1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
4 2008, 2009, 2010 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "frame-unwind.h"
24 #include "frame-base.h"
29 #include "gdb_string.h"
36 #include "arch-utils.h"
38 #include "trad-frame.h"
41 #include "gdb_assert.h"
43 #include "m32r-tdep.h"
47 extern void _initialize_m32r_tdep (void);
50 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
52 /* Align to the size of an instruction (so that they can safely be
53 pushed onto the stack. */
60 The little endian mode of M32R is unique. In most of architectures,
61 two 16-bit instructions, A and B, are placed as the following:
69 In M32R, they are placed like this:
77 This is because M32R always fetches instructions in 32-bit.
79 The following functions take care of this behavior. */
82 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
83 struct bp_target_info *bp_tgt)
85 CORE_ADDR addr = bp_tgt->placed_address;
88 gdb_byte *contents_cache = bp_tgt->shadow_contents;
89 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
91 /* Save the memory contents. */
92 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
94 return val; /* return error */
96 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
98 /* Determine appropriate breakpoint contents and size for this address. */
99 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
103 buf[0] = bp_entry[0];
104 buf[1] = bp_entry[1];
105 buf[2] = contents_cache[2] & 0x7f;
106 buf[3] = contents_cache[3];
110 buf[0] = contents_cache[0];
111 buf[1] = contents_cache[1];
112 buf[2] = bp_entry[0];
113 buf[3] = bp_entry[1];
116 else /* little-endian */
120 buf[0] = contents_cache[0];
121 buf[1] = contents_cache[1] & 0x7f;
122 buf[2] = bp_entry[1];
123 buf[3] = bp_entry[0];
127 buf[0] = bp_entry[1];
128 buf[1] = bp_entry[0];
129 buf[2] = contents_cache[2];
130 buf[3] = contents_cache[3];
134 /* Write the breakpoint. */
135 val = target_write_memory (addr & 0xfffffffc, buf, 4);
140 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
141 struct bp_target_info *bp_tgt)
143 CORE_ADDR addr = bp_tgt->placed_address;
146 gdb_byte *contents_cache = bp_tgt->shadow_contents;
148 buf[0] = contents_cache[0];
149 buf[1] = contents_cache[1];
150 buf[2] = contents_cache[2];
151 buf[3] = contents_cache[3];
153 /* Remove parallel bit. */
154 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
156 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
159 else /* little-endian */
161 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
165 /* Write contents. */
166 val = target_write_memory (addr & 0xfffffffc, buf, 4);
170 static const gdb_byte *
171 m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
173 static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */
174 static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */
177 /* Determine appropriate breakpoint. */
178 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
180 if ((*pcptr & 3) == 0)
193 if ((*pcptr & 3) == 0)
200 bp = le_bp_entry + 2;
209 char *m32r_register_names[] = {
210 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
211 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
212 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
217 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
221 if (reg_nr >= M32R_NUM_REGS)
223 return m32r_register_names[reg_nr];
227 /* Return the GDB type object for the "standard" data type
228 of data in register N. */
231 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
233 if (reg_nr == M32R_PC_REGNUM)
234 return builtin_type (gdbarch)->builtin_func_ptr;
235 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
236 return builtin_type (gdbarch)->builtin_data_ptr;
238 return builtin_type (gdbarch)->builtin_int32;
242 /* Write into appropriate registers a function return value
243 of type TYPE, given in virtual format.
245 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
248 m32r_store_return_value (struct type *type, struct regcache *regcache,
251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
254 int len = TYPE_LENGTH (type);
256 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
257 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
261 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
262 len - 4, byte_order);
263 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
267 /* This is required by skip_prologue. The results of decoding a prologue
268 should be cached because this thrashing is getting nuts. */
271 decode_prologue (struct gdbarch *gdbarch,
272 CORE_ADDR start_pc, CORE_ADDR scan_limit,
273 CORE_ADDR *pl_endptr, unsigned long *framelength)
275 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
276 unsigned long framesize;
279 CORE_ADDR after_prologue = 0;
280 CORE_ADDR after_push = 0;
281 CORE_ADDR after_stack_adjust = 0;
282 CORE_ADDR current_pc;
283 LONGEST return_value;
288 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
290 /* Check if current pc's location is readable. */
291 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
294 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
299 /* If this is a 32 bit instruction, we dont want to examine its
300 immediate data as though it were an instruction */
301 if (current_pc & 0x02)
303 /* decode this instruction further */
310 if (current_pc == scan_limit)
311 scan_limit += 2; /* extend the search */
313 current_pc += 2; /* skip the immediate data */
315 /* Check if current pc's location is readable. */
316 if (!safe_read_memory_integer (current_pc, 2, byte_order,
320 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
321 /* add 16 bit sign-extended offset */
324 -((short) read_memory_unsigned_integer (current_pc,
329 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
330 && safe_read_memory_integer (current_pc + 2,
333 && read_memory_unsigned_integer (current_pc + 2,
336 /* subtract 24 bit sign-extended negative-offset */
338 insn = read_memory_unsigned_integer (current_pc - 2,
340 if (insn & 0x00800000) /* sign extend */
341 insn |= 0xff000000; /* negative */
343 insn &= 0x00ffffff; /* positive */
347 after_push = current_pc + 2;
351 op1 = insn & 0xf000; /* isolate just the first nibble */
353 if ((insn & 0xf0ff) == 0x207f)
357 regno = ((insn >> 8) & 0xf);
361 if ((insn >> 8) == 0x4f) /* addi sp, xx */
362 /* add 8 bit sign-extended offset */
364 int stack_adjust = (signed char) (insn & 0xff);
366 /* there are probably two of these stack adjustments:
367 1) A negative one in the prologue, and
368 2) A positive one in the epilogue.
369 We are only interested in the first one. */
371 if (stack_adjust < 0)
373 framesize -= stack_adjust;
375 /* A frameless function may have no "mv fp, sp".
376 In that case, this is the end of the prologue. */
377 after_stack_adjust = current_pc + 2;
383 after_prologue = current_pc + 2;
384 break; /* end of stack adjustments */
387 /* Nop looks like a branch, continue explicitly */
390 after_prologue = current_pc + 2;
391 continue; /* nop occurs between pushes */
393 /* End of prolog if any of these are trap instructions */
394 if ((insn & 0xfff0) == 0x10f0)
396 after_prologue = current_pc;
399 /* End of prolog if any of these are branch instructions */
400 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
402 after_prologue = current_pc;
405 /* Some of the branch instructions are mixed with other types */
408 int subop = insn & 0x0ff0;
409 if ((subop == 0x0ec0) || (subop == 0x0fc0))
411 after_prologue = current_pc;
412 continue; /* jmp , jl */
418 *framelength = framesize;
420 if (current_pc >= scan_limit)
424 if (after_stack_adjust != 0)
425 /* We did not find a "mv fp,sp", but we DID find
426 a stack_adjust. Is it safe to use that as the
427 end of the prologue? I just don't know. */
429 *pl_endptr = after_stack_adjust;
431 else if (after_push != 0)
432 /* We did not find a "mv fp,sp", but we DID find
433 a push. Is it safe to use that as the
434 end of the prologue? I just don't know. */
436 *pl_endptr = after_push;
439 /* We reached the end of the loop without finding the end
440 of the prologue. No way to win -- we should report failure.
441 The way we do that is to return the original start_pc.
442 GDB will set a breakpoint at the start of the function (etc.) */
443 *pl_endptr = start_pc;
448 if (after_prologue == 0)
449 after_prologue = current_pc;
452 *pl_endptr = after_prologue;
455 } /* decode_prologue */
457 /* Function: skip_prologue
458 Find end of function prologue */
460 #define DEFAULT_SEARCH_LIMIT 128
463 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 CORE_ADDR func_addr, func_end;
467 struct symtab_and_line sal;
468 LONGEST return_value;
470 /* See what the symbol table says */
472 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
474 sal = find_pc_line (func_addr, 0);
476 if (sal.line != 0 && sal.end <= func_end)
481 /* Either there's no line info, or the line after the prologue is after
482 the end of the function. In this case, there probably isn't a
485 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
489 func_end = pc + DEFAULT_SEARCH_LIMIT;
491 /* If pc's location is not readable, just quit. */
492 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
495 /* Find the end of prologue. */
496 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
502 struct m32r_unwind_cache
504 /* The previous frame's inner most stack address. Used as this
505 frame ID's stack_addr. */
507 /* The frame's base, optionally used by the high-level debug info. */
510 /* How far the SP and r13 (FP) have been offset from the start of
511 the stack frame (as defined by the previous frame's stack
516 /* Table indicating the location of each and every register. */
517 struct trad_frame_saved_reg *saved_regs;
520 /* Put here the code to store, into fi->saved_regs, the addresses of
521 the saved registers of frame described by FRAME_INFO. This
522 includes special registers such as pc and fp saved in special ways
523 in the stack frame. sp is even more special: the address we return
524 for it IS the sp for the next frame. */
526 static struct m32r_unwind_cache *
527 m32r_frame_unwind_cache (struct frame_info *this_frame,
528 void **this_prologue_cache)
530 CORE_ADDR pc, scan_limit;
533 unsigned long op, op2;
535 struct m32r_unwind_cache *info;
538 if ((*this_prologue_cache))
539 return (*this_prologue_cache);
541 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
542 (*this_prologue_cache) = info;
543 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
547 info->uses_frame = 0;
549 scan_limit = get_frame_pc (this_frame);
550 for (pc = get_frame_func (this_frame);
551 pc > 0 && pc < scan_limit; pc += 2)
555 op = get_frame_memory_unsigned (this_frame, pc, 4);
556 if ((op & 0x80000000) == 0x80000000)
558 /* 32-bit instruction */
559 if ((op & 0xffff0000) == 0x8faf0000)
561 /* add3 sp,sp,xxxx */
562 short n = op & 0xffff;
563 info->sp_offset += n;
565 else if (((op >> 8) == 0xe4)
566 && get_frame_memory_unsigned (this_frame, pc + 2,
569 /* ld24 r4, xxxxxx; sub sp, r4 */
570 unsigned long n = op & 0xffffff;
571 info->sp_offset += n;
572 pc += 2; /* skip sub instruction */
575 if (pc == scan_limit)
576 scan_limit += 2; /* extend the search */
577 pc += 2; /* skip the immediate data */
582 /* 16-bit instructions */
583 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
584 if ((op & 0xf0ff) == 0x207f)
587 int regno = ((op >> 8) & 0xf);
588 info->sp_offset -= 4;
589 info->saved_regs[regno].addr = info->sp_offset;
591 else if ((op & 0xff00) == 0x4f00)
594 int n = (signed char) (op & 0xff);
595 info->sp_offset += n;
597 else if (op == 0x1d8f)
600 info->uses_frame = 1;
601 info->r13_offset = info->sp_offset;
602 break; /* end of stack adjustments */
604 else if ((op & 0xfff0) == 0x10f0)
606 /* end of prologue if this is a trap instruction */
607 break; /* end of stack adjustments */
611 info->size = -info->sp_offset;
613 /* Compute the previous frame's stack pointer (which is also the
614 frame's ID's stack address), and this frame's base pointer. */
615 if (info->uses_frame)
617 /* The SP was moved to the FP. This indicates that a new frame
618 was created. Get THIS frame's FP value by unwinding it from
620 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
621 /* The FP points at the last saved register. Adjust the FP back
622 to before the first saved register giving the SP. */
623 prev_sp = this_base + info->size;
627 /* Assume that the FP is this frame's SP but with that pushed
628 stack space added back. */
629 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
630 prev_sp = this_base + info->size;
633 /* Convert that SP/BASE into real addresses. */
634 info->prev_sp = prev_sp;
635 info->base = this_base;
637 /* Adjust all the saved registers so that they contain addresses and
639 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
640 if (trad_frame_addr_p (info->saved_regs, i))
641 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
643 /* The call instruction moves the caller's PC in the callee's LR.
644 Since this is an unwind, do the reverse. Copy the location of LR
645 into PC (the address / regnum) so that a request for PC will be
646 converted into a request for the LR. */
647 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
649 /* The previous frame's SP needed to be computed. Save the computed
651 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
657 m32r_read_pc (struct regcache *regcache)
660 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
665 m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
667 regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
671 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
673 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
678 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
679 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
680 struct value **args, CORE_ADDR sp, int struct_return,
681 CORE_ADDR struct_addr)
683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
684 int stack_offset, stack_alloc;
685 int argreg = ARG1_REGNUM;
688 enum type_code typecode;
691 gdb_byte valbuf[MAX_REGISTER_SIZE];
693 int odd_sized_struct;
695 /* first force sp to a 4-byte alignment */
698 /* Set the return address. For the m32r, the return breakpoint is
699 always at BP_ADDR. */
700 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
702 /* If STRUCT_RETURN is true, then the struct return address (in
703 STRUCT_ADDR) will consume the first argument-passing register.
704 Both adjust the register count and store that value. */
707 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
711 /* Now make sure there's space on the stack */
712 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
713 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
714 sp -= stack_alloc; /* make room on stack for args */
716 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
718 type = value_type (args[argnum]);
719 typecode = TYPE_CODE (type);
720 len = TYPE_LENGTH (type);
722 memset (valbuf, 0, sizeof (valbuf));
724 /* Passes structures that do not fit in 2 registers by reference. */
726 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
728 store_unsigned_integer (valbuf, 4, byte_order,
729 value_address (args[argnum]));
730 typecode = TYPE_CODE_PTR;
736 /* value gets right-justified in the register or stack word */
737 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
738 (gdb_byte *) value_contents (args[argnum]), len);
742 val = (gdb_byte *) value_contents (args[argnum]);
746 if (argreg > ARGN_REGNUM)
748 /* must go on the stack */
749 write_memory (sp + stack_offset, val, 4);
752 else if (argreg <= ARGN_REGNUM)
754 /* there's room in a register */
756 extract_unsigned_integer (val,
757 register_size (gdbarch, argreg),
759 regcache_cooked_write_unsigned (regcache, argreg++, regval);
762 /* Store the value 4 bytes at a time. This means that things
763 larger than 4 bytes may go partly in registers and partly
765 len -= register_size (gdbarch, argreg);
766 val += register_size (gdbarch, argreg);
770 /* Finally, update the SP register. */
771 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
777 /* Given a return value in `regbuf' with a type `valtype',
778 extract and copy its value into `valbuf'. */
781 m32r_extract_return_value (struct type *type, struct regcache *regcache,
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
786 bfd_byte *valbuf = dst;
787 int len = TYPE_LENGTH (type);
790 /* By using store_unsigned_integer we avoid having to do
791 anything special for small big-endian values. */
792 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
793 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
795 /* Ignore return values more than 8 bytes in size because the m32r
796 returns anything more than 8 bytes in the stack. */
799 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
800 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
804 static enum return_value_convention
805 m32r_return_value (struct gdbarch *gdbarch, struct type *func_type,
806 struct type *valtype, struct regcache *regcache,
807 gdb_byte *readbuf, const gdb_byte *writebuf)
809 if (TYPE_LENGTH (valtype) > 8)
810 return RETURN_VALUE_STRUCT_CONVENTION;
814 m32r_extract_return_value (valtype, regcache, readbuf);
815 if (writebuf != NULL)
816 m32r_store_return_value (valtype, regcache, writebuf);
817 return RETURN_VALUE_REGISTER_CONVENTION;
824 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
826 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
829 /* Given a GDB frame, determine the address of the calling function's
830 frame. This will be used to create a new GDB frame struct. */
833 m32r_frame_this_id (struct frame_info *this_frame,
834 void **this_prologue_cache, struct frame_id *this_id)
836 struct m32r_unwind_cache *info
837 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
840 struct minimal_symbol *msym_stack;
843 /* The FUNC is easy. */
844 func = get_frame_func (this_frame);
846 /* Check if the stack is empty. */
847 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
848 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
851 /* Hopefully the prologue analysis either correctly determined the
852 frame's base (which is the SP from the previous frame), or set
853 that base to "NULL". */
854 base = info->prev_sp;
858 id = frame_id_build (base, func);
862 static struct value *
863 m32r_frame_prev_register (struct frame_info *this_frame,
864 void **this_prologue_cache, int regnum)
866 struct m32r_unwind_cache *info
867 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
868 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
871 static const struct frame_unwind m32r_frame_unwind = {
874 m32r_frame_prev_register,
876 default_frame_sniffer
880 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
882 struct m32r_unwind_cache *info
883 = m32r_frame_unwind_cache (this_frame, this_cache);
887 static const struct frame_base m32r_frame_base = {
889 m32r_frame_base_address,
890 m32r_frame_base_address,
891 m32r_frame_base_address
894 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
895 frame. The frame ID's base needs to match the TOS value saved by
896 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
898 static struct frame_id
899 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
901 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
902 return frame_id_build (sp, get_frame_pc (this_frame));
906 static gdbarch_init_ftype m32r_gdbarch_init;
908 static struct gdbarch *
909 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
911 struct gdbarch *gdbarch;
912 struct gdbarch_tdep *tdep;
914 /* If there is already a candidate, use it. */
915 arches = gdbarch_list_lookup_by_info (arches, &info);
917 return arches->gdbarch;
919 /* Allocate space for the new architecture. */
920 tdep = XMALLOC (struct gdbarch_tdep);
921 gdbarch = gdbarch_alloc (&info, tdep);
923 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
924 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
925 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
927 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
928 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
929 set_gdbarch_register_name (gdbarch, m32r_register_name);
930 set_gdbarch_register_type (gdbarch, m32r_register_type);
932 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
933 set_gdbarch_return_value (gdbarch, m32r_return_value);
935 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
936 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
937 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
938 set_gdbarch_memory_insert_breakpoint (gdbarch,
939 m32r_memory_insert_breakpoint);
940 set_gdbarch_memory_remove_breakpoint (gdbarch,
941 m32r_memory_remove_breakpoint);
943 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
945 frame_base_set_default (gdbarch, &m32r_frame_base);
947 /* Methods for saving / extracting a dummy frame's ID. The ID's
948 stack address must match the SP value returned by
949 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
950 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
952 /* Return the unwound PC value. */
953 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
955 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
957 /* Hook in ABI-specific overrides, if they have been registered. */
958 gdbarch_init_osabi (info, gdbarch);
960 /* Hook in the default unwinders. */
961 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
963 /* Support simple overlay manager. */
964 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
970 _initialize_m32r_tdep (void)
972 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);