1 /* Target-dependent code for Motorola 68HC11 & 68HC12
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
34 #include "gdb_string.h"
40 #include "arch-utils.h"
42 #include "reggroups.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
54 The MSB of the minimal symbol's "info" field is used for this purpose.
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_TARGET_FLAG_1 (msym) = 1
64 #define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_TARGET_FLAG_2 (msym) = 1
67 #define MSYMBOL_IS_RTC(msym) \
68 MSYMBOL_TARGET_FLAG_1 (msym)
70 #define MSYMBOL_IS_RTI(msym) \
71 MSYMBOL_TARGET_FLAG_2 (msym)
73 enum insn_return_kind {
80 /* Register numbers of various important registers. */
82 #define HARD_X_REGNUM 0
83 #define HARD_D_REGNUM 1
84 #define HARD_Y_REGNUM 2
85 #define HARD_SP_REGNUM 3
86 #define HARD_PC_REGNUM 4
88 #define HARD_A_REGNUM 5
89 #define HARD_B_REGNUM 6
90 #define HARD_CCR_REGNUM 7
92 /* 68HC12 page number register.
93 Note: to keep a compatibility with gcc register naming, we must
94 not have to rename FP and other soft registers. The page register
95 is a real hard register and must therefore be counted by gdbarch_num_regs.
96 For this it has the same number as Z register (which is not used). */
97 #define HARD_PAGE_REGNUM 8
98 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
100 /* Z is replaced by X or Y by gcc during machine reorg.
101 ??? There is no way to get it and even know whether
102 it's in X or Y or in ZS. */
103 #define SOFT_Z_REGNUM 8
105 /* Soft registers. These registers are special. There are treated
106 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
107 They are physically located in memory. */
108 #define SOFT_FP_REGNUM 9
109 #define SOFT_TMP_REGNUM 10
110 #define SOFT_ZS_REGNUM 11
111 #define SOFT_XY_REGNUM 12
112 #define SOFT_UNUSED_REGNUM 13
113 #define SOFT_D1_REGNUM 14
114 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
115 #define M68HC11_MAX_SOFT_REGS 32
117 #define M68HC11_NUM_REGS (8)
118 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
119 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
121 #define M68HC11_REG_SIZE (2)
123 #define M68HC12_NUM_REGS (9)
124 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
125 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
127 struct insn_sequence;
130 /* Stack pointer correction value. For 68hc11, the stack pointer points
131 to the next push location. An offset of 1 must be applied to obtain
132 the address where the last value is saved. For 68hc12, the stack
133 pointer points to the last value pushed. No offset is necessary. */
134 int stack_correction;
136 /* Description of instructions in the prologue. */
137 struct insn_sequence *prologue;
139 /* True if the page memory bank register is available
141 int use_page_register;
143 /* ELF flags for ABI. */
147 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
148 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
150 struct m68hc11_unwind_cache
152 /* The previous frame's inner most stack address. Used as this
153 frame ID's stack_addr. */
155 /* The frame's base, optionally used by the high-level debug info. */
163 enum insn_return_kind return_kind;
165 /* Table indicating the location of each and every register. */
166 struct trad_frame_saved_reg *saved_regs;
169 /* Table of registers for 68HC11. This includes the hard registers
170 and the soft registers used by GCC. */
172 m68hc11_register_names[] =
174 "x", "d", "y", "sp", "pc", "a", "b",
175 "ccr", "page", "frame","tmp", "zs", "xy", 0,
176 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
177 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
178 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
179 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
180 "d29", "d30", "d31", "d32"
183 struct m68hc11_soft_reg
189 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
191 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
193 static int soft_min_addr;
194 static int soft_max_addr;
195 static int soft_reg_initialized = 0;
197 /* Look in the symbol table for the address of a pseudo register
198 in memory. If we don't find it, pretend the register is not used
199 and not available. */
201 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
203 struct minimal_symbol *msymbol;
205 msymbol = lookup_minimal_symbol (name, NULL, NULL);
208 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
209 reg->name = xstrdup (name);
211 /* Keep track of the address range for soft registers. */
212 if (reg->addr < (CORE_ADDR) soft_min_addr)
213 soft_min_addr = reg->addr;
214 if (reg->addr > (CORE_ADDR) soft_max_addr)
215 soft_max_addr = reg->addr;
224 /* Initialize the table of soft register addresses according
225 to the symbol table. */
227 m68hc11_initialize_register_info (void)
231 if (soft_reg_initialized)
234 soft_min_addr = INT_MAX;
236 for (i = 0; i < M68HC11_ALL_REGS; i++)
238 soft_regs[i].name = 0;
241 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
242 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
243 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
244 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
245 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
247 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
251 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
252 m68hc11_get_register_info (&soft_regs[i], buf);
255 if (soft_regs[SOFT_FP_REGNUM].name == 0)
256 warning (_("No frame soft register found in the symbol table.\n"
257 "Stack backtrace will not work."));
258 soft_reg_initialized = 1;
261 /* Given an address in memory, return the soft register number if
262 that address corresponds to a soft register. Returns -1 if not. */
264 m68hc11_which_soft_register (CORE_ADDR addr)
268 if (addr < soft_min_addr || addr > soft_max_addr)
271 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
273 if (soft_regs[i].name && soft_regs[i].addr == addr)
279 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
280 pseudo registers. They are located in memory. Translate the register
281 fetch into a memory read. */
283 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
284 struct regcache *regcache,
285 int regno, gdb_byte *buf)
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
289 /* The PC is a pseudo reg only for 68HC12 with the memory bank
291 if (regno == M68HC12_HARD_PC_REGNUM)
294 const int regsize = 4;
296 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
297 if (pc >= 0x8000 && pc < 0xc000)
301 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
306 store_unsigned_integer (buf, regsize, byte_order, pc);
310 m68hc11_initialize_register_info ();
312 /* Fetch a soft register: translate into a memory read. */
313 if (soft_regs[regno].name)
315 target_read_memory (soft_regs[regno].addr, buf, 2);
323 /* Store a pseudo register. Translate the register store
324 into a memory write. */
326 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
327 struct regcache *regcache,
328 int regno, const gdb_byte *buf)
330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
332 /* The PC is a pseudo reg only for 68HC12 with the memory bank
334 if (regno == M68HC12_HARD_PC_REGNUM)
336 const int regsize = 4;
337 char *tmp = alloca (regsize);
340 memcpy (tmp, buf, regsize);
341 pc = extract_unsigned_integer (tmp, regsize, byte_order);
345 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
348 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
356 m68hc11_initialize_register_info ();
358 /* Store a soft register: translate into a memory write. */
359 if (soft_regs[regno].name)
361 const int regsize = 2;
362 char *tmp = alloca (regsize);
363 memcpy (tmp, buf, regsize);
364 target_write_memory (soft_regs[regno].addr, tmp, regsize);
369 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
371 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
373 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
378 if (reg_nr >= M68HC11_ALL_REGS)
381 m68hc11_initialize_register_info ();
383 /* If we don't know the address of a soft register, pretend it
385 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
387 return m68hc11_register_names[reg_nr];
390 static const unsigned char *
391 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
394 static unsigned char breakpoint[] = {0x0};
396 *lenptr = sizeof (breakpoint);
401 /* 68HC11 & 68HC12 prologue analysis.
406 /* 68HC11 opcodes. */
407 #undef M6811_OP_PAGE2
408 #define M6811_OP_PAGE2 (0x18)
409 #define M6811_OP_LDX (0xde)
410 #define M6811_OP_LDX_EXT (0xfe)
411 #define M6811_OP_PSHX (0x3c)
412 #define M6811_OP_STS (0x9f)
413 #define M6811_OP_STS_EXT (0xbf)
414 #define M6811_OP_TSX (0x30)
415 #define M6811_OP_XGDX (0x8f)
416 #define M6811_OP_ADDD (0xc3)
417 #define M6811_OP_TXS (0x35)
418 #define M6811_OP_DES (0x34)
420 /* 68HC12 opcodes. */
421 #define M6812_OP_PAGE2 (0x18)
422 #define M6812_OP_MOVW (0x01)
423 #define M6812_PB_PSHW (0xae)
424 #define M6812_OP_STS (0x5f)
425 #define M6812_OP_STS_EXT (0x7f)
426 #define M6812_OP_LEAS (0x1b)
427 #define M6812_OP_PSHX (0x34)
428 #define M6812_OP_PSHY (0x35)
430 /* Operand extraction. */
431 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
432 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
433 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
434 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
436 /* Identification of the sequence. */
440 P_SAVE_REG, /* Save a register on the stack. */
441 P_SET_FRAME, /* Setup the frame pointer. */
442 P_LOCAL_1, /* Allocate 1 byte for locals. */
443 P_LOCAL_2, /* Allocate 2 bytes for locals. */
444 P_LOCAL_N /* Allocate N bytes for locals. */
447 struct insn_sequence {
448 enum m6811_seq_type type;
450 unsigned short code[MAX_CODES];
453 /* Sequence of instructions in the 68HC11 function prologue. */
454 static struct insn_sequence m6811_prologue[] = {
455 /* Sequences to save a soft-register. */
456 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
458 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PAGE2, M6811_OP_PSHX } },
460 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
462 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
465 /* Sequences to allocate local variables. */
466 { P_LOCAL_N, 7, { M6811_OP_TSX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
471 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_PAGE2, M6811_OP_TXS } },
476 { P_LOCAL_1, 1, { M6811_OP_DES } },
477 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
478 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
480 /* Initialize the frame pointer. */
481 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
482 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
487 /* Sequence of instructions in the 68HC12 function prologue. */
488 static struct insn_sequence m6812_prologue[] = {
489 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
490 OP_IMM_HIGH, OP_IMM_LOW } },
491 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
492 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
493 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
494 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
495 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
500 /* Analyze the sequence of instructions starting at the given address.
501 Returns a pointer to the sequence when it is recognized and
502 the optional value (constant/address) associated with it. */
503 static struct insn_sequence *
504 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
505 struct insn_sequence *seq, CORE_ADDR pc,
508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
509 unsigned char buffer[MAX_CODES];
516 for (; seq->type != P_LAST; seq++)
519 for (j = 0; j < seq->length; j++)
523 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
527 /* Continue while we match the opcode. */
528 if (seq->code[j] == buffer[j])
531 if ((seq->code[j] & 0xf00) == 0)
534 /* Extract a sequence parameter (address or constant). */
535 switch (seq->code[j])
538 cur_val = (CORE_ADDR) buffer[j];
542 cur_val = cur_val & 0x0ff;
543 cur_val |= (buffer[j] << 8);
548 cur_val |= buffer[j];
552 if ((buffer[j] & 0xE0) == 0x80)
554 v = buffer[j] & 0x1f;
558 else if ((buffer[j] & 0xfe) == 0xf0)
560 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
564 else if (buffer[j] == 0xf2)
566 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
573 /* We have a full match. */
574 if (j == seq->length)
583 /* Return the instruction that the function at the PC is using. */
584 static enum insn_return_kind
585 m68hc11_get_return_insn (CORE_ADDR pc)
587 struct minimal_symbol *sym;
589 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
590 function is stored by elfread.c in the high bit of the info field.
591 Use this to decide which instruction the function uses to return. */
592 sym = lookup_minimal_symbol_by_pc (pc);
596 if (MSYMBOL_IS_RTC (sym))
598 else if (MSYMBOL_IS_RTI (sym))
604 /* Analyze the function prologue to find some information
606 - the PC of the first line (for m68hc11_skip_prologue)
607 - the offset of the previous frame saved address (from current frame)
608 - the soft registers which are pushed. */
610 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
611 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
616 int found_frame_point;
619 struct insn_sequence *seq_table;
623 if (pc >= current_pc)
628 m68hc11_initialize_register_info ();
635 seq_table = gdbarch_tdep (gdbarch)->prologue;
637 /* The 68hc11 stack is as follows:
653 +-----------+ <--- current frame
656 With most processors (like 68K) the previous frame can be computed
657 easily because it is always at a fixed offset (see link/unlink).
658 That is, locals are accessed with negative offsets, arguments are
659 accessed with positive ones. Since 68hc11 only supports offsets
660 in the range [0..255], the frame is defined at the bottom of
661 locals (see picture).
663 The purpose of the analysis made here is to find out the size
664 of locals in this function. An alternative to this is to use
665 DWARF2 info. This would be better but I don't know how to
666 access dwarf2 debug from this function.
668 Walk from the function entry point to the point where we save
669 the frame. While walking instructions, compute the size of bytes
670 which are pushed. This gives us the index to access the previous
673 We limit the search to 128 bytes so that the algorithm is bounded
674 in case of random and wrong code. We also stop and abort if
675 we find an instruction which is not supposed to appear in the
676 prologue (as generated by gcc 2.95, 2.96).
679 found_frame_point = 0;
682 while (!done && pc + 2 < func_end)
684 struct insn_sequence *seq;
687 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
691 /* If we are within the instruction group, we can't advance the
692 pc nor the stack offset. Otherwise the caller's stack computed
693 from the current stack can be wrong. */
694 if (pc + seq->length > current_pc)
697 pc = pc + seq->length;
698 if (seq->type == P_SAVE_REG)
700 if (found_frame_point)
702 saved_reg = m68hc11_which_soft_register (val);
707 if (info->saved_regs)
708 info->saved_regs[saved_reg].addr = save_addr;
715 else if (seq->type == P_SET_FRAME)
717 found_frame_point = 1;
720 else if (seq->type == P_LOCAL_1)
724 else if (seq->type == P_LOCAL_2)
728 else if (seq->type == P_LOCAL_N)
730 /* Stack pointer is decremented for the allocation. */
732 size -= (int) (val) | 0xffff0000;
737 if (found_frame_point == 0)
738 info->sp_offset = size;
740 info->sp_offset = -1;
745 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
747 CORE_ADDR func_addr, func_end;
748 struct symtab_and_line sal;
749 struct m68hc11_unwind_cache tmp_cache = { 0 };
751 /* If we have line debugging information, then the end of the
752 prologue should be the first assembly instruction of the
753 first source line. */
754 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
756 sal = find_pc_line (func_addr, 0);
757 if (sal.end && sal.end < func_end)
761 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
766 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
770 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
774 /* Put here the code to store, into fi->saved_regs, the addresses of
775 the saved registers of frame described by FRAME_INFO. This
776 includes special registers such as pc and fp saved in special ways
777 in the stack frame. sp is even more special: the address we return
778 for it IS the sp for the next frame. */
780 static struct m68hc11_unwind_cache *
781 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
782 void **this_prologue_cache)
784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
787 struct m68hc11_unwind_cache *info;
788 CORE_ADDR current_pc;
791 if ((*this_prologue_cache))
792 return (*this_prologue_cache);
794 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
795 (*this_prologue_cache) = info;
796 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
798 info->pc = get_frame_func (this_frame);
801 info->return_kind = m68hc11_get_return_insn (info->pc);
803 /* The SP was moved to the FP. This indicates that a new frame
804 was created. Get THIS frame's FP value by unwinding it from
806 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
813 current_pc = get_frame_pc (this_frame);
815 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
817 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
819 if (info->sp_offset != (CORE_ADDR) -1)
821 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
822 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
823 prev_sp = this_base + info->sp_offset + 2;
824 this_base += STACK_CORRECTION (gdbarch);
828 /* The FP points at the last saved register. Adjust the FP back
829 to before the first saved register giving the SP. */
830 prev_sp = this_base + info->size + 2;
832 this_base += STACK_CORRECTION (gdbarch);
833 if (soft_regs[SOFT_FP_REGNUM].name)
834 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
837 if (info->return_kind == RETURN_RTC)
840 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
841 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
843 else if (info->return_kind == RETURN_RTI)
846 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
847 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
848 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
849 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
850 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
853 /* Add 1 here to adjust for the post-decrement nature of the push
855 info->prev_sp = prev_sp;
857 info->base = this_base;
859 /* Adjust all the saved registers so that they contain addresses and not
862 i < gdbarch_num_regs (gdbarch)
863 + gdbarch_num_pseudo_regs (gdbarch) - 1;
865 if (trad_frame_addr_p (info->saved_regs, i))
867 info->saved_regs[i].addr += this_base;
870 /* The previous frame's SP needed to be computed. Save the computed
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
877 /* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
881 m68hc11_frame_this_id (struct frame_info *this_frame,
882 void **this_prologue_cache,
883 struct frame_id *this_id)
885 struct m68hc11_unwind_cache *info
886 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
891 /* The FUNC is easy. */
892 func = get_frame_func (this_frame);
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
901 id = frame_id_build (base, func);
905 static struct value *
906 m68hc11_frame_prev_register (struct frame_info *this_frame,
907 void **this_prologue_cache, int regnum)
910 struct m68hc11_unwind_cache *info
911 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
913 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
915 /* Take into account the 68HC12 specific call (PC + page). */
916 if (regnum == HARD_PC_REGNUM
917 && info->return_kind == RETURN_RTC
918 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
920 CORE_ADDR pc = value_as_long (value);
921 if (pc >= 0x08000 && pc < 0x0c000)
925 release_value (value);
928 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
930 page = value_as_long (value);
931 release_value (value);
935 pc += ((page & 0x0ff) << 14);
938 return frame_unwind_got_constant (this_frame, regnum, pc);
945 static const struct frame_unwind m68hc11_frame_unwind = {
947 m68hc11_frame_this_id,
948 m68hc11_frame_prev_register,
950 default_frame_sniffer
954 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
956 struct m68hc11_unwind_cache *info
957 = m68hc11_frame_unwind_cache (this_frame, this_cache);
963 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
966 struct m68hc11_unwind_cache *info
967 = m68hc11_frame_unwind_cache (this_frame, this_cache);
969 addr = info->base + info->size;
970 if (info->return_kind == RETURN_RTC)
972 else if (info->return_kind == RETURN_RTI)
978 static const struct frame_base m68hc11_frame_base = {
979 &m68hc11_frame_unwind,
980 m68hc11_frame_base_address,
981 m68hc11_frame_base_address,
982 m68hc11_frame_args_address
986 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
989 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
993 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
994 frame. The frame ID's base needs to match the TOS value saved by
995 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
997 static struct frame_id
998 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1001 CORE_ADDR pc = get_frame_pc (this_frame);
1003 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1005 return frame_id_build (tos, pc);
1009 /* Get and print the register from the given frame. */
1011 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1012 struct frame_info *frame, int regno)
1016 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1017 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1018 rval = get_frame_register_unsigned (frame, regno);
1020 rval = get_frame_register_signed (frame, regno);
1022 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1023 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1025 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1026 if (regno != HARD_CCR_REGNUM)
1027 print_longest (file, 'd', 1, rval);
1031 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1035 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1036 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1041 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1042 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1043 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1044 print_longest (file, 'd', 1, rval);
1048 if (regno == HARD_CCR_REGNUM)
1052 unsigned char l = rval & 0xff;
1054 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1055 l & M6811_S_BIT ? 'S' : '-',
1056 l & M6811_X_BIT ? 'X' : '-',
1057 l & M6811_H_BIT ? 'H' : '-',
1058 l & M6811_I_BIT ? 'I' : '-',
1059 l & M6811_N_BIT ? 'N' : '-',
1060 l & M6811_Z_BIT ? 'Z' : '-',
1061 l & M6811_V_BIT ? 'V' : '-',
1062 l & M6811_C_BIT ? 'C' : '-');
1063 N = (l & M6811_N_BIT) != 0;
1064 Z = (l & M6811_Z_BIT) != 0;
1065 V = (l & M6811_V_BIT) != 0;
1066 C = (l & M6811_C_BIT) != 0;
1068 /* Print flags following the h8300 */
1070 fprintf_filtered (file, "u> ");
1071 else if ((C | Z) == 1)
1072 fprintf_filtered (file, "u<= ");
1074 fprintf_filtered (file, "u< ");
1077 fprintf_filtered (file, "!= ");
1079 fprintf_filtered (file, "== ");
1082 fprintf_filtered (file, ">= ");
1084 fprintf_filtered (file, "< ");
1086 if ((Z | (N ^ V)) == 0)
1087 fprintf_filtered (file, "> ");
1089 fprintf_filtered (file, "<= ");
1093 /* Same as 'info reg' but prints the registers in a different way. */
1095 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1096 struct frame_info *frame, int regno, int cpregs)
1100 const char *name = gdbarch_register_name (gdbarch, regno);
1102 if (!name || !*name)
1105 fprintf_filtered (file, "%-10s ", name);
1106 m68hc11_print_register (gdbarch, file, frame, regno);
1107 fprintf_filtered (file, "\n");
1113 fprintf_filtered (file, "PC=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1116 fprintf_filtered (file, " SP=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1119 fprintf_filtered (file, " FP=");
1120 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1122 fprintf_filtered (file, "\nCCR=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1125 fprintf_filtered (file, "\nD=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1128 fprintf_filtered (file, " X=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1131 fprintf_filtered (file, " Y=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1134 if (gdbarch_tdep (gdbarch)->use_page_register)
1136 fprintf_filtered (file, "\nPage=");
1137 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1139 fprintf_filtered (file, "\n");
1142 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1144 /* Skip registers which are not defined in the symbol table. */
1145 if (soft_regs[i].name == 0)
1148 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1149 m68hc11_print_register (gdbarch, file, frame, i);
1152 fprintf_filtered (file, "\n");
1154 fprintf_filtered (file, " ");
1156 if (nr && (nr % 8) != 7)
1157 fprintf_filtered (file, "\n");
1162 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1163 struct regcache *regcache, CORE_ADDR bp_addr,
1164 int nargs, struct value **args, CORE_ADDR sp,
1165 int struct_return, CORE_ADDR struct_addr)
1167 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1169 int first_stack_argnum;
1175 first_stack_argnum = 0;
1178 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1182 type = value_type (args[0]);
1183 len = TYPE_LENGTH (type);
1185 /* First argument is passed in D and X registers. */
1190 v = extract_unsigned_integer (value_contents (args[0]),
1192 first_stack_argnum = 1;
1194 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1198 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1203 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1205 type = value_type (args[argnum]);
1206 len = TYPE_LENGTH (type);
1210 static char zero = 0;
1213 write_memory (sp, &zero, 1);
1215 val = (char*) value_contents (args[argnum]);
1217 write_memory (sp, val, len);
1220 /* Store return address. */
1222 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1223 write_memory (sp, buf, 2);
1225 /* Finally, update the stack pointer... */
1226 sp -= STACK_CORRECTION (gdbarch);
1227 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1229 /* ...and fake a frame pointer. */
1230 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1232 /* DWARF2/GCC uses the stack address *before* the function call as a
1238 /* Return the GDB type object for the "standard" data type
1239 of data in register N. */
1241 static struct type *
1242 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1246 case HARD_PAGE_REGNUM:
1249 case HARD_CCR_REGNUM:
1250 return builtin_type (gdbarch)->builtin_uint8;
1252 case M68HC12_HARD_PC_REGNUM:
1253 return builtin_type (gdbarch)->builtin_uint32;
1256 return builtin_type (gdbarch)->builtin_uint16;
1261 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1266 len = TYPE_LENGTH (type);
1268 /* First argument is passed in D and X registers. */
1270 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1273 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1275 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1278 error (_("return of value > 4 is not supported."));
1282 /* Given a return value in `regcache' with a type `type',
1283 extract and copy its value into `valbuf'. */
1286 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1289 int len = TYPE_LENGTH (type);
1290 char buf[M68HC11_REG_SIZE];
1292 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1296 memcpy (valbuf, buf + 1, 1);
1300 memcpy (valbuf, buf, 2);
1304 memcpy ((char*) valbuf + 1, buf, 2);
1305 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1306 memcpy (valbuf, buf + 1, 1);
1310 memcpy ((char*) valbuf + 2, buf, 2);
1311 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1312 memcpy (valbuf, buf, 2);
1316 error (_("bad size for return value"));
1320 static enum return_value_convention
1321 m68hc11_return_value (struct gdbarch *gdbarch, struct type *func_type,
1322 struct type *valtype, struct regcache *regcache,
1323 gdb_byte *readbuf, const gdb_byte *writebuf)
1325 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1326 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1327 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1328 || TYPE_LENGTH (valtype) > 4)
1329 return RETURN_VALUE_STRUCT_CONVENTION;
1332 if (readbuf != NULL)
1333 m68hc11_extract_return_value (valtype, regcache, readbuf);
1334 if (writebuf != NULL)
1335 m68hc11_store_return_value (valtype, regcache, writebuf);
1336 return RETURN_VALUE_REGISTER_CONVENTION;
1340 /* Test whether the ELF symbol corresponds to a function using rtc or
1344 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1346 unsigned char flags;
1348 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1349 if (flags & STO_M68HC12_FAR)
1350 MSYMBOL_SET_RTC (msym);
1351 if (flags & STO_M68HC12_INTERRUPT)
1352 MSYMBOL_SET_RTI (msym);
1356 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1358 if (info->arch == bfd_arch_m68hc11)
1359 return print_insn_m68hc11 (memaddr, info);
1361 return print_insn_m68hc12 (memaddr, info);
1366 /* 68HC11/68HC12 register groups.
1367 Identify real hard registers and soft registers used by gcc. */
1369 static struct reggroup *m68hc11_soft_reggroup;
1370 static struct reggroup *m68hc11_hard_reggroup;
1373 m68hc11_init_reggroups (void)
1375 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1376 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1380 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1382 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1383 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1384 reggroup_add (gdbarch, general_reggroup);
1385 reggroup_add (gdbarch, float_reggroup);
1386 reggroup_add (gdbarch, all_reggroup);
1387 reggroup_add (gdbarch, save_reggroup);
1388 reggroup_add (gdbarch, restore_reggroup);
1389 reggroup_add (gdbarch, vector_reggroup);
1390 reggroup_add (gdbarch, system_reggroup);
1394 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1395 struct reggroup *group)
1397 /* We must save the real hard register as well as gcc
1398 soft registers including the frame pointer. */
1399 if (group == save_reggroup || group == restore_reggroup)
1401 return (regnum <= gdbarch_num_regs (gdbarch)
1402 || ((regnum == SOFT_FP_REGNUM
1403 || regnum == SOFT_TMP_REGNUM
1404 || regnum == SOFT_ZS_REGNUM
1405 || regnum == SOFT_XY_REGNUM)
1406 && m68hc11_register_name (gdbarch, regnum)));
1409 /* Group to identify gcc soft registers (d1..dN). */
1410 if (group == m68hc11_soft_reggroup)
1412 return regnum >= SOFT_D1_REGNUM
1413 && m68hc11_register_name (gdbarch, regnum);
1416 if (group == m68hc11_hard_reggroup)
1418 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1419 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1420 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1422 return default_register_reggroup_p (gdbarch, regnum, group);
1425 static struct gdbarch *
1426 m68hc11_gdbarch_init (struct gdbarch_info info,
1427 struct gdbarch_list *arches)
1429 struct gdbarch *gdbarch;
1430 struct gdbarch_tdep *tdep;
1433 soft_reg_initialized = 0;
1435 /* Extract the elf_flags if available. */
1436 if (info.abfd != NULL
1437 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1438 elf_flags = elf_elfheader (info.abfd)->e_flags;
1442 /* try to find a pre-existing architecture */
1443 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1445 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1447 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1450 return arches->gdbarch;
1453 /* Need a new architecture. Fill in a target specific vector. */
1454 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1455 gdbarch = gdbarch_alloc (&info, tdep);
1456 tdep->elf_flags = elf_flags;
1458 switch (info.bfd_arch_info->arch)
1460 case bfd_arch_m68hc11:
1461 tdep->stack_correction = 1;
1462 tdep->use_page_register = 0;
1463 tdep->prologue = m6811_prologue;
1464 set_gdbarch_addr_bit (gdbarch, 16);
1465 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1466 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1467 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1470 case bfd_arch_m68hc12:
1471 tdep->stack_correction = 0;
1472 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1473 tdep->prologue = m6812_prologue;
1474 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1475 set_gdbarch_num_pseudo_regs (gdbarch,
1476 elf_flags & E_M68HC12_BANKS
1477 ? M68HC12_NUM_PSEUDO_REGS
1478 : M68HC11_NUM_PSEUDO_REGS);
1479 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1480 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1481 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1482 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1489 /* Initially set everything according to the ABI.
1490 Use 16-bit integers since it will be the case for most
1491 programs. The size of these types should normally be set
1492 according to the dwarf2 debug information. */
1493 set_gdbarch_short_bit (gdbarch, 16);
1494 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1495 set_gdbarch_float_bit (gdbarch, 32);
1496 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1497 set_gdbarch_long_double_bit (gdbarch, 64);
1498 set_gdbarch_long_bit (gdbarch, 32);
1499 set_gdbarch_ptr_bit (gdbarch, 16);
1500 set_gdbarch_long_long_bit (gdbarch, 64);
1502 /* Characters are unsigned. */
1503 set_gdbarch_char_signed (gdbarch, 0);
1505 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1506 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1508 /* Set register info. */
1509 set_gdbarch_fp0_regnum (gdbarch, -1);
1511 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1512 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1513 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1514 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1515 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1517 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1519 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1520 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1521 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1522 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1523 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1525 m68hc11_add_reggroups (gdbarch);
1526 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1527 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1529 /* Hook in the DWARF CFI frame unwinder. */
1530 dwarf2_append_unwinders (gdbarch);
1532 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1533 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1535 /* Methods for saving / extracting a dummy frame's ID. The ID's
1536 stack address must match the SP value returned by
1537 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1538 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1540 /* Return the unwound PC value. */
1541 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1543 /* Minsymbol frobbing. */
1544 set_gdbarch_elf_make_msymbol_special (gdbarch,
1545 m68hc11_elf_make_msymbol_special);
1547 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1552 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1555 _initialize_m68hc11_tdep (void)
1557 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1558 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1559 m68hc11_init_reggroups ();