1 /* Target-dependent code for the Motorola 88000 series.
3 Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
31 #include "trad-frame.h"
34 #include "gdb_assert.h"
35 #include "gdb_string.h"
37 #include "m88k-tdep.h"
39 /* Fetch the instruction at PC. */
42 m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order)
44 return read_memory_unsigned_integer (pc, 4, byte_order);
47 /* Register information. */
49 /* Return the name of register REGNUM. */
52 m88k_register_name (struct gdbarch *gdbarch, int regnum)
54 static char *register_names[] =
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
63 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
64 return register_names[regnum];
69 /* Return the GDB type object for the "standard" data type of data in
73 m88k_register_type (struct gdbarch *gdbarch, int regnum)
75 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
76 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
77 || regnum == M88K_R1_REGNUM)
78 return builtin_type (gdbarch)->builtin_func_ptr;
80 /* R30 and R31 typically contains data addresses. */
81 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
82 return builtin_type (gdbarch)->builtin_data_ptr;
84 return builtin_type (gdbarch)->builtin_int32;
89 m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
91 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
92 SNIP and SFIP are used for special purposes: bit 0 is the
93 exception bit and bit 1 is the valid bit. */
97 /* Use the program counter to determine the contents and size of a
98 breakpoint instruction. Return a pointer to a string of bytes that
99 encode a breakpoint instruction, store the length of the string in
100 *LEN and optionally adjust *PC to point to the correct memory
101 location for inserting the breakpoint. */
103 static const gdb_byte *
104 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
107 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
109 *len = sizeof (break_insn);
114 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
118 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
119 return m88k_addr_bits_remove (gdbarch, pc);
123 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
125 /* According to the MC88100 RISC Microprocessor User's Manual,
128 "... can be made to return to a particular instruction by placing
129 a valid instruction address in the SNIP and the next sequential
130 instruction address in the SFIP (with V bits set and E bits
131 clear). The rte resumes execution at the instruction pointed to
132 by the SNIP, then the SFIP."
134 The E bit is the least significant bit (bit 0). The V (valid)
135 bit is bit 1. This is why we logical or 2 into the values we are
136 writing below. It turns out that SXIP plays no role when
137 returning from an exception so nothing special has to be done
138 with it. We could even (presumably) give it a totally bogus
141 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
142 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
143 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
147 /* The functions on this page are intended to be used to classify
148 function arguments. */
150 /* Check whether TYPE is "Integral or Pointer". */
153 m88k_integral_or_pointer_p (const struct type *type)
155 switch (TYPE_CODE (type))
161 case TYPE_CODE_RANGE:
163 /* We have byte, half-word, word and extended-word/doubleword
165 int len = TYPE_LENGTH (type);
166 return (len == 1 || len == 2 || len == 4 || len == 8);
172 /* Allow only 32-bit pointers. */
173 return (TYPE_LENGTH (type) == 4);
183 /* Check whether TYPE is "Floating". */
186 m88k_floating_p (const struct type *type)
188 switch (TYPE_CODE (type))
192 int len = TYPE_LENGTH (type);
193 return (len == 4 || len == 8);
202 /* Check whether TYPE is "Structure or Union". */
205 m88k_structure_or_union_p (const struct type *type)
207 switch (TYPE_CODE (type))
209 case TYPE_CODE_STRUCT:
210 case TYPE_CODE_UNION:
219 /* Check whether TYPE has 8-byte alignment. */
222 m88k_8_byte_align_p (struct type *type)
224 if (m88k_structure_or_union_p (type))
228 for (i = 0; i < TYPE_NFIELDS (type); i++)
230 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
232 if (m88k_8_byte_align_p (subtype))
237 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
238 return (TYPE_LENGTH (type) == 8);
243 /* Check whether TYPE can be passed in a register. */
246 m88k_in_register_p (struct type *type)
248 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
251 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
258 m88k_store_arguments (struct regcache *regcache, int nargs,
259 struct value **args, CORE_ADDR sp)
261 struct gdbarch *gdbarch = get_regcache_arch (regcache);
262 int num_register_words = 0;
263 int num_stack_words = 0;
266 for (i = 0; i < nargs; i++)
268 struct type *type = value_type (args[i]);
269 int len = TYPE_LENGTH (type);
271 if (m88k_integral_or_pointer_p (type) && len < 4)
273 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
275 type = value_type (args[i]);
276 len = TYPE_LENGTH (type);
279 if (m88k_in_register_p (type))
283 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
286 num_words += ((len + 3) / 4);
287 if (num_register_words + num_words <= 8)
289 num_register_words += num_words;
293 /* We've run out of available registers. Pass the argument
297 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
300 num_stack_words += ((len + 3) / 4);
303 /* Allocate stack space. */
304 sp = align_down (sp - 32 - num_stack_words * 4, 16);
305 num_stack_words = num_register_words = 0;
307 for (i = 0; i < nargs; i++)
309 const bfd_byte *valbuf = value_contents (args[i]);
310 struct type *type = value_type (args[i]);
311 int len = TYPE_LENGTH (type);
312 int stack_word = num_stack_words;
314 if (m88k_in_register_p (type))
316 int register_word = num_register_words;
318 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
321 gdb_assert (len == 4 || len == 8);
323 if (register_word + len / 8 < 8)
325 int regnum = M88K_R2_REGNUM + register_word;
327 regcache_raw_write (regcache, regnum, valbuf);
329 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
331 num_register_words = (register_word + len / 4);
336 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
339 write_memory (sp + stack_word * 4, valbuf, len);
340 num_stack_words = (stack_word + (len + 3) / 4);
347 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
348 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
349 struct value **args, CORE_ADDR sp, int struct_return,
350 CORE_ADDR struct_addr)
352 /* Set up the function arguments. */
353 sp = m88k_store_arguments (regcache, nargs, args, sp);
354 gdb_assert (sp % 16 == 0);
356 /* Store return value address. */
358 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
360 /* Store the stack pointer and return address in the appropriate
362 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
363 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
365 /* Return the stack pointer. */
369 static struct frame_id
370 m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
374 sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
375 return frame_id_build (sp, get_frame_pc (this_frame));
379 /* Determine, for architecture GDBARCH, how a return value of TYPE
380 should be returned. If it is supposed to be returned in registers,
381 and READBUF is non-zero, read the appropriate value from REGCACHE,
382 and copy it into READBUF. If WRITEBUF is non-zero, write the value
383 from WRITEBUF into REGCACHE. */
385 static enum return_value_convention
386 m88k_return_value (struct gdbarch *gdbarch, struct type *func_type,
387 struct type *type, struct regcache *regcache,
388 gdb_byte *readbuf, const gdb_byte *writebuf)
390 int len = TYPE_LENGTH (type);
393 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
394 return RETURN_VALUE_STRUCT_CONVENTION;
398 /* Read the contents of R2 and (if necessary) R3. */
399 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
402 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
403 gdb_assert (len == 8);
404 memcpy (readbuf, buf, len);
408 /* Just stripping off any unused bytes should preserve the
409 signed-ness just fine. */
410 memcpy (readbuf, buf + 4 - len, len);
416 /* Read the contents to R2 and (if necessary) R3. */
419 gdb_assert (len == 8);
420 memcpy (buf, writebuf, 8);
421 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
425 /* ??? Do we need to do any sign-extension here? */
426 memcpy (buf + 4 - len, writebuf, len);
428 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
431 return RETURN_VALUE_REGISTER_CONVENTION;
434 /* Default frame unwinder. */
436 struct m88k_frame_cache
445 /* Table of saved registers. */
446 struct trad_frame_saved_reg *saved_regs;
449 /* Prologue analysis. */
451 /* Macros for extracting fields from instructions. */
453 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
454 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
455 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
456 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
457 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
458 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
460 /* Possible actions to be taken by the prologue analyzer for the
461 instructions it encounters. */
463 enum m88k_prologue_insn_action
465 M88K_PIA_SKIP, /* Ignore. */
466 M88K_PIA_NOTE_ST, /* Note register store. */
467 M88K_PIA_NOTE_STD, /* Note register pair store. */
468 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
469 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
470 M88K_PIA_NOTE_BRANCH, /* Note branch. */
471 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
474 /* Table of instructions that may comprise a function prologue. */
476 struct m88k_prologue_insn
480 enum m88k_prologue_insn_action action;
483 struct m88k_prologue_insn m88k_prologue_insn_table[] =
485 /* Various register move instructions. */
486 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
487 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
488 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
490 /* Various other instructions. */
491 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
493 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
494 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
496 /* Frame pointer assignment: "addu r30,r31,n". */
497 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
499 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
500 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
501 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
503 /* Instructions needed for setting up r25 for pic code. */
504 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
505 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
506 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
507 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
509 /* Various branch or jump instructions which have a delay slot --
510 these do not form part of the prologue, but the instruction in
511 the delay slot might be a store instruction which should be
513 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
514 /* br.n, bsr.n, bb0.n, or bb1.n */
515 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
516 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
518 /* Catch all. Ends prologue analysis. */
519 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
522 /* Do a full analysis of the function prologue at PC and update CACHE
523 accordingly. Bail out early if LIMIT is reached. Return the
524 address where the analysis stopped. If LIMIT points beyond the
525 function prologue, the return address should be the end of the
529 m88k_analyze_prologue (struct gdbarch *gdbarch,
530 CORE_ADDR pc, CORE_ADDR limit,
531 struct m88k_frame_cache *cache)
533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
534 CORE_ADDR end = limit;
536 /* Provide a dummy cache if necessary. */
539 size_t sizeof_saved_regs =
540 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
542 cache = alloca (sizeof (struct m88k_frame_cache));
543 cache->saved_regs = alloca (sizeof_saved_regs);
545 /* We only initialize the members we care about. */
546 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
547 cache->fp_offset = -1;
552 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
553 unsigned long insn = m88k_fetch_instruction (pc, byte_order);
555 while ((insn & pi->mask) != pi->insn)
561 /* If we have a frame pointer, and R1 has been saved,
562 consider this instruction as not being part of the
564 if (cache->fp_offset != -1
565 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
566 return min (pc, end);
569 case M88K_PIA_NOTE_ST:
570 case M88K_PIA_NOTE_STD:
571 /* If no frame has been allocated, the stores aren't part of
573 if (cache->sp_offset == 0)
574 return min (pc, end);
576 /* Record location of saved registers. */
578 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
579 ULONGEST offset = ST_OFFSET (insn);
581 cache->saved_regs[regnum].addr = offset;
582 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
583 cache->saved_regs[regnum + 1].addr = offset + 4;
587 case M88K_PIA_NOTE_SP_ADJUSTMENT:
588 /* A second stack pointer adjustment isn't part of the
590 if (cache->sp_offset != 0)
591 return min (pc, end);
593 /* Store stack pointer adjustment. */
594 cache->sp_offset = -SUBU_OFFSET (insn);
597 case M88K_PIA_NOTE_FP_ASSIGNMENT:
598 /* A second frame pointer assignment isn't part of the
600 if (cache->fp_offset != -1)
601 return min (pc, end);
603 /* Record frame pointer assignment. */
604 cache->fp_offset = ADDU_OFFSET (insn);
607 case M88K_PIA_NOTE_BRANCH:
608 /* The branch instruction isn't part of the prologue, but
609 the instruction in the delay slot might be. Limit the
610 prologue analysis to the delay slot and record the branch
611 instruction as the end of the prologue. */
612 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
616 case M88K_PIA_NOTE_PROLOGUE_END:
617 return min (pc, end);
620 pc += M88K_INSN_SIZE;
626 /* An upper limit to the size of the prologue. */
627 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
629 /* Return the address of first real instruction of the function
633 m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
635 struct symtab_and_line sal;
636 CORE_ADDR func_start, func_end;
638 /* This is the preferred method, find the end of the prologue by
639 using the debugging information. */
640 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
642 sal = find_pc_line (func_start, 0);
644 if (sal.end < func_end && pc <= sal.end)
648 return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size,
652 static struct m88k_frame_cache *
653 m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
655 struct gdbarch *gdbarch = get_frame_arch (this_frame);
656 struct m88k_frame_cache *cache;
662 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
663 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
664 cache->fp_offset = -1;
666 cache->pc = get_frame_func (this_frame);
668 m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
671 /* Calculate the stack pointer used in the prologue. */
672 if (cache->fp_offset != -1)
676 fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
677 frame_sp = fp - cache->fp_offset;
681 /* If we know where the return address is saved, we can take a
682 solid guess at what the frame pointer should be. */
683 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
684 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
685 frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
688 /* Now that we know the stack pointer, adjust the location of the
693 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
694 if (cache->saved_regs[regnum].addr != -1)
695 cache->saved_regs[regnum].addr += frame_sp;
698 /* Calculate the frame's base. */
699 cache->base = frame_sp - cache->sp_offset;
700 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
702 /* Identify SXIP with the return address in R1. */
703 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
710 m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
711 struct frame_id *this_id)
713 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
715 /* This marks the outermost frame. */
716 if (cache->base == 0)
719 (*this_id) = frame_id_build (cache->base, cache->pc);
722 static struct value *
723 m88k_frame_prev_register (struct frame_info *this_frame,
724 void **this_cache, int regnum)
726 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
728 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
733 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
735 pc = value_as_long (value);
736 release_value (value);
739 if (regnum == M88K_SFIP_REGNUM)
742 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
745 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
748 static const struct frame_unwind m88k_frame_unwind =
752 m88k_frame_prev_register,
754 default_frame_sniffer
759 m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
761 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
763 if (cache->fp_offset != -1)
764 return cache->base + cache->sp_offset + cache->fp_offset;
769 static const struct frame_base m88k_frame_base =
772 m88k_frame_base_address,
773 m88k_frame_base_address,
774 m88k_frame_base_address
778 /* Core file support. */
780 /* Supply register REGNUM from the buffer specified by GREGS and LEN
781 in the general-purpose register set REGSET to register cache
782 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
785 m88k_supply_gregset (const struct regset *regset,
786 struct regcache *regcache,
787 int regnum, const void *gregs, size_t len)
789 const gdb_byte *regs = gregs;
792 for (i = 0; i < M88K_NUM_REGS; i++)
794 if (regnum == i || regnum == -1)
795 regcache_raw_supply (regcache, i, regs + i * 4);
799 /* Motorola 88000 register set. */
801 static struct regset m88k_gregset =
807 /* Return the appropriate register set for the core section identified
808 by SECT_NAME and SECT_SIZE. */
810 static const struct regset *
811 m88k_regset_from_core_section (struct gdbarch *gdbarch,
812 const char *sect_name, size_t sect_size)
814 if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
815 return &m88k_gregset;
821 static struct gdbarch *
822 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
824 struct gdbarch *gdbarch;
826 /* If there is already a candidate, use it. */
827 arches = gdbarch_list_lookup_by_info (arches, &info);
829 return arches->gdbarch;
831 /* Allocate space for the new architecture. */
832 gdbarch = gdbarch_alloc (&info, NULL);
834 /* There is no real `long double'. */
835 set_gdbarch_long_double_bit (gdbarch, 64);
836 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
838 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
839 set_gdbarch_register_name (gdbarch, m88k_register_name);
840 set_gdbarch_register_type (gdbarch, m88k_register_type);
842 /* Register numbers of various important registers. */
843 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
844 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
846 /* Core file support. */
847 set_gdbarch_regset_from_core_section
848 (gdbarch, m88k_regset_from_core_section);
850 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
852 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
854 /* Stack grows downward. */
855 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
857 /* Call dummy code. */
858 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
859 set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
861 /* Return value info */
862 set_gdbarch_return_value (gdbarch, m88k_return_value);
864 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
865 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
866 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
867 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
869 frame_base_set_default (gdbarch, &m88k_frame_base);
870 frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
876 /* Provide a prototype to silence -Wmissing-prototypes. */
877 void _initialize_m88k_tdep (void);
880 _initialize_m88k_tdep (void)
882 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);