1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-unwind.h"
23 #include "frame-base.h"
28 #include "gdb_string.h"
35 #include "arch-utils.h"
37 #include "trad-frame.h"
40 #include "gdb_assert.h"
42 #include "m32r-tdep.h"
46 extern void _initialize_m32r_tdep (void);
49 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
51 /* Align to the size of an instruction (so that they can safely be
52 pushed onto the stack. */
59 The little endian mode of M32R is unique. In most of architectures,
60 two 16-bit instructions, A and B, are placed as the following:
68 In M32R, they are placed like this:
76 This is because M32R always fetches instructions in 32-bit.
78 The following functions take care of this behavior. */
81 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
82 struct bp_target_info *bp_tgt)
84 CORE_ADDR addr = bp_tgt->placed_address;
87 gdb_byte contents_cache[4];
88 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
90 /* Save the memory contents. */
91 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
93 return val; /* return error */
95 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
96 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
98 /* Determine appropriate breakpoint contents and size for this address. */
99 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
103 buf[0] = bp_entry[0];
104 buf[1] = bp_entry[1];
105 buf[2] = contents_cache[2] & 0x7f;
106 buf[3] = contents_cache[3];
110 buf[0] = contents_cache[0];
111 buf[1] = contents_cache[1];
112 buf[2] = bp_entry[0];
113 buf[3] = bp_entry[1];
116 else /* little-endian */
120 buf[0] = contents_cache[0];
121 buf[1] = contents_cache[1] & 0x7f;
122 buf[2] = bp_entry[1];
123 buf[3] = bp_entry[0];
127 buf[0] = bp_entry[1];
128 buf[1] = bp_entry[0];
129 buf[2] = contents_cache[2];
130 buf[3] = contents_cache[3];
134 /* Write the breakpoint. */
135 val = target_write_memory (addr & 0xfffffffc, buf, 4);
140 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
141 struct bp_target_info *bp_tgt)
143 CORE_ADDR addr = bp_tgt->placed_address;
146 gdb_byte *contents_cache = bp_tgt->shadow_contents;
148 buf[0] = contents_cache[0];
149 buf[1] = contents_cache[1];
150 buf[2] = contents_cache[2];
151 buf[3] = contents_cache[3];
153 /* Remove parallel bit. */
154 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
156 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
159 else /* little-endian */
161 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
165 /* Write contents. */
166 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
170 static const gdb_byte *
171 m32r_breakpoint_from_pc (struct gdbarch *gdbarch,
172 CORE_ADDR *pcptr, int *lenptr)
174 static gdb_byte be_bp_entry[] = {
175 0x10, 0xf1, 0x70, 0x00
177 static gdb_byte le_bp_entry[] = {
178 0x00, 0x70, 0xf1, 0x10
182 /* Determine appropriate breakpoint. */
183 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
185 if ((*pcptr & 3) == 0)
198 if ((*pcptr & 3) == 0)
205 bp = le_bp_entry + 2;
214 char *m32r_register_names[] = {
215 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
216 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
217 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
222 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
226 if (reg_nr >= M32R_NUM_REGS)
228 return m32r_register_names[reg_nr];
232 /* Return the GDB type object for the "standard" data type
233 of data in register N. */
236 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
238 if (reg_nr == M32R_PC_REGNUM)
239 return builtin_type (gdbarch)->builtin_func_ptr;
240 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
241 return builtin_type (gdbarch)->builtin_data_ptr;
243 return builtin_type (gdbarch)->builtin_int32;
247 /* Write into appropriate registers a function return value
248 of type TYPE, given in virtual format.
250 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
253 m32r_store_return_value (struct type *type, struct regcache *regcache,
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
259 int len = TYPE_LENGTH (type);
261 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
262 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
266 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
267 len - 4, byte_order);
268 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
272 /* This is required by skip_prologue. The results of decoding a prologue
273 should be cached because this thrashing is getting nuts. */
276 decode_prologue (struct gdbarch *gdbarch,
277 CORE_ADDR start_pc, CORE_ADDR scan_limit,
278 CORE_ADDR *pl_endptr, unsigned long *framelength)
280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
281 unsigned long framesize;
284 CORE_ADDR after_prologue = 0;
285 CORE_ADDR after_push = 0;
286 CORE_ADDR after_stack_adjust = 0;
287 CORE_ADDR current_pc;
288 LONGEST return_value;
293 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
295 /* Check if current pc's location is readable. */
296 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
299 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
304 /* If this is a 32 bit instruction, we dont want to examine its
305 immediate data as though it were an instruction. */
306 if (current_pc & 0x02)
308 /* Decode this instruction further. */
315 if (current_pc == scan_limit)
316 scan_limit += 2; /* extend the search */
318 current_pc += 2; /* skip the immediate data */
320 /* Check if current pc's location is readable. */
321 if (!safe_read_memory_integer (current_pc, 2, byte_order,
325 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
326 /* add 16 bit sign-extended offset */
329 -((short) read_memory_unsigned_integer (current_pc,
334 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
335 && safe_read_memory_integer (current_pc + 2,
338 && read_memory_unsigned_integer (current_pc + 2,
342 /* Subtract 24 bit sign-extended negative-offset. */
343 insn = read_memory_unsigned_integer (current_pc - 2,
345 if (insn & 0x00800000) /* sign extend */
346 insn |= 0xff000000; /* negative */
348 insn &= 0x00ffffff; /* positive */
352 after_push = current_pc + 2;
356 op1 = insn & 0xf000; /* Isolate just the first nibble. */
358 if ((insn & 0xf0ff) == 0x207f)
362 regno = ((insn >> 8) & 0xf);
366 if ((insn >> 8) == 0x4f) /* addi sp, xx */
367 /* Add 8 bit sign-extended offset. */
369 int stack_adjust = (signed char) (insn & 0xff);
371 /* there are probably two of these stack adjustments:
372 1) A negative one in the prologue, and
373 2) A positive one in the epilogue.
374 We are only interested in the first one. */
376 if (stack_adjust < 0)
378 framesize -= stack_adjust;
380 /* A frameless function may have no "mv fp, sp".
381 In that case, this is the end of the prologue. */
382 after_stack_adjust = current_pc + 2;
388 after_prologue = current_pc + 2;
389 break; /* end of stack adjustments */
392 /* Nop looks like a branch, continue explicitly. */
395 after_prologue = current_pc + 2;
396 continue; /* nop occurs between pushes. */
398 /* End of prolog if any of these are trap instructions. */
399 if ((insn & 0xfff0) == 0x10f0)
401 after_prologue = current_pc;
404 /* End of prolog if any of these are branch instructions. */
405 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
407 after_prologue = current_pc;
410 /* Some of the branch instructions are mixed with other types. */
413 int subop = insn & 0x0ff0;
414 if ((subop == 0x0ec0) || (subop == 0x0fc0))
416 after_prologue = current_pc;
417 continue; /* jmp , jl */
423 *framelength = framesize;
425 if (current_pc >= scan_limit)
429 if (after_stack_adjust != 0)
430 /* We did not find a "mv fp,sp", but we DID find
431 a stack_adjust. Is it safe to use that as the
432 end of the prologue? I just don't know. */
434 *pl_endptr = after_stack_adjust;
436 else if (after_push != 0)
437 /* We did not find a "mv fp,sp", but we DID find
438 a push. Is it safe to use that as the
439 end of the prologue? I just don't know. */
441 *pl_endptr = after_push;
444 /* We reached the end of the loop without finding the end
445 of the prologue. No way to win -- we should report
446 failure. The way we do that is to return the original
447 start_pc. GDB will set a breakpoint at the start of
448 the function (etc.) */
449 *pl_endptr = start_pc;
454 if (after_prologue == 0)
455 after_prologue = current_pc;
458 *pl_endptr = after_prologue;
461 } /* decode_prologue */
463 /* Function: skip_prologue
464 Find end of function prologue. */
466 #define DEFAULT_SEARCH_LIMIT 128
469 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
471 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
472 CORE_ADDR func_addr, func_end;
473 struct symtab_and_line sal;
474 LONGEST return_value;
476 /* See what the symbol table says. */
478 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
480 sal = find_pc_line (func_addr, 0);
482 if (sal.line != 0 && sal.end <= func_end)
487 /* Either there's no line info, or the line after the prologue is after
488 the end of the function. In this case, there probably isn't a
491 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
495 func_end = pc + DEFAULT_SEARCH_LIMIT;
497 /* If pc's location is not readable, just quit. */
498 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
501 /* Find the end of prologue. */
502 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
508 struct m32r_unwind_cache
510 /* The previous frame's inner most stack address. Used as this
511 frame ID's stack_addr. */
513 /* The frame's base, optionally used by the high-level debug info. */
516 /* How far the SP and r13 (FP) have been offset from the start of
517 the stack frame (as defined by the previous frame's stack
522 /* Table indicating the location of each and every register. */
523 struct trad_frame_saved_reg *saved_regs;
526 /* Put here the code to store, into fi->saved_regs, the addresses of
527 the saved registers of frame described by FRAME_INFO. This
528 includes special registers such as pc and fp saved in special ways
529 in the stack frame. sp is even more special: the address we return
530 for it IS the sp for the next frame. */
532 static struct m32r_unwind_cache *
533 m32r_frame_unwind_cache (struct frame_info *this_frame,
534 void **this_prologue_cache)
536 CORE_ADDR pc, scan_limit;
541 struct m32r_unwind_cache *info;
544 if ((*this_prologue_cache))
545 return (*this_prologue_cache);
547 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
548 (*this_prologue_cache) = info;
549 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
553 info->uses_frame = 0;
555 scan_limit = get_frame_pc (this_frame);
556 for (pc = get_frame_func (this_frame);
557 pc > 0 && pc < scan_limit; pc += 2)
561 op = get_frame_memory_unsigned (this_frame, pc, 4);
562 if ((op & 0x80000000) == 0x80000000)
564 /* 32-bit instruction */
565 if ((op & 0xffff0000) == 0x8faf0000)
567 /* add3 sp,sp,xxxx */
568 short n = op & 0xffff;
569 info->sp_offset += n;
571 else if (((op >> 8) == 0xe4)
572 && get_frame_memory_unsigned (this_frame, pc + 2,
575 /* ld24 r4, xxxxxx; sub sp, r4 */
576 unsigned long n = op & 0xffffff;
577 info->sp_offset += n;
578 pc += 2; /* skip sub instruction */
581 if (pc == scan_limit)
582 scan_limit += 2; /* extend the search */
583 pc += 2; /* skip the immediate data */
588 /* 16-bit instructions */
589 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
590 if ((op & 0xf0ff) == 0x207f)
593 int regno = ((op >> 8) & 0xf);
594 info->sp_offset -= 4;
595 info->saved_regs[regno].addr = info->sp_offset;
597 else if ((op & 0xff00) == 0x4f00)
600 int n = (signed char) (op & 0xff);
601 info->sp_offset += n;
603 else if (op == 0x1d8f)
606 info->uses_frame = 1;
607 info->r13_offset = info->sp_offset;
608 break; /* end of stack adjustments */
610 else if ((op & 0xfff0) == 0x10f0)
612 /* End of prologue if this is a trap instruction. */
613 break; /* End of stack adjustments. */
617 info->size = -info->sp_offset;
619 /* Compute the previous frame's stack pointer (which is also the
620 frame's ID's stack address), and this frame's base pointer. */
621 if (info->uses_frame)
623 /* The SP was moved to the FP. This indicates that a new frame
624 was created. Get THIS frame's FP value by unwinding it from
626 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
627 /* The FP points at the last saved register. Adjust the FP back
628 to before the first saved register giving the SP. */
629 prev_sp = this_base + info->size;
633 /* Assume that the FP is this frame's SP but with that pushed
634 stack space added back. */
635 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
636 prev_sp = this_base + info->size;
639 /* Convert that SP/BASE into real addresses. */
640 info->prev_sp = prev_sp;
641 info->base = this_base;
643 /* Adjust all the saved registers so that they contain addresses and
645 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
646 if (trad_frame_addr_p (info->saved_regs, i))
647 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
649 /* The call instruction moves the caller's PC in the callee's LR.
650 Since this is an unwind, do the reverse. Copy the location of LR
651 into PC (the address / regnum) so that a request for PC will be
652 converted into a request for the LR. */
653 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
655 /* The previous frame's SP needed to be computed. Save the computed
657 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
663 m32r_read_pc (struct regcache *regcache)
666 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
671 m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
673 regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
677 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
679 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
684 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
685 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
686 struct value **args, CORE_ADDR sp, int struct_return,
687 CORE_ADDR struct_addr)
689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
690 int stack_offset, stack_alloc;
691 int argreg = ARG1_REGNUM;
694 enum type_code typecode;
697 gdb_byte valbuf[MAX_REGISTER_SIZE];
700 /* First force sp to a 4-byte alignment. */
703 /* Set the return address. For the m32r, the return breakpoint is
704 always at BP_ADDR. */
705 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
707 /* If STRUCT_RETURN is true, then the struct return address (in
708 STRUCT_ADDR) will consume the first argument-passing register.
709 Both adjust the register count and store that value. */
712 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
716 /* Now make sure there's space on the stack. */
717 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
718 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
719 sp -= stack_alloc; /* Make room on stack for args. */
721 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
723 type = value_type (args[argnum]);
724 typecode = TYPE_CODE (type);
725 len = TYPE_LENGTH (type);
727 memset (valbuf, 0, sizeof (valbuf));
729 /* Passes structures that do not fit in 2 registers by reference. */
731 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
733 store_unsigned_integer (valbuf, 4, byte_order,
734 value_address (args[argnum]));
735 typecode = TYPE_CODE_PTR;
741 /* Value gets right-justified in the register or stack word. */
742 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
743 (gdb_byte *) value_contents (args[argnum]), len);
747 val = (gdb_byte *) value_contents (args[argnum]);
751 if (argreg > ARGN_REGNUM)
753 /* Must go on the stack. */
754 write_memory (sp + stack_offset, val, 4);
757 else if (argreg <= ARGN_REGNUM)
759 /* There's room in a register. */
761 extract_unsigned_integer (val,
762 register_size (gdbarch, argreg),
764 regcache_cooked_write_unsigned (regcache, argreg++, regval);
767 /* Store the value 4 bytes at a time. This means that things
768 larger than 4 bytes may go partly in registers and partly
770 len -= register_size (gdbarch, argreg);
771 val += register_size (gdbarch, argreg);
775 /* Finally, update the SP register. */
776 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
782 /* Given a return value in `regbuf' with a type `valtype',
783 extract and copy its value into `valbuf'. */
786 m32r_extract_return_value (struct type *type, struct regcache *regcache,
789 struct gdbarch *gdbarch = get_regcache_arch (regcache);
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 bfd_byte *valbuf = dst;
792 int len = TYPE_LENGTH (type);
795 /* By using store_unsigned_integer we avoid having to do
796 anything special for small big-endian values. */
797 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
798 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
800 /* Ignore return values more than 8 bytes in size because the m32r
801 returns anything more than 8 bytes in the stack. */
804 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
805 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
809 static enum return_value_convention
810 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
811 struct type *valtype, struct regcache *regcache,
812 gdb_byte *readbuf, const gdb_byte *writebuf)
814 if (TYPE_LENGTH (valtype) > 8)
815 return RETURN_VALUE_STRUCT_CONVENTION;
819 m32r_extract_return_value (valtype, regcache, readbuf);
820 if (writebuf != NULL)
821 m32r_store_return_value (valtype, regcache, writebuf);
822 return RETURN_VALUE_REGISTER_CONVENTION;
829 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
831 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
834 /* Given a GDB frame, determine the address of the calling function's
835 frame. This will be used to create a new GDB frame struct. */
838 m32r_frame_this_id (struct frame_info *this_frame,
839 void **this_prologue_cache, struct frame_id *this_id)
841 struct m32r_unwind_cache *info
842 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
845 struct minimal_symbol *msym_stack;
848 /* The FUNC is easy. */
849 func = get_frame_func (this_frame);
851 /* Check if the stack is empty. */
852 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
853 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
856 /* Hopefully the prologue analysis either correctly determined the
857 frame's base (which is the SP from the previous frame), or set
858 that base to "NULL". */
859 base = info->prev_sp;
863 id = frame_id_build (base, func);
867 static struct value *
868 m32r_frame_prev_register (struct frame_info *this_frame,
869 void **this_prologue_cache, int regnum)
871 struct m32r_unwind_cache *info
872 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
873 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
876 static const struct frame_unwind m32r_frame_unwind = {
878 default_frame_unwind_stop_reason,
880 m32r_frame_prev_register,
882 default_frame_sniffer
886 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
888 struct m32r_unwind_cache *info
889 = m32r_frame_unwind_cache (this_frame, this_cache);
893 static const struct frame_base m32r_frame_base = {
895 m32r_frame_base_address,
896 m32r_frame_base_address,
897 m32r_frame_base_address
900 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
901 frame. The frame ID's base needs to match the TOS value saved by
902 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
904 static struct frame_id
905 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
907 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
908 return frame_id_build (sp, get_frame_pc (this_frame));
912 static gdbarch_init_ftype m32r_gdbarch_init;
914 static struct gdbarch *
915 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
917 struct gdbarch *gdbarch;
918 struct gdbarch_tdep *tdep;
920 /* If there is already a candidate, use it. */
921 arches = gdbarch_list_lookup_by_info (arches, &info);
923 return arches->gdbarch;
925 /* Allocate space for the new architecture. */
926 tdep = XMALLOC (struct gdbarch_tdep);
927 gdbarch = gdbarch_alloc (&info, tdep);
929 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
930 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
931 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
933 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
934 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
935 set_gdbarch_register_name (gdbarch, m32r_register_name);
936 set_gdbarch_register_type (gdbarch, m32r_register_type);
938 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
939 set_gdbarch_return_value (gdbarch, m32r_return_value);
941 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
942 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
943 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
944 set_gdbarch_memory_insert_breakpoint (gdbarch,
945 m32r_memory_insert_breakpoint);
946 set_gdbarch_memory_remove_breakpoint (gdbarch,
947 m32r_memory_remove_breakpoint);
949 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
951 frame_base_set_default (gdbarch, &m32r_frame_base);
953 /* Methods for saving / extracting a dummy frame's ID. The ID's
954 stack address must match the SP value returned by
955 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
956 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
958 /* Return the unwound PC value. */
959 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
961 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
963 /* Hook in ABI-specific overrides, if they have been registered. */
964 gdbarch_init_osabi (info, gdbarch);
966 /* Hook in the default unwinders. */
967 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
969 /* Support simple overlay manager. */
970 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
976 _initialize_m32r_tdep (void)
978 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);