1 /* Target-dependent code for the Motorola 68000 series.
3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "dwarf2-frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
33 #include "arch-utils.h"
36 #include "target-descriptions.h"
38 #include "m68k-tdep.h"
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
62 static const gdb_byte *
63 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
72 /* Construct types for ISA-specific registers. */
74 m68k_ps_type (struct gdbarch *gdbarch)
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78 if (!tdep->m68k_ps_type)
82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
96 tdep->m68k_ps_type = type;
99 return tdep->m68k_ps_type;
103 m68881_ext_type (struct gdbarch *gdbarch)
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
110 floatformats_m68881_ext);
112 return tdep->m68881_ext_type;
115 /* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
124 m68k_register_type (struct gdbarch *gdbarch, int regnum)
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
128 if (tdep->fpregs_present)
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
136 return m68881_ext_type (gdbarch);
139 if (regnum == M68K_FPI_REGNUM)
140 return builtin_type (gdbarch)->builtin_func_ptr;
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
143 return builtin_type (gdbarch)->builtin_int32;
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
148 return builtin_type (gdbarch)->builtin_int0;
151 if (regnum == gdbarch_pc_regnum (gdbarch))
152 return builtin_type (gdbarch)->builtin_func_ptr;
154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
155 return builtin_type (gdbarch)->builtin_data_ptr;
157 if (regnum == M68K_PS_REGNUM)
158 return m68k_ps_type (gdbarch);
160 return builtin_type (gdbarch)->builtin_int32;
163 static const char *m68k_register_names[] = {
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
168 "fpcontrol", "fpstatus", "fpiaddr"
171 /* Function: m68k_register_name
172 Returns the name of the standard m68k register regnum. */
175 m68k_register_name (struct gdbarch *gdbarch, int regnum)
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
178 internal_error (__FILE__, __LINE__,
179 _("m68k_register_name: illegal register number %d"),
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
185 return m68k_register_names[regnum];
188 /* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
192 m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
218 *optimizedp = *unavailablep = 0;
222 /* Convert to TYPE. */
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
229 convert_typed_floating (from, fpreg_type, to, type);
230 *optimizedp = *unavailablep = 0;
234 /* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
238 m68k_value_to_register (struct frame_info *frame, int regnum,
239 struct type *type, const gdb_byte *from)
241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
253 /* Convert from TYPE. */
254 convert_typed_floating (from, type, to, fpreg_type);
255 put_frame_register (frame, regnum, to);
259 /* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
288 /* Read a function return value of TYPE from REGCACHE, and copy that
292 m68k_extract_return_value (struct type *type, struct regcache *regcache,
295 int len = TYPE_LENGTH (type);
296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
310 internal_error (__FILE__, __LINE__,
311 _("Cannot extract return value of %d bytes long."), len);
315 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
318 int len = TYPE_LENGTH (type);
319 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
320 struct gdbarch *gdbarch = get_regcache_arch (regcache);
321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
323 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
325 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
326 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
327 convert_typed_floating (buf, fpreg_type, valbuf, type);
329 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
330 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
332 m68k_extract_return_value (type, regcache, valbuf);
335 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
338 m68k_store_return_value (struct type *type, struct regcache *regcache,
339 const gdb_byte *valbuf)
341 int len = TYPE_LENGTH (type);
344 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
347 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
349 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
352 internal_error (__FILE__, __LINE__,
353 _("Cannot store return value of %d bytes long."), len);
357 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
358 const gdb_byte *valbuf)
360 int len = TYPE_LENGTH (type);
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
364 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
366 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
367 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
368 convert_typed_floating (valbuf, type, buf, fpreg_type);
369 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
371 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
373 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
374 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
377 m68k_store_return_value (type, regcache, valbuf);
380 /* Return non-zero if TYPE, which is assumed to be a structure or
381 union type, should be returned in registers for architecture
385 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 enum type_code code = TYPE_CODE (type);
389 int len = TYPE_LENGTH (type);
391 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
393 if (tdep->struct_return == pcc_struct_return)
396 return (len == 1 || len == 2 || len == 4 || len == 8);
399 /* Determine, for architecture GDBARCH, how a return value of TYPE
400 should be returned. If it is supposed to be returned in registers,
401 and READBUF is non-zero, read the appropriate value from REGCACHE,
402 and copy it into READBUF. If WRITEBUF is non-zero, write the value
403 from WRITEBUF into REGCACHE. */
405 static enum return_value_convention
406 m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
407 struct type *type, struct regcache *regcache,
408 gdb_byte *readbuf, const gdb_byte *writebuf)
410 enum type_code code = TYPE_CODE (type);
412 /* GCC returns a `long double' in memory too. */
413 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
414 && !m68k_reg_struct_return_p (gdbarch, type))
415 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
417 /* The default on m68k is to return structures in static memory.
418 Consequently a function must return the address where we can
419 find the return value. */
425 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
426 read_memory (addr, readbuf, TYPE_LENGTH (type));
429 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
433 m68k_extract_return_value (type, regcache, readbuf);
435 m68k_store_return_value (type, regcache, writebuf);
437 return RETURN_VALUE_REGISTER_CONVENTION;
440 static enum return_value_convention
441 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
442 struct type *type, struct regcache *regcache,
443 gdb_byte *readbuf, const gdb_byte *writebuf)
445 enum type_code code = TYPE_CODE (type);
447 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
448 && !m68k_reg_struct_return_p (gdbarch, type))
450 /* The System V ABI says that:
452 "A function returning a structure or union also sets %a0 to
453 the value it finds in %a0. Thus when the caller receives
454 control again, the address of the returned object resides in
457 So the ABI guarantees that we can always find the return
458 value just after the function has returned. */
464 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
465 read_memory (addr, readbuf, TYPE_LENGTH (type));
468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
471 /* This special case is for structures consisting of a single
472 `float' or `double' member. These structures are returned in
473 %fp0. For these structures, we call ourselves recursively,
474 changing TYPE into the type of the first member of the structure.
475 Since that should work for all structures that have only one
476 member, we don't bother to check the member's type here. */
477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
480 return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
485 m68k_svr4_extract_return_value (type, regcache, readbuf);
487 m68k_svr4_store_return_value (type, regcache, writebuf);
489 return RETURN_VALUE_REGISTER_CONVENTION;
493 /* Always align the frame to a 4-byte boundary. This is required on
494 coldfire and harmless on the rest. */
497 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
499 /* Align the stack to four bytes. */
504 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
505 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
506 struct value **args, CORE_ADDR sp, int struct_return,
507 CORE_ADDR struct_addr)
509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
514 /* Push arguments in reverse order. */
515 for (i = nargs - 1; i >= 0; i--)
517 struct type *value_type = value_enclosing_type (args[i]);
518 int len = TYPE_LENGTH (value_type);
519 int container_len = (len + 3) & ~3;
522 /* Non-scalars bigger than 4 bytes are left aligned, others are
524 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
525 || TYPE_CODE (value_type) == TYPE_CODE_UNION
526 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
530 offset = container_len - len;
532 write_memory (sp + offset, value_contents_all (args[i]), len);
535 /* Store struct value address. */
538 store_unsigned_integer (buf, 4, byte_order, struct_addr);
539 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
542 /* Store return address. */
544 store_unsigned_integer (buf, 4, byte_order, bp_addr);
545 write_memory (sp, buf, 4);
547 /* Finally, update the stack pointer... */
548 store_unsigned_integer (buf, 4, byte_order, sp);
549 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
551 /* ...and fake a frame pointer. */
552 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
554 /* DWARF2/GCC uses the stack address *before* the function call as a
559 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
562 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
566 return (num - 0) + M68K_D0_REGNUM;
569 return (num - 8) + M68K_A0_REGNUM;
570 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
572 return (num - 16) + M68K_FP0_REGNUM;
575 return M68K_PC_REGNUM;
577 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
581 struct m68k_frame_cache
588 /* Saved registers. */
589 CORE_ADDR saved_regs[M68K_NUM_REGS];
592 /* Stack space reserved for local variables. */
596 /* Allocate and initialize a frame cache. */
598 static struct m68k_frame_cache *
599 m68k_alloc_frame_cache (void)
601 struct m68k_frame_cache *cache;
604 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
608 cache->sp_offset = -4;
611 /* Saved registers. We initialize these to -1 since zero is a valid
612 offset (that's where %fp is supposed to be stored). */
613 for (i = 0; i < M68K_NUM_REGS; i++)
614 cache->saved_regs[i] = -1;
616 /* Frameless until proven otherwise. */
622 /* Check whether PC points at a code that sets up a new stack frame.
623 If so, it updates CACHE and returns the address of the first
624 instruction after the sequence that sets removes the "hidden"
625 argument from the stack or CURRENT_PC, whichever is smaller.
626 Otherwise, return PC. */
629 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
630 CORE_ADDR pc, CORE_ADDR current_pc,
631 struct m68k_frame_cache *cache)
633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
636 if (pc >= current_pc)
639 op = read_memory_unsigned_integer (pc, 2, byte_order);
641 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
643 cache->saved_regs[M68K_FP_REGNUM] = 0;
644 cache->sp_offset += 4;
645 if (op == P_LINKW_FP)
647 /* link.w %fp, #-N */
648 /* link.w %fp, #0; adda.l #-N, %sp */
649 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
651 if (pc + 4 < current_pc && cache->locals == 0)
653 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
654 if (op == P_ADDAL_SP)
656 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
663 else if (op == P_LINKL_FP)
665 /* link.l %fp, #-N */
666 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
671 /* pea (%fp); movea.l %sp, %fp */
674 if (pc + 2 < current_pc)
676 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
678 if (op == P_MOVEAL_SP_FP)
680 /* move.l %sp, %fp */
688 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
690 /* subq.[wl] #N,%sp */
691 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
692 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
693 if (pc + 2 < current_pc)
695 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
696 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
698 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
704 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
707 /* lea (-N,%sp),%sp */
708 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
711 else if (op == P_ADDAL_SP)
714 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
721 /* Check whether PC points at code that saves registers on the stack.
722 If so, it updates CACHE and returns the address of the first
723 instruction after the register saves or CURRENT_PC, whichever is
724 smaller. Otherwise, return PC. */
727 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
728 CORE_ADDR current_pc,
729 struct m68k_frame_cache *cache)
731 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
733 if (cache->locals >= 0)
739 offset = -4 - cache->locals;
740 while (pc < current_pc)
742 op = read_memory_unsigned_integer (pc, 2, byte_order);
743 if (op == P_FMOVEMX_SP
744 && gdbarch_tdep (gdbarch)->fpregs_present)
746 /* fmovem.x REGS,-(%sp) */
747 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
748 if ((op & 0xff00) == 0xe000)
751 for (i = 0; i < 16; i++, mask >>= 1)
755 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
764 else if ((op & 0177760) == P_MOVEL_SP)
766 /* move.l %R,-(%sp) */
768 cache->saved_regs[regno] = offset;
772 else if (op == P_MOVEML_SP)
774 /* movem.l REGS,-(%sp) */
775 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
776 for (i = 0; i < 16; i++, mask >>= 1)
780 cache->saved_regs[15 - i] = offset;
795 /* Do a full analysis of the prologue at PC and update CACHE
796 accordingly. Bail out early if CURRENT_PC is reached. Return the
797 address where the analysis stopped.
799 We handle all cases that can be generated by gcc.
801 For allocating a stack frame:
805 pea (%fp); move.l %sp,%fp
806 link.w %a6,#0; add.l #-N,%sp
809 subq.w #8,%sp; subq.w #N-8,%sp
814 For saving registers:
818 move.l R1,-(%sp); move.l R2,-(%sp)
821 For setting up the PIC register:
828 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
829 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
834 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
835 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
836 if (pc >= current_pc)
839 /* Check for GOT setup. */
840 op = read_memory_unsigned_integer (pc, 4, byte_order);
841 if (op == P_LEA_PC_A5)
843 /* lea (%pc,N),%a5 */
850 /* Return PC of first real instruction. */
853 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
855 struct m68k_frame_cache cache;
860 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
861 if (cache.locals < 0)
867 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
871 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
872 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
877 static struct m68k_frame_cache *
878 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
882 struct m68k_frame_cache *cache;
889 cache = m68k_alloc_frame_cache ();
892 /* In principle, for normal frames, %fp holds the frame pointer,
893 which holds the base address for the current stack frame.
894 However, for functions that don't need it, the frame pointer is
895 optional. For these "frameless" functions the frame pointer is
896 actually the frame pointer of the calling frame. Signal
897 trampolines are just a special case of a "frameless" function.
898 They (usually) share their frame pointer with the frame that was
899 in progress when the signal occurred. */
901 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
902 cache->base = extract_unsigned_integer (buf, 4, byte_order);
903 if (cache->base == 0)
906 /* For normal frames, %pc is stored at 4(%fp). */
907 cache->saved_regs[M68K_PC_REGNUM] = 4;
909 cache->pc = get_frame_func (this_frame);
911 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
912 get_frame_pc (this_frame), cache);
914 if (cache->locals < 0)
916 /* We didn't find a valid frame, which means that CACHE->base
917 currently holds the frame pointer for our calling frame. If
918 we're at the start of a function, or somewhere half-way its
919 prologue, the function's frame probably hasn't been fully
920 setup yet. Try to reconstruct the base address for the stack
921 frame by looking at the stack pointer. For truly "frameless"
922 functions this might work too. */
924 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
925 cache->base = extract_unsigned_integer (buf, 4, byte_order)
929 /* Now that we have the base address for the stack frame we can
930 calculate the value of %sp in the calling frame. */
931 cache->saved_sp = cache->base + 8;
933 /* Adjust all the saved registers such that they contain addresses
934 instead of offsets. */
935 for (i = 0; i < M68K_NUM_REGS; i++)
936 if (cache->saved_regs[i] != -1)
937 cache->saved_regs[i] += cache->base;
943 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
944 struct frame_id *this_id)
946 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
948 /* This marks the outermost frame. */
949 if (cache->base == 0)
952 /* See the end of m68k_push_dummy_call. */
953 *this_id = frame_id_build (cache->base + 8, cache->pc);
956 static struct value *
957 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
960 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
962 gdb_assert (regnum >= 0);
964 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
965 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
967 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
968 return frame_unwind_got_memory (this_frame, regnum,
969 cache->saved_regs[regnum]);
971 return frame_unwind_got_register (this_frame, regnum, regnum);
974 static const struct frame_unwind m68k_frame_unwind =
977 default_frame_unwind_stop_reason,
979 m68k_frame_prev_register,
981 default_frame_sniffer
985 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
987 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
992 static const struct frame_base m68k_frame_base =
995 m68k_frame_base_address,
996 m68k_frame_base_address,
997 m68k_frame_base_address
1000 static struct frame_id
1001 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1005 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
1007 /* See the end of m68k_push_dummy_call. */
1008 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1012 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1013 We expect the first arg to be a pointer to the jmp_buf structure from which
1014 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1015 This routine returns true on success. */
1018 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1021 CORE_ADDR sp, jb_addr;
1022 struct gdbarch *gdbarch = get_frame_arch (frame);
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1026 if (tdep->jb_pc < 0)
1028 internal_error (__FILE__, __LINE__,
1029 _("m68k_get_longjmp_target: not implemented"));
1033 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1034 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1036 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1037 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1040 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1041 / TARGET_CHAR_BIT, byte_order);
1043 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1044 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1048 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1049 / TARGET_CHAR_BIT, byte_order);
1054 /* System V Release 4 (SVR4). */
1057 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1061 /* SVR4 uses a different calling convention. */
1062 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1064 /* SVR4 uses %a0 instead of %a1. */
1065 tdep->struct_value_regnum = M68K_A0_REGNUM;
1069 /* Function: m68k_gdbarch_init
1070 Initializer function for the m68k gdbarch vector.
1071 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1073 static struct gdbarch *
1074 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1076 struct gdbarch_tdep *tdep = NULL;
1077 struct gdbarch *gdbarch;
1078 struct gdbarch_list *best_arch;
1079 struct tdesc_arch_data *tdesc_data = NULL;
1081 enum m68k_flavour flavour = m68k_no_flavour;
1083 const struct floatformat **long_double_format = floatformats_m68881_ext;
1085 /* Check any target description for validity. */
1086 if (tdesc_has_registers (info.target_desc))
1088 const struct tdesc_feature *feature;
1091 feature = tdesc_find_feature (info.target_desc,
1092 "org.gnu.gdb.m68k.core");
1093 if (feature != NULL)
1097 if (feature == NULL)
1099 feature = tdesc_find_feature (info.target_desc,
1100 "org.gnu.gdb.coldfire.core");
1101 if (feature != NULL)
1102 flavour = m68k_coldfire_flavour;
1105 if (feature == NULL)
1107 feature = tdesc_find_feature (info.target_desc,
1108 "org.gnu.gdb.fido.core");
1109 if (feature != NULL)
1110 flavour = m68k_fido_flavour;
1113 if (feature == NULL)
1116 tdesc_data = tdesc_data_alloc ();
1119 for (i = 0; i <= M68K_PC_REGNUM; i++)
1120 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1121 m68k_register_names[i]);
1125 tdesc_data_cleanup (tdesc_data);
1129 feature = tdesc_find_feature (info.target_desc,
1130 "org.gnu.gdb.coldfire.fp");
1131 if (feature != NULL)
1134 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1135 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1136 m68k_register_names[i]);
1139 tdesc_data_cleanup (tdesc_data);
1147 /* The mechanism for returning floating values from function
1148 and the type of long double depend on whether we're
1149 on ColdFire or standard m68k. */
1151 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1153 const bfd_arch_info_type *coldfire_arch =
1154 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1157 && ((*info.bfd_arch_info->compatible)
1158 (info.bfd_arch_info, coldfire_arch)))
1159 flavour = m68k_coldfire_flavour;
1162 /* If there is already a candidate, use it. */
1163 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1165 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1167 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1170 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1176 if (best_arch != NULL)
1178 if (tdesc_data != NULL)
1179 tdesc_data_cleanup (tdesc_data);
1180 return best_arch->gdbarch;
1183 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1184 gdbarch = gdbarch_alloc (&info, tdep);
1185 tdep->fpregs_present = has_fp;
1186 tdep->flavour = flavour;
1188 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1189 long_double_format = floatformats_ieee_double;
1190 set_gdbarch_long_double_format (gdbarch, long_double_format);
1191 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1193 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1194 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1196 /* Stack grows down. */
1197 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1198 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1200 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1201 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1202 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1204 set_gdbarch_frame_args_skip (gdbarch, 8);
1205 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1207 set_gdbarch_register_type (gdbarch, m68k_register_type);
1208 set_gdbarch_register_name (gdbarch, m68k_register_name);
1209 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1210 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1211 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1212 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1213 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1214 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1215 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1218 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1220 /* Try to figure out if the arch uses floating registers to return
1221 floating point values from functions. */
1224 /* On ColdFire, floating point values are returned in D0. */
1225 if (flavour == m68k_coldfire_flavour)
1226 tdep->float_return = 0;
1228 tdep->float_return = 1;
1232 /* No floating registers, so can't use them for returning values. */
1233 tdep->float_return = 0;
1236 /* Function call & return. */
1237 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1238 set_gdbarch_return_value (gdbarch, m68k_return_value);
1242 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1244 #if defined JB_PC && defined JB_ELEMENT_SIZE
1245 tdep->jb_pc = JB_PC;
1246 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1250 tdep->struct_value_regnum = M68K_A1_REGNUM;
1251 tdep->struct_return = reg_struct_return;
1253 /* Frame unwinder. */
1254 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1255 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1257 /* Hook in the DWARF CFI frame unwinder. */
1258 dwarf2_append_unwinders (gdbarch);
1260 frame_base_set_default (gdbarch, &m68k_frame_base);
1262 /* Hook in ABI-specific overrides, if they have been registered. */
1263 gdbarch_init_osabi (info, gdbarch);
1265 /* Now we have tuned the configuration, set a few final things,
1266 based on what the OS ABI has told us. */
1268 if (tdep->jb_pc >= 0)
1269 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1271 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1274 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1281 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1289 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1292 _initialize_m68k_tdep (void)
1294 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);