1 /* Target-dependent code for Renesas M32R, for GDB.
3 Copyright (C) 1996, 1998-2005, 2007-2012 Free Software Foundation,
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "frame-unwind.h"
24 #include "frame-base.h"
29 #include "gdb_string.h"
36 #include "arch-utils.h"
38 #include "trad-frame.h"
41 #include "gdb_assert.h"
43 #include "m32r-tdep.h"
47 extern void _initialize_m32r_tdep (void);
50 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
52 /* Align to the size of an instruction (so that they can safely be
53 pushed onto the stack. */
60 The little endian mode of M32R is unique. In most of architectures,
61 two 16-bit instructions, A and B, are placed as the following:
69 In M32R, they are placed like this:
77 This is because M32R always fetches instructions in 32-bit.
79 The following functions take care of this behavior. */
82 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
83 struct bp_target_info *bp_tgt)
85 CORE_ADDR addr = bp_tgt->placed_address;
88 gdb_byte contents_cache[4];
89 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
91 /* Save the memory contents. */
92 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
94 return val; /* return error */
96 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
97 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
99 /* Determine appropriate breakpoint contents and size for this address. */
100 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
104 buf[0] = bp_entry[0];
105 buf[1] = bp_entry[1];
106 buf[2] = contents_cache[2] & 0x7f;
107 buf[3] = contents_cache[3];
111 buf[0] = contents_cache[0];
112 buf[1] = contents_cache[1];
113 buf[2] = bp_entry[0];
114 buf[3] = bp_entry[1];
117 else /* little-endian */
121 buf[0] = contents_cache[0];
122 buf[1] = contents_cache[1] & 0x7f;
123 buf[2] = bp_entry[1];
124 buf[3] = bp_entry[0];
128 buf[0] = bp_entry[1];
129 buf[1] = bp_entry[0];
130 buf[2] = contents_cache[2];
131 buf[3] = contents_cache[3];
135 /* Write the breakpoint. */
136 val = target_write_memory (addr & 0xfffffffc, buf, 4);
141 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
142 struct bp_target_info *bp_tgt)
144 CORE_ADDR addr = bp_tgt->placed_address;
147 gdb_byte *contents_cache = bp_tgt->shadow_contents;
149 buf[0] = contents_cache[0];
150 buf[1] = contents_cache[1];
151 buf[2] = contents_cache[2];
152 buf[3] = contents_cache[3];
154 /* Remove parallel bit. */
155 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
157 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
160 else /* little-endian */
162 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
166 /* Write contents. */
167 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
171 static const gdb_byte *
172 m32r_breakpoint_from_pc (struct gdbarch *gdbarch,
173 CORE_ADDR *pcptr, int *lenptr)
175 static gdb_byte be_bp_entry[] = {
176 0x10, 0xf1, 0x70, 0x00
178 static gdb_byte le_bp_entry[] = {
179 0x00, 0x70, 0xf1, 0x10
183 /* Determine appropriate breakpoint. */
184 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
186 if ((*pcptr & 3) == 0)
199 if ((*pcptr & 3) == 0)
206 bp = le_bp_entry + 2;
215 char *m32r_register_names[] = {
216 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
217 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
218 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
223 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
227 if (reg_nr >= M32R_NUM_REGS)
229 return m32r_register_names[reg_nr];
233 /* Return the GDB type object for the "standard" data type
234 of data in register N. */
237 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
239 if (reg_nr == M32R_PC_REGNUM)
240 return builtin_type (gdbarch)->builtin_func_ptr;
241 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
242 return builtin_type (gdbarch)->builtin_data_ptr;
244 return builtin_type (gdbarch)->builtin_int32;
248 /* Write into appropriate registers a function return value
249 of type TYPE, given in virtual format.
251 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
254 m32r_store_return_value (struct type *type, struct regcache *regcache,
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
260 int len = TYPE_LENGTH (type);
262 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
263 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
267 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
268 len - 4, byte_order);
269 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
273 /* This is required by skip_prologue. The results of decoding a prologue
274 should be cached because this thrashing is getting nuts. */
277 decode_prologue (struct gdbarch *gdbarch,
278 CORE_ADDR start_pc, CORE_ADDR scan_limit,
279 CORE_ADDR *pl_endptr, unsigned long *framelength)
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
282 unsigned long framesize;
285 CORE_ADDR after_prologue = 0;
286 CORE_ADDR after_push = 0;
287 CORE_ADDR after_stack_adjust = 0;
288 CORE_ADDR current_pc;
289 LONGEST return_value;
294 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
296 /* Check if current pc's location is readable. */
297 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
300 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
305 /* If this is a 32 bit instruction, we dont want to examine its
306 immediate data as though it were an instruction. */
307 if (current_pc & 0x02)
309 /* Decode this instruction further. */
316 if (current_pc == scan_limit)
317 scan_limit += 2; /* extend the search */
319 current_pc += 2; /* skip the immediate data */
321 /* Check if current pc's location is readable. */
322 if (!safe_read_memory_integer (current_pc, 2, byte_order,
326 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
327 /* add 16 bit sign-extended offset */
330 -((short) read_memory_unsigned_integer (current_pc,
335 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
336 && safe_read_memory_integer (current_pc + 2,
339 && read_memory_unsigned_integer (current_pc + 2,
343 /* Subtract 24 bit sign-extended negative-offset. */
344 insn = read_memory_unsigned_integer (current_pc - 2,
346 if (insn & 0x00800000) /* sign extend */
347 insn |= 0xff000000; /* negative */
349 insn &= 0x00ffffff; /* positive */
353 after_push = current_pc + 2;
357 op1 = insn & 0xf000; /* Isolate just the first nibble. */
359 if ((insn & 0xf0ff) == 0x207f)
363 regno = ((insn >> 8) & 0xf);
367 if ((insn >> 8) == 0x4f) /* addi sp, xx */
368 /* Add 8 bit sign-extended offset. */
370 int stack_adjust = (signed char) (insn & 0xff);
372 /* there are probably two of these stack adjustments:
373 1) A negative one in the prologue, and
374 2) A positive one in the epilogue.
375 We are only interested in the first one. */
377 if (stack_adjust < 0)
379 framesize -= stack_adjust;
381 /* A frameless function may have no "mv fp, sp".
382 In that case, this is the end of the prologue. */
383 after_stack_adjust = current_pc + 2;
389 after_prologue = current_pc + 2;
390 break; /* end of stack adjustments */
393 /* Nop looks like a branch, continue explicitly. */
396 after_prologue = current_pc + 2;
397 continue; /* nop occurs between pushes. */
399 /* End of prolog if any of these are trap instructions. */
400 if ((insn & 0xfff0) == 0x10f0)
402 after_prologue = current_pc;
405 /* End of prolog if any of these are branch instructions. */
406 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
408 after_prologue = current_pc;
411 /* Some of the branch instructions are mixed with other types. */
414 int subop = insn & 0x0ff0;
415 if ((subop == 0x0ec0) || (subop == 0x0fc0))
417 after_prologue = current_pc;
418 continue; /* jmp , jl */
424 *framelength = framesize;
426 if (current_pc >= scan_limit)
430 if (after_stack_adjust != 0)
431 /* We did not find a "mv fp,sp", but we DID find
432 a stack_adjust. Is it safe to use that as the
433 end of the prologue? I just don't know. */
435 *pl_endptr = after_stack_adjust;
437 else if (after_push != 0)
438 /* We did not find a "mv fp,sp", but we DID find
439 a push. Is it safe to use that as the
440 end of the prologue? I just don't know. */
442 *pl_endptr = after_push;
445 /* We reached the end of the loop without finding the end
446 of the prologue. No way to win -- we should report
447 failure. The way we do that is to return the original
448 start_pc. GDB will set a breakpoint at the start of
449 the function (etc.) */
450 *pl_endptr = start_pc;
455 if (after_prologue == 0)
456 after_prologue = current_pc;
459 *pl_endptr = after_prologue;
462 } /* decode_prologue */
464 /* Function: skip_prologue
465 Find end of function prologue. */
467 #define DEFAULT_SEARCH_LIMIT 128
470 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
473 CORE_ADDR func_addr, func_end;
474 struct symtab_and_line sal;
475 LONGEST return_value;
477 /* See what the symbol table says. */
479 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
481 sal = find_pc_line (func_addr, 0);
483 if (sal.line != 0 && sal.end <= func_end)
488 /* Either there's no line info, or the line after the prologue is after
489 the end of the function. In this case, there probably isn't a
492 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
496 func_end = pc + DEFAULT_SEARCH_LIMIT;
498 /* If pc's location is not readable, just quit. */
499 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
502 /* Find the end of prologue. */
503 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
509 struct m32r_unwind_cache
511 /* The previous frame's inner most stack address. Used as this
512 frame ID's stack_addr. */
514 /* The frame's base, optionally used by the high-level debug info. */
517 /* How far the SP and r13 (FP) have been offset from the start of
518 the stack frame (as defined by the previous frame's stack
523 /* Table indicating the location of each and every register. */
524 struct trad_frame_saved_reg *saved_regs;
527 /* Put here the code to store, into fi->saved_regs, the addresses of
528 the saved registers of frame described by FRAME_INFO. This
529 includes special registers such as pc and fp saved in special ways
530 in the stack frame. sp is even more special: the address we return
531 for it IS the sp for the next frame. */
533 static struct m32r_unwind_cache *
534 m32r_frame_unwind_cache (struct frame_info *this_frame,
535 void **this_prologue_cache)
537 CORE_ADDR pc, scan_limit;
542 struct m32r_unwind_cache *info;
545 if ((*this_prologue_cache))
546 return (*this_prologue_cache);
548 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
549 (*this_prologue_cache) = info;
550 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
554 info->uses_frame = 0;
556 scan_limit = get_frame_pc (this_frame);
557 for (pc = get_frame_func (this_frame);
558 pc > 0 && pc < scan_limit; pc += 2)
562 op = get_frame_memory_unsigned (this_frame, pc, 4);
563 if ((op & 0x80000000) == 0x80000000)
565 /* 32-bit instruction */
566 if ((op & 0xffff0000) == 0x8faf0000)
568 /* add3 sp,sp,xxxx */
569 short n = op & 0xffff;
570 info->sp_offset += n;
572 else if (((op >> 8) == 0xe4)
573 && get_frame_memory_unsigned (this_frame, pc + 2,
576 /* ld24 r4, xxxxxx; sub sp, r4 */
577 unsigned long n = op & 0xffffff;
578 info->sp_offset += n;
579 pc += 2; /* skip sub instruction */
582 if (pc == scan_limit)
583 scan_limit += 2; /* extend the search */
584 pc += 2; /* skip the immediate data */
589 /* 16-bit instructions */
590 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
591 if ((op & 0xf0ff) == 0x207f)
594 int regno = ((op >> 8) & 0xf);
595 info->sp_offset -= 4;
596 info->saved_regs[regno].addr = info->sp_offset;
598 else if ((op & 0xff00) == 0x4f00)
601 int n = (signed char) (op & 0xff);
602 info->sp_offset += n;
604 else if (op == 0x1d8f)
607 info->uses_frame = 1;
608 info->r13_offset = info->sp_offset;
609 break; /* end of stack adjustments */
611 else if ((op & 0xfff0) == 0x10f0)
613 /* End of prologue if this is a trap instruction. */
614 break; /* End of stack adjustments. */
618 info->size = -info->sp_offset;
620 /* Compute the previous frame's stack pointer (which is also the
621 frame's ID's stack address), and this frame's base pointer. */
622 if (info->uses_frame)
624 /* The SP was moved to the FP. This indicates that a new frame
625 was created. Get THIS frame's FP value by unwinding it from
627 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
628 /* The FP points at the last saved register. Adjust the FP back
629 to before the first saved register giving the SP. */
630 prev_sp = this_base + info->size;
634 /* Assume that the FP is this frame's SP but with that pushed
635 stack space added back. */
636 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
637 prev_sp = this_base + info->size;
640 /* Convert that SP/BASE into real addresses. */
641 info->prev_sp = prev_sp;
642 info->base = this_base;
644 /* Adjust all the saved registers so that they contain addresses and
646 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
647 if (trad_frame_addr_p (info->saved_regs, i))
648 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
650 /* The call instruction moves the caller's PC in the callee's LR.
651 Since this is an unwind, do the reverse. Copy the location of LR
652 into PC (the address / regnum) so that a request for PC will be
653 converted into a request for the LR. */
654 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
656 /* The previous frame's SP needed to be computed. Save the computed
658 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
664 m32r_read_pc (struct regcache *regcache)
667 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
672 m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
674 regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
678 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
680 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
685 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
686 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
687 struct value **args, CORE_ADDR sp, int struct_return,
688 CORE_ADDR struct_addr)
690 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
691 int stack_offset, stack_alloc;
692 int argreg = ARG1_REGNUM;
695 enum type_code typecode;
698 gdb_byte valbuf[MAX_REGISTER_SIZE];
701 /* First force sp to a 4-byte alignment. */
704 /* Set the return address. For the m32r, the return breakpoint is
705 always at BP_ADDR. */
706 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
708 /* If STRUCT_RETURN is true, then the struct return address (in
709 STRUCT_ADDR) will consume the first argument-passing register.
710 Both adjust the register count and store that value. */
713 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
717 /* Now make sure there's space on the stack. */
718 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
719 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
720 sp -= stack_alloc; /* Make room on stack for args. */
722 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
724 type = value_type (args[argnum]);
725 typecode = TYPE_CODE (type);
726 len = TYPE_LENGTH (type);
728 memset (valbuf, 0, sizeof (valbuf));
730 /* Passes structures that do not fit in 2 registers by reference. */
732 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
734 store_unsigned_integer (valbuf, 4, byte_order,
735 value_address (args[argnum]));
736 typecode = TYPE_CODE_PTR;
742 /* Value gets right-justified in the register or stack word. */
743 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
744 (gdb_byte *) value_contents (args[argnum]), len);
748 val = (gdb_byte *) value_contents (args[argnum]);
752 if (argreg > ARGN_REGNUM)
754 /* Must go on the stack. */
755 write_memory (sp + stack_offset, val, 4);
758 else if (argreg <= ARGN_REGNUM)
760 /* There's room in a register. */
762 extract_unsigned_integer (val,
763 register_size (gdbarch, argreg),
765 regcache_cooked_write_unsigned (regcache, argreg++, regval);
768 /* Store the value 4 bytes at a time. This means that things
769 larger than 4 bytes may go partly in registers and partly
771 len -= register_size (gdbarch, argreg);
772 val += register_size (gdbarch, argreg);
776 /* Finally, update the SP register. */
777 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
783 /* Given a return value in `regbuf' with a type `valtype',
784 extract and copy its value into `valbuf'. */
787 m32r_extract_return_value (struct type *type, struct regcache *regcache,
790 struct gdbarch *gdbarch = get_regcache_arch (regcache);
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 bfd_byte *valbuf = dst;
793 int len = TYPE_LENGTH (type);
796 /* By using store_unsigned_integer we avoid having to do
797 anything special for small big-endian values. */
798 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
799 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
801 /* Ignore return values more than 8 bytes in size because the m32r
802 returns anything more than 8 bytes in the stack. */
805 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
806 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
810 static enum return_value_convention
811 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
812 struct type *valtype, struct regcache *regcache,
813 gdb_byte *readbuf, const gdb_byte *writebuf)
815 if (TYPE_LENGTH (valtype) > 8)
816 return RETURN_VALUE_STRUCT_CONVENTION;
820 m32r_extract_return_value (valtype, regcache, readbuf);
821 if (writebuf != NULL)
822 m32r_store_return_value (valtype, regcache, writebuf);
823 return RETURN_VALUE_REGISTER_CONVENTION;
830 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
832 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
835 /* Given a GDB frame, determine the address of the calling function's
836 frame. This will be used to create a new GDB frame struct. */
839 m32r_frame_this_id (struct frame_info *this_frame,
840 void **this_prologue_cache, struct frame_id *this_id)
842 struct m32r_unwind_cache *info
843 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
846 struct minimal_symbol *msym_stack;
849 /* The FUNC is easy. */
850 func = get_frame_func (this_frame);
852 /* Check if the stack is empty. */
853 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
854 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
857 /* Hopefully the prologue analysis either correctly determined the
858 frame's base (which is the SP from the previous frame), or set
859 that base to "NULL". */
860 base = info->prev_sp;
864 id = frame_id_build (base, func);
868 static struct value *
869 m32r_frame_prev_register (struct frame_info *this_frame,
870 void **this_prologue_cache, int regnum)
872 struct m32r_unwind_cache *info
873 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
874 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
877 static const struct frame_unwind m32r_frame_unwind = {
879 default_frame_unwind_stop_reason,
881 m32r_frame_prev_register,
883 default_frame_sniffer
887 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
889 struct m32r_unwind_cache *info
890 = m32r_frame_unwind_cache (this_frame, this_cache);
894 static const struct frame_base m32r_frame_base = {
896 m32r_frame_base_address,
897 m32r_frame_base_address,
898 m32r_frame_base_address
901 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
902 frame. The frame ID's base needs to match the TOS value saved by
903 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
905 static struct frame_id
906 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
908 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
909 return frame_id_build (sp, get_frame_pc (this_frame));
913 static gdbarch_init_ftype m32r_gdbarch_init;
915 static struct gdbarch *
916 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
918 struct gdbarch *gdbarch;
919 struct gdbarch_tdep *tdep;
921 /* If there is already a candidate, use it. */
922 arches = gdbarch_list_lookup_by_info (arches, &info);
924 return arches->gdbarch;
926 /* Allocate space for the new architecture. */
927 tdep = XMALLOC (struct gdbarch_tdep);
928 gdbarch = gdbarch_alloc (&info, tdep);
930 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
931 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
932 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
934 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
935 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
936 set_gdbarch_register_name (gdbarch, m32r_register_name);
937 set_gdbarch_register_type (gdbarch, m32r_register_type);
939 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
940 set_gdbarch_return_value (gdbarch, m32r_return_value);
942 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
943 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
944 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
945 set_gdbarch_memory_insert_breakpoint (gdbarch,
946 m32r_memory_insert_breakpoint);
947 set_gdbarch_memory_remove_breakpoint (gdbarch,
948 m32r_memory_remove_breakpoint);
950 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
952 frame_base_set_default (gdbarch, &m32r_frame_base);
954 /* Methods for saving / extracting a dummy frame's ID. The ID's
955 stack address must match the SP value returned by
956 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
957 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
959 /* Return the unwound PC value. */
960 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
962 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
964 /* Hook in ABI-specific overrides, if they have been registered. */
965 gdbarch_init_osabi (info, gdbarch);
967 /* Hook in the default unwinders. */
968 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
970 /* Support simple overlay manager. */
971 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
977 _initialize_m32r_tdep (void)
979 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);