Teach GDB that wchar_t is a built-in type in C++ mode
[external/binutils.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3    Copyright (C) 1996-2017 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "m32r-tdep.h"
40 #include <algorithm>
41
42 /* The size of the argument registers (r0 - r3) in bytes.  */
43 #define M32R_ARG_REGISTER_SIZE 4
44
45 /* Local functions */
46
47 extern void _initialize_m32r_tdep (void);
48
49 static CORE_ADDR
50 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
51 {
52   /* Align to the size of an instruction (so that they can safely be
53      pushed onto the stack.  */
54   return sp & ~3;
55 }
56
57
58 /* Breakpoints
59  
60    The little endian mode of M32R is unique.  In most of architectures,
61    two 16-bit instructions, A and B, are placed as the following:
62   
63    Big endian:
64    A0 A1 B0 B1
65   
66    Little endian:
67    A1 A0 B1 B0
68   
69    In M32R, they are placed like this:
70   
71    Big endian:
72    A0 A1 B0 B1
73   
74    Little endian:
75    B1 B0 A1 A0
76   
77    This is because M32R always fetches instructions in 32-bit.
78   
79    The following functions take care of this behavior.  */
80
81 static int
82 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
83                                struct bp_target_info *bp_tgt)
84 {
85   CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
86   int val;
87   gdb_byte buf[4];
88   gdb_byte contents_cache[4];
89   gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
90
91   /* Save the memory contents.  */
92   val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
93   if (val != 0)
94     return val;                 /* return error */
95
96   memcpy (bp_tgt->shadow_contents, contents_cache, 4);
97   bp_tgt->shadow_len = 4;
98
99   /* Determine appropriate breakpoint contents and size for this address.  */
100   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
101     {
102       if ((addr & 3) == 0)
103         {
104           buf[0] = bp_entry[0];
105           buf[1] = bp_entry[1];
106           buf[2] = contents_cache[2] & 0x7f;
107           buf[3] = contents_cache[3];
108         }
109       else
110         {
111           buf[0] = contents_cache[0];
112           buf[1] = contents_cache[1];
113           buf[2] = bp_entry[0];
114           buf[3] = bp_entry[1];
115         }
116     }
117   else                          /* little-endian */
118     {
119       if ((addr & 3) == 0)
120         {
121           buf[0] = contents_cache[0];
122           buf[1] = contents_cache[1] & 0x7f;
123           buf[2] = bp_entry[1];
124           buf[3] = bp_entry[0];
125         }
126       else
127         {
128           buf[0] = bp_entry[1];
129           buf[1] = bp_entry[0];
130           buf[2] = contents_cache[2];
131           buf[3] = contents_cache[3];
132         }
133     }
134
135   /* Write the breakpoint.  */
136   val = target_write_memory (addr & 0xfffffffc, buf, 4);
137   return val;
138 }
139
140 static int
141 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
142                                struct bp_target_info *bp_tgt)
143 {
144   CORE_ADDR addr = bp_tgt->placed_address;
145   int val;
146   gdb_byte buf[4];
147   gdb_byte *contents_cache = bp_tgt->shadow_contents;
148
149   buf[0] = contents_cache[0];
150   buf[1] = contents_cache[1];
151   buf[2] = contents_cache[2];
152   buf[3] = contents_cache[3];
153
154   /* Remove parallel bit.  */
155   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
156     {
157       if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
158         buf[2] &= 0x7f;
159     }
160   else                          /* little-endian */
161     {
162       if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
163         buf[1] &= 0x7f;
164     }
165
166   /* Write contents.  */
167   val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
168   return val;
169 }
170
171 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
172
173 static int
174 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
175 {
176   if ((*pcptr & 3) == 0)
177     return 4;
178   else
179     return 2;
180 }
181
182 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
183
184 static const gdb_byte *
185 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
186 {
187   static gdb_byte be_bp_entry[] = {
188     0x10, 0xf1, 0x70, 0x00
189   };    /* dpt -> nop */
190   static gdb_byte le_bp_entry[] = {
191     0x00, 0x70, 0xf1, 0x10
192   };    /* dpt -> nop */
193
194   *size = kind;
195
196   /* Determine appropriate breakpoint.  */
197   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
198     return be_bp_entry;
199   else
200     {
201       if (kind == 4)
202         return le_bp_entry;
203       else
204         return le_bp_entry + 2;
205     }
206 }
207
208 static const char *m32r_register_names[] = {
209   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
210   "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
211   "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
212   "evb"
213 };
214
215 static const char *
216 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
217 {
218   if (reg_nr < 0)
219     return NULL;
220   if (reg_nr >= M32R_NUM_REGS)
221     return NULL;
222   return m32r_register_names[reg_nr];
223 }
224
225
226 /* Return the GDB type object for the "standard" data type
227    of data in register N.  */
228
229 static struct type *
230 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
231 {
232   if (reg_nr == M32R_PC_REGNUM)
233     return builtin_type (gdbarch)->builtin_func_ptr;
234   else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
235     return builtin_type (gdbarch)->builtin_data_ptr;
236   else
237     return builtin_type (gdbarch)->builtin_int32;
238 }
239
240
241 /* Write into appropriate registers a function return value
242    of type TYPE, given in virtual format.
243
244    Things always get returned in RET1_REGNUM, RET2_REGNUM.  */
245
246 static void
247 m32r_store_return_value (struct type *type, struct regcache *regcache,
248                          const gdb_byte *valbuf)
249 {
250   struct gdbarch *gdbarch = get_regcache_arch (regcache);
251   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
252   CORE_ADDR regval;
253   int len = TYPE_LENGTH (type);
254
255   regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
256   regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
257
258   if (len > 4)
259     {
260       regval = extract_unsigned_integer (valbuf + 4,
261                                          len - 4, byte_order);
262       regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
263     }
264 }
265
266 /* This is required by skip_prologue.  The results of decoding a prologue
267    should be cached because this thrashing is getting nuts.  */
268
269 static int
270 decode_prologue (struct gdbarch *gdbarch,
271                  CORE_ADDR start_pc, CORE_ADDR scan_limit,
272                  CORE_ADDR *pl_endptr, unsigned long *framelength)
273 {
274   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
275   unsigned long framesize;
276   int insn;
277   int op1;
278   CORE_ADDR after_prologue = 0;
279   CORE_ADDR after_push = 0;
280   CORE_ADDR after_stack_adjust = 0;
281   CORE_ADDR current_pc;
282   LONGEST return_value;
283
284   framesize = 0;
285   after_prologue = 0;
286
287   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
288     {
289       /* Check if current pc's location is readable.  */
290       if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
291         return -1;
292
293       insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
294
295       if (insn == 0x0000)
296         break;
297
298       /* If this is a 32 bit instruction, we dont want to examine its
299          immediate data as though it were an instruction.  */
300       if (current_pc & 0x02)
301         {
302           /* Decode this instruction further.  */
303           insn &= 0x7fff;
304         }
305       else
306         {
307           if (insn & 0x8000)
308             {
309               if (current_pc == scan_limit)
310                 scan_limit += 2;        /* extend the search */
311
312               current_pc += 2;  /* skip the immediate data */
313
314               /* Check if current pc's location is readable.  */
315               if (!safe_read_memory_integer (current_pc, 2, byte_order,
316                                              &return_value))
317                 return -1;
318
319               if (insn == 0x8faf)       /* add3 sp, sp, xxxx */
320                 /* add 16 bit sign-extended offset */
321                 {
322                   framesize +=
323                     -((short) read_memory_unsigned_integer (current_pc,
324                                                             2, byte_order));
325                 }
326               else
327                 {
328                   if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
329                       && safe_read_memory_integer (current_pc + 2,
330                                                    2, byte_order,
331                                                    &return_value)
332                       && read_memory_unsigned_integer (current_pc + 2,
333                                                        2, byte_order)
334                          == 0x0f24)
335                     {
336                       /* Subtract 24 bit sign-extended negative-offset.  */
337                       insn = read_memory_unsigned_integer (current_pc - 2,
338                                                            4, byte_order);
339                       if (insn & 0x00800000)    /* sign extend */
340                         insn |= 0xff000000;     /* negative */
341                       else
342                         insn &= 0x00ffffff;     /* positive */
343                       framesize += insn;
344                     }
345                 }
346               after_push = current_pc + 2;
347               continue;
348             }
349         }
350       op1 = insn & 0xf000;      /* Isolate just the first nibble.  */
351
352       if ((insn & 0xf0ff) == 0x207f)
353         {                       /* st reg, @-sp */
354           framesize += 4;
355           after_prologue = 0;
356           continue;
357         }
358       if ((insn >> 8) == 0x4f)  /* addi sp, xx */
359         /* Add 8 bit sign-extended offset.  */
360         {
361           int stack_adjust = (signed char) (insn & 0xff);
362
363           /* there are probably two of these stack adjustments:
364              1) A negative one in the prologue, and
365              2) A positive one in the epilogue.
366              We are only interested in the first one.  */
367
368           if (stack_adjust < 0)
369             {
370               framesize -= stack_adjust;
371               after_prologue = 0;
372               /* A frameless function may have no "mv fp, sp".
373                  In that case, this is the end of the prologue.  */
374               after_stack_adjust = current_pc + 2;
375             }
376           continue;
377         }
378       if (insn == 0x1d8f)
379         {                       /* mv fp, sp */
380           after_prologue = current_pc + 2;
381           break;                /* end of stack adjustments */
382         }
383
384       /* Nop looks like a branch, continue explicitly.  */
385       if (insn == 0x7000)
386         {
387           after_prologue = current_pc + 2;
388           continue;             /* nop occurs between pushes.  */
389         }
390       /* End of prolog if any of these are trap instructions.  */
391       if ((insn & 0xfff0) == 0x10f0)
392         {
393           after_prologue = current_pc;
394           break;
395         }
396       /* End of prolog if any of these are branch instructions.  */
397       if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
398         {
399           after_prologue = current_pc;
400           continue;
401         }
402       /* Some of the branch instructions are mixed with other types.  */
403       if (op1 == 0x1000)
404         {
405           int subop = insn & 0x0ff0;
406           if ((subop == 0x0ec0) || (subop == 0x0fc0))
407             {
408               after_prologue = current_pc;
409               continue;         /* jmp , jl */
410             }
411         }
412     }
413
414   if (framelength)
415     *framelength = framesize;
416
417   if (current_pc >= scan_limit)
418     {
419       if (pl_endptr)
420         {
421           if (after_stack_adjust != 0)
422             /* We did not find a "mv fp,sp", but we DID find
423                a stack_adjust.  Is it safe to use that as the
424                end of the prologue?  I just don't know.  */
425             {
426               *pl_endptr = after_stack_adjust;
427             }
428           else if (after_push != 0)
429             /* We did not find a "mv fp,sp", but we DID find
430                a push.  Is it safe to use that as the
431                end of the prologue?  I just don't know.  */
432             {
433               *pl_endptr = after_push;
434             }
435           else
436             /* We reached the end of the loop without finding the end
437                of the prologue.  No way to win -- we should report
438                failure.  The way we do that is to return the original
439                start_pc.  GDB will set a breakpoint at the start of
440                the function (etc.)  */
441             *pl_endptr = start_pc;
442         }
443       return 0;
444     }
445
446   if (after_prologue == 0)
447     after_prologue = current_pc;
448
449   if (pl_endptr)
450     *pl_endptr = after_prologue;
451
452   return 0;
453 }                               /*  decode_prologue */
454
455 /* Function: skip_prologue
456    Find end of function prologue.  */
457
458 #define DEFAULT_SEARCH_LIMIT 128
459
460 static CORE_ADDR
461 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
462 {
463   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
464   CORE_ADDR func_addr, func_end;
465   struct symtab_and_line sal;
466   LONGEST return_value;
467
468   /* See what the symbol table says.  */
469
470   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
471     {
472       sal = find_pc_line (func_addr, 0);
473
474       if (sal.line != 0 && sal.end <= func_end)
475         {
476           func_end = sal.end;
477         }
478       else
479         /* Either there's no line info, or the line after the prologue is after
480            the end of the function.  In this case, there probably isn't a
481            prologue.  */
482         {
483           func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
484         }
485     }
486   else
487     func_end = pc + DEFAULT_SEARCH_LIMIT;
488
489   /* If pc's location is not readable, just quit.  */
490   if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
491     return pc;
492
493   /* Find the end of prologue.  */
494   if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
495     return pc;
496
497   return sal.end;
498 }
499
500 struct m32r_unwind_cache
501 {
502   /* The previous frame's inner most stack address.  Used as this
503      frame ID's stack_addr.  */
504   CORE_ADDR prev_sp;
505   /* The frame's base, optionally used by the high-level debug info.  */
506   CORE_ADDR base;
507   int size;
508   /* How far the SP and r13 (FP) have been offset from the start of
509      the stack frame (as defined by the previous frame's stack
510      pointer).  */
511   LONGEST sp_offset;
512   LONGEST r13_offset;
513   int uses_frame;
514   /* Table indicating the location of each and every register.  */
515   struct trad_frame_saved_reg *saved_regs;
516 };
517
518 /* Put here the code to store, into fi->saved_regs, the addresses of
519    the saved registers of frame described by FRAME_INFO.  This
520    includes special registers such as pc and fp saved in special ways
521    in the stack frame.  sp is even more special: the address we return
522    for it IS the sp for the next frame.  */
523
524 static struct m32r_unwind_cache *
525 m32r_frame_unwind_cache (struct frame_info *this_frame,
526                          void **this_prologue_cache)
527 {
528   CORE_ADDR pc, scan_limit;
529   ULONGEST prev_sp;
530   ULONGEST this_base;
531   unsigned long op;
532   int i;
533   struct m32r_unwind_cache *info;
534
535
536   if ((*this_prologue_cache))
537     return (struct m32r_unwind_cache *) (*this_prologue_cache);
538
539   info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
540   (*this_prologue_cache) = info;
541   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
542
543   info->size = 0;
544   info->sp_offset = 0;
545   info->uses_frame = 0;
546
547   scan_limit = get_frame_pc (this_frame);
548   for (pc = get_frame_func (this_frame);
549        pc > 0 && pc < scan_limit; pc += 2)
550     {
551       if ((pc & 2) == 0)
552         {
553           op = get_frame_memory_unsigned (this_frame, pc, 4);
554           if ((op & 0x80000000) == 0x80000000)
555             {
556               /* 32-bit instruction */
557               if ((op & 0xffff0000) == 0x8faf0000)
558                 {
559                   /* add3 sp,sp,xxxx */
560                   short n = op & 0xffff;
561                   info->sp_offset += n;
562                 }
563               else if (((op >> 8) == 0xe4)
564                        && get_frame_memory_unsigned (this_frame, pc + 2,
565                                                      2) == 0x0f24)
566                 {
567                   /* ld24 r4, xxxxxx; sub sp, r4 */
568                   unsigned long n = op & 0xffffff;
569                   info->sp_offset += n;
570                   pc += 2;      /* skip sub instruction */
571                 }
572
573               if (pc == scan_limit)
574                 scan_limit += 2;        /* extend the search */
575               pc += 2;          /* skip the immediate data */
576               continue;
577             }
578         }
579
580       /* 16-bit instructions */
581       op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
582       if ((op & 0xf0ff) == 0x207f)
583         {
584           /* st rn, @-sp */
585           int regno = ((op >> 8) & 0xf);
586           info->sp_offset -= 4;
587           info->saved_regs[regno].addr = info->sp_offset;
588         }
589       else if ((op & 0xff00) == 0x4f00)
590         {
591           /* addi sp, xx */
592           int n = (signed char) (op & 0xff);
593           info->sp_offset += n;
594         }
595       else if (op == 0x1d8f)
596         {
597           /* mv fp, sp */
598           info->uses_frame = 1;
599           info->r13_offset = info->sp_offset;
600           break;                /* end of stack adjustments */
601         }
602       else if ((op & 0xfff0) == 0x10f0)
603         {
604           /* End of prologue if this is a trap instruction.  */
605           break;                /* End of stack adjustments.  */
606         }
607     }
608
609   info->size = -info->sp_offset;
610
611   /* Compute the previous frame's stack pointer (which is also the
612      frame's ID's stack address), and this frame's base pointer.  */
613   if (info->uses_frame)
614     {
615       /* The SP was moved to the FP.  This indicates that a new frame
616          was created.  Get THIS frame's FP value by unwinding it from
617          the next frame.  */
618       this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
619       /* The FP points at the last saved register.  Adjust the FP back
620          to before the first saved register giving the SP.  */
621       prev_sp = this_base + info->size;
622     }
623   else
624     {
625       /* Assume that the FP is this frame's SP but with that pushed
626          stack space added back.  */
627       this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
628       prev_sp = this_base + info->size;
629     }
630
631   /* Convert that SP/BASE into real addresses.  */
632   info->prev_sp = prev_sp;
633   info->base = this_base;
634
635   /* Adjust all the saved registers so that they contain addresses and
636      not offsets.  */
637   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
638     if (trad_frame_addr_p (info->saved_regs, i))
639       info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
640
641   /* The call instruction moves the caller's PC in the callee's LR.
642      Since this is an unwind, do the reverse.  Copy the location of LR
643      into PC (the address / regnum) so that a request for PC will be
644      converted into a request for the LR.  */
645   info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
646
647   /* The previous frame's SP needed to be computed.  Save the computed
648      value.  */
649   trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
650
651   return info;
652 }
653
654 static CORE_ADDR
655 m32r_read_pc (struct regcache *regcache)
656 {
657   ULONGEST pc;
658   regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
659   return pc;
660 }
661
662 static CORE_ADDR
663 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
664 {
665   return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
666 }
667
668
669 static CORE_ADDR
670 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
671                       struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
672                       struct value **args, CORE_ADDR sp, int struct_return,
673                       CORE_ADDR struct_addr)
674 {
675   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676   int stack_offset, stack_alloc;
677   int argreg = ARG1_REGNUM;
678   int argnum;
679   struct type *type;
680   enum type_code typecode;
681   CORE_ADDR regval;
682   gdb_byte *val;
683   gdb_byte valbuf[M32R_ARG_REGISTER_SIZE];
684   int len;
685
686   /* First force sp to a 4-byte alignment.  */
687   sp = sp & ~3;
688
689   /* Set the return address.  For the m32r, the return breakpoint is
690      always at BP_ADDR.  */
691   regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
692
693   /* If STRUCT_RETURN is true, then the struct return address (in
694      STRUCT_ADDR) will consume the first argument-passing register.
695      Both adjust the register count and store that value.  */
696   if (struct_return)
697     {
698       regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
699       argreg++;
700     }
701
702   /* Now make sure there's space on the stack.  */
703   for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
704     stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
705   sp -= stack_alloc;            /* Make room on stack for args.  */
706
707   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
708     {
709       type = value_type (args[argnum]);
710       typecode = TYPE_CODE (type);
711       len = TYPE_LENGTH (type);
712
713       memset (valbuf, 0, sizeof (valbuf));
714
715       /* Passes structures that do not fit in 2 registers by reference.  */
716       if (len > 8
717           && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
718         {
719           store_unsigned_integer (valbuf, 4, byte_order,
720                                   value_address (args[argnum]));
721           typecode = TYPE_CODE_PTR;
722           len = 4;
723           val = valbuf;
724         }
725       else if (len < 4)
726         {
727           /* Value gets right-justified in the register or stack word.  */
728           memcpy (valbuf + (register_size (gdbarch, argreg) - len),
729                   (gdb_byte *) value_contents (args[argnum]), len);
730           val = valbuf;
731         }
732       else
733         val = (gdb_byte *) value_contents (args[argnum]);
734
735       while (len > 0)
736         {
737           if (argreg > ARGN_REGNUM)
738             {
739               /* Must go on the stack.  */
740               write_memory (sp + stack_offset, val, 4);
741               stack_offset += 4;
742             }
743           else if (argreg <= ARGN_REGNUM)
744             {
745               /* There's room in a register.  */
746               regval =
747                 extract_unsigned_integer (val,
748                                           register_size (gdbarch, argreg),
749                                           byte_order);
750               regcache_cooked_write_unsigned (regcache, argreg++, regval);
751             }
752
753           /* Store the value 4 bytes at a time.  This means that things
754              larger than 4 bytes may go partly in registers and partly
755              on the stack.  */
756           len -= register_size (gdbarch, argreg);
757           val += register_size (gdbarch, argreg);
758         }
759     }
760
761   /* Finally, update the SP register.  */
762   regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
763
764   return sp;
765 }
766
767
768 /* Given a return value in `regbuf' with a type `valtype', 
769    extract and copy its value into `valbuf'.  */
770
771 static void
772 m32r_extract_return_value (struct type *type, struct regcache *regcache,
773                            gdb_byte *dst)
774 {
775   struct gdbarch *gdbarch = get_regcache_arch (regcache);
776   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
777   int len = TYPE_LENGTH (type);
778   ULONGEST tmp;
779
780   /* By using store_unsigned_integer we avoid having to do
781      anything special for small big-endian values.  */
782   regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
783   store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
784
785   /* Ignore return values more than 8 bytes in size because the m32r
786      returns anything more than 8 bytes in the stack.  */
787   if (len > 4)
788     {
789       regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
790       store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
791     }
792 }
793
794 static enum return_value_convention
795 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
796                    struct type *valtype, struct regcache *regcache,
797                    gdb_byte *readbuf, const gdb_byte *writebuf)
798 {
799   if (TYPE_LENGTH (valtype) > 8)
800     return RETURN_VALUE_STRUCT_CONVENTION;
801   else
802     {
803       if (readbuf != NULL)
804         m32r_extract_return_value (valtype, regcache, readbuf);
805       if (writebuf != NULL)
806         m32r_store_return_value (valtype, regcache, writebuf);
807       return RETURN_VALUE_REGISTER_CONVENTION;
808     }
809 }
810
811
812
813 static CORE_ADDR
814 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
815 {
816   return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
817 }
818
819 /* Given a GDB frame, determine the address of the calling function's
820    frame.  This will be used to create a new GDB frame struct.  */
821
822 static void
823 m32r_frame_this_id (struct frame_info *this_frame,
824                     void **this_prologue_cache, struct frame_id *this_id)
825 {
826   struct m32r_unwind_cache *info
827     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
828   CORE_ADDR base;
829   CORE_ADDR func;
830   struct bound_minimal_symbol msym_stack;
831   struct frame_id id;
832
833   /* The FUNC is easy.  */
834   func = get_frame_func (this_frame);
835
836   /* Check if the stack is empty.  */
837   msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
838   if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
839     return;
840
841   /* Hopefully the prologue analysis either correctly determined the
842      frame's base (which is the SP from the previous frame), or set
843      that base to "NULL".  */
844   base = info->prev_sp;
845   if (base == 0)
846     return;
847
848   id = frame_id_build (base, func);
849   (*this_id) = id;
850 }
851
852 static struct value *
853 m32r_frame_prev_register (struct frame_info *this_frame,
854                           void **this_prologue_cache, int regnum)
855 {
856   struct m32r_unwind_cache *info
857     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
858   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
859 }
860
861 static const struct frame_unwind m32r_frame_unwind = {
862   NORMAL_FRAME,
863   default_frame_unwind_stop_reason,
864   m32r_frame_this_id,
865   m32r_frame_prev_register,
866   NULL,
867   default_frame_sniffer
868 };
869
870 static CORE_ADDR
871 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
872 {
873   struct m32r_unwind_cache *info
874     = m32r_frame_unwind_cache (this_frame, this_cache);
875   return info->base;
876 }
877
878 static const struct frame_base m32r_frame_base = {
879   &m32r_frame_unwind,
880   m32r_frame_base_address,
881   m32r_frame_base_address,
882   m32r_frame_base_address
883 };
884
885 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
886    frame.  The frame ID's base needs to match the TOS value saved by
887    save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */
888
889 static struct frame_id
890 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
891 {
892   CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
893   return frame_id_build (sp, get_frame_pc (this_frame));
894 }
895
896
897 static gdbarch_init_ftype m32r_gdbarch_init;
898
899 static struct gdbarch *
900 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
901 {
902   struct gdbarch *gdbarch;
903   struct gdbarch_tdep *tdep;
904
905   /* If there is already a candidate, use it.  */
906   arches = gdbarch_list_lookup_by_info (arches, &info);
907   if (arches != NULL)
908     return arches->gdbarch;
909
910   /* Allocate space for the new architecture.  */
911   tdep = XNEW (struct gdbarch_tdep);
912   gdbarch = gdbarch_alloc (&info, tdep);
913
914   set_gdbarch_wchar_bit (gdbarch, 16);
915   set_gdbarch_wchar_signed (gdbarch, 0);
916
917   set_gdbarch_read_pc (gdbarch, m32r_read_pc);
918   set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
919
920   set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
921   set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
922   set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
923   set_gdbarch_register_name (gdbarch, m32r_register_name);
924   set_gdbarch_register_type (gdbarch, m32r_register_type);
925
926   set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
927   set_gdbarch_return_value (gdbarch, m32r_return_value);
928
929   set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
930   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
931   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc);
932   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind);
933   set_gdbarch_memory_insert_breakpoint (gdbarch,
934                                         m32r_memory_insert_breakpoint);
935   set_gdbarch_memory_remove_breakpoint (gdbarch,
936                                         m32r_memory_remove_breakpoint);
937
938   set_gdbarch_frame_align (gdbarch, m32r_frame_align);
939
940   frame_base_set_default (gdbarch, &m32r_frame_base);
941
942   /* Methods for saving / extracting a dummy frame's ID.  The ID's
943      stack address must match the SP value returned by
944      PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
945   set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
946
947   /* Return the unwound PC value.  */
948   set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
949
950   set_gdbarch_print_insn (gdbarch, print_insn_m32r);
951
952   /* Hook in ABI-specific overrides, if they have been registered.  */
953   gdbarch_init_osabi (info, gdbarch);
954
955   /* Hook in the default unwinders.  */
956   frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
957
958   /* Support simple overlay manager.  */
959   set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
960
961   return gdbarch;
962 }
963
964 void
965 _initialize_m32r_tdep (void)
966 {
967   register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
968 }