1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Red Hat, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdb_obstack.h"
26 #include "gdb_assert.h"
31 /* A resizeable, substringable string type. */
34 /* A string type that we can resize, quickly append to, and use to
35 refer to substrings of other strings. */
38 /* An array of characters. The first LEN bytes are the real text,
39 but there are SIZE bytes allocated to the array. If SIZE is
40 zero, then this doesn't point to a malloc'ed block. If SHARED is
41 non-zero, then this buffer is actually a pointer into some larger
42 string, and we shouldn't append characters to it, etc. Because
43 of sharing, we can't assume in general that the text is
47 /* The number of characters in the string. */
50 /* The number of characters allocated to the string. If SHARED is
51 non-zero, this is meaningless; in this case, we set it to zero so
52 that any "do we have room to append something?" tests will fail,
53 so we don't always have to check SHARED before using this field. */
56 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
57 block). Non-zero if TEXT is actually pointing into the middle of
58 some other block, and we shouldn't reallocate it. */
61 /* For detecting token splicing.
63 This is the index in TEXT of the first character of the token
64 that abuts the end of TEXT. If TEXT contains no tokens, then we
65 set this equal to LEN. If TEXT ends in whitespace, then there is
66 no token abutting the end of TEXT (it's just whitespace), and
67 again, we set this equal to LEN. We set this to -1 if we don't
68 know the nature of TEXT. */
71 /* If this buffer is holding the result from get_token, then this
72 is non-zero if it is an identifier token, zero otherwise. */
77 /* Set the macro buffer *B to the empty string, guessing that its
78 final contents will fit in N bytes. (It'll get resized if it
79 doesn't, so the guess doesn't have to be right.) Allocate the
80 initial storage with xmalloc. */
82 init_buffer (struct macro_buffer *b, int n)
86 b->text = (char *) xmalloc (n);
95 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
98 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
104 buf->last_token = -1;
108 /* Free the text of the buffer B. Raise an error if B is shared. */
110 free_buffer (struct macro_buffer *b)
112 gdb_assert (! b->shared);
118 /* A cleanup function for macro buffers. */
120 cleanup_macro_buffer (void *untyped_buf)
122 free_buffer ((struct macro_buffer *) untyped_buf);
126 /* Resize the buffer B to be at least N bytes long. Raise an error if
127 B shouldn't be resized. */
129 resize_buffer (struct macro_buffer *b, int n)
131 /* We shouldn't be trying to resize shared strings. */
132 gdb_assert (! b->shared);
140 b->text = xrealloc (b->text, b->size);
144 /* Append the character C to the buffer B. */
146 appendc (struct macro_buffer *b, int c)
148 int new_len = b->len + 1;
150 if (new_len > b->size)
151 resize_buffer (b, new_len);
158 /* Append the LEN bytes at ADDR to the buffer B. */
160 appendmem (struct macro_buffer *b, char *addr, int len)
162 int new_len = b->len + len;
164 if (new_len > b->size)
165 resize_buffer (b, new_len);
167 memcpy (b->text + b->len, addr, len);
173 /* Recognizing preprocessor tokens. */
177 macro_is_whitespace (int c)
188 macro_is_digit (int c)
190 return ('0' <= c && c <= '9');
195 macro_is_identifier_nondigit (int c)
198 || ('a' <= c && c <= 'z')
199 || ('A' <= c && c <= 'Z'));
204 set_token (struct macro_buffer *tok, char *start, char *end)
206 init_shared_buffer (tok, start, end - start);
209 /* Presumed; get_identifier may overwrite this. */
210 tok->is_identifier = 0;
215 get_comment (struct macro_buffer *tok, char *p, char *end)
232 set_token (tok, tok_start, p);
236 error (_("Unterminated comment in macro expansion."));
248 set_token (tok, tok_start, p);
257 get_identifier (struct macro_buffer *tok, char *p, char *end)
260 && macro_is_identifier_nondigit (*p))
265 && (macro_is_identifier_nondigit (*p)
266 || macro_is_digit (*p)))
269 set_token (tok, tok_start, p);
270 tok->is_identifier = 1;
279 get_pp_number (struct macro_buffer *tok, char *p, char *end)
282 && (macro_is_digit (*p)
285 && macro_is_digit (p[1]))))
292 && strchr ("eEpP", *p)
293 && (p[1] == '+' || p[1] == '-'))
295 else if (macro_is_digit (*p)
296 || macro_is_identifier_nondigit (*p)
303 set_token (tok, tok_start, p);
312 /* If the text starting at P going up to (but not including) END
313 starts with a character constant, set *TOK to point to that
314 character constant, and return 1. Otherwise, return zero.
315 Signal an error if it contains a malformed or incomplete character
318 get_character_constant (struct macro_buffer *tok, char *p, char *end)
320 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
321 But of course, what really matters is that we handle it the same
322 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
323 to handle escape sequences. */
324 if ((p + 1 <= end && *p == '\'')
326 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
335 else if (*p == 'L' || *p == 'u' || *p == 'U')
338 gdb_assert_not_reached ("unexpected character constant");
344 error (_("Unmatched single quote."));
348 error (_("A character constant must contain at least one "
356 char_count += c_parse_escape (&p, NULL);
365 set_token (tok, tok_start, p);
373 /* If the text starting at P going up to (but not including) END
374 starts with a string literal, set *TOK to point to that string
375 literal, and return 1. Otherwise, return zero. Signal an error if
376 it contains a malformed or incomplete string literal. */
378 get_string_literal (struct macro_buffer *tok, char *p, char *end)
383 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
390 else if (*p == 'L' || *p == 'u' || *p == 'U')
393 gdb_assert_not_reached ("unexpected string literal");
398 error (_("Unterminated string in expression."));
405 error (_("Newline characters may not appear in string "
410 c_parse_escape (&p, NULL);
416 set_token (tok, tok_start, p);
425 get_punctuator (struct macro_buffer *tok, char *p, char *end)
427 /* Here, speed is much less important than correctness and clarity. */
429 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
430 Note that this table is ordered in a special way. A punctuator
431 which is a prefix of another punctuator must appear after its
432 "extension". Otherwise, the wrong token will be returned. */
433 static const char * const punctuators[] = {
434 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
436 "->", "--", "-=", "-",
442 "%>", "%:%:", "%:", "%=", "%",
447 "<<=", "<<", "<=", "<:", "<%", "<",
448 ">>=", ">>", ">=", ">",
457 for (i = 0; punctuators[i]; i++)
459 const char *punctuator = punctuators[i];
461 if (p[0] == punctuator[0])
463 int len = strlen (punctuator);
466 && ! memcmp (p, punctuator, len))
468 set_token (tok, p, p + len);
479 /* Peel the next preprocessor token off of SRC, and put it in TOK.
480 Mutate TOK to refer to the first token in SRC, and mutate SRC to
481 refer to the text after that token. SRC must be a shared buffer;
482 the resulting TOK will be shared, pointing into the same string SRC
483 does. Initialize TOK's last_token field. Return non-zero if we
484 succeed, or 0 if we didn't find any more tokens in SRC. */
486 get_token (struct macro_buffer *tok,
487 struct macro_buffer *src)
490 char *end = p + src->len;
492 gdb_assert (src->shared);
494 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
503 each non-white-space character that cannot be one of the above
505 We don't have to deal with header-name tokens, since those can
506 only occur after a #include, which we will never see. */
509 if (macro_is_whitespace (*p))
511 else if (get_comment (tok, p, end))
513 else if (get_pp_number (tok, p, end)
514 || get_character_constant (tok, p, end)
515 || get_string_literal (tok, p, end)
516 /* Note: the grammar in the standard seems to be
517 ambiguous: L'x' can be either a wide character
518 constant, or an identifier followed by a normal
519 character constant. By trying `get_identifier' after
520 we try get_character_constant and get_string_literal,
521 we give the wide character syntax precedence. Now,
522 since GDB doesn't handle wide character constants
523 anyway, is this the right thing to do? */
524 || get_identifier (tok, p, end)
525 || get_punctuator (tok, p, end))
527 /* How many characters did we consume, including whitespace? */
528 int consumed = p - src->text + tok->len;
530 src->text += consumed;
531 src->len -= consumed;
536 /* We have found a "non-whitespace character that cannot be
537 one of the above." Make a token out of it. */
540 set_token (tok, p, p + 1);
541 consumed = p - src->text + tok->len;
542 src->text += consumed;
543 src->len -= consumed;
552 /* Appending token strings, with and without splicing */
555 /* Append the macro buffer SRC to the end of DEST, and ensure that
556 doing so doesn't splice the token at the end of SRC with the token
557 at the beginning of DEST. SRC and DEST must have their last_token
558 fields set. Upon return, DEST's last_token field is set correctly.
562 If DEST is "(" and SRC is "y", then we can return with
563 DEST set to "(y" --- we've simply appended the two buffers.
565 However, if DEST is "x" and SRC is "y", then we must not return
566 with DEST set to "xy" --- that would splice the two tokens "x" and
567 "y" together to make a single token "xy". However, it would be
568 fine to return with DEST set to "x y". Similarly, "<" and "<" must
569 yield "< <", not "<<", etc. */
571 append_tokens_without_splicing (struct macro_buffer *dest,
572 struct macro_buffer *src)
574 int original_dest_len = dest->len;
575 struct macro_buffer dest_tail, new_token;
577 gdb_assert (src->last_token != -1);
578 gdb_assert (dest->last_token != -1);
580 /* First, just try appending the two, and call get_token to see if
582 appendmem (dest, src->text, src->len);
584 /* If DEST originally had no token abutting its end, then we can't
585 have spliced anything, so we're done. */
586 if (dest->last_token == original_dest_len)
588 dest->last_token = original_dest_len + src->last_token;
592 /* Set DEST_TAIL to point to the last token in DEST, followed by
593 all the stuff we just appended. */
594 init_shared_buffer (&dest_tail,
595 dest->text + dest->last_token,
596 dest->len - dest->last_token);
598 /* Re-parse DEST's last token. We know that DEST used to contain
599 at least one token, so if it doesn't contain any after the
600 append, then we must have spliced "/" and "*" or "/" and "/" to
601 make a comment start. (Just for the record, I got this right
602 the first time. This is not a bug fix.) */
603 if (get_token (&new_token, &dest_tail)
604 && (new_token.text + new_token.len
605 == dest->text + original_dest_len))
607 /* No splice, so we're done. */
608 dest->last_token = original_dest_len + src->last_token;
612 /* Okay, a simple append caused a splice. Let's chop dest back to
613 its original length and try again, but separate the texts with a
615 dest->len = original_dest_len;
617 appendmem (dest, src->text, src->len);
619 init_shared_buffer (&dest_tail,
620 dest->text + dest->last_token,
621 dest->len - dest->last_token);
623 /* Try to re-parse DEST's last token, as above. */
624 if (get_token (&new_token, &dest_tail)
625 && (new_token.text + new_token.len
626 == dest->text + original_dest_len))
628 /* No splice, so we're done. */
629 dest->last_token = original_dest_len + 1 + src->last_token;
633 /* As far as I know, there's no case where inserting a space isn't
634 enough to prevent a splice. */
635 internal_error (__FILE__, __LINE__,
636 _("unable to avoid splicing tokens during macro expansion"));
639 /* Stringify an argument, and insert it into DEST. ARG is the text to
640 stringify; it is LEN bytes long. */
643 stringify (struct macro_buffer *dest, char *arg, int len)
645 /* Trim initial whitespace from ARG. */
646 while (len > 0 && macro_is_whitespace (*arg))
652 /* Trim trailing whitespace from ARG. */
653 while (len > 0 && macro_is_whitespace (arg[len - 1]))
656 /* Insert the string. */
660 /* We could try to handle strange cases here, like control
661 characters, but there doesn't seem to be much point. */
662 if (macro_is_whitespace (*arg))
664 /* Replace a sequence of whitespace with a single space. */
666 while (len > 1 && macro_is_whitespace (arg[1]))
672 else if (*arg == '\\' || *arg == '"')
674 appendc (dest, '\\');
675 appendc (dest, *arg);
678 appendc (dest, *arg);
683 dest->last_token = dest->len;
687 /* Expanding macros! */
690 /* A singly-linked list of the names of the macros we are currently
691 expanding --- for detecting expansion loops. */
692 struct macro_name_list {
694 struct macro_name_list *next;
698 /* Return non-zero if we are currently expanding the macro named NAME,
699 according to LIST; otherwise, return zero.
701 You know, it would be possible to get rid of all the NO_LOOP
702 arguments to these functions by simply generating a new lookup
703 function and baton which refuses to find the definition for a
704 particular macro, and otherwise delegates the decision to another
705 function/baton pair. But that makes the linked list of excluded
706 macros chained through untyped baton pointers, which will make it
707 harder to debug. :( */
709 currently_rescanning (struct macro_name_list *list, const char *name)
711 for (; list; list = list->next)
712 if (strcmp (name, list->name) == 0)
719 /* Gather the arguments to a macro expansion.
721 NAME is the name of the macro being invoked. (It's only used for
722 printing error messages.)
724 Assume that SRC is the text of the macro invocation immediately
725 following the macro name. For example, if we're processing the
726 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
729 If SRC doesn't start with an open paren ( token at all, return
730 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
732 If SRC doesn't contain a properly terminated argument list, then
735 For a variadic macro, NARGS holds the number of formal arguments to
736 the macro. For a GNU-style variadic macro, this should be the
737 number of named arguments. For a non-variadic macro, NARGS should
740 Otherwise, return a pointer to the first element of an array of
741 macro buffers referring to the argument texts, and set *ARGC_P to
742 the number of arguments we found --- the number of elements in the
743 array. The macro buffers share their text with SRC, and their
744 last_token fields are initialized. The array is allocated with
745 xmalloc, and the caller is responsible for freeing it.
747 NOTE WELL: if SRC starts with a open paren ( token followed
748 immediately by a close paren ) token (e.g., the invocation looks
749 like "foo()"), we treat that as one argument, which happens to be
750 the empty list of tokens. The caller should keep in mind that such
751 a sequence of tokens is a valid way to invoke one-parameter
752 function-like macros, but also a valid way to invoke zero-parameter
753 function-like macros. Eeew.
755 Consume the tokens from SRC; after this call, SRC contains the text
756 following the invocation. */
758 static struct macro_buffer *
759 gather_arguments (const char *name, struct macro_buffer *src,
760 int nargs, int *argc_p)
762 struct macro_buffer tok;
763 int args_len, args_size;
764 struct macro_buffer *args = NULL;
765 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
767 /* Does SRC start with an opening paren token? Read from a copy of
768 SRC, so SRC itself is unaffected if we don't find an opening
771 struct macro_buffer temp;
773 init_shared_buffer (&temp, src->text, src->len);
775 if (! get_token (&tok, &temp)
777 || tok.text[0] != '(')
779 discard_cleanups (back_to);
784 /* Consume SRC's opening paren. */
785 get_token (&tok, src);
789 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
793 struct macro_buffer *arg;
796 /* Make sure we have room for the next argument. */
797 if (args_len >= args_size)
800 args = xrealloc (args, sizeof (*args) * args_size);
803 /* Initialize the next argument. */
804 arg = &args[args_len++];
805 set_token (arg, src->text, src->text);
807 /* Gather the argument's tokens. */
811 if (! get_token (&tok, src))
812 error (_("Malformed argument list for macro `%s'."), name);
814 /* Is tok an opening paren? */
815 if (tok.len == 1 && tok.text[0] == '(')
818 /* Is tok is a closing paren? */
819 else if (tok.len == 1 && tok.text[0] == ')')
821 /* If it's a closing paren at the top level, then that's
822 the end of the argument list. */
825 /* In the varargs case, the last argument may be
826 missing. Add an empty argument in this case. */
827 if (nargs != -1 && args_len == nargs - 1)
829 /* Make sure we have room for the argument. */
830 if (args_len >= args_size)
833 args = xrealloc (args, sizeof (*args) * args_size);
835 arg = &args[args_len++];
836 set_token (arg, src->text, src->text);
839 discard_cleanups (back_to);
847 /* If tok is a comma at top level, then that's the end of
848 the current argument. However, if we are handling a
849 variadic macro and we are computing the last argument, we
850 want to include the comma and remaining tokens. */
851 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
852 && (nargs == -1 || args_len < nargs))
855 /* Extend the current argument to enclose this token. If
856 this is the current argument's first token, leave out any
857 leading whitespace, just for aesthetics. */
860 arg->text = tok.text;
866 arg->len = (tok.text + tok.len) - arg->text;
867 arg->last_token = tok.text - arg->text;
874 /* The `expand' and `substitute_args' functions both invoke `scan'
875 recursively, so we need a forward declaration somewhere. */
876 static void scan (struct macro_buffer *dest,
877 struct macro_buffer *src,
878 struct macro_name_list *no_loop,
879 macro_lookup_ftype *lookup_func,
883 /* A helper function for substitute_args.
885 ARGV is a vector of all the arguments; ARGC is the number of
886 arguments. IS_VARARGS is true if the macro being substituted is a
887 varargs macro; in this case VA_ARG_NAME is the name of the
888 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
891 If the token TOK is the name of a parameter, return the parameter's
892 index. If TOK is not an argument, return -1. */
895 find_parameter (const struct macro_buffer *tok,
896 int is_varargs, const struct macro_buffer *va_arg_name,
897 int argc, const char * const *argv)
901 if (! tok->is_identifier)
904 for (i = 0; i < argc; ++i)
905 if (tok->len == strlen (argv[i])
906 && !memcmp (tok->text, argv[i], tok->len))
909 if (is_varargs && tok->len == va_arg_name->len
910 && ! memcmp (tok->text, va_arg_name->text, tok->len))
916 /* Given the macro definition DEF, being invoked with the actual
917 arguments given by ARGC and ARGV, substitute the arguments into the
918 replacement list, and store the result in DEST.
920 IS_VARARGS should be true if DEF is a varargs macro. In this case,
921 VA_ARG_NAME should be the name of the "variable" argument -- either
922 __VA_ARGS__ for c99-style varargs, or the final argument name, for
923 GNU-style varargs. If IS_VARARGS is false, this parameter is
926 If it is necessary to expand macro invocations in one of the
927 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
928 definitions, and don't expand invocations of the macros listed in
932 substitute_args (struct macro_buffer *dest,
933 struct macro_definition *def,
934 int is_varargs, const struct macro_buffer *va_arg_name,
935 int argc, struct macro_buffer *argv,
936 struct macro_name_list *no_loop,
937 macro_lookup_ftype *lookup_func,
940 /* A macro buffer for the macro's replacement list. */
941 struct macro_buffer replacement_list;
942 /* The token we are currently considering. */
943 struct macro_buffer tok;
944 /* The replacement list's pointer from just before TOK was lexed. */
945 char *original_rl_start;
946 /* We have a single lookahead token to handle token splicing. */
947 struct macro_buffer lookahead;
948 /* The lookahead token might not be valid. */
950 /* The replacement list's pointer from just before LOOKAHEAD was
952 char *lookahead_rl_start;
954 init_shared_buffer (&replacement_list, (char *) def->replacement,
955 strlen (def->replacement));
957 gdb_assert (dest->len == 0);
958 dest->last_token = 0;
960 original_rl_start = replacement_list.text;
961 if (! get_token (&tok, &replacement_list))
963 lookahead_rl_start = replacement_list.text;
964 lookahead_valid = get_token (&lookahead, &replacement_list);
968 /* Just for aesthetics. If we skipped some whitespace, copy
970 if (tok.text > original_rl_start)
972 appendmem (dest, original_rl_start, tok.text - original_rl_start);
973 dest->last_token = dest->len;
976 /* Is this token the stringification operator? */
978 && tok.text[0] == '#')
982 if (!lookahead_valid)
983 error (_("Stringification operator requires an argument."));
985 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
986 def->argc, def->argv);
988 error (_("Argument to stringification operator must name "
989 "a macro parameter."));
991 stringify (dest, argv[arg].text, argv[arg].len);
993 /* Read one token and let the loop iteration code handle the
995 lookahead_rl_start = replacement_list.text;
996 lookahead_valid = get_token (&lookahead, &replacement_list);
998 /* Is this token the splicing operator? */
999 else if (tok.len == 2
1000 && tok.text[0] == '#'
1001 && tok.text[1] == '#')
1002 error (_("Stray splicing operator"));
1003 /* Is the next token the splicing operator? */
1004 else if (lookahead_valid
1005 && lookahead.len == 2
1006 && lookahead.text[0] == '#'
1007 && lookahead.text[1] == '#')
1010 int prev_was_comma = 0;
1012 /* Note that GCC warns if the result of splicing is not a
1013 token. In the debugger there doesn't seem to be much
1014 benefit from doing this. */
1016 /* Insert the first token. */
1017 if (tok.len == 1 && tok.text[0] == ',')
1021 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1022 def->argc, def->argv);
1025 appendmem (dest, argv[arg].text, argv[arg].len);
1027 appendmem (dest, tok.text, tok.len);
1030 /* Apply a possible sequence of ## operators. */
1033 if (! get_token (&tok, &replacement_list))
1034 error (_("Splicing operator at end of macro"));
1036 /* Handle a comma before a ##. If we are handling
1037 varargs, and the token on the right hand side is the
1038 varargs marker, and the final argument is empty or
1039 missing, then drop the comma. This is a GNU
1040 extension. There is one ambiguous case here,
1041 involving pedantic behavior with an empty argument,
1042 but we settle that in favor of GNU-style (GCC uses an
1043 option). If we aren't dealing with varargs, we
1044 simply insert the comma. */
1048 && tok.len == va_arg_name->len
1049 && !memcmp (tok.text, va_arg_name->text, tok.len)
1050 && argv[argc - 1].len == 0))
1051 appendmem (dest, ",", 1);
1055 /* Insert the token. If it is a parameter, insert the
1056 argument. If it is a comma, treat it specially. */
1057 if (tok.len == 1 && tok.text[0] == ',')
1061 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1062 def->argc, def->argv);
1065 appendmem (dest, argv[arg].text, argv[arg].len);
1067 appendmem (dest, tok.text, tok.len);
1070 /* Now read another token. If it is another splice, we
1072 original_rl_start = replacement_list.text;
1073 if (! get_token (&tok, &replacement_list))
1080 && tok.text[0] == '#'
1081 && tok.text[1] == '#'))
1087 /* We saw a comma. Insert it now. */
1088 appendmem (dest, ",", 1);
1091 dest->last_token = dest->len;
1093 lookahead_valid = 0;
1096 /* Set up for the loop iterator. */
1098 lookahead_rl_start = original_rl_start;
1099 lookahead_valid = 1;
1104 /* Is this token an identifier? */
1105 int substituted = 0;
1106 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1107 def->argc, def->argv);
1111 struct macro_buffer arg_src;
1113 /* Expand any macro invocations in the argument text,
1114 and append the result to dest. Remember that scan
1115 mutates its source, so we need to scan a new buffer
1116 referring to the argument's text, not the argument
1118 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1119 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1123 /* If it wasn't a parameter, then just copy it across. */
1125 append_tokens_without_splicing (dest, &tok);
1128 if (! lookahead_valid)
1132 original_rl_start = lookahead_rl_start;
1134 lookahead_rl_start = replacement_list.text;
1135 lookahead_valid = get_token (&lookahead, &replacement_list);
1140 /* Expand a call to a macro named ID, whose definition is DEF. Append
1141 its expansion to DEST. SRC is the input text following the ID
1142 token. We are currently rescanning the expansions of the macros
1143 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1144 LOOKUP_BATON to find definitions for any nested macro references.
1146 Return 1 if we decided to expand it, zero otherwise. (If it's a
1147 function-like macro name that isn't followed by an argument list,
1148 we don't expand it.) If we return zero, leave SRC unchanged. */
1150 expand (const char *id,
1151 struct macro_definition *def,
1152 struct macro_buffer *dest,
1153 struct macro_buffer *src,
1154 struct macro_name_list *no_loop,
1155 macro_lookup_ftype *lookup_func,
1158 struct macro_name_list new_no_loop;
1160 /* Create a new node to be added to the front of the no-expand list.
1161 This list is appropriate for re-scanning replacement lists, but
1162 it is *not* appropriate for scanning macro arguments; invocations
1163 of the macro whose arguments we are gathering *do* get expanded
1165 new_no_loop.name = id;
1166 new_no_loop.next = no_loop;
1168 /* What kind of macro are we expanding? */
1169 if (def->kind == macro_object_like)
1171 struct macro_buffer replacement_list;
1173 init_shared_buffer (&replacement_list, (char *) def->replacement,
1174 strlen (def->replacement));
1176 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1179 else if (def->kind == macro_function_like)
1181 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1183 struct macro_buffer *argv = NULL;
1184 struct macro_buffer substituted;
1185 struct macro_buffer substituted_src;
1186 struct macro_buffer va_arg_name;
1191 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1193 /* In C99-style varargs, substitution is done using
1195 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1196 strlen ("__VA_ARGS__"));
1201 int len = strlen (def->argv[def->argc - 1]);
1204 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1206 /* In GNU-style varargs, the name of the
1207 substitution parameter is the name of the formal
1208 argument without the "...". */
1209 init_shared_buffer (&va_arg_name,
1210 (char *) def->argv[def->argc - 1],
1217 make_cleanup (free_current_contents, &argv);
1218 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1221 /* If we couldn't find any argument list, then we don't expand
1225 do_cleanups (back_to);
1229 /* Check that we're passing an acceptable number of arguments for
1231 if (argc != def->argc)
1233 if (is_varargs && argc >= def->argc - 1)
1237 /* Remember that a sequence of tokens like "foo()" is a
1238 valid invocation of a macro expecting either zero or one
1240 else if (! (argc == 1
1243 error (_("Wrong number of arguments to macro `%s' "
1244 "(expected %d, got %d)."),
1245 id, def->argc, argc);
1248 /* Note that we don't expand macro invocations in the arguments
1249 yet --- we let subst_args take care of that. Parameters that
1250 appear as operands of the stringifying operator "#" or the
1251 splicing operator "##" don't get macro references expanded,
1252 so we can't really tell whether it's appropriate to macro-
1253 expand an argument until we see how it's being used. */
1254 init_buffer (&substituted, 0);
1255 make_cleanup (cleanup_macro_buffer, &substituted);
1256 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1257 argc, argv, no_loop, lookup_func, lookup_baton);
1259 /* Now `substituted' is the macro's replacement list, with all
1260 argument values substituted into it properly. Re-scan it for
1261 macro references, but don't expand invocations of this macro.
1263 We create a new buffer, `substituted_src', which points into
1264 `substituted', and scan that. We can't scan `substituted'
1265 itself, since the tokenization process moves the buffer's
1266 text pointer around, and we still need to be able to find
1267 `substituted's original text buffer after scanning it so we
1269 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1270 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1272 do_cleanups (back_to);
1277 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1281 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1282 constitute a macro invokation not forbidden in NO_LOOP, append its
1283 expansion to DEST and return non-zero. Otherwise, return zero, and
1284 leave DEST unchanged.
1286 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1287 SRC_FIRST must be a string built by get_token. */
1289 maybe_expand (struct macro_buffer *dest,
1290 struct macro_buffer *src_first,
1291 struct macro_buffer *src_rest,
1292 struct macro_name_list *no_loop,
1293 macro_lookup_ftype *lookup_func,
1296 gdb_assert (src_first->shared);
1297 gdb_assert (src_rest->shared);
1298 gdb_assert (! dest->shared);
1300 /* Is this token an identifier? */
1301 if (src_first->is_identifier)
1303 /* Make a null-terminated copy of it, since that's what our
1304 lookup function expects. */
1305 char *id = xmalloc (src_first->len + 1);
1306 struct cleanup *back_to = make_cleanup (xfree, id);
1308 memcpy (id, src_first->text, src_first->len);
1309 id[src_first->len] = 0;
1311 /* If we're currently re-scanning the result of expanding
1312 this macro, don't expand it again. */
1313 if (! currently_rescanning (no_loop, id))
1315 /* Does this identifier have a macro definition in scope? */
1316 struct macro_definition *def = lookup_func (id, lookup_baton);
1318 if (def && expand (id, def, dest, src_rest, no_loop,
1319 lookup_func, lookup_baton))
1321 do_cleanups (back_to);
1326 do_cleanups (back_to);
1333 /* Expand macro references in SRC, appending the results to DEST.
1334 Assume we are re-scanning the result of expanding the macros named
1335 in NO_LOOP, and don't try to re-expand references to them.
1337 SRC must be a shared buffer; DEST must not be one. */
1339 scan (struct macro_buffer *dest,
1340 struct macro_buffer *src,
1341 struct macro_name_list *no_loop,
1342 macro_lookup_ftype *lookup_func,
1345 gdb_assert (src->shared);
1346 gdb_assert (! dest->shared);
1350 struct macro_buffer tok;
1351 char *original_src_start = src->text;
1353 /* Find the next token in SRC. */
1354 if (! get_token (&tok, src))
1357 /* Just for aesthetics. If we skipped some whitespace, copy
1359 if (tok.text > original_src_start)
1361 appendmem (dest, original_src_start, tok.text - original_src_start);
1362 dest->last_token = dest->len;
1365 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1366 /* We didn't end up expanding tok as a macro reference, so
1367 simply append it to dest. */
1368 append_tokens_without_splicing (dest, &tok);
1371 /* Just for aesthetics. If there was any trailing whitespace in
1372 src, copy it to dest. */
1375 appendmem (dest, src->text, src->len);
1376 dest->last_token = dest->len;
1382 macro_expand (const char *source,
1383 macro_lookup_ftype *lookup_func,
1384 void *lookup_func_baton)
1386 struct macro_buffer src, dest;
1387 struct cleanup *back_to;
1389 init_shared_buffer (&src, (char *) source, strlen (source));
1391 init_buffer (&dest, 0);
1392 dest.last_token = 0;
1393 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1395 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1397 appendc (&dest, '\0');
1399 discard_cleanups (back_to);
1405 macro_expand_once (const char *source,
1406 macro_lookup_ftype *lookup_func,
1407 void *lookup_func_baton)
1409 error (_("Expand-once not implemented yet."));
1414 macro_expand_next (char **lexptr,
1415 macro_lookup_ftype *lookup_func,
1418 struct macro_buffer src, dest, tok;
1419 struct cleanup *back_to;
1421 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1422 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1424 /* Set up DEST to receive the expansion, if there is one. */
1425 init_buffer (&dest, 0);
1426 dest.last_token = 0;
1427 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1429 /* Get the text's first preprocessing token. */
1430 if (! get_token (&tok, &src))
1432 do_cleanups (back_to);
1436 /* If it's a macro invocation, expand it. */
1437 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1439 /* It was a macro invocation! Package up the expansion as a
1440 null-terminated string and return it. Set *lexptr to the
1441 start of the next token in the input. */
1442 appendc (&dest, '\0');
1443 discard_cleanups (back_to);
1449 /* It wasn't a macro invocation. */
1450 do_cleanups (back_to);