1 /* Target-dependent code for Motorola 68HC11 & 68HC12
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "trad-frame.h"
38 #include "arch-utils.h"
40 #include "reggroups.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
52 The MSB of the minimal symbol's "info" field is used for this purpose.
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
59 #define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
62 #define MSYMBOL_SET_RTI(msym) \
63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
65 #define MSYMBOL_IS_RTC(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym)
68 #define MSYMBOL_IS_RTI(msym) \
69 MSYMBOL_TARGET_FLAG_2 (msym)
71 enum insn_return_kind {
78 /* Register numbers of various important registers. */
80 #define HARD_X_REGNUM 0
81 #define HARD_D_REGNUM 1
82 #define HARD_Y_REGNUM 2
83 #define HARD_SP_REGNUM 3
84 #define HARD_PC_REGNUM 4
86 #define HARD_A_REGNUM 5
87 #define HARD_B_REGNUM 6
88 #define HARD_CCR_REGNUM 7
90 /* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
93 is a real hard register and must therefore be counted by gdbarch_num_regs.
94 For this it has the same number as Z register (which is not used). */
95 #define HARD_PAGE_REGNUM 8
96 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
98 /* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101 #define SOFT_Z_REGNUM 8
103 /* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106 #define SOFT_FP_REGNUM 9
107 #define SOFT_TMP_REGNUM 10
108 #define SOFT_ZS_REGNUM 11
109 #define SOFT_XY_REGNUM 12
110 #define SOFT_UNUSED_REGNUM 13
111 #define SOFT_D1_REGNUM 14
112 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113 #define M68HC11_MAX_SOFT_REGS 32
115 #define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
116 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
119 #define M68HC11_REG_SIZE (2)
121 #define M68HC12_NUM_REGS (9)
122 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
125 struct insn_sequence;
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
137 /* True if the page memory bank register is available
139 int use_page_register;
141 /* ELF flags for ABI. */
145 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
148 struct m68hc11_unwind_cache
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
153 /* The frame's base, optionally used by the high-level debug info. */
161 enum insn_return_kind return_kind;
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
167 /* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
170 m68hc11_register_names[] =
172 "x", "d", "y", "sp", "pc", "a", "b",
173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
181 struct m68hc11_soft_reg
187 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
189 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
191 static int soft_min_addr;
192 static int soft_max_addr;
193 static int soft_reg_initialized = 0;
195 /* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
199 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
201 struct bound_minimal_symbol msymbol;
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
222 /* Initialize the table of soft register addresses according
223 to the symbol table. */
225 m68hc11_initialize_register_info (void)
229 if (soft_reg_initialized)
232 soft_min_addr = INT_MAX;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
236 soft_regs[i].name = 0;
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
256 soft_reg_initialized = 1;
259 /* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
262 m68hc11_which_soft_register (CORE_ADDR addr)
266 if (addr < soft_min_addr || addr > soft_max_addr)
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
277 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
280 static enum register_status
281 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 readable_regcache *regcache,
283 int regno, gdb_byte *buf)
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
289 if (regno == M68HC12_HARD_PC_REGNUM)
292 const int regsize = 4;
293 enum register_status status;
295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
298 if (pc >= 0x8000 && pc < 0xc000)
302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
307 store_unsigned_integer (buf, regsize, byte_order, pc);
311 m68hc11_initialize_register_info ();
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
316 target_read_memory (soft_regs[regno].addr, buf, 2);
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
337 if (regno == M68HC12_HARD_PC_REGNUM)
339 const int regsize = 4;
340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
343 memcpy (tmp, buf, regsize);
344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
359 m68hc11_initialize_register_info ();
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
364 const int regsize = 2;
365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
372 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
381 if (reg_nr >= M68HC11_ALL_REGS)
384 m68hc11_initialize_register_info ();
386 /* If we don't know the address of a soft register, pretend it
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
390 return m68hc11_register_names[reg_nr];
393 constexpr gdb_byte m68hc11_break_insn[] = {0x0};
395 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
397 /* 68HC11 & 68HC12 prologue analysis. */
401 /* 68HC11 opcodes. */
402 #undef M6811_OP_PAGE2
403 #define M6811_OP_PAGE2 (0x18)
404 #define M6811_OP_LDX (0xde)
405 #define M6811_OP_LDX_EXT (0xfe)
406 #define M6811_OP_PSHX (0x3c)
407 #define M6811_OP_STS (0x9f)
408 #define M6811_OP_STS_EXT (0xbf)
409 #define M6811_OP_TSX (0x30)
410 #define M6811_OP_XGDX (0x8f)
411 #define M6811_OP_ADDD (0xc3)
412 #define M6811_OP_TXS (0x35)
413 #define M6811_OP_DES (0x34)
415 /* 68HC12 opcodes. */
416 #define M6812_OP_PAGE2 (0x18)
417 #define M6812_OP_MOVW (0x01)
418 #define M6812_PB_PSHW (0xae)
419 #define M6812_OP_STS (0x5f)
420 #define M6812_OP_STS_EXT (0x7f)
421 #define M6812_OP_LEAS (0x1b)
422 #define M6812_OP_PSHX (0x34)
423 #define M6812_OP_PSHY (0x35)
425 /* Operand extraction. */
426 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
431 /* Identification of the sequence. */
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
442 struct insn_sequence {
443 enum m6811_seq_type type;
445 unsigned short code[MAX_CODES];
448 /* Sequence of instructions in the 68HC11 function prologue. */
449 static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
482 /* Sequence of instructions in the 68HC12 function prologue. */
483 static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
495 /* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
497 the optional value (constant/address) associated with it. */
498 static struct insn_sequence *
499 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
504 unsigned char buffer[MAX_CODES];
511 for (; seq->type != P_LAST; seq++)
514 for (j = 0; j < seq->length; j++)
518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
526 if ((seq->code[j] & 0xf00) == 0)
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
533 cur_val = (CORE_ADDR) buffer[j];
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
543 cur_val |= buffer[j];
547 if ((buffer[j] & 0xE0) == 0x80)
549 v = buffer[j] & 0x1f;
553 else if ((buffer[j] & 0xfe) == 0xf0)
555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
559 else if (buffer[j] == 0xf2)
561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
568 /* We have a full match. */
569 if (j == seq->length)
578 /* Return the instruction that the function at the PC is using. */
579 static enum insn_return_kind
580 m68hc11_get_return_insn (CORE_ADDR pc)
582 struct bound_minimal_symbol sym;
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
591 if (MSYMBOL_IS_RTC (sym.minsym))
593 else if (MSYMBOL_IS_RTI (sym.minsym))
599 /* Analyze the function prologue to find some information
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
605 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
611 int found_frame_point;
614 struct insn_sequence *seq_table;
618 if (pc >= current_pc)
623 m68hc11_initialize_register_info ();
630 seq_table = gdbarch_tdep (gdbarch)->prologue;
632 /* The 68hc11 stack is as follows:
648 +-----------+ <--- current frame
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
671 prologue (as generated by gcc 2.95, 2.96). */
674 found_frame_point = 0;
677 while (!done && pc + 2 < func_end)
679 struct insn_sequence *seq;
682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
692 pc = pc + seq->length;
693 if (seq->type == P_SAVE_REG)
695 if (found_frame_point)
697 saved_reg = m68hc11_which_soft_register (val);
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
710 else if (seq->type == P_SET_FRAME)
712 found_frame_point = 1;
715 else if (seq->type == P_LOCAL_1)
719 else if (seq->type == P_LOCAL_2)
723 else if (seq->type == P_LOCAL_N)
725 /* Stack pointer is decremented for the allocation. */
727 size -= (int) (val) | 0xffff0000;
732 if (found_frame_point == 0)
733 info->sp_offset = size;
735 info->sp_offset = -1;
740 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
744 struct m68hc11_unwind_cache tmp_cache = { 0 };
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
761 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
765 pc = frame_unwind_register_unsigned (next_frame,
766 gdbarch_pc_regnum (gdbarch));
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
776 static struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
778 void **this_prologue_cache)
780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
787 if ((*this_prologue_cache))
788 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
794 info->pc = get_frame_func (this_frame);
797 info->return_kind = m68hc11_get_return_insn (info->pc);
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
809 current_pc = get_frame_pc (this_frame);
811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
815 if (info->sp_offset != (CORE_ADDR) -1)
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION (gdbarch);
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
828 this_base += STACK_CORRECTION (gdbarch);
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
833 if (info->return_kind == RETURN_RTC)
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
839 else if (info->return_kind == RETURN_RTI)
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
849 /* Add 1 here to adjust for the post-decrement nature of the push
851 info->prev_sp = prev_sp;
853 info->base = this_base;
855 /* Adjust all the saved registers so that they contain addresses and not
858 i < gdbarch_num_regs (gdbarch)
859 + gdbarch_num_pseudo_regs (gdbarch) - 1;
861 if (trad_frame_addr_p (info->saved_regs, i))
863 info->saved_regs[i].addr += this_base;
866 /* The previous frame's SP needed to be computed. Save the computed
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873 /* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
877 m68hc11_frame_this_id (struct frame_info *this_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
881 struct m68hc11_unwind_cache *info
882 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
887 /* The FUNC is easy. */
888 func = get_frame_func (this_frame);
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
897 id = frame_id_build (base, func);
901 static struct value *
902 m68hc11_frame_prev_register (struct frame_info *this_frame,
903 void **this_prologue_cache, int regnum)
906 struct m68hc11_unwind_cache *info
907 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
909 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
911 /* Take into account the 68HC12 specific call (PC + page). */
912 if (regnum == HARD_PC_REGNUM
913 && info->return_kind == RETURN_RTC
914 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
916 CORE_ADDR pc = value_as_long (value);
917 if (pc >= 0x08000 && pc < 0x0c000)
921 release_value (value);
923 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
925 page = value_as_long (value);
926 release_value (value);
929 pc += ((page & 0x0ff) << 14);
932 return frame_unwind_got_constant (this_frame, regnum, pc);
939 static const struct frame_unwind m68hc11_frame_unwind = {
941 default_frame_unwind_stop_reason,
942 m68hc11_frame_this_id,
943 m68hc11_frame_prev_register,
945 default_frame_sniffer
949 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
951 struct m68hc11_unwind_cache *info
952 = m68hc11_frame_unwind_cache (this_frame, this_cache);
958 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
961 struct m68hc11_unwind_cache *info
962 = m68hc11_frame_unwind_cache (this_frame, this_cache);
964 addr = info->base + info->size;
965 if (info->return_kind == RETURN_RTC)
967 else if (info->return_kind == RETURN_RTI)
973 static const struct frame_base m68hc11_frame_base = {
974 &m68hc11_frame_unwind,
975 m68hc11_frame_base_address,
976 m68hc11_frame_base_address,
977 m68hc11_frame_args_address
981 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
984 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
988 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
989 frame. The frame ID's base needs to match the TOS value saved by
990 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
992 static struct frame_id
993 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
996 CORE_ADDR pc = get_frame_pc (this_frame);
998 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1000 return frame_id_build (tos, pc);
1004 /* Get and print the register from the given frame. */
1006 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
1011 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1012 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1013 rval = get_frame_register_unsigned (frame, regno);
1015 rval = get_frame_register_signed (frame, regno);
1017 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1018 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1020 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1021 if (regno != HARD_CCR_REGNUM)
1022 print_longest (file, 'd', 1, rval);
1026 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1030 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1031 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1036 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1037 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1038 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1039 print_longest (file, 'd', 1, rval);
1043 if (regno == HARD_CCR_REGNUM)
1047 unsigned char l = rval & 0xff;
1049 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1050 l & M6811_S_BIT ? 'S' : '-',
1051 l & M6811_X_BIT ? 'X' : '-',
1052 l & M6811_H_BIT ? 'H' : '-',
1053 l & M6811_I_BIT ? 'I' : '-',
1054 l & M6811_N_BIT ? 'N' : '-',
1055 l & M6811_Z_BIT ? 'Z' : '-',
1056 l & M6811_V_BIT ? 'V' : '-',
1057 l & M6811_C_BIT ? 'C' : '-');
1058 N = (l & M6811_N_BIT) != 0;
1059 Z = (l & M6811_Z_BIT) != 0;
1060 V = (l & M6811_V_BIT) != 0;
1061 C = (l & M6811_C_BIT) != 0;
1063 /* Print flags following the h8300. */
1065 fprintf_filtered (file, "u> ");
1066 else if ((C | Z) == 1)
1067 fprintf_filtered (file, "u<= ");
1069 fprintf_filtered (file, "u< ");
1072 fprintf_filtered (file, "!= ");
1074 fprintf_filtered (file, "== ");
1077 fprintf_filtered (file, ">= ");
1079 fprintf_filtered (file, "< ");
1081 if ((Z | (N ^ V)) == 0)
1082 fprintf_filtered (file, "> ");
1084 fprintf_filtered (file, "<= ");
1088 /* Same as 'info reg' but prints the registers in a different way. */
1090 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1091 struct frame_info *frame, int regno, int cpregs)
1095 const char *name = gdbarch_register_name (gdbarch, regno);
1097 if (!name || !*name)
1100 fprintf_filtered (file, "%-10s ", name);
1101 m68hc11_print_register (gdbarch, file, frame, regno);
1102 fprintf_filtered (file, "\n");
1108 fprintf_filtered (file, "PC=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1111 fprintf_filtered (file, " SP=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1114 fprintf_filtered (file, " FP=");
1115 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1117 fprintf_filtered (file, "\nCCR=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1120 fprintf_filtered (file, "\nD=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1123 fprintf_filtered (file, " X=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1126 fprintf_filtered (file, " Y=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1129 if (gdbarch_tdep (gdbarch)->use_page_register)
1131 fprintf_filtered (file, "\nPage=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1134 fprintf_filtered (file, "\n");
1137 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1139 /* Skip registers which are not defined in the symbol table. */
1140 if (soft_regs[i].name == 0)
1143 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1144 m68hc11_print_register (gdbarch, file, frame, i);
1147 fprintf_filtered (file, "\n");
1149 fprintf_filtered (file, " ");
1151 if (nr && (nr % 8) != 7)
1152 fprintf_filtered (file, "\n");
1157 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1158 struct regcache *regcache, CORE_ADDR bp_addr,
1159 int nargs, struct value **args, CORE_ADDR sp,
1160 int struct_return, CORE_ADDR struct_addr)
1162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1164 int first_stack_argnum;
1166 const gdb_byte *val;
1169 first_stack_argnum = 0;
1172 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1176 type = value_type (args[0]);
1178 /* First argument is passed in D and X registers. */
1179 if (TYPE_LENGTH (type) <= 4)
1183 v = extract_unsigned_integer (value_contents (args[0]),
1184 TYPE_LENGTH (type), byte_order);
1185 first_stack_argnum = 1;
1187 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1188 if (TYPE_LENGTH (type) > 2)
1191 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1196 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1198 type = value_type (args[argnum]);
1200 if (TYPE_LENGTH (type) & 1)
1202 static gdb_byte zero = 0;
1205 write_memory (sp, &zero, 1);
1207 val = value_contents (args[argnum]);
1208 sp -= TYPE_LENGTH (type);
1209 write_memory (sp, val, TYPE_LENGTH (type));
1212 /* Store return address. */
1214 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1215 write_memory (sp, buf, 2);
1217 /* Finally, update the stack pointer... */
1218 sp -= STACK_CORRECTION (gdbarch);
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1230 /* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1233 static struct type *
1234 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1238 case HARD_PAGE_REGNUM:
1241 case HARD_CCR_REGNUM:
1242 return builtin_type (gdbarch)->builtin_uint8;
1244 case M68HC12_HARD_PC_REGNUM:
1245 return builtin_type (gdbarch)->builtin_uint32;
1248 return builtin_type (gdbarch)->builtin_uint16;
1253 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1254 const gdb_byte *valbuf)
1258 len = TYPE_LENGTH (type);
1260 /* First argument is passed in D and X registers. */
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1267 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
1270 error (_("return of value > 4 is not supported."));
1274 /* Given a return value in `regcache' with a type `type',
1275 extract and copy its value into `valbuf'. */
1278 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1281 gdb_byte buf[M68HC11_REG_SIZE];
1283 regcache->raw_read (HARD_D_REGNUM, buf);
1284 switch (TYPE_LENGTH (type))
1287 memcpy (valbuf, buf + 1, 1);
1291 memcpy (valbuf, buf, 2);
1295 memcpy ((char*) valbuf + 1, buf, 2);
1296 regcache->raw_read (HARD_X_REGNUM, buf);
1297 memcpy (valbuf, buf + 1, 1);
1301 memcpy ((char*) valbuf + 2, buf, 2);
1302 regcache->raw_read (HARD_X_REGNUM, buf);
1303 memcpy (valbuf, buf, 2);
1307 error (_("bad size for return value"));
1311 static enum return_value_convention
1312 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1313 struct type *valtype, struct regcache *regcache,
1314 gdb_byte *readbuf, const gdb_byte *writebuf)
1316 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1317 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1318 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1319 || TYPE_LENGTH (valtype) > 4)
1320 return RETURN_VALUE_STRUCT_CONVENTION;
1323 if (readbuf != NULL)
1324 m68hc11_extract_return_value (valtype, regcache, readbuf);
1325 if (writebuf != NULL)
1326 m68hc11_store_return_value (valtype, regcache, writebuf);
1327 return RETURN_VALUE_REGISTER_CONVENTION;
1331 /* Test whether the ELF symbol corresponds to a function using rtc or
1335 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1337 unsigned char flags;
1339 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1340 if (flags & STO_M68HC12_FAR)
1341 MSYMBOL_SET_RTC (msym);
1342 if (flags & STO_M68HC12_INTERRUPT)
1343 MSYMBOL_SET_RTI (msym);
1347 /* 68HC11/68HC12 register groups.
1348 Identify real hard registers and soft registers used by gcc. */
1350 static struct reggroup *m68hc11_soft_reggroup;
1351 static struct reggroup *m68hc11_hard_reggroup;
1354 m68hc11_init_reggroups (void)
1356 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1357 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1361 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1363 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1364 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1365 reggroup_add (gdbarch, general_reggroup);
1366 reggroup_add (gdbarch, float_reggroup);
1367 reggroup_add (gdbarch, all_reggroup);
1368 reggroup_add (gdbarch, save_reggroup);
1369 reggroup_add (gdbarch, restore_reggroup);
1370 reggroup_add (gdbarch, vector_reggroup);
1371 reggroup_add (gdbarch, system_reggroup);
1375 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1376 struct reggroup *group)
1378 /* We must save the real hard register as well as gcc
1379 soft registers including the frame pointer. */
1380 if (group == save_reggroup || group == restore_reggroup)
1382 return (regnum <= gdbarch_num_regs (gdbarch)
1383 || ((regnum == SOFT_FP_REGNUM
1384 || regnum == SOFT_TMP_REGNUM
1385 || regnum == SOFT_ZS_REGNUM
1386 || regnum == SOFT_XY_REGNUM)
1387 && m68hc11_register_name (gdbarch, regnum)));
1390 /* Group to identify gcc soft registers (d1..dN). */
1391 if (group == m68hc11_soft_reggroup)
1393 return regnum >= SOFT_D1_REGNUM
1394 && m68hc11_register_name (gdbarch, regnum);
1397 if (group == m68hc11_hard_reggroup)
1399 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1400 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1401 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1403 return default_register_reggroup_p (gdbarch, regnum, group);
1406 static struct gdbarch *
1407 m68hc11_gdbarch_init (struct gdbarch_info info,
1408 struct gdbarch_list *arches)
1410 struct gdbarch *gdbarch;
1411 struct gdbarch_tdep *tdep;
1414 soft_reg_initialized = 0;
1416 /* Extract the elf_flags if available. */
1417 if (info.abfd != NULL
1418 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1419 elf_flags = elf_elfheader (info.abfd)->e_flags;
1423 /* Try to find a pre-existing architecture. */
1424 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1426 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1428 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1431 return arches->gdbarch;
1434 /* Need a new architecture. Fill in a target specific vector. */
1435 tdep = XCNEW (struct gdbarch_tdep);
1436 gdbarch = gdbarch_alloc (&info, tdep);
1437 tdep->elf_flags = elf_flags;
1439 switch (info.bfd_arch_info->arch)
1441 case bfd_arch_m68hc11:
1442 tdep->stack_correction = 1;
1443 tdep->use_page_register = 0;
1444 tdep->prologue = m6811_prologue;
1445 set_gdbarch_addr_bit (gdbarch, 16);
1446 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1447 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1448 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1451 case bfd_arch_m68hc12:
1452 tdep->stack_correction = 0;
1453 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1454 tdep->prologue = m6812_prologue;
1455 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1456 set_gdbarch_num_pseudo_regs (gdbarch,
1457 elf_flags & E_M68HC12_BANKS
1458 ? M68HC12_NUM_PSEUDO_REGS
1459 : M68HC11_NUM_PSEUDO_REGS);
1460 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1461 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1462 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1463 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1470 /* Initially set everything according to the ABI.
1471 Use 16-bit integers since it will be the case for most
1472 programs. The size of these types should normally be set
1473 according to the dwarf2 debug information. */
1474 set_gdbarch_short_bit (gdbarch, 16);
1475 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1476 set_gdbarch_float_bit (gdbarch, 32);
1477 if (elf_flags & E_M68HC11_F64)
1479 set_gdbarch_double_bit (gdbarch, 64);
1480 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1484 set_gdbarch_double_bit (gdbarch, 32);
1485 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1487 set_gdbarch_long_double_bit (gdbarch, 64);
1488 set_gdbarch_long_bit (gdbarch, 32);
1489 set_gdbarch_ptr_bit (gdbarch, 16);
1490 set_gdbarch_long_long_bit (gdbarch, 64);
1492 /* Characters are unsigned. */
1493 set_gdbarch_char_signed (gdbarch, 0);
1495 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1496 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1498 /* Set register info. */
1499 set_gdbarch_fp0_regnum (gdbarch, -1);
1501 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1502 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1503 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1504 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1507 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1509 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1510 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1511 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1512 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1513 m68hc11_breakpoint::kind_from_pc);
1514 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1515 m68hc11_breakpoint::bp_from_kind);
1517 m68hc11_add_reggroups (gdbarch);
1518 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1519 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1521 /* Hook in the DWARF CFI frame unwinder. */
1522 dwarf2_append_unwinders (gdbarch);
1524 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1525 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1527 /* Methods for saving / extracting a dummy frame's ID. The ID's
1528 stack address must match the SP value returned by
1529 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1530 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1532 /* Return the unwound PC value. */
1533 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1535 /* Minsymbol frobbing. */
1536 set_gdbarch_elf_make_msymbol_special (gdbarch,
1537 m68hc11_elf_make_msymbol_special);
1539 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1545 _initialize_m68hc11_tdep (void)
1547 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1548 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1549 m68hc11_init_reggroups ();