Automatic date update in version.in
[external/binutils.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2    Copyright (C) 2002-2019 Free Software Foundation, Inc.
3    Contributed by Red Hat, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "c-lang.h"
26
27
28 \f
29 /* A resizeable, substringable string type.  */
30
31
32 /* A string type that we can resize, quickly append to, and use to
33    refer to substrings of other strings.  */
34 struct macro_buffer
35 {
36   /* An array of characters.  The first LEN bytes are the real text,
37      but there are SIZE bytes allocated to the array.  If SIZE is
38      zero, then this doesn't point to a malloc'ed block.  If SHARED is
39      non-zero, then this buffer is actually a pointer into some larger
40      string, and we shouldn't append characters to it, etc.  Because
41      of sharing, we can't assume in general that the text is
42      null-terminated.  */
43   char *text;
44
45   /* The number of characters in the string.  */
46   int len;
47
48   /* The number of characters allocated to the string.  If SHARED is
49      non-zero, this is meaningless; in this case, we set it to zero so
50      that any "do we have room to append something?" tests will fail,
51      so we don't always have to check SHARED before using this field.  */
52   int size;
53
54   /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55      block).  Non-zero if TEXT is actually pointing into the middle of
56      some other block, or to a string literal, and we shouldn't
57      reallocate it.  */
58   bool shared;
59
60   /* For detecting token splicing. 
61
62      This is the index in TEXT of the first character of the token
63      that abuts the end of TEXT.  If TEXT contains no tokens, then we
64      set this equal to LEN.  If TEXT ends in whitespace, then there is
65      no token abutting the end of TEXT (it's just whitespace), and
66      again, we set this equal to LEN.  We set this to -1 if we don't
67      know the nature of TEXT.  */
68   int last_token = -1;
69
70   /* If this buffer is holding the result from get_token, then this 
71      is non-zero if it is an identifier token, zero otherwise.  */
72   int is_identifier = 0;
73
74
75   macro_buffer ()
76     : text (NULL),
77       len (0),
78       size (0),
79       shared (false)
80   {
81   }
82
83   /* Set the macro buffer to the empty string, guessing that its
84      final contents will fit in N bytes.  (It'll get resized if it
85      doesn't, so the guess doesn't have to be right.)  Allocate the
86      initial storage with xmalloc.  */
87   explicit macro_buffer (int n)
88     : len (0),
89       size (n),
90       shared (false)
91   {
92     if (n > 0)
93       text = (char *) xmalloc (n);
94     else
95       text = NULL;
96   }
97
98   /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
99      shared substring.  */
100   macro_buffer (const char *addr, int len)
101   {
102     set_shared (addr, len);
103   }
104
105   /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
106      shared substring.  */
107   void set_shared (const char *addr, int len_)
108   {
109     text = (char *) addr;
110     len = len_;
111     size = 0;
112     shared = true;
113   }
114
115   macro_buffer& operator= (const macro_buffer &src)
116   {
117     gdb_assert (src.shared);
118     gdb_assert (shared);
119     set_shared (src.text, src.len);
120     last_token = src.last_token;
121     is_identifier = src.is_identifier;
122     return *this;
123   }
124
125   ~macro_buffer ()
126   {
127     if (! shared && size)
128       xfree (text);
129   }
130
131   /* Release the text of the buffer to the caller, which is now
132      responsible for freeing it.  */
133   char *release ()
134   {
135     gdb_assert (! shared);
136     gdb_assert (size);
137     char *result = text;
138     text = NULL;
139     return result;
140   }
141
142   /* Resize the buffer to be at least N bytes long.  Raise an error if
143      the buffer shouldn't be resized.  */
144   void resize_buffer (int n)
145   {
146     /* We shouldn't be trying to resize shared strings.  */
147     gdb_assert (! shared);
148
149     if (size == 0)
150       size = n;
151     else
152       while (size <= n)
153         size *= 2;
154
155     text = (char *) xrealloc (text, size);
156   }
157
158   /* Append the character C to the buffer.  */
159   void appendc (int c)
160   {
161     int new_len = len + 1;
162
163     if (new_len > size)
164       resize_buffer (new_len);
165
166     text[len] = c;
167     len = new_len;
168   }
169
170   /* Append the COUNT bytes at ADDR to the buffer.  */
171   void appendmem (const char *addr, int count)
172   {
173     int new_len = len + count;
174
175     if (new_len > size)
176       resize_buffer (new_len);
177
178     memcpy (text + len, addr, count);
179     len = new_len;
180   }
181 };
182
183
184 \f
185 /* Recognizing preprocessor tokens.  */
186
187
188 int
189 macro_is_whitespace (int c)
190 {
191   return (c == ' '
192           || c == '\t'
193           || c == '\n'
194           || c == '\v'
195           || c == '\f');
196 }
197
198
199 int
200 macro_is_digit (int c)
201 {
202   return ('0' <= c && c <= '9');
203 }
204
205
206 int
207 macro_is_identifier_nondigit (int c)
208 {
209   return (c == '_'
210           || ('a' <= c && c <= 'z')
211           || ('A' <= c && c <= 'Z'));
212 }
213
214
215 static void
216 set_token (struct macro_buffer *tok, char *start, char *end)
217 {
218   tok->set_shared (start, end - start);
219   tok->last_token = 0;
220
221   /* Presumed; get_identifier may overwrite this.  */
222   tok->is_identifier = 0;
223 }
224
225
226 static int
227 get_comment (struct macro_buffer *tok, char *p, char *end)
228 {
229   if (p + 2 > end)
230     return 0;
231   else if (p[0] == '/'
232            && p[1] == '*')
233     {
234       char *tok_start = p;
235
236       p += 2;
237
238       for (; p < end; p++)
239         if (p + 2 <= end
240             && p[0] == '*'
241             && p[1] == '/')
242           {
243             p += 2;
244             set_token (tok, tok_start, p);
245             return 1;
246           }
247
248       error (_("Unterminated comment in macro expansion."));
249     }
250   else if (p[0] == '/'
251            && p[1] == '/')
252     {
253       char *tok_start = p;
254
255       p += 2;
256       for (; p < end; p++)
257         if (*p == '\n')
258           break;
259
260       set_token (tok, tok_start, p);
261       return 1;
262     }
263   else
264     return 0;
265 }
266
267
268 static int
269 get_identifier (struct macro_buffer *tok, char *p, char *end)
270 {
271   if (p < end
272       && macro_is_identifier_nondigit (*p))
273     {
274       char *tok_start = p;
275
276       while (p < end
277              && (macro_is_identifier_nondigit (*p)
278                  || macro_is_digit (*p)))
279         p++;
280
281       set_token (tok, tok_start, p);
282       tok->is_identifier = 1;
283       return 1;
284     }
285   else
286     return 0;
287 }
288
289
290 static int
291 get_pp_number (struct macro_buffer *tok, char *p, char *end)
292 {
293   if (p < end
294       && (macro_is_digit (*p)
295           || (*p == '.'
296               && p + 2 <= end
297               && macro_is_digit (p[1]))))
298     {
299       char *tok_start = p;
300
301       while (p < end)
302         {
303           if (p + 2 <= end
304               && strchr ("eEpP", *p)
305               && (p[1] == '+' || p[1] == '-'))
306             p += 2;
307           else if (macro_is_digit (*p)
308                    || macro_is_identifier_nondigit (*p)
309                    || *p == '.')
310             p++;
311           else
312             break;
313         }
314
315       set_token (tok, tok_start, p);
316       return 1;
317     }
318   else
319     return 0;
320 }
321
322
323
324 /* If the text starting at P going up to (but not including) END
325    starts with a character constant, set *TOK to point to that
326    character constant, and return 1.  Otherwise, return zero.
327    Signal an error if it contains a malformed or incomplete character
328    constant.  */
329 static int
330 get_character_constant (struct macro_buffer *tok, char *p, char *end)
331 {
332   /* ISO/IEC 9899:1999 (E)  Section 6.4.4.4  paragraph 1 
333      But of course, what really matters is that we handle it the same
334      way GDB's C/C++ lexer does.  So we call parse_escape in utils.c
335      to handle escape sequences.  */
336   if ((p + 1 <= end && *p == '\'')
337       || (p + 2 <= end
338           && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
339           && p[1] == '\''))
340     {
341       char *tok_start = p;
342       int char_count = 0;
343
344       if (*p == '\'')
345         p++;
346       else if (*p == 'L' || *p == 'u' || *p == 'U')
347         p += 2;
348       else
349         gdb_assert_not_reached ("unexpected character constant");
350
351       for (;;)
352         {
353           if (p >= end)
354             error (_("Unmatched single quote."));
355           else if (*p == '\'')
356             {
357               if (!char_count)
358                 error (_("A character constant must contain at least one "
359                        "character."));
360               p++;
361               break;
362             }
363           else if (*p == '\\')
364             {
365               const char *s, *o;
366
367               s = o = ++p;
368               char_count += c_parse_escape (&s, NULL);
369               p += s - o;
370             }
371           else
372             {
373               p++;
374               char_count++;
375             }
376         }
377
378       set_token (tok, tok_start, p);
379       return 1;
380     }
381   else
382     return 0;
383 }
384
385
386 /* If the text starting at P going up to (but not including) END
387    starts with a string literal, set *TOK to point to that string
388    literal, and return 1.  Otherwise, return zero.  Signal an error if
389    it contains a malformed or incomplete string literal.  */
390 static int
391 get_string_literal (struct macro_buffer *tok, char *p, char *end)
392 {
393   if ((p + 1 <= end
394        && *p == '"')
395       || (p + 2 <= end
396           && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
397           && p[1] == '"'))
398     {
399       char *tok_start = p;
400
401       if (*p == '"')
402         p++;
403       else if (*p == 'L' || *p == 'u' || *p == 'U')
404         p += 2;
405       else
406         gdb_assert_not_reached ("unexpected string literal");
407
408       for (;;)
409         {
410           if (p >= end)
411             error (_("Unterminated string in expression."));
412           else if (*p == '"')
413             {
414               p++;
415               break;
416             }
417           else if (*p == '\n')
418             error (_("Newline characters may not appear in string "
419                    "constants."));
420           else if (*p == '\\')
421             {
422               const char *s, *o;
423
424               s = o = ++p;
425               c_parse_escape (&s, NULL);
426               p += s - o;
427             }
428           else
429             p++;
430         }
431
432       set_token (tok, tok_start, p);
433       return 1;
434     }
435   else
436     return 0;
437 }
438
439
440 static int
441 get_punctuator (struct macro_buffer *tok, char *p, char *end)
442 {
443   /* Here, speed is much less important than correctness and clarity.  */
444
445   /* ISO/IEC 9899:1999 (E)  Section 6.4.6  Paragraph 1.
446      Note that this table is ordered in a special way.  A punctuator
447      which is a prefix of another punctuator must appear after its
448      "extension".  Otherwise, the wrong token will be returned.  */
449   static const char * const punctuators[] = {
450     "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
451     "...", ".",
452     "->", "--", "-=", "-",
453     "++", "+=", "+",
454     "*=", "*",
455     "!=", "!",
456     "&&", "&=", "&",
457     "/=", "/",
458     "%>", "%:%:", "%:", "%=", "%",
459     "^=", "^",
460     "##", "#",
461     ":>", ":",
462     "||", "|=", "|",
463     "<<=", "<<", "<=", "<:", "<%", "<",
464     ">>=", ">>", ">=", ">",
465     "==", "=",
466     0
467   };
468
469   int i;
470
471   if (p + 1 <= end)
472     {
473       for (i = 0; punctuators[i]; i++)
474         {
475           const char *punctuator = punctuators[i];
476
477           if (p[0] == punctuator[0])
478             {
479               int len = strlen (punctuator);
480
481               if (p + len <= end
482                   && ! memcmp (p, punctuator, len))
483                 {
484                   set_token (tok, p, p + len);
485                   return 1;
486                 }
487             }
488         }
489     }
490
491   return 0;
492 }
493
494
495 /* Peel the next preprocessor token off of SRC, and put it in TOK.
496    Mutate TOK to refer to the first token in SRC, and mutate SRC to
497    refer to the text after that token.  SRC must be a shared buffer;
498    the resulting TOK will be shared, pointing into the same string SRC
499    does.  Initialize TOK's last_token field.  Return non-zero if we
500    succeed, or 0 if we didn't find any more tokens in SRC.  */
501 static int
502 get_token (struct macro_buffer *tok,
503            struct macro_buffer *src)
504 {
505   char *p = src->text;
506   char *end = p + src->len;
507
508   gdb_assert (src->shared);
509
510   /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
511
512      preprocessing-token: 
513          header-name
514          identifier
515          pp-number
516          character-constant
517          string-literal
518          punctuator
519          each non-white-space character that cannot be one of the above
520
521      We don't have to deal with header-name tokens, since those can
522      only occur after a #include, which we will never see.  */
523
524   while (p < end)
525     if (macro_is_whitespace (*p))
526       p++;
527     else if (get_comment (tok, p, end))
528       p += tok->len;
529     else if (get_pp_number (tok, p, end)
530              || get_character_constant (tok, p, end)
531              || get_string_literal (tok, p, end)
532              /* Note: the grammar in the standard seems to be
533                 ambiguous: L'x' can be either a wide character
534                 constant, or an identifier followed by a normal
535                 character constant.  By trying `get_identifier' after
536                 we try get_character_constant and get_string_literal,
537                 we give the wide character syntax precedence.  Now,
538                 since GDB doesn't handle wide character constants
539                 anyway, is this the right thing to do?  */
540              || get_identifier (tok, p, end)
541              || get_punctuator (tok, p, end))
542       {
543         /* How many characters did we consume, including whitespace?  */
544         int consumed = p - src->text + tok->len;
545
546         src->text += consumed;
547         src->len -= consumed;
548         return 1;
549       }
550     else 
551       {
552         /* We have found a "non-whitespace character that cannot be
553            one of the above."  Make a token out of it.  */
554         int consumed;
555
556         set_token (tok, p, p + 1);
557         consumed = p - src->text + tok->len;
558         src->text += consumed;
559         src->len -= consumed;
560         return 1;
561       }
562
563   return 0;
564 }
565
566
567 \f
568 /* Appending token strings, with and without splicing  */
569
570
571 /* Append the macro buffer SRC to the end of DEST, and ensure that
572    doing so doesn't splice the token at the end of SRC with the token
573    at the beginning of DEST.  SRC and DEST must have their last_token
574    fields set.  Upon return, DEST's last_token field is set correctly.
575
576    For example:
577
578    If DEST is "(" and SRC is "y", then we can return with
579    DEST set to "(y" --- we've simply appended the two buffers.
580
581    However, if DEST is "x" and SRC is "y", then we must not return
582    with DEST set to "xy" --- that would splice the two tokens "x" and
583    "y" together to make a single token "xy".  However, it would be
584    fine to return with DEST set to "x y".  Similarly, "<" and "<" must
585    yield "< <", not "<<", etc.  */
586 static void
587 append_tokens_without_splicing (struct macro_buffer *dest,
588                                 struct macro_buffer *src)
589 {
590   int original_dest_len = dest->len;
591   struct macro_buffer dest_tail, new_token;
592
593   gdb_assert (src->last_token != -1);
594   gdb_assert (dest->last_token != -1);
595   
596   /* First, just try appending the two, and call get_token to see if
597      we got a splice.  */
598   dest->appendmem (src->text, src->len);
599
600   /* If DEST originally had no token abutting its end, then we can't
601      have spliced anything, so we're done.  */
602   if (dest->last_token == original_dest_len)
603     {
604       dest->last_token = original_dest_len + src->last_token;
605       return;
606     }
607
608   /* Set DEST_TAIL to point to the last token in DEST, followed by
609      all the stuff we just appended.  */
610   dest_tail.set_shared (dest->text + dest->last_token,
611                         dest->len - dest->last_token);
612
613   /* Re-parse DEST's last token.  We know that DEST used to contain
614      at least one token, so if it doesn't contain any after the
615      append, then we must have spliced "/" and "*" or "/" and "/" to
616      make a comment start.  (Just for the record, I got this right
617      the first time.  This is not a bug fix.)  */
618   if (get_token (&new_token, &dest_tail)
619       && (new_token.text + new_token.len
620           == dest->text + original_dest_len))
621     {
622       /* No splice, so we're done.  */
623       dest->last_token = original_dest_len + src->last_token;
624       return;
625     }
626
627   /* Okay, a simple append caused a splice.  Let's chop dest back to
628      its original length and try again, but separate the texts with a
629      space.  */
630   dest->len = original_dest_len;
631   dest->appendc (' ');
632   dest->appendmem (src->text, src->len);
633
634   dest_tail.set_shared (dest->text + dest->last_token,
635                         dest->len - dest->last_token);
636
637   /* Try to re-parse DEST's last token, as above.  */
638   if (get_token (&new_token, &dest_tail)
639       && (new_token.text + new_token.len
640           == dest->text + original_dest_len))
641     {
642       /* No splice, so we're done.  */
643       dest->last_token = original_dest_len + 1 + src->last_token;
644       return;
645     }
646
647   /* As far as I know, there's no case where inserting a space isn't
648      enough to prevent a splice.  */
649   internal_error (__FILE__, __LINE__,
650                   _("unable to avoid splicing tokens during macro expansion"));
651 }
652
653 /* Stringify an argument, and insert it into DEST.  ARG is the text to
654    stringify; it is LEN bytes long.  */
655
656 static void
657 stringify (struct macro_buffer *dest, const char *arg, int len)
658 {
659   /* Trim initial whitespace from ARG.  */
660   while (len > 0 && macro_is_whitespace (*arg))
661     {
662       ++arg;
663       --len;
664     }
665
666   /* Trim trailing whitespace from ARG.  */
667   while (len > 0 && macro_is_whitespace (arg[len - 1]))
668     --len;
669
670   /* Insert the string.  */
671   dest->appendc ('"');
672   while (len > 0)
673     {
674       /* We could try to handle strange cases here, like control
675          characters, but there doesn't seem to be much point.  */
676       if (macro_is_whitespace (*arg))
677         {
678           /* Replace a sequence of whitespace with a single space.  */
679           dest->appendc (' ');
680           while (len > 1 && macro_is_whitespace (arg[1]))
681             {
682               ++arg;
683               --len;
684             }
685         }
686       else if (*arg == '\\' || *arg == '"')
687         {
688           dest->appendc ('\\');
689           dest->appendc (*arg);
690         }
691       else
692         dest->appendc (*arg);
693       ++arg;
694       --len;
695     }
696   dest->appendc ('"');
697   dest->last_token = dest->len;
698 }
699
700 /* See macroexp.h.  */
701
702 char *
703 macro_stringify (const char *str)
704 {
705   int len = strlen (str);
706   struct macro_buffer buffer (len);
707
708   stringify (&buffer, str, len);
709   buffer.appendc ('\0');
710
711   return buffer.release ();
712 }
713
714 \f
715 /* Expanding macros!  */
716
717
718 /* A singly-linked list of the names of the macros we are currently 
719    expanding --- for detecting expansion loops.  */
720 struct macro_name_list {
721   const char *name;
722   struct macro_name_list *next;
723 };
724
725
726 /* Return non-zero if we are currently expanding the macro named NAME,
727    according to LIST; otherwise, return zero.
728
729    You know, it would be possible to get rid of all the NO_LOOP
730    arguments to these functions by simply generating a new lookup
731    function and baton which refuses to find the definition for a
732    particular macro, and otherwise delegates the decision to another
733    function/baton pair.  But that makes the linked list of excluded
734    macros chained through untyped baton pointers, which will make it
735    harder to debug.  :(  */
736 static int
737 currently_rescanning (struct macro_name_list *list, const char *name)
738 {
739   for (; list; list = list->next)
740     if (strcmp (name, list->name) == 0)
741       return 1;
742
743   return 0;
744 }
745
746
747 /* Gather the arguments to a macro expansion.
748
749    NAME is the name of the macro being invoked.  (It's only used for
750    printing error messages.)
751
752    Assume that SRC is the text of the macro invocation immediately
753    following the macro name.  For example, if we're processing the
754    text foo(bar, baz), then NAME would be foo and SRC will be (bar,
755    baz).
756
757    If SRC doesn't start with an open paren ( token at all, return
758    false, leave SRC unchanged, and don't set *ARGS_PTR to anything.
759
760    If SRC doesn't contain a properly terminated argument list, then
761    raise an error.
762
763    For a variadic macro, NARGS holds the number of formal arguments to
764    the macro.  For a GNU-style variadic macro, this should be the
765    number of named arguments.  For a non-variadic macro, NARGS should
766    be -1.
767
768    Otherwise, return true and set *ARGS_PTR to a vector of macro
769    buffers referring to the argument texts.  The macro buffers share
770    their text with SRC, and their last_token fields are initialized.
771
772    NOTE WELL: if SRC starts with a open paren ( token followed
773    immediately by a close paren ) token (e.g., the invocation looks
774    like "foo()"), we treat that as one argument, which happens to be
775    the empty list of tokens.  The caller should keep in mind that such
776    a sequence of tokens is a valid way to invoke one-parameter
777    function-like macros, but also a valid way to invoke zero-parameter
778    function-like macros.  Eeew.
779
780    Consume the tokens from SRC; after this call, SRC contains the text
781    following the invocation.  */
782
783 static bool
784 gather_arguments (const char *name, struct macro_buffer *src, int nargs,
785                   std::vector<struct macro_buffer> *args_ptr)
786 {
787   struct macro_buffer tok;
788   std::vector<struct macro_buffer> args;
789
790   /* Does SRC start with an opening paren token?  Read from a copy of
791      SRC, so SRC itself is unaffected if we don't find an opening
792      paren.  */
793   {
794     struct macro_buffer temp (src->text, src->len);
795
796     if (! get_token (&tok, &temp)
797         || tok.len != 1
798         || tok.text[0] != '(')
799       return false;
800   }
801
802   /* Consume SRC's opening paren.  */
803   get_token (&tok, src);
804
805   for (;;)
806     {
807       struct macro_buffer *arg;
808       int depth;
809
810       /* Initialize the next argument.  */
811       args.emplace_back ();
812       arg = &args.back ();
813       set_token (arg, src->text, src->text);
814
815       /* Gather the argument's tokens.  */
816       depth = 0;
817       for (;;)
818         {
819           if (! get_token (&tok, src))
820             error (_("Malformed argument list for macro `%s'."), name);
821
822           /* Is tok an opening paren?  */
823           if (tok.len == 1 && tok.text[0] == '(')
824             depth++;
825
826           /* Is tok is a closing paren?  */
827           else if (tok.len == 1 && tok.text[0] == ')')
828             {
829               /* If it's a closing paren at the top level, then that's
830                  the end of the argument list.  */
831               if (depth == 0)
832                 {
833                   /* In the varargs case, the last argument may be
834                      missing.  Add an empty argument in this case.  */
835                   if (nargs != -1 && args.size () == nargs - 1)
836                     {
837                       args.emplace_back ();
838                       arg = &args.back ();
839                       set_token (arg, src->text, src->text);
840                     }
841
842                   *args_ptr = std::move (args);
843                   return true;
844                 }
845
846               depth--;
847             }
848
849           /* If tok is a comma at top level, then that's the end of
850              the current argument.  However, if we are handling a
851              variadic macro and we are computing the last argument, we
852              want to include the comma and remaining tokens.  */
853           else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
854                    && (nargs == -1 || args.size () < nargs))
855             break;
856
857           /* Extend the current argument to enclose this token.  If
858              this is the current argument's first token, leave out any
859              leading whitespace, just for aesthetics.  */
860           if (arg->len == 0)
861             {
862               arg->text = tok.text;
863               arg->len = tok.len;
864               arg->last_token = 0;
865             }
866           else
867             {
868               arg->len = (tok.text + tok.len) - arg->text;
869               arg->last_token = tok.text - arg->text;
870             }
871         }
872     }
873 }
874
875
876 /* The `expand' and `substitute_args' functions both invoke `scan'
877    recursively, so we need a forward declaration somewhere.  */
878 static void scan (struct macro_buffer *dest,
879                   struct macro_buffer *src,
880                   struct macro_name_list *no_loop,
881                   macro_lookup_ftype *lookup_func,
882                   void *lookup_baton);
883
884
885 /* A helper function for substitute_args.
886    
887    ARGV is a vector of all the arguments; ARGC is the number of
888    arguments.  IS_VARARGS is true if the macro being substituted is a
889    varargs macro; in this case VA_ARG_NAME is the name of the
890    "variable" argument.  VA_ARG_NAME is ignored if IS_VARARGS is
891    false.
892
893    If the token TOK is the name of a parameter, return the parameter's
894    index.  If TOK is not an argument, return -1.  */
895
896 static int
897 find_parameter (const struct macro_buffer *tok,
898                 int is_varargs, const struct macro_buffer *va_arg_name,
899                 int argc, const char * const *argv)
900 {
901   int i;
902
903   if (! tok->is_identifier)
904     return -1;
905
906   for (i = 0; i < argc; ++i)
907     if (tok->len == strlen (argv[i]) 
908         && !memcmp (tok->text, argv[i], tok->len))
909       return i;
910
911   if (is_varargs && tok->len == va_arg_name->len
912       && ! memcmp (tok->text, va_arg_name->text, tok->len))
913     return argc - 1;
914
915   return -1;
916 }
917  
918 /* Helper function for substitute_args that gets the next token and
919    updates the passed-in state variables.  */
920
921 static void
922 get_next_token_for_substitution (struct macro_buffer *replacement_list,
923                                  struct macro_buffer *token,
924                                  char **start,
925                                  struct macro_buffer *lookahead,
926                                  char **lookahead_start,
927                                  int *lookahead_valid,
928                                  bool *keep_going)
929 {
930   if (!*lookahead_valid)
931     *keep_going = false;
932   else
933     {
934       *keep_going = true;
935       *token = *lookahead;
936       *start = *lookahead_start;
937       *lookahead_start = replacement_list->text;
938       *lookahead_valid = get_token (lookahead, replacement_list);
939     }
940 }
941
942 /* Given the macro definition DEF, being invoked with the actual
943    arguments given by ARGV, substitute the arguments into the
944    replacement list, and store the result in DEST.
945
946    IS_VARARGS should be true if DEF is a varargs macro.  In this case,
947    VA_ARG_NAME should be the name of the "variable" argument -- either
948    __VA_ARGS__ for c99-style varargs, or the final argument name, for
949    GNU-style varargs.  If IS_VARARGS is false, this parameter is
950    ignored.
951
952    If it is necessary to expand macro invocations in one of the
953    arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
954    definitions, and don't expand invocations of the macros listed in
955    NO_LOOP.  */
956
957 static void
958 substitute_args (struct macro_buffer *dest,
959                  struct macro_definition *def,
960                  int is_varargs, const struct macro_buffer *va_arg_name,
961                  const std::vector<struct macro_buffer> &argv,
962                  struct macro_name_list *no_loop,
963                  macro_lookup_ftype *lookup_func,
964                  void *lookup_baton)
965 {
966   /* The token we are currently considering.  */
967   struct macro_buffer tok;
968   /* The replacement list's pointer from just before TOK was lexed.  */
969   char *original_rl_start;
970   /* We have a single lookahead token to handle token splicing.  */
971   struct macro_buffer lookahead;
972   /* The lookahead token might not be valid.  */
973   int lookahead_valid;
974   /* The replacement list's pointer from just before LOOKAHEAD was
975      lexed.  */
976   char *lookahead_rl_start;
977
978   /* A macro buffer for the macro's replacement list.  */
979   struct macro_buffer replacement_list (def->replacement,
980                                         strlen (def->replacement));
981
982   gdb_assert (dest->len == 0);
983   dest->last_token = 0;
984
985   original_rl_start = replacement_list.text;
986   if (! get_token (&tok, &replacement_list))
987     return;
988   lookahead_rl_start = replacement_list.text;
989   lookahead_valid = get_token (&lookahead, &replacement_list);
990
991   /* __VA_OPT__ state variable.  The states are:
992      0 - nothing happening
993      1 - saw __VA_OPT__
994      >= 2 in __VA_OPT__, the value encodes the parenthesis depth.  */
995   unsigned vaopt_state = 0;
996
997   for (bool keep_going = true;
998        keep_going;
999        get_next_token_for_substitution (&replacement_list,
1000                                         &tok,
1001                                         &original_rl_start,
1002                                         &lookahead,
1003                                         &lookahead_rl_start,
1004                                         &lookahead_valid,
1005                                         &keep_going))
1006     {
1007       bool token_is_vaopt = (tok.len == 10
1008                              && strncmp (tok.text, "__VA_OPT__", 10) == 0);
1009
1010       if (vaopt_state > 0)
1011         {
1012           if (token_is_vaopt)
1013             error (_("__VA_OPT__ cannot appear inside __VA_OPT__"));
1014           else if (tok.len == 1 && tok.text[0] == '(')
1015             {
1016               ++vaopt_state;
1017               /* We just entered __VA_OPT__, so don't emit this
1018                  token.  */
1019               continue;
1020             }
1021           else if (vaopt_state == 1)
1022             error (_("__VA_OPT__ must be followed by an open parenthesis"));
1023           else if (tok.len == 1 && tok.text[0] == ')')
1024             {
1025               --vaopt_state;
1026               if (vaopt_state == 1)
1027                 {
1028                   /* Done with __VA_OPT__.  */
1029                   vaopt_state = 0;
1030                   /* Don't emit.  */
1031                   continue;
1032                 }
1033             }
1034
1035           /* If __VA_ARGS__ is empty, then drop the contents of
1036              __VA_OPT__.  */
1037           if (argv.back ().len == 0)
1038             continue;
1039         }
1040       else if (token_is_vaopt)
1041         {
1042           if (!is_varargs)
1043             error (_("__VA_OPT__ is only valid in a variadic macro"));
1044           vaopt_state = 1;
1045           /* Don't emit this token.  */
1046           continue;
1047         }
1048
1049       /* Just for aesthetics.  If we skipped some whitespace, copy
1050          that to DEST.  */
1051       if (tok.text > original_rl_start)
1052         {
1053           dest->appendmem (original_rl_start, tok.text - original_rl_start);
1054           dest->last_token = dest->len;
1055         }
1056
1057       /* Is this token the stringification operator?  */
1058       if (tok.len == 1
1059           && tok.text[0] == '#')
1060         {
1061           int arg;
1062
1063           if (!lookahead_valid)
1064             error (_("Stringification operator requires an argument."));
1065
1066           arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1067                                 def->argc, def->argv);
1068           if (arg == -1)
1069             error (_("Argument to stringification operator must name "
1070                      "a macro parameter."));
1071
1072           stringify (dest, argv[arg].text, argv[arg].len);
1073
1074           /* Read one token and let the loop iteration code handle the
1075              rest.  */
1076           lookahead_rl_start = replacement_list.text;
1077           lookahead_valid = get_token (&lookahead, &replacement_list);
1078         }
1079       /* Is this token the splicing operator?  */
1080       else if (tok.len == 2
1081                && tok.text[0] == '#'
1082                && tok.text[1] == '#')
1083         error (_("Stray splicing operator"));
1084       /* Is the next token the splicing operator?  */
1085       else if (lookahead_valid
1086                && lookahead.len == 2
1087                && lookahead.text[0] == '#'
1088                && lookahead.text[1] == '#')
1089         {
1090           int finished = 0;
1091           int prev_was_comma = 0;
1092
1093           /* Note that GCC warns if the result of splicing is not a
1094              token.  In the debugger there doesn't seem to be much
1095              benefit from doing this.  */
1096
1097           /* Insert the first token.  */
1098           if (tok.len == 1 && tok.text[0] == ',')
1099             prev_was_comma = 1;
1100           else
1101             {
1102               int arg = find_parameter (&tok, is_varargs, va_arg_name,
1103                                         def->argc, def->argv);
1104
1105               if (arg != -1)
1106                 dest->appendmem (argv[arg].text, argv[arg].len);
1107               else
1108                 dest->appendmem (tok.text, tok.len);
1109             }
1110
1111           /* Apply a possible sequence of ## operators.  */
1112           for (;;)
1113             {
1114               if (! get_token (&tok, &replacement_list))
1115                 error (_("Splicing operator at end of macro"));
1116
1117               /* Handle a comma before a ##.  If we are handling
1118                  varargs, and the token on the right hand side is the
1119                  varargs marker, and the final argument is empty or
1120                  missing, then drop the comma.  This is a GNU
1121                  extension.  There is one ambiguous case here,
1122                  involving pedantic behavior with an empty argument,
1123                  but we settle that in favor of GNU-style (GCC uses an
1124                  option).  If we aren't dealing with varargs, we
1125                  simply insert the comma.  */
1126               if (prev_was_comma)
1127                 {
1128                   if (! (is_varargs
1129                          && tok.len == va_arg_name->len
1130                          && !memcmp (tok.text, va_arg_name->text, tok.len)
1131                          && argv.back ().len == 0))
1132                     dest->appendmem (",", 1);
1133                   prev_was_comma = 0;
1134                 }
1135
1136               /* Insert the token.  If it is a parameter, insert the
1137                  argument.  If it is a comma, treat it specially.  */
1138               if (tok.len == 1 && tok.text[0] == ',')
1139                 prev_was_comma = 1;
1140               else
1141                 {
1142                   int arg = find_parameter (&tok, is_varargs, va_arg_name,
1143                                             def->argc, def->argv);
1144
1145                   if (arg != -1)
1146                     dest->appendmem (argv[arg].text, argv[arg].len);
1147                   else
1148                     dest->appendmem (tok.text, tok.len);
1149                 }
1150
1151               /* Now read another token.  If it is another splice, we
1152                  loop.  */
1153               original_rl_start = replacement_list.text;
1154               if (! get_token (&tok, &replacement_list))
1155                 {
1156                   finished = 1;
1157                   break;
1158                 }
1159
1160               if (! (tok.len == 2
1161                      && tok.text[0] == '#'
1162                      && tok.text[1] == '#'))
1163                 break;
1164             }
1165
1166           if (prev_was_comma)
1167             {
1168               /* We saw a comma.  Insert it now.  */
1169               dest->appendmem (",", 1);
1170             }
1171
1172           dest->last_token = dest->len;
1173           if (finished)
1174             lookahead_valid = 0;
1175           else
1176             {
1177               /* Set up for the loop iterator.  */
1178               lookahead = tok;
1179               lookahead_rl_start = original_rl_start;
1180               lookahead_valid = 1;
1181             }
1182         }
1183       else
1184         {
1185           /* Is this token an identifier?  */
1186           int substituted = 0;
1187           int arg = find_parameter (&tok, is_varargs, va_arg_name,
1188                                     def->argc, def->argv);
1189
1190           if (arg != -1)
1191             {
1192               /* Expand any macro invocations in the argument text,
1193                  and append the result to dest.  Remember that scan
1194                  mutates its source, so we need to scan a new buffer
1195                  referring to the argument's text, not the argument
1196                  itself.  */
1197               struct macro_buffer arg_src (argv[arg].text, argv[arg].len);
1198               scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1199               substituted = 1;
1200             }
1201
1202           /* If it wasn't a parameter, then just copy it across.  */
1203           if (! substituted)
1204             append_tokens_without_splicing (dest, &tok);
1205         }
1206     }
1207
1208   if (vaopt_state > 0)
1209     error (_("Unterminated __VA_OPT__"));
1210 }
1211
1212
1213 /* Expand a call to a macro named ID, whose definition is DEF.  Append
1214    its expansion to DEST.  SRC is the input text following the ID
1215    token.  We are currently rescanning the expansions of the macros
1216    named in NO_LOOP; don't re-expand them.  Use LOOKUP_FUNC and
1217    LOOKUP_BATON to find definitions for any nested macro references.
1218
1219    Return 1 if we decided to expand it, zero otherwise.  (If it's a
1220    function-like macro name that isn't followed by an argument list,
1221    we don't expand it.)  If we return zero, leave SRC unchanged.  */
1222 static int
1223 expand (const char *id,
1224         struct macro_definition *def, 
1225         struct macro_buffer *dest,
1226         struct macro_buffer *src,
1227         struct macro_name_list *no_loop,
1228         macro_lookup_ftype *lookup_func,
1229         void *lookup_baton)
1230 {
1231   struct macro_name_list new_no_loop;
1232
1233   /* Create a new node to be added to the front of the no-expand list.
1234      This list is appropriate for re-scanning replacement lists, but
1235      it is *not* appropriate for scanning macro arguments; invocations
1236      of the macro whose arguments we are gathering *do* get expanded
1237      there.  */
1238   new_no_loop.name = id;
1239   new_no_loop.next = no_loop;
1240
1241   /* What kind of macro are we expanding?  */
1242   if (def->kind == macro_object_like)
1243     {
1244       struct macro_buffer replacement_list (def->replacement,
1245                                             strlen (def->replacement));
1246
1247       scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1248       return 1;
1249     }
1250   else if (def->kind == macro_function_like)
1251     {
1252       struct macro_buffer va_arg_name;
1253       int is_varargs = 0;
1254
1255       if (def->argc >= 1)
1256         {
1257           if (strcmp (def->argv[def->argc - 1], "...") == 0)
1258             {
1259               /* In C99-style varargs, substitution is done using
1260                  __VA_ARGS__.  */
1261               va_arg_name.set_shared ("__VA_ARGS__", strlen ("__VA_ARGS__"));
1262               is_varargs = 1;
1263             }
1264           else
1265             {
1266               int len = strlen (def->argv[def->argc - 1]);
1267
1268               if (len > 3
1269                   && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1270                 {
1271                   /* In GNU-style varargs, the name of the
1272                      substitution parameter is the name of the formal
1273                      argument without the "...".  */
1274                   va_arg_name.set_shared (def->argv[def->argc - 1], len - 3);
1275                   is_varargs = 1;
1276                 }
1277             }
1278         }
1279
1280       std::vector<struct macro_buffer> argv;
1281       /* If we couldn't find any argument list, then we don't expand
1282          this macro.  */
1283       if (!gather_arguments (id, src, is_varargs ? def->argc : -1,
1284                              &argv))
1285         return 0;
1286
1287       /* Check that we're passing an acceptable number of arguments for
1288          this macro.  */
1289       if (argv.size () != def->argc)
1290         {
1291           if (is_varargs && argv.size () >= def->argc - 1)
1292             {
1293               /* Ok.  */
1294             }
1295           /* Remember that a sequence of tokens like "foo()" is a
1296              valid invocation of a macro expecting either zero or one
1297              arguments.  */
1298           else if (! (argv.size () == 1
1299                       && argv[0].len == 0
1300                       && def->argc == 0))
1301             error (_("Wrong number of arguments to macro `%s' "
1302                    "(expected %d, got %d)."),
1303                    id, def->argc, int (argv.size ()));
1304         }
1305
1306       /* Note that we don't expand macro invocations in the arguments
1307          yet --- we let subst_args take care of that.  Parameters that
1308          appear as operands of the stringifying operator "#" or the
1309          splicing operator "##" don't get macro references expanded,
1310          so we can't really tell whether it's appropriate to macro-
1311          expand an argument until we see how it's being used.  */
1312       struct macro_buffer substituted (0);
1313       substitute_args (&substituted, def, is_varargs, &va_arg_name,
1314                        argv, no_loop, lookup_func, lookup_baton);
1315
1316       /* Now `substituted' is the macro's replacement list, with all
1317          argument values substituted into it properly.  Re-scan it for
1318          macro references, but don't expand invocations of this macro.
1319
1320          We create a new buffer, `substituted_src', which points into
1321          `substituted', and scan that.  We can't scan `substituted'
1322          itself, since the tokenization process moves the buffer's
1323          text pointer around, and we still need to be able to find
1324          `substituted's original text buffer after scanning it so we
1325          can free it.  */
1326       struct macro_buffer substituted_src (substituted.text, substituted.len);
1327       scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1328
1329       return 1;
1330     }
1331   else
1332     internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1333 }
1334
1335
1336 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1337    constitute a macro invokation not forbidden in NO_LOOP, append its
1338    expansion to DEST and return non-zero.  Otherwise, return zero, and
1339    leave DEST unchanged.
1340
1341    SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1342    SRC_FIRST must be a string built by get_token.  */
1343 static int
1344 maybe_expand (struct macro_buffer *dest,
1345               struct macro_buffer *src_first,
1346               struct macro_buffer *src_rest,
1347               struct macro_name_list *no_loop,
1348               macro_lookup_ftype *lookup_func,
1349               void *lookup_baton)
1350 {
1351   gdb_assert (src_first->shared);
1352   gdb_assert (src_rest->shared);
1353   gdb_assert (! dest->shared);
1354
1355   /* Is this token an identifier?  */
1356   if (src_first->is_identifier)
1357     {
1358       /* Make a null-terminated copy of it, since that's what our
1359          lookup function expects.  */
1360       std::string id (src_first->text, src_first->len);
1361
1362       /* If we're currently re-scanning the result of expanding
1363          this macro, don't expand it again.  */
1364       if (! currently_rescanning (no_loop, id.c_str ()))
1365         {
1366           /* Does this identifier have a macro definition in scope?  */
1367           struct macro_definition *def = lookup_func (id.c_str (),
1368                                                       lookup_baton);
1369
1370           if (def && expand (id.c_str (), def, dest, src_rest, no_loop,
1371                              lookup_func, lookup_baton))
1372             return 1;
1373         }
1374     }
1375
1376   return 0;
1377 }
1378
1379
1380 /* Expand macro references in SRC, appending the results to DEST.
1381    Assume we are re-scanning the result of expanding the macros named
1382    in NO_LOOP, and don't try to re-expand references to them.
1383
1384    SRC must be a shared buffer; DEST must not be one.  */
1385 static void
1386 scan (struct macro_buffer *dest,
1387       struct macro_buffer *src,
1388       struct macro_name_list *no_loop,
1389       macro_lookup_ftype *lookup_func,
1390       void *lookup_baton)
1391 {
1392   gdb_assert (src->shared);
1393   gdb_assert (! dest->shared);
1394
1395   for (;;)
1396     {
1397       struct macro_buffer tok;
1398       char *original_src_start = src->text;
1399
1400       /* Find the next token in SRC.  */
1401       if (! get_token (&tok, src))
1402         break;
1403
1404       /* Just for aesthetics.  If we skipped some whitespace, copy
1405          that to DEST.  */
1406       if (tok.text > original_src_start)
1407         {
1408           dest->appendmem (original_src_start, tok.text - original_src_start);
1409           dest->last_token = dest->len;
1410         }
1411
1412       if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1413         /* We didn't end up expanding tok as a macro reference, so
1414            simply append it to dest.  */
1415         append_tokens_without_splicing (dest, &tok);
1416     }
1417
1418   /* Just for aesthetics.  If there was any trailing whitespace in
1419      src, copy it to dest.  */
1420   if (src->len)
1421     {
1422       dest->appendmem (src->text, src->len);
1423       dest->last_token = dest->len;
1424     }
1425 }
1426
1427
1428 gdb::unique_xmalloc_ptr<char>
1429 macro_expand (const char *source,
1430               macro_lookup_ftype *lookup_func,
1431               void *lookup_func_baton)
1432 {
1433   struct macro_buffer src (source, strlen (source));
1434
1435   struct macro_buffer dest (0);
1436   dest.last_token = 0;
1437
1438   scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1439
1440   dest.appendc ('\0');
1441
1442   return gdb::unique_xmalloc_ptr<char> (dest.release ());
1443 }
1444
1445
1446 gdb::unique_xmalloc_ptr<char>
1447 macro_expand_once (const char *source,
1448                    macro_lookup_ftype *lookup_func,
1449                    void *lookup_func_baton)
1450 {
1451   error (_("Expand-once not implemented yet."));
1452 }
1453
1454
1455 char *
1456 macro_expand_next (const char **lexptr,
1457                    macro_lookup_ftype *lookup_func,
1458                    void *lookup_baton)
1459 {
1460   struct macro_buffer tok;
1461
1462   /* Set up SRC to refer to the input text, pointed to by *lexptr.  */
1463   struct macro_buffer src (*lexptr, strlen (*lexptr));
1464
1465   /* Set up DEST to receive the expansion, if there is one.  */
1466   struct macro_buffer dest (0);
1467   dest.last_token = 0;
1468
1469   /* Get the text's first preprocessing token.  */
1470   if (! get_token (&tok, &src))
1471     return 0;
1472
1473   /* If it's a macro invocation, expand it.  */
1474   if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1475     {
1476       /* It was a macro invocation!  Package up the expansion as a
1477          null-terminated string and return it.  Set *lexptr to the
1478          start of the next token in the input.  */
1479       dest.appendc ('\0');
1480       *lexptr = src.text;
1481       return dest.release ();
1482     }
1483   else
1484     {
1485       /* It wasn't a macro invocation.  */
1486       return 0;
1487     }
1488 }