1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-unwind.h"
23 #include "frame-base.h"
34 #include "arch-utils.h"
36 #include "trad-frame.h"
39 #include "m32r-tdep.h"
42 /* The size of the argument registers (r0 - r3) in bytes. */
43 #define M32R_ARG_REGISTER_SIZE 4
47 extern void _initialize_m32r_tdep (void);
50 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
52 /* Align to the size of an instruction (so that they can safely be
53 pushed onto the stack. */
60 The little endian mode of M32R is unique. In most of architectures,
61 two 16-bit instructions, A and B, are placed as the following:
69 In M32R, they are placed like this:
77 This is because M32R always fetches instructions in 32-bit.
79 The following functions take care of this behavior. */
82 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
83 struct bp_target_info *bp_tgt)
85 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
88 gdb_byte contents_cache[4];
89 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
91 /* Save the memory contents. */
92 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
94 return val; /* return error */
96 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
97 bp_tgt->shadow_len = 4;
99 /* Determine appropriate breakpoint contents and size for this address. */
100 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
104 buf[0] = bp_entry[0];
105 buf[1] = bp_entry[1];
106 buf[2] = contents_cache[2] & 0x7f;
107 buf[3] = contents_cache[3];
111 buf[0] = contents_cache[0];
112 buf[1] = contents_cache[1];
113 buf[2] = bp_entry[0];
114 buf[3] = bp_entry[1];
117 else /* little-endian */
121 buf[0] = contents_cache[0];
122 buf[1] = contents_cache[1] & 0x7f;
123 buf[2] = bp_entry[1];
124 buf[3] = bp_entry[0];
128 buf[0] = bp_entry[1];
129 buf[1] = bp_entry[0];
130 buf[2] = contents_cache[2];
131 buf[3] = contents_cache[3];
135 /* Write the breakpoint. */
136 val = target_write_memory (addr & 0xfffffffc, buf, 4);
141 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
142 struct bp_target_info *bp_tgt)
144 CORE_ADDR addr = bp_tgt->placed_address;
147 gdb_byte *contents_cache = bp_tgt->shadow_contents;
149 buf[0] = contents_cache[0];
150 buf[1] = contents_cache[1];
151 buf[2] = contents_cache[2];
152 buf[3] = contents_cache[3];
154 /* Remove parallel bit. */
155 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
157 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
160 else /* little-endian */
162 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
166 /* Write contents. */
167 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
171 /* Implement the breakpoint_kind_from_pc gdbarch method. */
174 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
176 if ((*pcptr & 3) == 0)
182 /* Implement the sw_breakpoint_from_kind gdbarch method. */
184 static const gdb_byte *
185 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
187 static gdb_byte be_bp_entry[] = {
188 0x10, 0xf1, 0x70, 0x00
190 static gdb_byte le_bp_entry[] = {
191 0x00, 0x70, 0xf1, 0x10
196 /* Determine appropriate breakpoint. */
197 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
204 return le_bp_entry + 2;
208 static const char *m32r_register_names[] = {
209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
210 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
211 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
216 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
220 if (reg_nr >= M32R_NUM_REGS)
222 return m32r_register_names[reg_nr];
226 /* Return the GDB type object for the "standard" data type
227 of data in register N. */
230 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
232 if (reg_nr == M32R_PC_REGNUM)
233 return builtin_type (gdbarch)->builtin_func_ptr;
234 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
235 return builtin_type (gdbarch)->builtin_data_ptr;
237 return builtin_type (gdbarch)->builtin_int32;
241 /* Write into appropriate registers a function return value
242 of type TYPE, given in virtual format.
244 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
247 m32r_store_return_value (struct type *type, struct regcache *regcache,
248 const gdb_byte *valbuf)
250 struct gdbarch *gdbarch = get_regcache_arch (regcache);
251 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
253 int len = TYPE_LENGTH (type);
255 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
256 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
260 regval = extract_unsigned_integer (valbuf + 4,
261 len - 4, byte_order);
262 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
266 /* This is required by skip_prologue. The results of decoding a prologue
267 should be cached because this thrashing is getting nuts. */
270 decode_prologue (struct gdbarch *gdbarch,
271 CORE_ADDR start_pc, CORE_ADDR scan_limit,
272 CORE_ADDR *pl_endptr, unsigned long *framelength)
274 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
275 unsigned long framesize;
278 CORE_ADDR after_prologue = 0;
279 CORE_ADDR after_push = 0;
280 CORE_ADDR after_stack_adjust = 0;
281 CORE_ADDR current_pc;
282 LONGEST return_value;
287 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
289 /* Check if current pc's location is readable. */
290 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
293 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
298 /* If this is a 32 bit instruction, we dont want to examine its
299 immediate data as though it were an instruction. */
300 if (current_pc & 0x02)
302 /* Decode this instruction further. */
309 if (current_pc == scan_limit)
310 scan_limit += 2; /* extend the search */
312 current_pc += 2; /* skip the immediate data */
314 /* Check if current pc's location is readable. */
315 if (!safe_read_memory_integer (current_pc, 2, byte_order,
319 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
320 /* add 16 bit sign-extended offset */
323 -((short) read_memory_unsigned_integer (current_pc,
328 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
329 && safe_read_memory_integer (current_pc + 2,
332 && read_memory_unsigned_integer (current_pc + 2,
336 /* Subtract 24 bit sign-extended negative-offset. */
337 insn = read_memory_unsigned_integer (current_pc - 2,
339 if (insn & 0x00800000) /* sign extend */
340 insn |= 0xff000000; /* negative */
342 insn &= 0x00ffffff; /* positive */
346 after_push = current_pc + 2;
350 op1 = insn & 0xf000; /* Isolate just the first nibble. */
352 if ((insn & 0xf0ff) == 0x207f)
358 if ((insn >> 8) == 0x4f) /* addi sp, xx */
359 /* Add 8 bit sign-extended offset. */
361 int stack_adjust = (signed char) (insn & 0xff);
363 /* there are probably two of these stack adjustments:
364 1) A negative one in the prologue, and
365 2) A positive one in the epilogue.
366 We are only interested in the first one. */
368 if (stack_adjust < 0)
370 framesize -= stack_adjust;
372 /* A frameless function may have no "mv fp, sp".
373 In that case, this is the end of the prologue. */
374 after_stack_adjust = current_pc + 2;
380 after_prologue = current_pc + 2;
381 break; /* end of stack adjustments */
384 /* Nop looks like a branch, continue explicitly. */
387 after_prologue = current_pc + 2;
388 continue; /* nop occurs between pushes. */
390 /* End of prolog if any of these are trap instructions. */
391 if ((insn & 0xfff0) == 0x10f0)
393 after_prologue = current_pc;
396 /* End of prolog if any of these are branch instructions. */
397 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
399 after_prologue = current_pc;
402 /* Some of the branch instructions are mixed with other types. */
405 int subop = insn & 0x0ff0;
406 if ((subop == 0x0ec0) || (subop == 0x0fc0))
408 after_prologue = current_pc;
409 continue; /* jmp , jl */
415 *framelength = framesize;
417 if (current_pc >= scan_limit)
421 if (after_stack_adjust != 0)
422 /* We did not find a "mv fp,sp", but we DID find
423 a stack_adjust. Is it safe to use that as the
424 end of the prologue? I just don't know. */
426 *pl_endptr = after_stack_adjust;
428 else if (after_push != 0)
429 /* We did not find a "mv fp,sp", but we DID find
430 a push. Is it safe to use that as the
431 end of the prologue? I just don't know. */
433 *pl_endptr = after_push;
436 /* We reached the end of the loop without finding the end
437 of the prologue. No way to win -- we should report
438 failure. The way we do that is to return the original
439 start_pc. GDB will set a breakpoint at the start of
440 the function (etc.) */
441 *pl_endptr = start_pc;
446 if (after_prologue == 0)
447 after_prologue = current_pc;
450 *pl_endptr = after_prologue;
453 } /* decode_prologue */
455 /* Function: skip_prologue
456 Find end of function prologue. */
458 #define DEFAULT_SEARCH_LIMIT 128
461 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
464 CORE_ADDR func_addr, func_end;
465 struct symtab_and_line sal;
466 LONGEST return_value;
468 /* See what the symbol table says. */
470 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
472 sal = find_pc_line (func_addr, 0);
474 if (sal.line != 0 && sal.end <= func_end)
479 /* Either there's no line info, or the line after the prologue is after
480 the end of the function. In this case, there probably isn't a
483 func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
487 func_end = pc + DEFAULT_SEARCH_LIMIT;
489 /* If pc's location is not readable, just quit. */
490 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
493 /* Find the end of prologue. */
494 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
500 struct m32r_unwind_cache
502 /* The previous frame's inner most stack address. Used as this
503 frame ID's stack_addr. */
505 /* The frame's base, optionally used by the high-level debug info. */
508 /* How far the SP and r13 (FP) have been offset from the start of
509 the stack frame (as defined by the previous frame's stack
514 /* Table indicating the location of each and every register. */
515 struct trad_frame_saved_reg *saved_regs;
518 /* Put here the code to store, into fi->saved_regs, the addresses of
519 the saved registers of frame described by FRAME_INFO. This
520 includes special registers such as pc and fp saved in special ways
521 in the stack frame. sp is even more special: the address we return
522 for it IS the sp for the next frame. */
524 static struct m32r_unwind_cache *
525 m32r_frame_unwind_cache (struct frame_info *this_frame,
526 void **this_prologue_cache)
528 CORE_ADDR pc, scan_limit;
533 struct m32r_unwind_cache *info;
536 if ((*this_prologue_cache))
537 return (struct m32r_unwind_cache *) (*this_prologue_cache);
539 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
540 (*this_prologue_cache) = info;
541 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
545 info->uses_frame = 0;
547 scan_limit = get_frame_pc (this_frame);
548 for (pc = get_frame_func (this_frame);
549 pc > 0 && pc < scan_limit; pc += 2)
553 op = get_frame_memory_unsigned (this_frame, pc, 4);
554 if ((op & 0x80000000) == 0x80000000)
556 /* 32-bit instruction */
557 if ((op & 0xffff0000) == 0x8faf0000)
559 /* add3 sp,sp,xxxx */
560 short n = op & 0xffff;
561 info->sp_offset += n;
563 else if (((op >> 8) == 0xe4)
564 && get_frame_memory_unsigned (this_frame, pc + 2,
567 /* ld24 r4, xxxxxx; sub sp, r4 */
568 unsigned long n = op & 0xffffff;
569 info->sp_offset += n;
570 pc += 2; /* skip sub instruction */
573 if (pc == scan_limit)
574 scan_limit += 2; /* extend the search */
575 pc += 2; /* skip the immediate data */
580 /* 16-bit instructions */
581 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
582 if ((op & 0xf0ff) == 0x207f)
585 int regno = ((op >> 8) & 0xf);
586 info->sp_offset -= 4;
587 info->saved_regs[regno].addr = info->sp_offset;
589 else if ((op & 0xff00) == 0x4f00)
592 int n = (signed char) (op & 0xff);
593 info->sp_offset += n;
595 else if (op == 0x1d8f)
598 info->uses_frame = 1;
599 info->r13_offset = info->sp_offset;
600 break; /* end of stack adjustments */
602 else if ((op & 0xfff0) == 0x10f0)
604 /* End of prologue if this is a trap instruction. */
605 break; /* End of stack adjustments. */
609 info->size = -info->sp_offset;
611 /* Compute the previous frame's stack pointer (which is also the
612 frame's ID's stack address), and this frame's base pointer. */
613 if (info->uses_frame)
615 /* The SP was moved to the FP. This indicates that a new frame
616 was created. Get THIS frame's FP value by unwinding it from
618 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
619 /* The FP points at the last saved register. Adjust the FP back
620 to before the first saved register giving the SP. */
621 prev_sp = this_base + info->size;
625 /* Assume that the FP is this frame's SP but with that pushed
626 stack space added back. */
627 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
628 prev_sp = this_base + info->size;
631 /* Convert that SP/BASE into real addresses. */
632 info->prev_sp = prev_sp;
633 info->base = this_base;
635 /* Adjust all the saved registers so that they contain addresses and
637 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
638 if (trad_frame_addr_p (info->saved_regs, i))
639 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
641 /* The call instruction moves the caller's PC in the callee's LR.
642 Since this is an unwind, do the reverse. Copy the location of LR
643 into PC (the address / regnum) so that a request for PC will be
644 converted into a request for the LR. */
645 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
647 /* The previous frame's SP needed to be computed. Save the computed
649 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
655 m32r_read_pc (struct regcache *regcache)
658 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
663 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
665 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
670 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
671 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
672 struct value **args, CORE_ADDR sp, int struct_return,
673 CORE_ADDR struct_addr)
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int stack_offset, stack_alloc;
677 int argreg = ARG1_REGNUM;
680 enum type_code typecode;
683 gdb_byte valbuf[M32R_ARG_REGISTER_SIZE];
686 /* First force sp to a 4-byte alignment. */
689 /* Set the return address. For the m32r, the return breakpoint is
690 always at BP_ADDR. */
691 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
693 /* If STRUCT_RETURN is true, then the struct return address (in
694 STRUCT_ADDR) will consume the first argument-passing register.
695 Both adjust the register count and store that value. */
698 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
702 /* Now make sure there's space on the stack. */
703 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
704 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
705 sp -= stack_alloc; /* Make room on stack for args. */
707 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
709 type = value_type (args[argnum]);
710 typecode = TYPE_CODE (type);
711 len = TYPE_LENGTH (type);
713 memset (valbuf, 0, sizeof (valbuf));
715 /* Passes structures that do not fit in 2 registers by reference. */
717 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
719 store_unsigned_integer (valbuf, 4, byte_order,
720 value_address (args[argnum]));
721 typecode = TYPE_CODE_PTR;
727 /* Value gets right-justified in the register or stack word. */
728 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
729 (gdb_byte *) value_contents (args[argnum]), len);
733 val = (gdb_byte *) value_contents (args[argnum]);
737 if (argreg > ARGN_REGNUM)
739 /* Must go on the stack. */
740 write_memory (sp + stack_offset, val, 4);
743 else if (argreg <= ARGN_REGNUM)
745 /* There's room in a register. */
747 extract_unsigned_integer (val,
748 register_size (gdbarch, argreg),
750 regcache_cooked_write_unsigned (regcache, argreg++, regval);
753 /* Store the value 4 bytes at a time. This means that things
754 larger than 4 bytes may go partly in registers and partly
756 len -= register_size (gdbarch, argreg);
757 val += register_size (gdbarch, argreg);
761 /* Finally, update the SP register. */
762 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
768 /* Given a return value in `regbuf' with a type `valtype',
769 extract and copy its value into `valbuf'. */
772 m32r_extract_return_value (struct type *type, struct regcache *regcache,
775 struct gdbarch *gdbarch = get_regcache_arch (regcache);
776 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
777 int len = TYPE_LENGTH (type);
780 /* By using store_unsigned_integer we avoid having to do
781 anything special for small big-endian values. */
782 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
783 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
785 /* Ignore return values more than 8 bytes in size because the m32r
786 returns anything more than 8 bytes in the stack. */
789 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
790 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
794 static enum return_value_convention
795 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
796 struct type *valtype, struct regcache *regcache,
797 gdb_byte *readbuf, const gdb_byte *writebuf)
799 if (TYPE_LENGTH (valtype) > 8)
800 return RETURN_VALUE_STRUCT_CONVENTION;
804 m32r_extract_return_value (valtype, regcache, readbuf);
805 if (writebuf != NULL)
806 m32r_store_return_value (valtype, regcache, writebuf);
807 return RETURN_VALUE_REGISTER_CONVENTION;
814 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
816 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
819 /* Given a GDB frame, determine the address of the calling function's
820 frame. This will be used to create a new GDB frame struct. */
823 m32r_frame_this_id (struct frame_info *this_frame,
824 void **this_prologue_cache, struct frame_id *this_id)
826 struct m32r_unwind_cache *info
827 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
830 struct bound_minimal_symbol msym_stack;
833 /* The FUNC is easy. */
834 func = get_frame_func (this_frame);
836 /* Check if the stack is empty. */
837 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
838 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
841 /* Hopefully the prologue analysis either correctly determined the
842 frame's base (which is the SP from the previous frame), or set
843 that base to "NULL". */
844 base = info->prev_sp;
848 id = frame_id_build (base, func);
852 static struct value *
853 m32r_frame_prev_register (struct frame_info *this_frame,
854 void **this_prologue_cache, int regnum)
856 struct m32r_unwind_cache *info
857 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
858 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
861 static const struct frame_unwind m32r_frame_unwind = {
863 default_frame_unwind_stop_reason,
865 m32r_frame_prev_register,
867 default_frame_sniffer
871 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
873 struct m32r_unwind_cache *info
874 = m32r_frame_unwind_cache (this_frame, this_cache);
878 static const struct frame_base m32r_frame_base = {
880 m32r_frame_base_address,
881 m32r_frame_base_address,
882 m32r_frame_base_address
885 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
886 frame. The frame ID's base needs to match the TOS value saved by
887 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
889 static struct frame_id
890 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
892 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
893 return frame_id_build (sp, get_frame_pc (this_frame));
897 static gdbarch_init_ftype m32r_gdbarch_init;
899 static struct gdbarch *
900 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
902 struct gdbarch *gdbarch;
903 struct gdbarch_tdep *tdep;
905 /* If there is already a candidate, use it. */
906 arches = gdbarch_list_lookup_by_info (arches, &info);
908 return arches->gdbarch;
910 /* Allocate space for the new architecture. */
911 tdep = XNEW (struct gdbarch_tdep);
912 gdbarch = gdbarch_alloc (&info, tdep);
914 set_gdbarch_wchar_bit (gdbarch, 16);
915 set_gdbarch_wchar_signed (gdbarch, 0);
917 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
918 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
920 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
921 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
922 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
923 set_gdbarch_register_name (gdbarch, m32r_register_name);
924 set_gdbarch_register_type (gdbarch, m32r_register_type);
926 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
927 set_gdbarch_return_value (gdbarch, m32r_return_value);
929 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
930 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
931 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc);
932 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind);
933 set_gdbarch_memory_insert_breakpoint (gdbarch,
934 m32r_memory_insert_breakpoint);
935 set_gdbarch_memory_remove_breakpoint (gdbarch,
936 m32r_memory_remove_breakpoint);
938 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
940 frame_base_set_default (gdbarch, &m32r_frame_base);
942 /* Methods for saving / extracting a dummy frame's ID. The ID's
943 stack address must match the SP value returned by
944 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
945 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
947 /* Return the unwound PC value. */
948 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
950 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
952 /* Hook in ABI-specific overrides, if they have been registered. */
953 gdbarch_init_osabi (info, gdbarch);
955 /* Hook in the default unwinders. */
956 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
958 /* Support simple overlay manager. */
959 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
965 _initialize_m32r_tdep (void)
967 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);