /* If it wasn't a parameter, then just copy it across.  */
1157           if (! substituted)
1158             append_tokens_without_splicing (dest, &tok);
1159         }
1160
1161       if (! lookahead_valid)
1162         break;
1163
1164       tok = lookahead;
1165       original_rl_start = lookahead_rl_start;
1166
1167       lookahead_rl_start = replacement_list.text;
1168       lookahead_valid = get_token (&lookahead, &replacement_list);
1169     }
1170 }
1171
1172
1173 /* Expand a call to a macro named ID, whose definition is DEF.  Append
1174    its expansion to DEST.  SRC is the input text following the ID
1175    token.  We are currently rescanning the expansions of the macros
1176    named in NO_LOOP; don't re-expand them.  Use LOOKUP_FUNC and
1177    LOOKUP_BATON to find definitions for any nested macro references.
1178
1179    Return 1 if we decided to expand it, zero otherwise.  (If it's a
1180    function-like macro name that isn't followed by an argument list,
1181    we don't expand it.)  If we return zero, leave SRC unchanged.  */
1182 static int
1183 expand (const char *id,
1184         struct macro_definition *def, 
1185         struct macro_buffer *dest,
1186         struct macro_buffer *src,
1187         struct macro_name_list *no_loop,
1188         macro_lookup_ftype *lookup_func,
1189         void *lookup_baton)
1190 {
1191   struct macro_name_list new_no_loop;
1192
1193   /* Create a new node to be added to the front of the no-expand list.
1194      This list is appropriate for re-scanning replacement lists, but
1195      it is *not* appropriate for scanning macro arguments; invocations
1196      of the macro whose arguments we are gathering *do* get expanded
1197      there.  */
1198   new_no_loop.name = id;
1199   new_no_loop.next = no_loop;
1200
1201   /* What kind of macro are we expanding?  */
1202   if (def->kind == macro_object_like)
1203     {
1204       struct macro_buffer replacement_list;
1205
1206       init_shared_buffer (&replacement_list, def->replacement,
1207                           strlen (def->replacement));
1208
1209       scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1210       return 1;
1211     }
1212   else if (def->kind == macro_function_like)
1213     {
1214       struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1215       int argc = 0;
1216       struct macro_buffer *argv = NULL;
1217       struct macro_buffer substituted;
1218       struct macro_buffer substituted_src;
1219       struct macro_buffer va_arg_name = {0};
1220       int is_varargs = 0;
1221
1222       if (def->argc >= 1)
1223         {
1224           if (strcmp (def->argv[def->argc - 1], "...") == 0)
1225             {
1226               /* In C99-style varargs, substitution is done using
1227                  __VA_ARGS__.  */
1228               init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1229                                   strlen ("__VA_ARGS__"));
1230               is_varargs = 1;
1231             }
1232           else
1233             {
1234               int len = strlen (def->argv[def->argc - 1]);
1235
1236               if (len > 3
1237                   && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1238                 {
1239                   /* In GNU-style varargs, the name of the
1240                      substitution parameter is the name of the formal
1241                      argument without the "...".  */
1242                   init_shared_buffer (&va_arg_name,
1243                                       def->argv[def->argc - 1],
1244                                       len - 3);
1245                   is_varargs = 1;
1246                 }
1247             }
1248         }
1249
1250       make_cleanup (free_current_contents, &argv);
1251       argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1252                                &argc);
1253
1254       /* If we couldn't find any argument list, then we don't expand
1255          this macro.  */
1256       if (! argv)
1257         {
1258           do_cleanups (back_to);
1259           return 0;
1260         }
1261
1262       /* Check that we're passing an acceptable number of arguments for
1263          this macro.  */
1264       if (argc != def->argc)
1265         {
1266           if (is_varargs && argc >= def->argc - 1)
1267             {
1268               /* Ok.  */
1269             }
1270           /* Remember that a sequence of tokens like "foo()" is a
1271              valid invocation of a macro expecting either zero or one
1272              arguments.  */
1273           else if (! (argc == 1
1274                       && argv[0].len == 0
1275                       && def->argc == 0))
1276             error (_("Wrong number of arguments to macro `%s' "
1277                    "(expected %d, got %d)."),
1278                    id, def->argc, argc);
1279         }
1280
1281       /* Note that we don't expand macro invocations in the arguments
1282          yet --- we let subst_args take care of that.  Parameters that
1283          appear as operands of the stringifying operator "#" or the
1284          splicing operator "##" don't get macro references expanded,
1285          so we can't really tell whether it's appropriate to macro-
1286          expand an argument until we see how it's being used.  */
1287       init_buffer (&substituted, 0);
1288       make_cleanup (cleanup_macro_buffer, &substituted);
1289       substitute_args (&substituted, def, is_varargs, &va_arg_name,
1290                        argc, argv, no_loop, lookup_func, lookup_baton);
1291
1292       /* Now `substituted' is the macro's replacement list, with all
1293          argument values substituted into it properly.  Re-scan it for
1294          macro references, but don't expand invocations of this macro.
1295
1296          We create a new buffer, `substituted_src', which points into
1297          `substituted', and scan that.  We can't scan `substituted'
1298          itself, since the tokenization process moves the buffer's
1299          text pointer around, and we still need to be able to find
1300          `substituted's original text buffer after scanning it so we
1301          can free it.  */
1302       init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1303       scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1304
1305       do_cleanups (back_to);
1306
1307       return 1;
1308     }
1309   else
1310     internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1311 }
1312
1313
1314 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1315    constitute a macro invokation not forbidden in NO_LOOP, append its
1316    expansion to DEST and return non-zero.  Otherwise, return zero, and
1317    leave DEST unchanged.
1318
1319    SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1320    SRC_FIRST must be a string built by get_token.  */
1321 static int
1322 maybe_expand (struct macro_buffer *dest,
1323               struct macro_buffer *src_first,
1324               struct macro_buffer *src_rest,
1325               struct macro_name_list *no_loop,
1326               macro_lookup_ftype *lookup_func,
1327               void *lookup_baton)
1328 {
1329   gdb_assert (src_first->shared);
1330   gdb_assert (src_rest->shared);
1331   gdb_assert (! dest->shared);
1332
1333   /* Is this token an identifier?  */
1334   if (src_first->is_identifier)
1335     {
1336       /* Make a null-terminated copy of it, since that's what our
1337          lookup function expects.  */
1338       char *id = (char *) xmalloc (src_first->len + 1);
1339       struct cleanup *back_to = make_cleanup (xfree, id);
1340
1341       memcpy (id, src_first->text, src_first->len);
1342       id[src_first->len] = 0;
1343           
1344       /* If we're currently re-scanning the result of expanding
1345          this macro, don't expand it again.  */
1346       if (! currently_rescanning (no_loop, id))
1347         {
1348           /* Does this identifier have a macro definition in scope?  */
1349           struct macro_definition *def = lookup_func (id, lookup_baton);
1350
1351           if (def && expand (id, def, dest, src_rest, no_loop,
1352                              lookup_func, lookup_baton))
1353             {
1354               do_cleanups (back_to);
1355               return 1;
1356             }
1357         }
1358
1359       do_cleanups (back_to);
1360     }
1361
1362   return 0;
1363 }
1364
1365
1366 /* Expand macro references in SRC, appending the results to DEST.
1367    Assume we are re-scanning the result of expanding the macros named
1368    in NO_LOOP, and don't try to re-expand references to them.
1369
1370    SRC must be a shared buffer; DEST must not be one.  */
1371 static void
1372 scan (struct macro_buffer *dest,
1373       struct macro_buffer *src,
1374       struct macro_name_list *no_loop,
1375       macro_lookup_ftype *lookup_func,
1376       void *lookup_baton)
1377 {
1378   gdb_assert (src->shared);
1379   gdb_assert (! dest->shared);
1380
1381   for (;;)
1382     {
1383       struct macro_buffer tok;
1384       char *original_src_start = src->text;
1385
1386       /* Find the next token in SRC.  */
1387       if (! get_token (&tok, src))
1388         break;
1389
1390       /* Just for aesthetics.  If we skipped some whitespace, copy
1391          that to DEST.  */
1392       if (tok.text > original_src_start)
1393         {
1394           appendmem (dest, original_src_start, tok.text - original_src_start);
1395           dest->last_token = dest->len;
1396         }
1397
1398       if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1399         /* We didn't end up expanding tok as a macro reference, so
1400            simply append it to dest.  */
1401         append_tokens_without_splicing (dest, &tok);
1402     }
1403
1404   /* Just for aesthetics.  If there was any trailing whitespace in
1405      src, copy it to dest.  */
1406   if (src->len)
1407     {
1408       appendmem (dest, src->text, src->len);
1409       dest->last_token = dest->len;
1410     }
1411 }
1412
1413
1414 char *
1415 macro_expand (const char *source,
1416               macro_lookup_ftype *lookup_func,
1417               void *lookup_func_baton)
1418 {
1419   struct macro_buffer src, dest;
1420   struct cleanup *back_to;
1421
1422   init_shared_buffer (&src, source, strlen (source));
1423
1424   init_buffer (&dest, 0);
1425   dest.last_token = 0;
1426   back_to = make_cleanup (cleanup_macro_buffer, &dest);
1427
1428   scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1429
1430   appendc (&dest, '\0');
1431
1432   discard_cleanups (back_to);
1433   return dest.text;
1434 }
1435
1436
1437 char *
1438 macro_expand_once (const char *source,
1439                    macro_lookup_ftype *lookup_func,
1440                    void *lookup_func_baton)
1441 {
1442   error (_("Expand-once not implemented yet."));
1443 }
1444
1445
1446 char *
1447 macro_expand_next (const char **lexptr,
1448                    macro_lookup_ftype *lookup_func,
1449                    void *lookup_baton)
1450 {
1451   struct macro_buffer src, dest, tok;
1452   struct cleanup *back_to;
1453
1454   /* Set up SRC to refer to the input text, pointed to by *lexptr.  */
1455   init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1456
1457   /* Set up DEST to receive the expansion, if there is one.  */
1458   init_buffer (&dest, 0);
1459   dest.last_token = 0;
1460   back_to = make_cleanup (cleanup_macro_buffer, &dest);
1461
1462   /* Get the text's first preprocessing token.  */
1463   if (! get_token (&tok, &src))
1464     {
1465       do_cleanups (back_to);
1466       return 0;
1467     }
1468
1469   /* If it's a macro invocation, expand it.  */
1470   if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1471     {
1472       /* It was a macro invocation!  Package up the expansion as a
1473          null-terminated string and return it.  Set *lexptr to the
1474          start of the next token in the input.  */
1475       appendc (&dest, '\0');
1476       discard_cleanups (back_to);
1477       *lexptr = src.text;
1478       return dest.text;
1479     }
1480   else
1481     {
1482       /* It wasn't a macro invocation.  */
1483       do_cleanups (back_to);
1484       return 0;
1485     }
1486 }