1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb_obstack.h"
25 #include "gdb_assert.h"
30 /* A resizeable, substringable string type. */
33 /* A string type that we can resize, quickly append to, and use to
34 refer to substrings of other strings. */
37 /* An array of characters. The first LEN bytes are the real text,
38 but there are SIZE bytes allocated to the array. If SIZE is
39 zero, then this doesn't point to a malloc'ed block. If SHARED is
40 non-zero, then this buffer is actually a pointer into some larger
41 string, and we shouldn't append characters to it, etc. Because
42 of sharing, we can't assume in general that the text is
46 /* The number of characters in the string. */
49 /* The number of characters allocated to the string. If SHARED is
50 non-zero, this is meaningless; in this case, we set it to zero so
51 that any "do we have room to append something?" tests will fail,
52 so we don't always have to check SHARED before using this field. */
55 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56 block). Non-zero if TEXT is actually pointing into the middle of
57 some other block, and we shouldn't reallocate it. */
60 /* For detecting token splicing.
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
81 init_buffer (struct macro_buffer *b, int n)
85 b->text = (char *) xmalloc (n);
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
103 buf->last_token = -1;
107 /* Free the text of the buffer B. Raise an error if B is shared. */
109 free_buffer (struct macro_buffer *b)
111 gdb_assert (! b->shared);
116 /* Like free_buffer, but return the text as an xstrdup()d string.
117 This only exists to try to make the API relatively clean. */
120 free_buffer_return_text (struct macro_buffer *b)
122 gdb_assert (! b->shared);
123 gdb_assert (b->size);
128 /* A cleanup function for macro buffers. */
130 cleanup_macro_buffer (void *untyped_buf)
132 free_buffer ((struct macro_buffer *) untyped_buf);
136 /* Resize the buffer B to be at least N bytes long. Raise an error if
137 B shouldn't be resized. */
139 resize_buffer (struct macro_buffer *b, int n)
141 /* We shouldn't be trying to resize shared strings. */
142 gdb_assert (! b->shared);
150 b->text = xrealloc (b->text, b->size);
154 /* Append the character C to the buffer B. */
156 appendc (struct macro_buffer *b, int c)
158 int new_len = b->len + 1;
160 if (new_len > b->size)
161 resize_buffer (b, new_len);
168 /* Append the LEN bytes at ADDR to the buffer B. */
170 appendmem (struct macro_buffer *b, char *addr, int len)
172 int new_len = b->len + len;
174 if (new_len > b->size)
175 resize_buffer (b, new_len);
177 memcpy (b->text + b->len, addr, len);
183 /* Recognizing preprocessor tokens. */
187 macro_is_whitespace (int c)
198 macro_is_digit (int c)
200 return ('0' <= c && c <= '9');
205 macro_is_identifier_nondigit (int c)
208 || ('a' <= c && c <= 'z')
209 || ('A' <= c && c <= 'Z'));
214 set_token (struct macro_buffer *tok, char *start, char *end)
216 init_shared_buffer (tok, start, end - start);
219 /* Presumed; get_identifier may overwrite this. */
220 tok->is_identifier = 0;
225 get_comment (struct macro_buffer *tok, char *p, char *end)
242 set_token (tok, tok_start, p);
246 error (_("Unterminated comment in macro expansion."));
258 set_token (tok, tok_start, p);
267 get_identifier (struct macro_buffer *tok, char *p, char *end)
270 && macro_is_identifier_nondigit (*p))
275 && (macro_is_identifier_nondigit (*p)
276 || macro_is_digit (*p)))
279 set_token (tok, tok_start, p);
280 tok->is_identifier = 1;
289 get_pp_number (struct macro_buffer *tok, char *p, char *end)
292 && (macro_is_digit (*p)
295 && macro_is_digit (p[1]))))
302 && strchr ("eEpP", *p)
303 && (p[1] == '+' || p[1] == '-'))
305 else if (macro_is_digit (*p)
306 || macro_is_identifier_nondigit (*p)
313 set_token (tok, tok_start, p);
322 /* If the text starting at P going up to (but not including) END
323 starts with a character constant, set *TOK to point to that
324 character constant, and return 1. Otherwise, return zero.
325 Signal an error if it contains a malformed or incomplete character
328 get_character_constant (struct macro_buffer *tok, char *p, char *end)
330 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
331 But of course, what really matters is that we handle it the same
332 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
333 to handle escape sequences. */
334 if ((p + 1 <= end && *p == '\'')
336 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
344 else if (*p == 'L' || *p == 'u' || *p == 'U')
347 gdb_assert_not_reached ("unexpected character constant");
352 error (_("Unmatched single quote."));
356 error (_("A character constant must contain at least one "
366 char_count += c_parse_escape (&s, NULL);
376 set_token (tok, tok_start, p);
384 /* If the text starting at P going up to (but not including) END
385 starts with a string literal, set *TOK to point to that string
386 literal, and return 1. Otherwise, return zero. Signal an error if
387 it contains a malformed or incomplete string literal. */
389 get_string_literal (struct macro_buffer *tok, char *p, char *end)
394 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
401 else if (*p == 'L' || *p == 'u' || *p == 'U')
404 gdb_assert_not_reached ("unexpected string literal");
409 error (_("Unterminated string in expression."));
416 error (_("Newline characters may not appear in string "
423 c_parse_escape (&s, NULL);
430 set_token (tok, tok_start, p);
439 get_punctuator (struct macro_buffer *tok, char *p, char *end)
441 /* Here, speed is much less important than correctness and clarity. */
443 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
444 Note that this table is ordered in a special way. A punctuator
445 which is a prefix of another punctuator must appear after its
446 "extension". Otherwise, the wrong token will be returned. */
447 static const char * const punctuators[] = {
448 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
450 "->", "--", "-=", "-",
456 "%>", "%:%:", "%:", "%=", "%",
461 "<<=", "<<", "<=", "<:", "<%", "<",
462 ">>=", ">>", ">=", ">",
471 for (i = 0; punctuators[i]; i++)
473 const char *punctuator = punctuators[i];
475 if (p[0] == punctuator[0])
477 int len = strlen (punctuator);
480 && ! memcmp (p, punctuator, len))
482 set_token (tok, p, p + len);
493 /* Peel the next preprocessor token off of SRC, and put it in TOK.
494 Mutate TOK to refer to the first token in SRC, and mutate SRC to
495 refer to the text after that token. SRC must be a shared buffer;
496 the resulting TOK will be shared, pointing into the same string SRC
497 does. Initialize TOK's last_token field. Return non-zero if we
498 succeed, or 0 if we didn't find any more tokens in SRC. */
500 get_token (struct macro_buffer *tok,
501 struct macro_buffer *src)
504 char *end = p + src->len;
506 gdb_assert (src->shared);
508 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
517 each non-white-space character that cannot be one of the above
519 We don't have to deal with header-name tokens, since those can
520 only occur after a #include, which we will never see. */
523 if (macro_is_whitespace (*p))
525 else if (get_comment (tok, p, end))
527 else if (get_pp_number (tok, p, end)
528 || get_character_constant (tok, p, end)
529 || get_string_literal (tok, p, end)
530 /* Note: the grammar in the standard seems to be
531 ambiguous: L'x' can be either a wide character
532 constant, or an identifier followed by a normal
533 character constant. By trying `get_identifier' after
534 we try get_character_constant and get_string_literal,
535 we give the wide character syntax precedence. Now,
536 since GDB doesn't handle wide character constants
537 anyway, is this the right thing to do? */
538 || get_identifier (tok, p, end)
539 || get_punctuator (tok, p, end))
541 /* How many characters did we consume, including whitespace? */
542 int consumed = p - src->text + tok->len;
544 src->text += consumed;
545 src->len -= consumed;
550 /* We have found a "non-whitespace character that cannot be
551 one of the above." Make a token out of it. */
554 set_token (tok, p, p + 1);
555 consumed = p - src->text + tok->len;
556 src->text += consumed;
557 src->len -= consumed;
566 /* Appending token strings, with and without splicing */
569 /* Append the macro buffer SRC to the end of DEST, and ensure that
570 doing so doesn't splice the token at the end of SRC with the token
571 at the beginning of DEST. SRC and DEST must have their last_token
572 fields set. Upon return, DEST's last_token field is set correctly.
576 If DEST is "(" and SRC is "y", then we can return with
577 DEST set to "(y" --- we've simply appended the two buffers.
579 However, if DEST is "x" and SRC is "y", then we must not return
580 with DEST set to "xy" --- that would splice the two tokens "x" and
581 "y" together to make a single token "xy". However, it would be
582 fine to return with DEST set to "x y". Similarly, "<" and "<" must
583 yield "< <", not "<<", etc. */
585 append_tokens_without_splicing (struct macro_buffer *dest,
586 struct macro_buffer *src)
588 int original_dest_len = dest->len;
589 struct macro_buffer dest_tail, new_token;
591 gdb_assert (src->last_token != -1);
592 gdb_assert (dest->last_token != -1);
594 /* First, just try appending the two, and call get_token to see if
596 appendmem (dest, src->text, src->len);
598 /* If DEST originally had no token abutting its end, then we can't
599 have spliced anything, so we're done. */
600 if (dest->last_token == original_dest_len)
602 dest->last_token = original_dest_len + src->last_token;
606 /* Set DEST_TAIL to point to the last token in DEST, followed by
607 all the stuff we just appended. */
608 init_shared_buffer (&dest_tail,
609 dest->text + dest->last_token,
610 dest->len - dest->last_token);
612 /* Re-parse DEST's last token. We know that DEST used to contain
613 at least one token, so if it doesn't contain any after the
614 append, then we must have spliced "/" and "*" or "/" and "/" to
615 make a comment start. (Just for the record, I got this right
616 the first time. This is not a bug fix.) */
617 if (get_token (&new_token, &dest_tail)
618 && (new_token.text + new_token.len
619 == dest->text + original_dest_len))
621 /* No splice, so we're done. */
622 dest->last_token = original_dest_len + src->last_token;
626 /* Okay, a simple append caused a splice. Let's chop dest back to
627 its original length and try again, but separate the texts with a
629 dest->len = original_dest_len;
631 appendmem (dest, src->text, src->len);
633 init_shared_buffer (&dest_tail,
634 dest->text + dest->last_token,
635 dest->len - dest->last_token);
637 /* Try to re-parse DEST's last token, as above. */
638 if (get_token (&new_token, &dest_tail)
639 && (new_token.text + new_token.len
640 == dest->text + original_dest_len))
642 /* No splice, so we're done. */
643 dest->last_token = original_dest_len + 1 + src->last_token;
647 /* As far as I know, there's no case where inserting a space isn't
648 enough to prevent a splice. */
649 internal_error (__FILE__, __LINE__,
650 _("unable to avoid splicing tokens during macro expansion"));
653 /* Stringify an argument, and insert it into DEST. ARG is the text to
654 stringify; it is LEN bytes long. */
657 stringify (struct macro_buffer *dest, const char *arg, int len)
659 /* Trim initial whitespace from ARG. */
660 while (len > 0 && macro_is_whitespace (*arg))
666 /* Trim trailing whitespace from ARG. */
667 while (len > 0 && macro_is_whitespace (arg[len - 1]))
670 /* Insert the string. */
674 /* We could try to handle strange cases here, like control
675 characters, but there doesn't seem to be much point. */
676 if (macro_is_whitespace (*arg))
678 /* Replace a sequence of whitespace with a single space. */
680 while (len > 1 && macro_is_whitespace (arg[1]))
686 else if (*arg == '\\' || *arg == '"')
688 appendc (dest, '\\');
689 appendc (dest, *arg);
692 appendc (dest, *arg);
697 dest->last_token = dest->len;
700 /* See macroexp.h. */
703 macro_stringify (const char *str)
705 struct macro_buffer buffer;
706 int len = strlen (str);
708 init_buffer (&buffer, len);
709 stringify (&buffer, str, len);
710 appendc (&buffer, '\0');
712 return free_buffer_return_text (&buffer);
716 /* Expanding macros! */
719 /* A singly-linked list of the names of the macros we are currently
720 expanding --- for detecting expansion loops. */
721 struct macro_name_list {
723 struct macro_name_list *next;
727 /* Return non-zero if we are currently expanding the macro named NAME,
728 according to LIST; otherwise, return zero.
730 You know, it would be possible to get rid of all the NO_LOOP
731 arguments to these functions by simply generating a new lookup
732 function and baton which refuses to find the definition for a
733 particular macro, and otherwise delegates the decision to another
734 function/baton pair. But that makes the linked list of excluded
735 macros chained through untyped baton pointers, which will make it
736 harder to debug. :( */
738 currently_rescanning (struct macro_name_list *list, const char *name)
740 for (; list; list = list->next)
741 if (strcmp (name, list->name) == 0)
748 /* Gather the arguments to a macro expansion.
750 NAME is the name of the macro being invoked. (It's only used for
751 printing error messages.)
753 Assume that SRC is the text of the macro invocation immediately
754 following the macro name. For example, if we're processing the
755 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
758 If SRC doesn't start with an open paren ( token at all, return
759 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
761 If SRC doesn't contain a properly terminated argument list, then
764 For a variadic macro, NARGS holds the number of formal arguments to
765 the macro. For a GNU-style variadic macro, this should be the
766 number of named arguments. For a non-variadic macro, NARGS should
769 Otherwise, return a pointer to the first element of an array of
770 macro buffers referring to the argument texts, and set *ARGC_P to
771 the number of arguments we found --- the number of elements in the
772 array. The macro buffers share their text with SRC, and their
773 last_token fields are initialized. The array is allocated with
774 xmalloc, and the caller is responsible for freeing it.
776 NOTE WELL: if SRC starts with a open paren ( token followed
777 immediately by a close paren ) token (e.g., the invocation looks
778 like "foo()"), we treat that as one argument, which happens to be
779 the empty list of tokens. The caller should keep in mind that such
780 a sequence of tokens is a valid way to invoke one-parameter
781 function-like macros, but also a valid way to invoke zero-parameter
782 function-like macros. Eeew.
784 Consume the tokens from SRC; after this call, SRC contains the text
785 following the invocation. */
787 static struct macro_buffer *
788 gather_arguments (const char *name, struct macro_buffer *src,
789 int nargs, int *argc_p)
791 struct macro_buffer tok;
792 int args_len, args_size;
793 struct macro_buffer *args = NULL;
794 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
796 /* Does SRC start with an opening paren token? Read from a copy of
797 SRC, so SRC itself is unaffected if we don't find an opening
800 struct macro_buffer temp;
802 init_shared_buffer (&temp, src->text, src->len);
804 if (! get_token (&tok, &temp)
806 || tok.text[0] != '(')
808 discard_cleanups (back_to);
813 /* Consume SRC's opening paren. */
814 get_token (&tok, src);
818 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
822 struct macro_buffer *arg;
825 /* Make sure we have room for the next argument. */
826 if (args_len >= args_size)
829 args = xrealloc (args, sizeof (*args) * args_size);
832 /* Initialize the next argument. */
833 arg = &args[args_len++];
834 set_token (arg, src->text, src->text);
836 /* Gather the argument's tokens. */
840 if (! get_token (&tok, src))
841 error (_("Malformed argument list for macro `%s'."), name);
843 /* Is tok an opening paren? */
844 if (tok.len == 1 && tok.text[0] == '(')
847 /* Is tok is a closing paren? */
848 else if (tok.len == 1 && tok.text[0] == ')')
850 /* If it's a closing paren at the top level, then that's
851 the end of the argument list. */
854 /* In the varargs case, the last argument may be
855 missing. Add an empty argument in this case. */
856 if (nargs != -1 && args_len == nargs - 1)
858 /* Make sure we have room for the argument. */
859 if (args_len >= args_size)
862 args = xrealloc (args, sizeof (*args) * args_size);
864 arg = &args[args_len++];
865 set_token (arg, src->text, src->text);
868 discard_cleanups (back_to);
876 /* If tok is a comma at top level, then that's the end of
877 the current argument. However, if we are handling a
878 variadic macro and we are computing the last argument, we
879 want to include the comma and remaining tokens. */
880 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
881 && (nargs == -1 || args_len < nargs))
884 /* Extend the current argument to enclose this token. If
885 this is the current argument's first token, leave out any
886 leading whitespace, just for aesthetics. */
889 arg->text = tok.text;
895 arg->len = (tok.text + tok.len) - arg->text;
896 arg->last_token = tok.text - arg->text;
903 /* The `expand' and `substitute_args' functions both invoke `scan'
904 recursively, so we need a forward declaration somewhere. */
905 static void scan (struct macro_buffer *dest,
906 struct macro_buffer *src,
907 struct macro_name_list *no_loop,
908 macro_lookup_ftype *lookup_func,
912 /* A helper function for substitute_args.
914 ARGV is a vector of all the arguments; ARGC is the number of
915 arguments. IS_VARARGS is true if the macro being substituted is a
916 varargs macro; in this case VA_ARG_NAME is the name of the
917 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
920 If the token TOK is the name of a parameter, return the parameter's
921 index. If TOK is not an argument, return -1. */
924 find_parameter (const struct macro_buffer *tok,
925 int is_varargs, const struct macro_buffer *va_arg_name,
926 int argc, const char * const *argv)
930 if (! tok->is_identifier)
933 for (i = 0; i < argc; ++i)
934 if (tok->len == strlen (argv[i])
935 && !memcmp (tok->text, argv[i], tok->len))
938 if (is_varargs && tok->len == va_arg_name->len
939 && ! memcmp (tok->text, va_arg_name->text, tok->len))
945 /* Given the macro definition DEF, being invoked with the actual
946 arguments given by ARGC and ARGV, substitute the arguments into the
947 replacement list, and store the result in DEST.
949 IS_VARARGS should be true if DEF is a varargs macro. In this case,
950 VA_ARG_NAME should be the name of the "variable" argument -- either
951 __VA_ARGS__ for c99-style varargs, or the final argument name, for
952 GNU-style varargs. If IS_VARARGS is false, this parameter is
955 If it is necessary to expand macro invocations in one of the
956 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
957 definitions, and don't expand invocations of the macros listed in
961 substitute_args (struct macro_buffer *dest,
962 struct macro_definition *def,
963 int is_varargs, const struct macro_buffer *va_arg_name,
964 int argc, struct macro_buffer *argv,
965 struct macro_name_list *no_loop,
966 macro_lookup_ftype *lookup_func,
969 /* A macro buffer for the macro's replacement list. */
970 struct macro_buffer replacement_list;
971 /* The token we are currently considering. */
972 struct macro_buffer tok;
973 /* The replacement list's pointer from just before TOK was lexed. */
974 char *original_rl_start;
975 /* We have a single lookahead token to handle token splicing. */
976 struct macro_buffer lookahead;
977 /* The lookahead token might not be valid. */
979 /* The replacement list's pointer from just before LOOKAHEAD was
981 char *lookahead_rl_start;
983 init_shared_buffer (&replacement_list, (char *) def->replacement,
984 strlen (def->replacement));
986 gdb_assert (dest->len == 0);
987 dest->last_token = 0;
989 original_rl_start = replacement_list.text;
990 if (! get_token (&tok, &replacement_list))
992 lookahead_rl_start = replacement_list.text;
993 lookahead_valid = get_token (&lookahead, &replacement_list);
997 /* Just for aesthetics. If we skipped some whitespace, copy
999 if (tok.text > original_rl_start)
1001 appendmem (dest, original_rl_start, tok.text - original_rl_start);
1002 dest->last_token = dest->len;
1005 /* Is this token the stringification operator? */
1007 && tok.text[0] == '#')
1011 if (!lookahead_valid)
1012 error (_("Stringification operator requires an argument."));
1014 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1015 def->argc, def->argv);
1017 error (_("Argument to stringification operator must name "
1018 "a macro parameter."));
1020 stringify (dest, argv[arg].text, argv[arg].len);
1022 /* Read one token and let the loop iteration code handle the
1024 lookahead_rl_start = replacement_list.text;
1025 lookahead_valid = get_token (&lookahead, &replacement_list);
1027 /* Is this token the splicing operator? */
1028 else if (tok.len == 2
1029 && tok.text[0] == '#'
1030 && tok.text[1] == '#')
1031 error (_("Stray splicing operator"));
1032 /* Is the next token the splicing operator? */
1033 else if (lookahead_valid
1034 && lookahead.len == 2
1035 && lookahead.text[0] == '#'
1036 && lookahead.text[1] == '#')
1039 int prev_was_comma = 0;
1041 /* Note that GCC warns if the result of splicing is not a
1042 token. In the debugger there doesn't seem to be much
1043 benefit from doing this. */
1045 /* Insert the first token. */
1046 if (tok.len == 1 && tok.text[0] == ',')
1050 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1051 def->argc, def->argv);
1054 appendmem (dest, argv[arg].text, argv[arg].len);
1056 appendmem (dest, tok.text, tok.len);
1059 /* Apply a possible sequence of ## operators. */
1062 if (! get_token (&tok, &replacement_list))
1063 error (_("Splicing operator at end of macro"));
1065 /* Handle a comma before a ##. If we are handling
1066 varargs, and the token on the right hand side is the
1067 varargs marker, and the final argument is empty or
1068 missing, then drop the comma. This is a GNU
1069 extension. There is one ambiguous case here,
1070 involving pedantic behavior with an empty argument,
1071 but we settle that in favor of GNU-style (GCC uses an
1072 option). If we aren't dealing with varargs, we
1073 simply insert the comma. */
1077 && tok.len == va_arg_name->len
1078 && !memcmp (tok.text, va_arg_name->text, tok.len)
1079 && argv[argc - 1].len == 0))
1080 appendmem (dest, ",", 1);
1084 /* Insert the token. If it is a parameter, insert the
1085 argument. If it is a comma, treat it specially. */
1086 if (tok.len == 1 && tok.text[0] == ',')
1090 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1091 def->argc, def->argv);
1094 appendmem (dest, argv[arg].text, argv[arg].len);
1096 appendmem (dest, tok.text, tok.len);
1099 /* Now read another token. If it is another splice, we
1101 original_rl_start = replacement_list.text;
1102 if (! get_token (&tok, &replacement_list))
1109 && tok.text[0] == '#'
1110 && tok.text[1] == '#'))
1116 /* We saw a comma. Insert it now. */
1117 appendmem (dest, ",", 1);
1120 dest->last_token = dest->len;
1122 lookahead_valid = 0;
1125 /* Set up for the loop iterator. */
1127 lookahead_rl_start = original_rl_start;
1128 lookahead_valid = 1;
1133 /* Is this token an identifier? */
1134 int substituted = 0;
1135 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1136 def->argc, def->argv);
1140 struct macro_buffer arg_src;
1142 /* Expand any macro invocations in the argument text,
1143 and append the result to dest. Remember that scan
1144 mutates its source, so we need to scan a new buffer
1145 referring to the argument's text, not the argument
1147 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1148 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1152 /* If it wasn't a parameter, then just copy it across. */
1154 append_tokens_without_splicing (dest, &tok);
1157 if (! lookahead_valid)
1161 original_rl_start = lookahead_rl_start;
1163 lookahead_rl_start = replacement_list.text;
1164 lookahead_valid = get_token (&lookahead, &replacement_list);
1169 /* Expand a call to a macro named ID, whose definition is DEF. Append
1170 its expansion to DEST. SRC is the input text following the ID
1171 token. We are currently rescanning the expansions of the macros
1172 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1173 LOOKUP_BATON to find definitions for any nested macro references.
1175 Return 1 if we decided to expand it, zero otherwise. (If it's a
1176 function-like macro name that isn't followed by an argument list,
1177 we don't expand it.) If we return zero, leave SRC unchanged. */
1179 expand (const char *id,
1180 struct macro_definition *def,
1181 struct macro_buffer *dest,
1182 struct macro_buffer *src,
1183 struct macro_name_list *no_loop,
1184 macro_lookup_ftype *lookup_func,
1187 struct macro_name_list new_no_loop;
1189 /* Create a new node to be added to the front of the no-expand list.
1190 This list is appropriate for re-scanning replacement lists, but
1191 it is *not* appropriate for scanning macro arguments; invocations
1192 of the macro whose arguments we are gathering *do* get expanded
1194 new_no_loop.name = id;
1195 new_no_loop.next = no_loop;
1197 /* What kind of macro are we expanding? */
1198 if (def->kind == macro_object_like)
1200 struct macro_buffer replacement_list;
1202 init_shared_buffer (&replacement_list, (char *) def->replacement,
1203 strlen (def->replacement));
1205 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1208 else if (def->kind == macro_function_like)
1210 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1212 struct macro_buffer *argv = NULL;
1213 struct macro_buffer substituted;
1214 struct macro_buffer substituted_src;
1215 struct macro_buffer va_arg_name = {0};
1220 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1222 /* In C99-style varargs, substitution is done using
1224 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1225 strlen ("__VA_ARGS__"));
1230 int len = strlen (def->argv[def->argc - 1]);
1233 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1235 /* In GNU-style varargs, the name of the
1236 substitution parameter is the name of the formal
1237 argument without the "...". */
1238 init_shared_buffer (&va_arg_name,
1239 (char *) def->argv[def->argc - 1],
1246 make_cleanup (free_current_contents, &argv);
1247 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1250 /* If we couldn't find any argument list, then we don't expand
1254 do_cleanups (back_to);
1258 /* Check that we're passing an acceptable number of arguments for
1260 if (argc != def->argc)
1262 if (is_varargs && argc >= def->argc - 1)
1266 /* Remember that a sequence of tokens like "foo()" is a
1267 valid invocation of a macro expecting either zero or one
1269 else if (! (argc == 1
1272 error (_("Wrong number of arguments to macro `%s' "
1273 "(expected %d, got %d)."),
1274 id, def->argc, argc);
1277 /* Note that we don't expand macro invocations in the arguments
1278 yet --- we let subst_args take care of that. Parameters that
1279 appear as operands of the stringifying operator "#" or the
1280 splicing operator "##" don't get macro references expanded,
1281 so we can't really tell whether it's appropriate to macro-
1282 expand an argument until we see how it's being used. */
1283 init_buffer (&substituted, 0);
1284 make_cleanup (cleanup_macro_buffer, &substituted);
1285 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1286 argc, argv, no_loop, lookup_func, lookup_baton);
1288 /* Now `substituted' is the macro's replacement list, with all
1289 argument values substituted into it properly. Re-scan it for
1290 macro references, but don't expand invocations of this macro.
1292 We create a new buffer, `substituted_src', which points into
1293 `substituted', and scan that. We can't scan `substituted'
1294 itself, since the tokenization process moves the buffer's
1295 text pointer around, and we still need to be able to find
1296 `substituted's original text buffer after scanning it so we
1298 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1299 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1301 do_cleanups (back_to);
1306 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1310 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1311 constitute a macro invokation not forbidden in NO_LOOP, append its
1312 expansion to DEST and return non-zero. Otherwise, return zero, and
1313 leave DEST unchanged.
1315 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1316 SRC_FIRST must be a string built by get_token. */
1318 maybe_expand (struct macro_buffer *dest,
1319 struct macro_buffer *src_first,
1320 struct macro_buffer *src_rest,
1321 struct macro_name_list *no_loop,
1322 macro_lookup_ftype *lookup_func,
1325 gdb_assert (src_first->shared);
1326 gdb_assert (src_rest->shared);
1327 gdb_assert (! dest->shared);
1329 /* Is this token an identifier? */
1330 if (src_first->is_identifier)
1332 /* Make a null-terminated copy of it, since that's what our
1333 lookup function expects. */
1334 char *id = xmalloc (src_first->len + 1);
1335 struct cleanup *back_to = make_cleanup (xfree, id);
1337 memcpy (id, src_first->text, src_first->len);
1338 id[src_first->len] = 0;
1340 /* If we're currently re-scanning the result of expanding
1341 this macro, don't expand it again. */
1342 if (! currently_rescanning (no_loop, id))
1344 /* Does this identifier have a macro definition in scope? */
1345 struct macro_definition *def = lookup_func (id, lookup_baton);
1347 if (def && expand (id, def, dest, src_rest, no_loop,
1348 lookup_func, lookup_baton))
1350 do_cleanups (back_to);
1355 do_cleanups (back_to);
1362 /* Expand macro references in SRC, appending the results to DEST.
1363 Assume we are re-scanning the result of expanding the macros named
1364 in NO_LOOP, and don't try to re-expand references to them.
1366 SRC must be a shared buffer; DEST must not be one. */
1368 scan (struct macro_buffer *dest,
1369 struct macro_buffer *src,
1370 struct macro_name_list *no_loop,
1371 macro_lookup_ftype *lookup_func,
1374 gdb_assert (src->shared);
1375 gdb_assert (! dest->shared);
1379 struct macro_buffer tok;
1380 char *original_src_start = src->text;
1382 /* Find the next token in SRC. */
1383 if (! get_token (&tok, src))
1386 /* Just for aesthetics. If we skipped some whitespace, copy
1388 if (tok.text > original_src_start)
1390 appendmem (dest, original_src_start, tok.text - original_src_start);
1391 dest->last_token = dest->len;
1394 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1395 /* We didn't end up expanding tok as a macro reference, so
1396 simply append it to dest. */
1397 append_tokens_without_splicing (dest, &tok);
1400 /* Just for aesthetics. If there was any trailing whitespace in
1401 src, copy it to dest. */
1404 appendmem (dest, src->text, src->len);
1405 dest->last_token = dest->len;
1411 macro_expand (const char *source,
1412 macro_lookup_ftype *lookup_func,
1413 void *lookup_func_baton)
1415 struct macro_buffer src, dest;
1416 struct cleanup *back_to;
1418 init_shared_buffer (&src, (char *) source, strlen (source));
1420 init_buffer (&dest, 0);
1421 dest.last_token = 0;
1422 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1424 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1426 appendc (&dest, '\0');
1428 discard_cleanups (back_to);
1434 macro_expand_once (const char *source,
1435 macro_lookup_ftype *lookup_func,
1436 void *lookup_func_baton)
1438 error (_("Expand-once not implemented yet."));
1443 macro_expand_next (const char **lexptr,
1444 macro_lookup_ftype *lookup_func,
1447 struct macro_buffer src, dest, tok;
1448 struct cleanup *back_to;
1450 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1451 init_shared_buffer (&src, (char *) *lexptr, strlen (*lexptr));
1453 /* Set up DEST to receive the expansion, if there is one. */
1454 init_buffer (&dest, 0);
1455 dest.last_token = 0;
1456 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1458 /* Get the text's first preprocessing token. */
1459 if (! get_token (&tok, &src))
1461 do_cleanups (back_to);
1465 /* If it's a macro invocation, expand it. */
1466 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1468 /* It was a macro invocation! Package up the expansion as a
1469 null-terminated string and return it. Set *lexptr to the
1470 start of the next token in the input. */
1471 appendc (&dest, '\0');
1472 discard_cleanups (back_to);
1478 /* It wasn't a macro invocation. */
1479 do_cleanups (back_to);