1 /* Target-dependent code for the Motorola 68000 series.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "dwarf2-frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
35 #include "arch-utils.h"
38 #include "target-descriptions.h"
40 #include "m68k-tdep.h"
43 #define P_LINKL_FP 0x480e
44 #define P_LINKW_FP 0x4e56
45 #define P_PEA_FP 0x4856
46 #define P_MOVEAL_SP_FP 0x2c4f
47 #define P_ADDAW_SP 0xdefc
48 #define P_ADDAL_SP 0xdffc
49 #define P_SUBQW_SP 0x514f
50 #define P_SUBQL_SP 0x518f
51 #define P_LEA_SP_SP 0x4fef
52 #define P_LEA_PC_A5 0x4bfb0170
53 #define P_FMOVEMX_SP 0xf227
54 #define P_MOVEL_SP 0x2f00
55 #define P_MOVEML_SP 0x48e7
57 /* Offset from SP to first arg on stack at first instruction of a function */
58 #define SP_ARG0 (1 * 4)
60 #if !defined (BPT_VECTOR)
61 #define BPT_VECTOR 0xf
64 static const gdb_byte *
65 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
66 CORE_ADDR *pcptr, int *lenptr)
68 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
69 *lenptr = sizeof (break_insn);
74 /* Construct types for ISA-specific registers. */
76 m68k_ps_type (struct gdbarch *gdbarch)
78 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
80 if (!tdep->m68k_ps_type)
84 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
85 append_flags_type_flag (type, 0, "C");
86 append_flags_type_flag (type, 1, "V");
87 append_flags_type_flag (type, 2, "Z");
88 append_flags_type_flag (type, 3, "N");
89 append_flags_type_flag (type, 4, "X");
90 append_flags_type_flag (type, 8, "I0");
91 append_flags_type_flag (type, 9, "I1");
92 append_flags_type_flag (type, 10, "I2");
93 append_flags_type_flag (type, 12, "M");
94 append_flags_type_flag (type, 13, "S");
95 append_flags_type_flag (type, 14, "T0");
96 append_flags_type_flag (type, 15, "T1");
98 tdep->m68k_ps_type = type;
101 return tdep->m68k_ps_type;
105 m68881_ext_type (struct gdbarch *gdbarch)
107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
109 if (!tdep->m68881_ext_type)
110 tdep->m68881_ext_type
111 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
112 floatformats_m68881_ext);
114 return tdep->m68881_ext_type;
117 /* Return the GDB type object for the "standard" data type of data in
118 register N. This should be int for D0-D7, SR, FPCONTROL and
119 FPSTATUS, long double for FP0-FP7, and void pointer for all others
120 (A0-A7, PC, FPIADDR). Note, for registers which contain
121 addresses return pointer to void, not pointer to char, because we
122 don't want to attempt to print the string after printing the
126 m68k_register_type (struct gdbarch *gdbarch, int regnum)
128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 if (tdep->fpregs_present)
132 if (regnum >= gdbarch_fp0_regnum (gdbarch)
133 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
135 if (tdep->flavour == m68k_coldfire_flavour)
136 return builtin_type (gdbarch)->builtin_double;
138 return m68881_ext_type (gdbarch);
141 if (regnum == M68K_FPI_REGNUM)
142 return builtin_type (gdbarch)->builtin_func_ptr;
144 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
145 return builtin_type (gdbarch)->builtin_int32;
149 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
150 return builtin_type (gdbarch)->builtin_int0;
153 if (regnum == gdbarch_pc_regnum (gdbarch))
154 return builtin_type (gdbarch)->builtin_func_ptr;
156 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
157 return builtin_type (gdbarch)->builtin_data_ptr;
159 if (regnum == M68K_PS_REGNUM)
160 return m68k_ps_type (gdbarch);
162 return builtin_type (gdbarch)->builtin_int32;
165 static const char *m68k_register_names[] = {
166 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
167 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
169 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
170 "fpcontrol", "fpstatus", "fpiaddr"
173 /* Function: m68k_register_name
174 Returns the name of the standard m68k register regnum. */
177 m68k_register_name (struct gdbarch *gdbarch, int regnum)
179 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
180 internal_error (__FILE__, __LINE__,
181 _("m68k_register_name: illegal register number %d"), regnum);
182 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
183 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
186 return m68k_register_names[regnum];
189 /* Return nonzero if a value of type TYPE stored in register REGNUM
190 needs any special handling. */
193 m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to)
208 gdb_byte from[M68K_MAX_REGISTER_SIZE];
209 struct type *fpreg_type = register_type (get_frame_arch (frame),
212 /* We only support floating-point values. */
213 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 warning (_("Cannot convert floating-point register value "
216 "to non-floating-point type."));
220 /* Convert to TYPE. */
221 get_frame_register (frame, regnum, from);
222 convert_typed_floating (from, fpreg_type, to, type);
225 /* Write the contents FROM of a value of type TYPE into register
226 REGNUM in frame FRAME. */
229 m68k_value_to_register (struct frame_info *frame, int regnum,
230 struct type *type, const gdb_byte *from)
232 gdb_byte to[M68K_MAX_REGISTER_SIZE];
233 struct type *fpreg_type = register_type (get_frame_arch (frame),
236 /* We only support floating-point values. */
237 if (TYPE_CODE (type) != TYPE_CODE_FLT)
239 warning (_("Cannot convert non-floating-point type "
240 "to floating-point register value."));
244 /* Convert from TYPE. */
245 convert_typed_floating (from, type, to, fpreg_type);
246 put_frame_register (frame, regnum, to);
250 /* There is a fair number of calling conventions that are in somewhat
251 wide use. The 68000/08/10 don't support an FPU, not even as a
252 coprocessor. All function return values are stored in %d0/%d1.
253 Structures are returned in a static buffer, a pointer to which is
254 returned in %d0. This means that functions returning a structure
255 are not re-entrant. To avoid this problem some systems use a
256 convention where the caller passes a pointer to a buffer in %a1
257 where the return values is to be stored. This convention is the
258 default, and is implemented in the function m68k_return_value.
260 The 68020/030/040/060 do support an FPU, either as a coprocessor
261 (68881/2) or built-in (68040/68060). That's why System V release 4
262 (SVR4) instroduces a new calling convention specified by the SVR4
263 psABI. Integer values are returned in %d0/%d1, pointer return
264 values in %a0 and floating values in %fp0. When calling functions
265 returning a structure the caller should pass a pointer to a buffer
266 for the return value in %a0. This convention is implemented in the
267 function m68k_svr4_return_value, and by appropriately setting the
268 struct_value_regnum member of `struct gdbarch_tdep'.
270 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
271 for passing the structure return value buffer.
273 GCC can also generate code where small structures are returned in
274 %d0/%d1 instead of in memory by using -freg-struct-return. This is
275 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
276 embedded systems. This convention is implemented by setting the
277 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
279 /* Read a function return value of TYPE from REGCACHE, and copy that
283 m68k_extract_return_value (struct type *type, struct regcache *regcache,
286 int len = TYPE_LENGTH (type);
287 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
291 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
292 memcpy (valbuf, buf + (4 - len), len);
296 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
297 memcpy (valbuf, buf + (8 - len), len - 4);
298 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
301 internal_error (__FILE__, __LINE__,
302 _("Cannot extract return value of %d bytes long."), len);
306 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
309 int len = TYPE_LENGTH (type);
310 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
311 struct gdbarch *gdbarch = get_regcache_arch (regcache);
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
316 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
317 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
318 convert_typed_floating (buf, fpreg_type, valbuf, type);
320 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
321 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
323 m68k_extract_return_value (type, regcache, valbuf);
326 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
329 m68k_store_return_value (struct type *type, struct regcache *regcache,
330 const gdb_byte *valbuf)
332 int len = TYPE_LENGTH (type);
335 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
338 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
340 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
343 internal_error (__FILE__, __LINE__,
344 _("Cannot store return value of %d bytes long."), len);
348 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
349 const gdb_byte *valbuf)
351 int len = TYPE_LENGTH (type);
352 struct gdbarch *gdbarch = get_regcache_arch (regcache);
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
355 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
357 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
358 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
359 convert_typed_floating (valbuf, type, buf, fpreg_type);
360 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
362 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
364 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
365 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
368 m68k_store_return_value (type, regcache, valbuf);
371 /* Return non-zero if TYPE, which is assumed to be a structure or
372 union type, should be returned in registers for architecture
376 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379 enum type_code code = TYPE_CODE (type);
380 int len = TYPE_LENGTH (type);
382 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
384 if (tdep->struct_return == pcc_struct_return)
387 return (len == 1 || len == 2 || len == 4 || len == 8);
390 /* Determine, for architecture GDBARCH, how a return value of TYPE
391 should be returned. If it is supposed to be returned in registers,
392 and READBUF is non-zero, read the appropriate value from REGCACHE,
393 and copy it into READBUF. If WRITEBUF is non-zero, write the value
394 from WRITEBUF into REGCACHE. */
396 static enum return_value_convention
397 m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
398 struct type *type, struct regcache *regcache,
399 gdb_byte *readbuf, const gdb_byte *writebuf)
401 enum type_code code = TYPE_CODE (type);
403 /* GCC returns a `long double' in memory too. */
404 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
405 && !m68k_reg_struct_return_p (gdbarch, type))
406 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
408 /* The default on m68k is to return structures in static memory.
409 Consequently a function must return the address where we can
410 find the return value. */
416 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
417 read_memory (addr, readbuf, TYPE_LENGTH (type));
420 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
424 m68k_extract_return_value (type, regcache, readbuf);
426 m68k_store_return_value (type, regcache, writebuf);
428 return RETURN_VALUE_REGISTER_CONVENTION;
431 static enum return_value_convention
432 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
433 struct type *type, struct regcache *regcache,
434 gdb_byte *readbuf, const gdb_byte *writebuf)
436 enum type_code code = TYPE_CODE (type);
438 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
439 && !m68k_reg_struct_return_p (gdbarch, type))
441 /* The System V ABI says that:
443 "A function returning a structure or union also sets %a0 to
444 the value it finds in %a0. Thus when the caller receives
445 control again, the address of the returned object resides in
448 So the ABI guarantees that we can always find the return
449 value just after the function has returned. */
455 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
456 read_memory (addr, readbuf, TYPE_LENGTH (type));
459 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
462 /* This special case is for structures consisting of a single
463 `float' or `double' member. These structures are returned in
464 %fp0. For these structures, we call ourselves recursively,
465 changing TYPE into the type of the first member of the structure.
466 Since that should work for all structures that have only one
467 member, we don't bother to check the member's type here. */
468 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
470 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
471 return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
476 m68k_svr4_extract_return_value (type, regcache, readbuf);
478 m68k_svr4_store_return_value (type, regcache, writebuf);
480 return RETURN_VALUE_REGISTER_CONVENTION;
484 /* Always align the frame to a 4-byte boundary. This is required on
485 coldfire and harmless on the rest. */
488 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
490 /* Align the stack to four bytes. */
495 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
496 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
497 struct value **args, CORE_ADDR sp, int struct_return,
498 CORE_ADDR struct_addr)
500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
505 /* Push arguments in reverse order. */
506 for (i = nargs - 1; i >= 0; i--)
508 struct type *value_type = value_enclosing_type (args[i]);
509 int len = TYPE_LENGTH (value_type);
510 int container_len = (len + 3) & ~3;
513 /* Non-scalars bigger than 4 bytes are left aligned, others are
515 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
516 || TYPE_CODE (value_type) == TYPE_CODE_UNION
517 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
521 offset = container_len - len;
523 write_memory (sp + offset, value_contents_all (args[i]), len);
526 /* Store struct value address. */
529 store_unsigned_integer (buf, 4, byte_order, struct_addr);
530 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
533 /* Store return address. */
535 store_unsigned_integer (buf, 4, byte_order, bp_addr);
536 write_memory (sp, buf, 4);
538 /* Finally, update the stack pointer... */
539 store_unsigned_integer (buf, 4, byte_order, sp);
540 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
542 /* ...and fake a frame pointer. */
543 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
545 /* DWARF2/GCC uses the stack address *before* the function call as a
550 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
553 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
557 return (num - 0) + M68K_D0_REGNUM;
560 return (num - 8) + M68K_A0_REGNUM;
561 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
563 return (num - 16) + M68K_FP0_REGNUM;
566 return M68K_PC_REGNUM;
568 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
572 struct m68k_frame_cache
579 /* Saved registers. */
580 CORE_ADDR saved_regs[M68K_NUM_REGS];
583 /* Stack space reserved for local variables. */
587 /* Allocate and initialize a frame cache. */
589 static struct m68k_frame_cache *
590 m68k_alloc_frame_cache (void)
592 struct m68k_frame_cache *cache;
595 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
599 cache->sp_offset = -4;
602 /* Saved registers. We initialize these to -1 since zero is a valid
603 offset (that's where %fp is supposed to be stored). */
604 for (i = 0; i < M68K_NUM_REGS; i++)
605 cache->saved_regs[i] = -1;
607 /* Frameless until proven otherwise. */
613 /* Check whether PC points at a code that sets up a new stack frame.
614 If so, it updates CACHE and returns the address of the first
615 instruction after the sequence that sets removes the "hidden"
616 argument from the stack or CURRENT_PC, whichever is smaller.
617 Otherwise, return PC. */
620 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
621 CORE_ADDR pc, CORE_ADDR current_pc,
622 struct m68k_frame_cache *cache)
624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
627 if (pc >= current_pc)
630 op = read_memory_unsigned_integer (pc, 2, byte_order);
632 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
634 cache->saved_regs[M68K_FP_REGNUM] = 0;
635 cache->sp_offset += 4;
636 if (op == P_LINKW_FP)
638 /* link.w %fp, #-N */
639 /* link.w %fp, #0; adda.l #-N, %sp */
640 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
642 if (pc + 4 < current_pc && cache->locals == 0)
644 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
645 if (op == P_ADDAL_SP)
647 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
654 else if (op == P_LINKL_FP)
656 /* link.l %fp, #-N */
657 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
662 /* pea (%fp); movea.l %sp, %fp */
665 if (pc + 2 < current_pc)
667 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
669 if (op == P_MOVEAL_SP_FP)
671 /* move.l %sp, %fp */
679 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
681 /* subq.[wl] #N,%sp */
682 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
683 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
684 if (pc + 2 < current_pc)
686 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
687 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
689 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
695 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
698 /* lea (-N,%sp),%sp */
699 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
702 else if (op == P_ADDAL_SP)
705 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
712 /* Check whether PC points at code that saves registers on the stack.
713 If so, it updates CACHE and returns the address of the first
714 instruction after the register saves or CURRENT_PC, whichever is
715 smaller. Otherwise, return PC. */
718 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
719 CORE_ADDR current_pc,
720 struct m68k_frame_cache *cache)
722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
724 if (cache->locals >= 0)
730 offset = -4 - cache->locals;
731 while (pc < current_pc)
733 op = read_memory_unsigned_integer (pc, 2, byte_order);
734 if (op == P_FMOVEMX_SP
735 && gdbarch_tdep (gdbarch)->fpregs_present)
737 /* fmovem.x REGS,-(%sp) */
738 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
739 if ((op & 0xff00) == 0xe000)
742 for (i = 0; i < 16; i++, mask >>= 1)
746 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
755 else if ((op & 0177760) == P_MOVEL_SP)
757 /* move.l %R,-(%sp) */
759 cache->saved_regs[regno] = offset;
763 else if (op == P_MOVEML_SP)
765 /* movem.l REGS,-(%sp) */
766 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
767 for (i = 0; i < 16; i++, mask >>= 1)
771 cache->saved_regs[15 - i] = offset;
786 /* Do a full analysis of the prologue at PC and update CACHE
787 accordingly. Bail out early if CURRENT_PC is reached. Return the
788 address where the analysis stopped.
790 We handle all cases that can be generated by gcc.
792 For allocating a stack frame:
796 pea (%fp); move.l %sp,%fp
797 link.w %a6,#0; add.l #-N,%sp
800 subq.w #8,%sp; subq.w #N-8,%sp
805 For saving registers:
809 move.l R1,-(%sp); move.l R2,-(%sp)
812 For setting up the PIC register:
819 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
820 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
822 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
825 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
826 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
827 if (pc >= current_pc)
830 /* Check for GOT setup. */
831 op = read_memory_unsigned_integer (pc, 4, byte_order);
832 if (op == P_LEA_PC_A5)
834 /* lea (%pc,N),%a5 */
841 /* Return PC of first real instruction. */
844 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
846 struct m68k_frame_cache cache;
851 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
852 if (cache.locals < 0)
858 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
862 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
863 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
868 static struct m68k_frame_cache *
869 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
871 struct gdbarch *gdbarch = get_frame_arch (this_frame);
872 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
873 struct m68k_frame_cache *cache;
880 cache = m68k_alloc_frame_cache ();
883 /* In principle, for normal frames, %fp holds the frame pointer,
884 which holds the base address for the current stack frame.
885 However, for functions that don't need it, the frame pointer is
886 optional. For these "frameless" functions the frame pointer is
887 actually the frame pointer of the calling frame. Signal
888 trampolines are just a special case of a "frameless" function.
889 They (usually) share their frame pointer with the frame that was
890 in progress when the signal occurred. */
892 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
893 cache->base = extract_unsigned_integer (buf, 4, byte_order);
894 if (cache->base == 0)
897 /* For normal frames, %pc is stored at 4(%fp). */
898 cache->saved_regs[M68K_PC_REGNUM] = 4;
900 cache->pc = get_frame_func (this_frame);
902 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
903 get_frame_pc (this_frame), cache);
905 if (cache->locals < 0)
907 /* We didn't find a valid frame, which means that CACHE->base
908 currently holds the frame pointer for our calling frame. If
909 we're at the start of a function, or somewhere half-way its
910 prologue, the function's frame probably hasn't been fully
911 setup yet. Try to reconstruct the base address for the stack
912 frame by looking at the stack pointer. For truly "frameless"
913 functions this might work too. */
915 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
916 cache->base = extract_unsigned_integer (buf, 4, byte_order)
920 /* Now that we have the base address for the stack frame we can
921 calculate the value of %sp in the calling frame. */
922 cache->saved_sp = cache->base + 8;
924 /* Adjust all the saved registers such that they contain addresses
925 instead of offsets. */
926 for (i = 0; i < M68K_NUM_REGS; i++)
927 if (cache->saved_regs[i] != -1)
928 cache->saved_regs[i] += cache->base;
934 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
935 struct frame_id *this_id)
937 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
939 /* This marks the outermost frame. */
940 if (cache->base == 0)
943 /* See the end of m68k_push_dummy_call. */
944 *this_id = frame_id_build (cache->base + 8, cache->pc);
947 static struct value *
948 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
951 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
953 gdb_assert (regnum >= 0);
955 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
956 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
958 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
959 return frame_unwind_got_memory (this_frame, regnum,
960 cache->saved_regs[regnum]);
962 return frame_unwind_got_register (this_frame, regnum, regnum);
965 static const struct frame_unwind m68k_frame_unwind =
969 m68k_frame_prev_register,
971 default_frame_sniffer
975 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
977 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
982 static const struct frame_base m68k_frame_base =
985 m68k_frame_base_address,
986 m68k_frame_base_address,
987 m68k_frame_base_address
990 static struct frame_id
991 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
995 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
997 /* See the end of m68k_push_dummy_call. */
998 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1002 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1003 We expect the first arg to be a pointer to the jmp_buf structure from which
1004 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1005 This routine returns true on success. */
1008 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1011 CORE_ADDR sp, jb_addr;
1012 struct gdbarch *gdbarch = get_frame_arch (frame);
1013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1014 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1016 if (tdep->jb_pc < 0)
1018 internal_error (__FILE__, __LINE__,
1019 _("m68k_get_longjmp_target: not implemented"));
1023 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1024 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1026 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1027 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1030 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1031 / TARGET_CHAR_BIT, byte_order);
1033 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1034 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1038 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1039 / TARGET_CHAR_BIT, byte_order);
1044 /* System V Release 4 (SVR4). */
1047 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1051 /* SVR4 uses a different calling convention. */
1052 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1054 /* SVR4 uses %a0 instead of %a1. */
1055 tdep->struct_value_regnum = M68K_A0_REGNUM;
1059 /* Function: m68k_gdbarch_init
1060 Initializer function for the m68k gdbarch vector.
1061 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1063 static struct gdbarch *
1064 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1066 struct gdbarch_tdep *tdep = NULL;
1067 struct gdbarch *gdbarch;
1068 struct gdbarch_list *best_arch;
1069 struct tdesc_arch_data *tdesc_data = NULL;
1071 enum m68k_flavour flavour = m68k_no_flavour;
1073 const struct floatformat **long_double_format = floatformats_m68881_ext;
1075 /* Check any target description for validity. */
1076 if (tdesc_has_registers (info.target_desc))
1078 const struct tdesc_feature *feature;
1081 feature = tdesc_find_feature (info.target_desc,
1082 "org.gnu.gdb.m68k.core");
1083 if (feature != NULL)
1087 if (feature == NULL)
1089 feature = tdesc_find_feature (info.target_desc,
1090 "org.gnu.gdb.coldfire.core");
1091 if (feature != NULL)
1092 flavour = m68k_coldfire_flavour;
1095 if (feature == NULL)
1097 feature = tdesc_find_feature (info.target_desc,
1098 "org.gnu.gdb.fido.core");
1099 if (feature != NULL)
1100 flavour = m68k_fido_flavour;
1103 if (feature == NULL)
1106 tdesc_data = tdesc_data_alloc ();
1109 for (i = 0; i <= M68K_PC_REGNUM; i++)
1110 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1111 m68k_register_names[i]);
1115 tdesc_data_cleanup (tdesc_data);
1119 feature = tdesc_find_feature (info.target_desc,
1120 "org.gnu.gdb.coldfire.fp");
1121 if (feature != NULL)
1124 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1125 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1126 m68k_register_names[i]);
1129 tdesc_data_cleanup (tdesc_data);
1137 /* The mechanism for returning floating values from function
1138 and the type of long double depend on whether we're
1139 on ColdFire or standard m68k. */
1141 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1143 const bfd_arch_info_type *coldfire_arch =
1144 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1147 && ((*info.bfd_arch_info->compatible)
1148 (info.bfd_arch_info, coldfire_arch)))
1149 flavour = m68k_coldfire_flavour;
1152 /* If there is already a candidate, use it. */
1153 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1155 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1157 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1160 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1166 if (best_arch != NULL)
1168 if (tdesc_data != NULL)
1169 tdesc_data_cleanup (tdesc_data);
1170 return best_arch->gdbarch;
1173 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1174 gdbarch = gdbarch_alloc (&info, tdep);
1175 tdep->fpregs_present = has_fp;
1176 tdep->flavour = flavour;
1178 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1179 long_double_format = floatformats_ieee_double;
1180 set_gdbarch_long_double_format (gdbarch, long_double_format);
1181 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1183 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1184 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1186 /* Stack grows down. */
1187 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1188 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1190 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1191 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1192 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1194 set_gdbarch_frame_args_skip (gdbarch, 8);
1195 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1197 set_gdbarch_register_type (gdbarch, m68k_register_type);
1198 set_gdbarch_register_name (gdbarch, m68k_register_name);
1199 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1200 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1201 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1202 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1203 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1204 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1205 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1208 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1210 /* Try to figure out if the arch uses floating registers to return
1211 floating point values from functions. */
1214 /* On ColdFire, floating point values are returned in D0. */
1215 if (flavour == m68k_coldfire_flavour)
1216 tdep->float_return = 0;
1218 tdep->float_return = 1;
1222 /* No floating registers, so can't use them for returning values. */
1223 tdep->float_return = 0;
1226 /* Function call & return */
1227 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1228 set_gdbarch_return_value (gdbarch, m68k_return_value);
1232 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1234 #if defined JB_PC && defined JB_ELEMENT_SIZE
1235 tdep->jb_pc = JB_PC;
1236 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1240 tdep->struct_value_regnum = M68K_A1_REGNUM;
1241 tdep->struct_return = reg_struct_return;
1243 /* Frame unwinder. */
1244 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1245 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1247 /* Hook in the DWARF CFI frame unwinder. */
1248 dwarf2_append_unwinders (gdbarch);
1250 frame_base_set_default (gdbarch, &m68k_frame_base);
1252 /* Hook in ABI-specific overrides, if they have been registered. */
1253 gdbarch_init_osabi (info, gdbarch);
1255 /* Now we have tuned the configuration, set a few final things,
1256 based on what the OS ABI has told us. */
1258 if (tdep->jb_pc >= 0)
1259 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1261 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1264 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1271 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1279 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1282 _initialize_m68k_tdep (void)
1284 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);