1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
4 Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
25 #include "frame-unwind.h"
26 #include "frame-base.h"
31 #include "gdb_string.h"
38 #include "arch-utils.h"
40 #include "trad-frame.h"
43 #include "gdb_assert.h"
45 #include "m32r-tdep.h"
49 extern void _initialize_m32r_tdep (void);
52 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
54 /* Align to the size of an instruction (so that they can safely be
55 pushed onto the stack. */
62 The little endian mode of M32R is unique. In most of architectures,
63 two 16-bit instructions, A and B, are placed as the following:
71 In M32R, they are placed like this:
79 This is because M32R always fetches instructions in 32-bit.
81 The following functions take care of this behavior. */
84 m32r_memory_insert_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
88 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
90 /* Save the memory contents. */
91 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
93 return val; /* return error */
95 /* Determine appropriate breakpoint contents and size for this address. */
96 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
100 buf[0] = bp_entry[0];
101 buf[1] = bp_entry[1];
102 buf[2] = contents_cache[2] & 0x7f;
103 buf[3] = contents_cache[3];
107 buf[0] = contents_cache[0];
108 buf[1] = contents_cache[1];
109 buf[2] = bp_entry[0];
110 buf[3] = bp_entry[1];
113 else /* little-endian */
117 buf[0] = contents_cache[0];
118 buf[1] = contents_cache[1] & 0x7f;
119 buf[2] = bp_entry[1];
120 buf[3] = bp_entry[0];
124 buf[0] = bp_entry[1];
125 buf[1] = bp_entry[0];
126 buf[2] = contents_cache[2];
127 buf[3] = contents_cache[3];
131 /* Write the breakpoint. */
132 val = target_write_memory (addr & 0xfffffffc, buf, 4);
137 m32r_memory_remove_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
142 buf[0] = contents_cache[0];
143 buf[1] = contents_cache[1];
144 buf[2] = contents_cache[2];
145 buf[3] = contents_cache[3];
147 /* Remove parallel bit. */
148 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
150 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
153 else /* little-endian */
155 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
159 /* Write contents. */
160 val = target_write_memory (addr & 0xfffffffc, buf, 4);
164 static const gdb_byte *
165 m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
167 static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */
168 static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */
171 /* Determine appropriate breakpoint. */
172 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
174 if ((*pcptr & 3) == 0)
187 if ((*pcptr & 3) == 0)
194 bp = le_bp_entry + 2;
203 char *m32r_register_names[] = {
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
206 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
211 m32r_register_name (int reg_nr)
215 if (reg_nr >= M32R_NUM_REGS)
217 return m32r_register_names[reg_nr];
221 /* Return the GDB type object for the "standard" data type
222 of data in register N. */
225 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
227 if (reg_nr == M32R_PC_REGNUM)
228 return builtin_type_void_func_ptr;
229 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
230 return builtin_type_void_data_ptr;
232 return builtin_type_int32;
236 /* Write into appropriate registers a function return value
237 of type TYPE, given in virtual format.
239 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
242 m32r_store_return_value (struct type *type, struct regcache *regcache,
246 int len = TYPE_LENGTH (type);
248 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
249 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
253 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, len - 4);
254 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
258 /* This is required by skip_prologue. The results of decoding a prologue
259 should be cached because this thrashing is getting nuts. */
262 decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
263 CORE_ADDR *pl_endptr, unsigned long *framelength)
265 unsigned long framesize;
268 CORE_ADDR after_prologue = 0;
269 CORE_ADDR after_push = 0;
270 CORE_ADDR after_stack_adjust = 0;
271 CORE_ADDR current_pc;
272 LONGEST return_value;
277 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
279 /* Check if current pc's location is readable. */
280 if (!safe_read_memory_integer (current_pc, 2, &return_value))
283 insn = read_memory_unsigned_integer (current_pc, 2);
288 /* If this is a 32 bit instruction, we dont want to examine its
289 immediate data as though it were an instruction */
290 if (current_pc & 0x02)
292 /* decode this instruction further */
299 if (current_pc == scan_limit)
300 scan_limit += 2; /* extend the search */
302 current_pc += 2; /* skip the immediate data */
304 /* Check if current pc's location is readable. */
305 if (!safe_read_memory_integer (current_pc, 2, &return_value))
308 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
309 /* add 16 bit sign-extended offset */
312 -((short) read_memory_unsigned_integer (current_pc, 2));
316 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
317 && safe_read_memory_integer (current_pc + 2, 2,
319 && read_memory_unsigned_integer (current_pc + 2,
321 /* subtract 24 bit sign-extended negative-offset */
323 insn = read_memory_unsigned_integer (current_pc - 2, 4);
324 if (insn & 0x00800000) /* sign extend */
325 insn |= 0xff000000; /* negative */
327 insn &= 0x00ffffff; /* positive */
331 after_push = current_pc + 2;
335 op1 = insn & 0xf000; /* isolate just the first nibble */
337 if ((insn & 0xf0ff) == 0x207f)
341 regno = ((insn >> 8) & 0xf);
345 if ((insn >> 8) == 0x4f) /* addi sp, xx */
346 /* add 8 bit sign-extended offset */
348 int stack_adjust = (gdb_byte) (insn & 0xff);
350 /* there are probably two of these stack adjustments:
351 1) A negative one in the prologue, and
352 2) A positive one in the epilogue.
353 We are only interested in the first one. */
355 if (stack_adjust < 0)
357 framesize -= stack_adjust;
359 /* A frameless function may have no "mv fp, sp".
360 In that case, this is the end of the prologue. */
361 after_stack_adjust = current_pc + 2;
367 after_prologue = current_pc + 2;
368 break; /* end of stack adjustments */
371 /* Nop looks like a branch, continue explicitly */
374 after_prologue = current_pc + 2;
375 continue; /* nop occurs between pushes */
377 /* End of prolog if any of these are trap instructions */
378 if ((insn & 0xfff0) == 0x10f0)
380 after_prologue = current_pc;
383 /* End of prolog if any of these are branch instructions */
384 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
386 after_prologue = current_pc;
389 /* Some of the branch instructions are mixed with other types */
392 int subop = insn & 0x0ff0;
393 if ((subop == 0x0ec0) || (subop == 0x0fc0))
395 after_prologue = current_pc;
396 continue; /* jmp , jl */
402 *framelength = framesize;
404 if (current_pc >= scan_limit)
408 if (after_stack_adjust != 0)
409 /* We did not find a "mv fp,sp", but we DID find
410 a stack_adjust. Is it safe to use that as the
411 end of the prologue? I just don't know. */
413 *pl_endptr = after_stack_adjust;
415 else if (after_push != 0)
416 /* We did not find a "mv fp,sp", but we DID find
417 a push. Is it safe to use that as the
418 end of the prologue? I just don't know. */
420 *pl_endptr = after_push;
423 /* We reached the end of the loop without finding the end
424 of the prologue. No way to win -- we should report failure.
425 The way we do that is to return the original start_pc.
426 GDB will set a breakpoint at the start of the function (etc.) */
427 *pl_endptr = start_pc;
432 if (after_prologue == 0)
433 after_prologue = current_pc;
436 *pl_endptr = after_prologue;
439 } /* decode_prologue */
441 /* Function: skip_prologue
442 Find end of function prologue */
444 #define DEFAULT_SEARCH_LIMIT 128
447 m32r_skip_prologue (CORE_ADDR pc)
449 CORE_ADDR func_addr, func_end;
450 struct symtab_and_line sal;
451 LONGEST return_value;
453 /* See what the symbol table says */
455 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
457 sal = find_pc_line (func_addr, 0);
459 if (sal.line != 0 && sal.end <= func_end)
464 /* Either there's no line info, or the line after the prologue is after
465 the end of the function. In this case, there probably isn't a
468 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
472 func_end = pc + DEFAULT_SEARCH_LIMIT;
474 /* If pc's location is not readable, just quit. */
475 if (!safe_read_memory_integer (pc, 4, &return_value))
478 /* Find the end of prologue. */
479 if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
485 struct m32r_unwind_cache
487 /* The previous frame's inner most stack address. Used as this
488 frame ID's stack_addr. */
490 /* The frame's base, optionally used by the high-level debug info. */
493 /* How far the SP and r13 (FP) have been offset from the start of
494 the stack frame (as defined by the previous frame's stack
499 /* Table indicating the location of each and every register. */
500 struct trad_frame_saved_reg *saved_regs;
503 /* Put here the code to store, into fi->saved_regs, the addresses of
504 the saved registers of frame described by FRAME_INFO. This
505 includes special registers such as pc and fp saved in special ways
506 in the stack frame. sp is even more special: the address we return
507 for it IS the sp for the next frame. */
509 static struct m32r_unwind_cache *
510 m32r_frame_unwind_cache (struct frame_info *next_frame,
511 void **this_prologue_cache)
513 CORE_ADDR pc, scan_limit;
516 unsigned long op, op2;
518 struct m32r_unwind_cache *info;
521 if ((*this_prologue_cache))
522 return (*this_prologue_cache);
524 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
525 (*this_prologue_cache) = info;
526 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
530 info->uses_frame = 0;
532 scan_limit = frame_pc_unwind (next_frame);
533 for (pc = frame_func_unwind (next_frame);
534 pc > 0 && pc < scan_limit; pc += 2)
538 op = get_frame_memory_unsigned (next_frame, pc, 4);
539 if ((op & 0x80000000) == 0x80000000)
541 /* 32-bit instruction */
542 if ((op & 0xffff0000) == 0x8faf0000)
544 /* add3 sp,sp,xxxx */
545 short n = op & 0xffff;
546 info->sp_offset += n;
548 else if (((op >> 8) == 0xe4)
549 && get_frame_memory_unsigned (next_frame, pc + 2,
552 /* ld24 r4, xxxxxx; sub sp, r4 */
553 unsigned long n = op & 0xffffff;
554 info->sp_offset += n;
555 pc += 2; /* skip sub instruction */
558 if (pc == scan_limit)
559 scan_limit += 2; /* extend the search */
560 pc += 2; /* skip the immediate data */
565 /* 16-bit instructions */
566 op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
567 if ((op & 0xf0ff) == 0x207f)
570 int regno = ((op >> 8) & 0xf);
571 info->sp_offset -= 4;
572 info->saved_regs[regno].addr = info->sp_offset;
574 else if ((op & 0xff00) == 0x4f00)
577 int n = (gdb_byte) (op & 0xff);
578 info->sp_offset += n;
580 else if (op == 0x1d8f)
583 info->uses_frame = 1;
584 info->r13_offset = info->sp_offset;
585 break; /* end of stack adjustments */
587 else if ((op & 0xfff0) == 0x10f0)
589 /* end of prologue if this is a trap instruction */
590 break; /* end of stack adjustments */
594 info->size = -info->sp_offset;
596 /* Compute the previous frame's stack pointer (which is also the
597 frame's ID's stack address), and this frame's base pointer. */
598 if (info->uses_frame)
600 /* The SP was moved to the FP. This indicates that a new frame
601 was created. Get THIS frame's FP value by unwinding it from
603 this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
604 /* The FP points at the last saved register. Adjust the FP back
605 to before the first saved register giving the SP. */
606 prev_sp = this_base + info->size;
610 /* Assume that the FP is this frame's SP but with that pushed
611 stack space added back. */
612 this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
613 prev_sp = this_base + info->size;
616 /* Convert that SP/BASE into real addresses. */
617 info->prev_sp = prev_sp;
618 info->base = this_base;
620 /* Adjust all the saved registers so that they contain addresses and
622 for (i = 0; i < NUM_REGS - 1; i++)
623 if (trad_frame_addr_p (info->saved_regs, i))
624 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
626 /* The call instruction moves the caller's PC in the callee's LR.
627 Since this is an unwind, do the reverse. Copy the location of LR
628 into PC (the address / regnum) so that a request for PC will be
629 converted into a request for the LR. */
630 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
632 /* The previous frame's SP needed to be computed. Save the computed
634 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
640 m32r_read_pc (ptid_t ptid)
645 save_ptid = inferior_ptid;
646 inferior_ptid = ptid;
647 regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
648 inferior_ptid = save_ptid;
653 m32r_write_pc (CORE_ADDR val, ptid_t ptid)
657 save_ptid = inferior_ptid;
658 inferior_ptid = ptid;
659 write_register (M32R_PC_REGNUM, val);
660 inferior_ptid = save_ptid;
664 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
666 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
671 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
672 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
673 struct value **args, CORE_ADDR sp, int struct_return,
674 CORE_ADDR struct_addr)
676 int stack_offset, stack_alloc;
677 int argreg = ARG1_REGNUM;
680 enum type_code typecode;
683 gdb_byte valbuf[MAX_REGISTER_SIZE];
685 int odd_sized_struct;
687 /* first force sp to a 4-byte alignment */
690 /* Set the return address. For the m32r, the return breakpoint is
691 always at BP_ADDR. */
692 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
694 /* If STRUCT_RETURN is true, then the struct return address (in
695 STRUCT_ADDR) will consume the first argument-passing register.
696 Both adjust the register count and store that value. */
699 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
703 /* Now make sure there's space on the stack */
704 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
705 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
706 sp -= stack_alloc; /* make room on stack for args */
708 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
710 type = value_type (args[argnum]);
711 typecode = TYPE_CODE (type);
712 len = TYPE_LENGTH (type);
714 memset (valbuf, 0, sizeof (valbuf));
716 /* Passes structures that do not fit in 2 registers by reference. */
718 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
720 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
721 typecode = TYPE_CODE_PTR;
727 /* value gets right-justified in the register or stack word */
728 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
729 (gdb_byte *) value_contents (args[argnum]), len);
733 val = (gdb_byte *) value_contents (args[argnum]);
737 if (argreg > ARGN_REGNUM)
739 /* must go on the stack */
740 write_memory (sp + stack_offset, val, 4);
743 else if (argreg <= ARGN_REGNUM)
745 /* there's room in a register */
747 extract_unsigned_integer (val,
748 register_size (gdbarch, argreg));
749 regcache_cooked_write_unsigned (regcache, argreg++, regval);
752 /* Store the value 4 bytes at a time. This means that things
753 larger than 4 bytes may go partly in registers and partly
755 len -= register_size (gdbarch, argreg);
756 val += register_size (gdbarch, argreg);
760 /* Finally, update the SP register. */
761 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
767 /* Given a return value in `regbuf' with a type `valtype',
768 extract and copy its value into `valbuf'. */
771 m32r_extract_return_value (struct type *type, struct regcache *regcache,
774 bfd_byte *valbuf = dst;
775 int len = TYPE_LENGTH (type);
778 /* By using store_unsigned_integer we avoid having to do
779 anything special for small big-endian values. */
780 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
781 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
783 /* Ignore return values more than 8 bytes in size because the m32r
784 returns anything more than 8 bytes in the stack. */
787 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
788 store_unsigned_integer (valbuf + len - 4, 4, tmp);
792 enum return_value_convention
793 m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
794 struct regcache *regcache, gdb_byte *readbuf,
795 const gdb_byte *writebuf)
797 if (TYPE_LENGTH (valtype) > 8)
798 return RETURN_VALUE_STRUCT_CONVENTION;
802 m32r_extract_return_value (valtype, regcache, readbuf);
803 if (writebuf != NULL)
804 m32r_store_return_value (valtype, regcache, writebuf);
805 return RETURN_VALUE_REGISTER_CONVENTION;
812 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
814 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
817 /* Given a GDB frame, determine the address of the calling function's
818 frame. This will be used to create a new GDB frame struct. */
821 m32r_frame_this_id (struct frame_info *next_frame,
822 void **this_prologue_cache, struct frame_id *this_id)
824 struct m32r_unwind_cache *info
825 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
828 struct minimal_symbol *msym_stack;
831 /* The FUNC is easy. */
832 func = frame_func_unwind (next_frame);
834 /* Check if the stack is empty. */
835 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
836 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
839 /* Hopefully the prologue analysis either correctly determined the
840 frame's base (which is the SP from the previous frame), or set
841 that base to "NULL". */
842 base = info->prev_sp;
846 id = frame_id_build (base, func);
851 m32r_frame_prev_register (struct frame_info *next_frame,
852 void **this_prologue_cache,
853 int regnum, int *optimizedp,
854 enum lval_type *lvalp, CORE_ADDR *addrp,
855 int *realnump, gdb_byte *bufferp)
857 struct m32r_unwind_cache *info
858 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
859 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
860 optimizedp, lvalp, addrp, realnump, bufferp);
863 static const struct frame_unwind m32r_frame_unwind = {
866 m32r_frame_prev_register
869 static const struct frame_unwind *
870 m32r_frame_sniffer (struct frame_info *next_frame)
872 return &m32r_frame_unwind;
876 m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
878 struct m32r_unwind_cache *info
879 = m32r_frame_unwind_cache (next_frame, this_cache);
883 static const struct frame_base m32r_frame_base = {
885 m32r_frame_base_address,
886 m32r_frame_base_address,
887 m32r_frame_base_address
890 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
891 dummy frame. The frame ID's base needs to match the TOS value
892 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
895 static struct frame_id
896 m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
898 return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
899 frame_pc_unwind (next_frame));
903 static gdbarch_init_ftype m32r_gdbarch_init;
905 static struct gdbarch *
906 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
908 struct gdbarch *gdbarch;
909 struct gdbarch_tdep *tdep;
911 /* If there is already a candidate, use it. */
912 arches = gdbarch_list_lookup_by_info (arches, &info);
914 return arches->gdbarch;
916 /* Allocate space for the new architecture. */
917 tdep = XMALLOC (struct gdbarch_tdep);
918 gdbarch = gdbarch_alloc (&info, tdep);
920 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
921 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
922 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
924 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
925 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
926 set_gdbarch_register_name (gdbarch, m32r_register_name);
927 set_gdbarch_register_type (gdbarch, m32r_register_type);
929 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
930 set_gdbarch_return_value (gdbarch, m32r_return_value);
932 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
933 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
934 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
935 set_gdbarch_memory_insert_breakpoint (gdbarch,
936 m32r_memory_insert_breakpoint);
937 set_gdbarch_memory_remove_breakpoint (gdbarch,
938 m32r_memory_remove_breakpoint);
940 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
942 frame_base_set_default (gdbarch, &m32r_frame_base);
944 /* Methods for saving / extracting a dummy frame's ID. The ID's
945 stack address must match the SP value returned by
946 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
947 set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
949 /* Return the unwound PC value. */
950 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
952 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
954 /* Hook in ABI-specific overrides, if they have been registered. */
955 gdbarch_init_osabi (info, gdbarch);
957 /* Hook in the default unwinders. */
958 frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
964 _initialize_m32r_tdep (void)
966 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);