1 /* Target-dependent code for the Motorola 68000 series.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "dwarf2-frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
35 #include "arch-utils.h"
38 #include "target-descriptions.h"
40 #include "m68k-tdep.h"
43 #define P_LINKL_FP 0x480e
44 #define P_LINKW_FP 0x4e56
45 #define P_PEA_FP 0x4856
46 #define P_MOVEAL_SP_FP 0x2c4f
47 #define P_ADDAW_SP 0xdefc
48 #define P_ADDAL_SP 0xdffc
49 #define P_SUBQW_SP 0x514f
50 #define P_SUBQL_SP 0x518f
51 #define P_LEA_SP_SP 0x4fef
52 #define P_LEA_PC_A5 0x4bfb0170
53 #define P_FMOVEMX_SP 0xf227
54 #define P_MOVEL_SP 0x2f00
55 #define P_MOVEML_SP 0x48e7
57 /* Offset from SP to first arg on stack at first instruction of a function */
58 #define SP_ARG0 (1 * 4)
60 #if !defined (BPT_VECTOR)
61 #define BPT_VECTOR 0xf
64 static const gdb_byte *
65 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
66 CORE_ADDR *pcptr, int *lenptr)
68 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
69 *lenptr = sizeof (break_insn);
74 /* Construct types for ISA-specific registers. */
76 m68k_ps_type (struct gdbarch *gdbarch)
78 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
80 if (!tdep->m68k_ps_type)
84 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
85 append_flags_type_flag (type, 0, "C");
86 append_flags_type_flag (type, 1, "V");
87 append_flags_type_flag (type, 2, "Z");
88 append_flags_type_flag (type, 3, "N");
89 append_flags_type_flag (type, 4, "X");
90 append_flags_type_flag (type, 8, "I0");
91 append_flags_type_flag (type, 9, "I1");
92 append_flags_type_flag (type, 10, "I2");
93 append_flags_type_flag (type, 12, "M");
94 append_flags_type_flag (type, 13, "S");
95 append_flags_type_flag (type, 14, "T0");
96 append_flags_type_flag (type, 15, "T1");
98 tdep->m68k_ps_type = type;
101 return tdep->m68k_ps_type;
105 m68881_ext_type (struct gdbarch *gdbarch)
107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
109 if (!tdep->m68881_ext_type)
110 tdep->m68881_ext_type
111 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
112 floatformats_m68881_ext);
114 return tdep->m68881_ext_type;
117 /* Return the GDB type object for the "standard" data type of data in
118 register N. This should be int for D0-D7, SR, FPCONTROL and
119 FPSTATUS, long double for FP0-FP7, and void pointer for all others
120 (A0-A7, PC, FPIADDR). Note, for registers which contain
121 addresses return pointer to void, not pointer to char, because we
122 don't want to attempt to print the string after printing the
126 m68k_register_type (struct gdbarch *gdbarch, int regnum)
128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 if (tdep->fpregs_present)
132 if (regnum >= gdbarch_fp0_regnum (gdbarch)
133 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
135 if (tdep->flavour == m68k_coldfire_flavour)
136 return builtin_type (gdbarch)->builtin_double;
138 return m68881_ext_type (gdbarch);
141 if (regnum == M68K_FPI_REGNUM)
142 return builtin_type (gdbarch)->builtin_func_ptr;
144 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
145 return builtin_type (gdbarch)->builtin_int32;
149 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
150 return builtin_type (gdbarch)->builtin_int0;
153 if (regnum == gdbarch_pc_regnum (gdbarch))
154 return builtin_type (gdbarch)->builtin_func_ptr;
156 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
157 return builtin_type (gdbarch)->builtin_data_ptr;
159 if (regnum == M68K_PS_REGNUM)
160 return m68k_ps_type (gdbarch);
162 return builtin_type (gdbarch)->builtin_int32;
165 static const char *m68k_register_names[] = {
166 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
167 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
169 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
170 "fpcontrol", "fpstatus", "fpiaddr"
173 /* Function: m68k_register_name
174 Returns the name of the standard m68k register regnum. */
177 m68k_register_name (struct gdbarch *gdbarch, int regnum)
179 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
180 internal_error (__FILE__, __LINE__,
181 _("m68k_register_name: illegal register number %d"), regnum);
183 return m68k_register_names[regnum];
186 /* Return nonzero if a value of type TYPE stored in register REGNUM
187 needs any special handling. */
190 m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
192 if (!gdbarch_tdep (gdbarch)->fpregs_present)
194 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
195 && type != register_type (gdbarch, M68K_FP0_REGNUM));
198 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
199 return its contents in TO. */
202 m68k_register_to_value (struct frame_info *frame, int regnum,
203 struct type *type, gdb_byte *to)
205 gdb_byte from[M68K_MAX_REGISTER_SIZE];
206 struct type *fpreg_type = register_type (get_frame_arch (frame),
209 /* We only support floating-point values. */
210 if (TYPE_CODE (type) != TYPE_CODE_FLT)
212 warning (_("Cannot convert floating-point register value "
213 "to non-floating-point type."));
217 /* Convert to TYPE. */
218 get_frame_register (frame, regnum, from);
219 convert_typed_floating (from, fpreg_type, to, type);
222 /* Write the contents FROM of a value of type TYPE into register
223 REGNUM in frame FRAME. */
226 m68k_value_to_register (struct frame_info *frame, int regnum,
227 struct type *type, const gdb_byte *from)
229 gdb_byte to[M68K_MAX_REGISTER_SIZE];
230 struct type *fpreg_type = register_type (get_frame_arch (frame),
233 /* We only support floating-point values. */
234 if (TYPE_CODE (type) != TYPE_CODE_FLT)
236 warning (_("Cannot convert non-floating-point type "
237 "to floating-point register value."));
241 /* Convert from TYPE. */
242 convert_typed_floating (from, type, to, fpreg_type);
243 put_frame_register (frame, regnum, to);
247 /* There is a fair number of calling conventions that are in somewhat
248 wide use. The 68000/08/10 don't support an FPU, not even as a
249 coprocessor. All function return values are stored in %d0/%d1.
250 Structures are returned in a static buffer, a pointer to which is
251 returned in %d0. This means that functions returning a structure
252 are not re-entrant. To avoid this problem some systems use a
253 convention where the caller passes a pointer to a buffer in %a1
254 where the return values is to be stored. This convention is the
255 default, and is implemented in the function m68k_return_value.
257 The 68020/030/040/060 do support an FPU, either as a coprocessor
258 (68881/2) or built-in (68040/68060). That's why System V release 4
259 (SVR4) instroduces a new calling convention specified by the SVR4
260 psABI. Integer values are returned in %d0/%d1, pointer return
261 values in %a0 and floating values in %fp0. When calling functions
262 returning a structure the caller should pass a pointer to a buffer
263 for the return value in %a0. This convention is implemented in the
264 function m68k_svr4_return_value, and by appropriately setting the
265 struct_value_regnum member of `struct gdbarch_tdep'.
267 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
268 for passing the structure return value buffer.
270 GCC can also generate code where small structures are returned in
271 %d0/%d1 instead of in memory by using -freg-struct-return. This is
272 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
273 embedded systems. This convention is implemented by setting the
274 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
276 /* Read a function return value of TYPE from REGCACHE, and copy that
280 m68k_extract_return_value (struct type *type, struct regcache *regcache,
283 int len = TYPE_LENGTH (type);
284 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
288 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
289 memcpy (valbuf, buf + (4 - len), len);
293 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
294 memcpy (valbuf, buf + (8 - len), len - 4);
295 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
298 internal_error (__FILE__, __LINE__,
299 _("Cannot extract return value of %d bytes long."), len);
303 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
306 int len = TYPE_LENGTH (type);
307 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
308 struct gdbarch *gdbarch = get_regcache_arch (regcache);
309 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
313 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
314 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
315 convert_typed_floating (buf, fpreg_type, valbuf, type);
317 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
318 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
320 m68k_extract_return_value (type, regcache, valbuf);
323 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
326 m68k_store_return_value (struct type *type, struct regcache *regcache,
327 const gdb_byte *valbuf)
329 int len = TYPE_LENGTH (type);
332 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
335 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
337 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
340 internal_error (__FILE__, __LINE__,
341 _("Cannot store return value of %d bytes long."), len);
345 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
346 const gdb_byte *valbuf)
348 int len = TYPE_LENGTH (type);
349 struct gdbarch *gdbarch = get_regcache_arch (regcache);
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
352 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
354 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
355 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
356 convert_typed_floating (valbuf, type, buf, fpreg_type);
357 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
359 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
361 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
362 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
365 m68k_store_return_value (type, regcache, valbuf);
368 /* Return non-zero if TYPE, which is assumed to be a structure or
369 union type, should be returned in registers for architecture
373 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 enum type_code code = TYPE_CODE (type);
377 int len = TYPE_LENGTH (type);
379 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
381 if (tdep->struct_return == pcc_struct_return)
384 return (len == 1 || len == 2 || len == 4 || len == 8);
387 /* Determine, for architecture GDBARCH, how a return value of TYPE
388 should be returned. If it is supposed to be returned in registers,
389 and READBUF is non-zero, read the appropriate value from REGCACHE,
390 and copy it into READBUF. If WRITEBUF is non-zero, write the value
391 from WRITEBUF into REGCACHE. */
393 static enum return_value_convention
394 m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
395 struct type *type, struct regcache *regcache,
396 gdb_byte *readbuf, const gdb_byte *writebuf)
398 enum type_code code = TYPE_CODE (type);
400 /* GCC returns a `long double' in memory too. */
401 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
402 && !m68k_reg_struct_return_p (gdbarch, type))
403 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
405 /* The default on m68k is to return structures in static memory.
406 Consequently a function must return the address where we can
407 find the return value. */
413 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
414 read_memory (addr, readbuf, TYPE_LENGTH (type));
417 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
421 m68k_extract_return_value (type, regcache, readbuf);
423 m68k_store_return_value (type, regcache, writebuf);
425 return RETURN_VALUE_REGISTER_CONVENTION;
428 static enum return_value_convention
429 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
430 struct type *type, struct regcache *regcache,
431 gdb_byte *readbuf, const gdb_byte *writebuf)
433 enum type_code code = TYPE_CODE (type);
435 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
436 && !m68k_reg_struct_return_p (gdbarch, type))
438 /* The System V ABI says that:
440 "A function returning a structure or union also sets %a0 to
441 the value it finds in %a0. Thus when the caller receives
442 control again, the address of the returned object resides in
445 So the ABI guarantees that we can always find the return
446 value just after the function has returned. */
452 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
453 read_memory (addr, readbuf, TYPE_LENGTH (type));
456 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
459 /* This special case is for structures consisting of a single
460 `float' or `double' member. These structures are returned in
461 %fp0. For these structures, we call ourselves recursively,
462 changing TYPE into the type of the first member of the structure.
463 Since that should work for all structures that have only one
464 member, we don't bother to check the member's type here. */
465 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
467 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
468 return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
473 m68k_svr4_extract_return_value (type, regcache, readbuf);
475 m68k_svr4_store_return_value (type, regcache, writebuf);
477 return RETURN_VALUE_REGISTER_CONVENTION;
481 /* Always align the frame to a 4-byte boundary. This is required on
482 coldfire and harmless on the rest. */
485 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
487 /* Align the stack to four bytes. */
492 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
493 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
494 struct value **args, CORE_ADDR sp, int struct_return,
495 CORE_ADDR struct_addr)
497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
502 /* Push arguments in reverse order. */
503 for (i = nargs - 1; i >= 0; i--)
505 struct type *value_type = value_enclosing_type (args[i]);
506 int len = TYPE_LENGTH (value_type);
507 int container_len = (len + 3) & ~3;
510 /* Non-scalars bigger than 4 bytes are left aligned, others are
512 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
513 || TYPE_CODE (value_type) == TYPE_CODE_UNION
514 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
518 offset = container_len - len;
520 write_memory (sp + offset, value_contents_all (args[i]), len);
523 /* Store struct value address. */
526 store_unsigned_integer (buf, 4, byte_order, struct_addr);
527 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
530 /* Store return address. */
532 store_unsigned_integer (buf, 4, byte_order, bp_addr);
533 write_memory (sp, buf, 4);
535 /* Finally, update the stack pointer... */
536 store_unsigned_integer (buf, 4, byte_order, sp);
537 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
539 /* ...and fake a frame pointer. */
540 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
542 /* DWARF2/GCC uses the stack address *before* the function call as a
547 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
550 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
554 return (num - 0) + M68K_D0_REGNUM;
557 return (num - 8) + M68K_A0_REGNUM;
558 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
560 return (num - 16) + M68K_FP0_REGNUM;
563 return M68K_PC_REGNUM;
565 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
569 struct m68k_frame_cache
576 /* Saved registers. */
577 CORE_ADDR saved_regs[M68K_NUM_REGS];
580 /* Stack space reserved for local variables. */
584 /* Allocate and initialize a frame cache. */
586 static struct m68k_frame_cache *
587 m68k_alloc_frame_cache (void)
589 struct m68k_frame_cache *cache;
592 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
596 cache->sp_offset = -4;
599 /* Saved registers. We initialize these to -1 since zero is a valid
600 offset (that's where %fp is supposed to be stored). */
601 for (i = 0; i < M68K_NUM_REGS; i++)
602 cache->saved_regs[i] = -1;
604 /* Frameless until proven otherwise. */
610 /* Check whether PC points at a code that sets up a new stack frame.
611 If so, it updates CACHE and returns the address of the first
612 instruction after the sequence that sets removes the "hidden"
613 argument from the stack or CURRENT_PC, whichever is smaller.
614 Otherwise, return PC. */
617 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
618 CORE_ADDR pc, CORE_ADDR current_pc,
619 struct m68k_frame_cache *cache)
621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
624 if (pc >= current_pc)
627 op = read_memory_unsigned_integer (pc, 2, byte_order);
629 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
631 cache->saved_regs[M68K_FP_REGNUM] = 0;
632 cache->sp_offset += 4;
633 if (op == P_LINKW_FP)
635 /* link.w %fp, #-N */
636 /* link.w %fp, #0; adda.l #-N, %sp */
637 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
639 if (pc + 4 < current_pc && cache->locals == 0)
641 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
642 if (op == P_ADDAL_SP)
644 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
651 else if (op == P_LINKL_FP)
653 /* link.l %fp, #-N */
654 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
659 /* pea (%fp); movea.l %sp, %fp */
662 if (pc + 2 < current_pc)
664 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
666 if (op == P_MOVEAL_SP_FP)
668 /* move.l %sp, %fp */
676 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
678 /* subq.[wl] #N,%sp */
679 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
680 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
681 if (pc + 2 < current_pc)
683 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
684 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
686 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
692 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
695 /* lea (-N,%sp),%sp */
696 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
699 else if (op == P_ADDAL_SP)
702 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
709 /* Check whether PC points at code that saves registers on the stack.
710 If so, it updates CACHE and returns the address of the first
711 instruction after the register saves or CURRENT_PC, whichever is
712 smaller. Otherwise, return PC. */
715 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
716 CORE_ADDR current_pc,
717 struct m68k_frame_cache *cache)
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
721 if (cache->locals >= 0)
727 offset = -4 - cache->locals;
728 while (pc < current_pc)
730 op = read_memory_unsigned_integer (pc, 2, byte_order);
731 if (op == P_FMOVEMX_SP
732 && gdbarch_tdep (gdbarch)->fpregs_present)
734 /* fmovem.x REGS,-(%sp) */
735 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
736 if ((op & 0xff00) == 0xe000)
739 for (i = 0; i < 16; i++, mask >>= 1)
743 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
752 else if ((op & 0177760) == P_MOVEL_SP)
754 /* move.l %R,-(%sp) */
756 cache->saved_regs[regno] = offset;
760 else if (op == P_MOVEML_SP)
762 /* movem.l REGS,-(%sp) */
763 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
764 for (i = 0; i < 16; i++, mask >>= 1)
768 cache->saved_regs[15 - i] = offset;
783 /* Do a full analysis of the prologue at PC and update CACHE
784 accordingly. Bail out early if CURRENT_PC is reached. Return the
785 address where the analysis stopped.
787 We handle all cases that can be generated by gcc.
789 For allocating a stack frame:
793 pea (%fp); move.l %sp,%fp
794 link.w %a6,#0; add.l #-N,%sp
797 subq.w #8,%sp; subq.w #N-8,%sp
802 For saving registers:
806 move.l R1,-(%sp); move.l R2,-(%sp)
809 For setting up the PIC register:
816 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
817 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
822 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
823 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
824 if (pc >= current_pc)
827 /* Check for GOT setup. */
828 op = read_memory_unsigned_integer (pc, 4, byte_order);
829 if (op == P_LEA_PC_A5)
831 /* lea (%pc,N),%a5 */
838 /* Return PC of first real instruction. */
841 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
843 struct m68k_frame_cache cache;
848 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
849 if (cache.locals < 0)
855 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
859 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
860 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
865 static struct m68k_frame_cache *
866 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
870 struct m68k_frame_cache *cache;
877 cache = m68k_alloc_frame_cache ();
880 /* In principle, for normal frames, %fp holds the frame pointer,
881 which holds the base address for the current stack frame.
882 However, for functions that don't need it, the frame pointer is
883 optional. For these "frameless" functions the frame pointer is
884 actually the frame pointer of the calling frame. Signal
885 trampolines are just a special case of a "frameless" function.
886 They (usually) share their frame pointer with the frame that was
887 in progress when the signal occurred. */
889 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
890 cache->base = extract_unsigned_integer (buf, 4, byte_order);
891 if (cache->base == 0)
894 /* For normal frames, %pc is stored at 4(%fp). */
895 cache->saved_regs[M68K_PC_REGNUM] = 4;
897 cache->pc = get_frame_func (this_frame);
899 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
900 get_frame_pc (this_frame), cache);
902 if (cache->locals < 0)
904 /* We didn't find a valid frame, which means that CACHE->base
905 currently holds the frame pointer for our calling frame. If
906 we're at the start of a function, or somewhere half-way its
907 prologue, the function's frame probably hasn't been fully
908 setup yet. Try to reconstruct the base address for the stack
909 frame by looking at the stack pointer. For truly "frameless"
910 functions this might work too. */
912 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
913 cache->base = extract_unsigned_integer (buf, 4, byte_order)
917 /* Now that we have the base address for the stack frame we can
918 calculate the value of %sp in the calling frame. */
919 cache->saved_sp = cache->base + 8;
921 /* Adjust all the saved registers such that they contain addresses
922 instead of offsets. */
923 for (i = 0; i < M68K_NUM_REGS; i++)
924 if (cache->saved_regs[i] != -1)
925 cache->saved_regs[i] += cache->base;
931 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
932 struct frame_id *this_id)
934 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
936 /* This marks the outermost frame. */
937 if (cache->base == 0)
940 /* See the end of m68k_push_dummy_call. */
941 *this_id = frame_id_build (cache->base + 8, cache->pc);
944 static struct value *
945 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
948 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
950 gdb_assert (regnum >= 0);
952 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
953 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
955 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
956 return frame_unwind_got_memory (this_frame, regnum,
957 cache->saved_regs[regnum]);
959 return frame_unwind_got_register (this_frame, regnum, regnum);
962 static const struct frame_unwind m68k_frame_unwind =
966 m68k_frame_prev_register,
968 default_frame_sniffer
972 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
974 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
979 static const struct frame_base m68k_frame_base =
982 m68k_frame_base_address,
983 m68k_frame_base_address,
984 m68k_frame_base_address
987 static struct frame_id
988 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
992 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
994 /* See the end of m68k_push_dummy_call. */
995 return frame_id_build (fp + 8, get_frame_pc (this_frame));
999 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1000 We expect the first arg to be a pointer to the jmp_buf structure from which
1001 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1002 This routine returns true on success. */
1005 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1008 CORE_ADDR sp, jb_addr;
1009 struct gdbarch *gdbarch = get_frame_arch (frame);
1010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1013 if (tdep->jb_pc < 0)
1015 internal_error (__FILE__, __LINE__,
1016 _("m68k_get_longjmp_target: not implemented"));
1020 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1021 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1023 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1024 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1027 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1028 / TARGET_CHAR_BIT, byte_order);
1030 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1031 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1035 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1036 / TARGET_CHAR_BIT, byte_order);
1041 /* System V Release 4 (SVR4). */
1044 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1048 /* SVR4 uses a different calling convention. */
1049 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1051 /* SVR4 uses %a0 instead of %a1. */
1052 tdep->struct_value_regnum = M68K_A0_REGNUM;
1056 /* Function: m68k_gdbarch_init
1057 Initializer function for the m68k gdbarch vector.
1058 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1060 static struct gdbarch *
1061 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1063 struct gdbarch_tdep *tdep = NULL;
1064 struct gdbarch *gdbarch;
1065 struct gdbarch_list *best_arch;
1066 struct tdesc_arch_data *tdesc_data = NULL;
1068 enum m68k_flavour flavour = m68k_no_flavour;
1070 const struct floatformat **long_double_format = floatformats_m68881_ext;
1072 /* Check any target description for validity. */
1073 if (tdesc_has_registers (info.target_desc))
1075 const struct tdesc_feature *feature;
1078 feature = tdesc_find_feature (info.target_desc,
1079 "org.gnu.gdb.m68k.core");
1080 if (feature != NULL)
1084 if (feature == NULL)
1086 feature = tdesc_find_feature (info.target_desc,
1087 "org.gnu.gdb.coldfire.core");
1088 if (feature != NULL)
1089 flavour = m68k_coldfire_flavour;
1092 if (feature == NULL)
1094 feature = tdesc_find_feature (info.target_desc,
1095 "org.gnu.gdb.fido.core");
1096 if (feature != NULL)
1097 flavour = m68k_fido_flavour;
1100 if (feature == NULL)
1103 tdesc_data = tdesc_data_alloc ();
1106 for (i = 0; i <= M68K_PC_REGNUM; i++)
1107 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1108 m68k_register_names[i]);
1112 tdesc_data_cleanup (tdesc_data);
1116 feature = tdesc_find_feature (info.target_desc,
1117 "org.gnu.gdb.coldfire.fp");
1118 if (feature != NULL)
1121 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1122 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1123 m68k_register_names[i]);
1126 tdesc_data_cleanup (tdesc_data);
1134 /* The mechanism for returning floating values from function
1135 and the type of long double depend on whether we're
1136 on ColdFire or standard m68k. */
1138 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1140 const bfd_arch_info_type *coldfire_arch =
1141 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1144 && ((*info.bfd_arch_info->compatible)
1145 (info.bfd_arch_info, coldfire_arch)))
1146 flavour = m68k_coldfire_flavour;
1149 /* If there is already a candidate, use it. */
1150 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1152 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1154 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1157 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1163 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1164 gdbarch = gdbarch_alloc (&info, tdep);
1165 tdep->fpregs_present = has_fp;
1166 tdep->flavour = flavour;
1168 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1169 long_double_format = floatformats_ieee_double;
1170 set_gdbarch_long_double_format (gdbarch, long_double_format);
1171 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1173 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1174 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1176 /* Stack grows down. */
1177 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1178 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1180 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1181 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1182 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1184 set_gdbarch_frame_args_skip (gdbarch, 8);
1185 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1187 set_gdbarch_register_type (gdbarch, m68k_register_type);
1188 set_gdbarch_register_name (gdbarch, m68k_register_name);
1189 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1190 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1191 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1192 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1193 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1194 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1195 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1196 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1199 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1201 /* Try to figure out if the arch uses floating registers to return
1202 floating point values from functions. */
1205 /* On ColdFire, floating point values are returned in D0. */
1206 if (flavour == m68k_coldfire_flavour)
1207 tdep->float_return = 0;
1209 tdep->float_return = 1;
1213 /* No floating registers, so can't use them for returning values. */
1214 tdep->float_return = 0;
1217 /* Function call & return */
1218 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1219 set_gdbarch_return_value (gdbarch, m68k_return_value);
1223 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1225 #if defined JB_PC && defined JB_ELEMENT_SIZE
1226 tdep->jb_pc = JB_PC;
1227 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1231 tdep->struct_value_regnum = M68K_A1_REGNUM;
1232 tdep->struct_return = reg_struct_return;
1234 /* Frame unwinder. */
1235 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1236 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1238 /* Hook in the DWARF CFI frame unwinder. */
1239 dwarf2_append_unwinders (gdbarch);
1241 frame_base_set_default (gdbarch, &m68k_frame_base);
1243 /* Hook in ABI-specific overrides, if they have been registered. */
1244 gdbarch_init_osabi (info, gdbarch);
1246 /* Now we have tuned the configuration, set a few final things,
1247 based on what the OS ABI has told us. */
1249 if (tdep->jb_pc >= 0)
1250 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1252 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1255 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1262 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1270 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1273 _initialize_m68k_tdep (void)
1275 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);