Replace copyreloc-main.c with copyreloc-main.S
[platform/upstream/binutils.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3    Copyright (C) 2004-2014 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40 \f
41 /* The m32c tdep structure.  */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48    BUF --- in either direction.  */
49 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
50                                                 struct regcache *cache,
51                                                 void *buf);
52
53 struct m32c_reg
54 {
55   /* The name of this register.  */
56   const char *name;
57
58   /* Its type.  */
59   struct type *type;
60
61   /* The architecture this register belongs to.  */
62   struct gdbarch *arch;
63
64   /* Its GDB register number.  */
65   int num;
66
67   /* Its sim register number.  */
68   int sim_num;
69
70   /* Its DWARF register number, or -1 if it doesn't have one.  */
71   int dwarf_num;
72
73   /* Register group memberships.  */
74   unsigned int general_p : 1;
75   unsigned int dma_p : 1;
76   unsigned int system_p : 1;
77   unsigned int save_restore_p : 1;
78
79   /* Functions to read its value from a regcache, and write its value
80      to a regcache.  */
81   m32c_move_reg_t *read, *write;
82
83   /* Data for READ and WRITE functions.  The exact meaning depends on
84      the specific functions selected; see the comments for those
85      functions.  */
86   struct m32c_reg *rx, *ry;
87   int n;
88 };
89
90
91 /* An overestimate of the number of raw and pseudoregisters we will
92    have.  The exact answer depends on the variant of the architecture
93    at hand, but we can use this to declare statically allocated
94    arrays, and bump it up when needed.  */
95 #define M32C_MAX_NUM_REGS (75)
96
97 /* The largest assigned DWARF register number.  */
98 #define M32C_MAX_DWARF_REGNUM (40)
99
100
101 struct gdbarch_tdep
102 {
103   /* All the registers for this variant, indexed by GDB register
104      number, and the number of registers present.  */
105   struct m32c_reg regs[M32C_MAX_NUM_REGS];
106
107   /* The number of valid registers.  */
108   int num_regs;
109
110   /* Interesting registers.  These are pointers into REGS.  */
111   struct m32c_reg *pc, *flg;
112   struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
113   struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
114   struct m32c_reg *sb, *fb, *sp;
115
116   /* A table indexed by DWARF register numbers, pointing into
117      REGS.  */
118   struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
119
120   /* Types for this architecture.  We can't use the builtin_type_foo
121      types, because they're not initialized when building a gdbarch
122      structure.  */
123   struct type *voyd, *ptr_voyd, *func_voyd;
124   struct type *uint8, *uint16;
125   struct type *int8, *int16, *int32, *int64;
126
127   /* The types for data address and code address registers.  */
128   struct type *data_addr_reg_type, *code_addr_reg_type;
129
130   /* The number of bytes a return address pushed by a 'jsr' instruction
131      occupies on the stack.  */
132   int ret_addr_bytes;
133
134   /* The number of bytes an address register occupies on the stack
135      when saved by an 'enter' or 'pushm' instruction.  */
136   int push_addr_bytes;
137 };
138
139 \f
140 /* Types.  */
141
142 static void
143 make_types (struct gdbarch *arch)
144 {
145   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
146   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
147   int data_addr_reg_bits, code_addr_reg_bits;
148   char type_name[50];
149
150 #if 0
151   /* This is used to clip CORE_ADDR values, so this value is
152      appropriate both on the m32c, where pointers are 32 bits long,
153      and on the m16c, where pointers are sixteen bits long, but there
154      may be code above the 64k boundary.  */
155   set_gdbarch_addr_bit (arch, 24);
156 #else
157   /* GCC uses 32 bits for addrs in the dwarf info, even though
158      only 16/24 bits are used.  Setting addr_bit to 24 causes
159      errors in reading the dwarf addresses.  */
160   set_gdbarch_addr_bit (arch, 32);
161 #endif
162
163   set_gdbarch_int_bit (arch, 16);
164   switch (mach)
165     {
166     case bfd_mach_m16c:
167       data_addr_reg_bits = 16;
168       code_addr_reg_bits = 24;
169       set_gdbarch_ptr_bit (arch, 16);
170       tdep->ret_addr_bytes = 3;
171       tdep->push_addr_bytes = 2;
172       break;
173
174     case bfd_mach_m32c:
175       data_addr_reg_bits = 24;
176       code_addr_reg_bits = 24;
177       set_gdbarch_ptr_bit (arch, 32);
178       tdep->ret_addr_bytes = 4;
179       tdep->push_addr_bytes = 4;
180       break;
181
182     default:
183       gdb_assert_not_reached ("unexpected mach");
184     }
185
186   /* The builtin_type_mumble variables are sometimes uninitialized when
187      this is called, so we avoid using them.  */
188   tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
189   tdep->ptr_voyd
190     = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
191                  NULL);
192   TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
193   TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
194   tdep->func_voyd = lookup_function_type (tdep->voyd);
195
196   xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
197              gdbarch_bfd_arch_info (arch)->printable_name);
198   tdep->data_addr_reg_type
199     = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
200                  xstrdup (type_name));
201   TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
202   TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
203
204   xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
205              gdbarch_bfd_arch_info (arch)->printable_name);
206   tdep->code_addr_reg_type
207     = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
208                  xstrdup (type_name));
209   TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
210   TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
211
212   tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
213   tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
214   tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
215   tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
216   tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
217   tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
218 }
219
220
221 \f
222 /* Register set.  */
223
224 static const char *
225 m32c_register_name (struct gdbarch *gdbarch, int num)
226 {
227   return gdbarch_tdep (gdbarch)->regs[num].name;
228 }
229
230
231 static struct type *
232 m32c_register_type (struct gdbarch *arch, int reg_nr)
233 {
234   return gdbarch_tdep (arch)->regs[reg_nr].type;
235 }
236
237
238 static int
239 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
240 {
241   return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
242 }
243
244
245 static int
246 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
247 {
248   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249   if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
250       && tdep->dwarf_regs[reg_nr])
251     return tdep->dwarf_regs[reg_nr]->num;
252   else
253     /* The DWARF CFI code expects to see -1 for invalid register
254        numbers.  */
255     return -1;
256 }
257
258
259 static int
260 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
261                           struct reggroup *group)
262 {
263   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264   struct m32c_reg *reg = &tdep->regs[regnum];
265
266   /* The anonymous raw registers aren't in any groups.  */
267   if (! reg->name)
268     return 0;
269
270   if (group == all_reggroup)
271     return 1;
272
273   if (group == general_reggroup
274       && reg->general_p)
275     return 1;
276
277   if (group == m32c_dma_reggroup
278       && reg->dma_p)
279     return 1;
280
281   if (group == system_reggroup
282       && reg->system_p)
283     return 1;
284
285   /* Since the m32c DWARF register numbers refer to cooked registers, not
286      raw registers, and frame_pop depends on the save and restore groups
287      containing registers the DWARF CFI will actually mention, our save
288      and restore groups are cooked registers, not raw registers.  (This is
289      why we can't use the default reggroup function.)  */
290   if ((group == save_reggroup
291        || group == restore_reggroup)
292       && reg->save_restore_p)
293     return 1;
294
295   return 0;
296 }
297
298
299 /* Register move functions.  We declare them here using
300    m32c_move_reg_t to check the types.  */
301 static m32c_move_reg_t m32c_raw_read,      m32c_raw_write;
302 static m32c_move_reg_t m32c_banked_read,   m32c_banked_write;
303 static m32c_move_reg_t m32c_sb_read,       m32c_sb_write;
304 static m32c_move_reg_t m32c_part_read,     m32c_part_write;
305 static m32c_move_reg_t m32c_cat_read,      m32c_cat_write;
306 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
307
308
309 /* Copy the value of the raw register REG from CACHE to BUF.  */
310 static enum register_status
311 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
312 {
313   return regcache_raw_read (cache, reg->num, buf);
314 }
315
316
317 /* Copy the value of the raw register REG from BUF to CACHE.  */
318 static enum register_status
319 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
320 {
321   regcache_raw_write (cache, reg->num, (const void *) buf);
322
323   return REG_VALID;
324 }
325
326
327 /* Return the value of the 'flg' register in CACHE.  */
328 static int
329 m32c_read_flg (struct regcache *cache)
330 {
331   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
332   ULONGEST flg;
333   regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
334   return flg & 0xffff;
335 }
336
337
338 /* Evaluate the real register number of a banked register.  */
339 static struct m32c_reg *
340 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
341 {
342   return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
343 }
344
345
346 /* Move the value of a banked register from CACHE to BUF.
347    If the value of the 'flg' register in CACHE has any of the bits
348    masked in REG->n set, then read REG->ry.  Otherwise, read
349    REG->rx.  */
350 static enum register_status
351 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
352 {
353   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
354   return regcache_raw_read (cache, bank_reg->num, buf);
355 }
356
357
358 /* Move the value of a banked register from BUF to CACHE.
359    If the value of the 'flg' register in CACHE has any of the bits
360    masked in REG->n set, then write REG->ry.  Otherwise, write
361    REG->rx.  */
362 static enum register_status
363 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
364 {
365   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
366   regcache_raw_write (cache, bank_reg->num, (const void *) buf);
367
368   return REG_VALID;
369 }
370
371
372 /* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
373    banked register; on bfd_mach_m16c, it's not.  */
374 static enum register_status
375 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
376 {
377   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
378     return m32c_raw_read (reg->rx, cache, buf);
379   else
380     return m32c_banked_read (reg, cache, buf);
381 }
382
383
384 /* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
385    banked register; on bfd_mach_m16c, it's not.  */
386 static enum register_status
387 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
388 {
389   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
390     m32c_raw_write (reg->rx, cache, buf);
391   else
392     m32c_banked_write (reg, cache, buf);
393
394   return REG_VALID;
395 }
396
397
398 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
399    and *LEN_P to the offset and length, in bytes, of the part REG
400    occupies in its underlying register.  The offset is from the
401    lower-addressed end, regardless of the architecture's endianness.
402    (The M32C family is always little-endian, but let's keep those
403    assumptions out of here.)  */
404 static void
405 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
406 {
407   /* The length of the containing register, of which REG is one part.  */
408   int containing_len = TYPE_LENGTH (reg->rx->type);
409
410   /* The length of one "element" in our imaginary array.  */
411   int elt_len = TYPE_LENGTH (reg->type);
412
413   /* The offset of REG's "element" from the least significant end of
414      the containing register.  */
415   int elt_offset = reg->n * elt_len;
416
417   /* If we extend off the end, trim the length of the element.  */
418   if (elt_offset + elt_len > containing_len)
419     {
420       elt_len = containing_len - elt_offset;
421       /* We shouldn't be declaring partial registers that go off the
422          end of their containing registers.  */
423       gdb_assert (elt_len > 0);
424     }
425
426   /* Flip the offset around if we're big-endian.  */
427   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
428     elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
429
430   *offset_p = elt_offset;
431   *len_p = elt_len;
432 }
433
434
435 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
436    to BUF.  Treating the value of the register REG->rx as an array of
437    REG->type values, where higher indices refer to more significant
438    bits, read the value of the REG->n'th element.  */
439 static enum register_status
440 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
441 {
442   int offset, len;
443
444   memset (buf, 0, TYPE_LENGTH (reg->type));
445   m32c_find_part (reg, &offset, &len);
446   return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
447 }
448
449
450 /* Move the value of a banked register from BUF to CACHE.
451    Treating the value of the register REG->rx as an array of REG->type
452    values, where higher indices refer to more significant bits, write
453    the value of the REG->n'th element.  */
454 static enum register_status
455 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
456 {
457   int offset, len;
458
459   m32c_find_part (reg, &offset, &len);
460   regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
461
462   return REG_VALID;
463 }
464
465
466 /* Move the value of REG from CACHE to BUF.  REG's value is the
467    concatenation of the values of the registers REG->rx and REG->ry,
468    with REG->rx contributing the more significant bits.  */
469 static enum register_status
470 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
471 {
472   int high_bytes = TYPE_LENGTH (reg->rx->type);
473   int low_bytes  = TYPE_LENGTH (reg->ry->type);
474   /* For address arithmetic.  */
475   unsigned char *cbuf = buf;
476   enum register_status status;
477
478   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
479
480   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
481     {
482       status = regcache_cooked_read (cache, reg->rx->num, cbuf);
483       if (status == REG_VALID)
484         status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
485     }
486   else
487     {
488       status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
489       if (status == REG_VALID)
490         status = regcache_cooked_read (cache, reg->ry->num, cbuf);
491     }
492
493   return status;
494 }
495
496
497 /* Move the value of REG from CACHE to BUF.  REG's value is the
498    concatenation of the values of the registers REG->rx and REG->ry,
499    with REG->rx contributing the more significant bits.  */
500 static enum register_status
501 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
502 {
503   int high_bytes = TYPE_LENGTH (reg->rx->type);
504   int low_bytes  = TYPE_LENGTH (reg->ry->type);
505   /* For address arithmetic.  */
506   unsigned char *cbuf = buf;
507
508   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
509
510   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
511     {
512       regcache_cooked_write (cache, reg->rx->num, cbuf);
513       regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
514     }
515   else
516     {
517       regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
518       regcache_cooked_write (cache, reg->ry->num, cbuf);
519     }
520
521   return REG_VALID;
522 }
523
524
525 /* Copy the value of the raw register REG from CACHE to BUF.  REG is
526    the concatenation (from most significant to least) of r3, r2, r1,
527    and r0.  */
528 static enum register_status
529 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
530 {
531   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
532   int len = TYPE_LENGTH (tdep->r0->type);
533   enum register_status status;
534
535   /* For address arithmetic.  */
536   unsigned char *cbuf = buf;
537
538   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
539     {
540       status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
541       if (status == REG_VALID)
542         status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
543       if (status == REG_VALID)
544         status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
545       if (status == REG_VALID)
546         status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
547     }
548   else
549     {
550       status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
551       if (status == REG_VALID)
552         status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
553       if (status == REG_VALID)
554         status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
555       if (status == REG_VALID)
556         status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
557     }
558
559   return status;
560 }
561
562
563 /* Copy the value of the raw register REG from BUF to CACHE.  REG is
564    the concatenation (from most significant to least) of r3, r2, r1,
565    and r0.  */
566 static enum register_status
567 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
568 {
569   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570   int len = TYPE_LENGTH (tdep->r0->type);
571
572   /* For address arithmetic.  */
573   unsigned char *cbuf = buf;
574
575   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
576     {
577       regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
578       regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
579       regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
580       regcache_cooked_write (cache, tdep->r3->num, cbuf);
581     }
582   else
583     {
584       regcache_cooked_write (cache, tdep->r0->num, cbuf);
585       regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
586       regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
587       regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
588     }
589
590   return REG_VALID;
591 }
592
593
594 static enum register_status
595 m32c_pseudo_register_read (struct gdbarch *arch,
596                            struct regcache *cache,
597                            int cookednum,
598                            gdb_byte *buf)
599 {
600   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
601   struct m32c_reg *reg;
602
603   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
604   gdb_assert (arch == get_regcache_arch (cache));
605   gdb_assert (arch == tdep->regs[cookednum].arch);
606   reg = &tdep->regs[cookednum];
607
608   return reg->read (reg, cache, buf);
609 }
610
611
612 static void
613 m32c_pseudo_register_write (struct gdbarch *arch,
614                             struct regcache *cache,
615                             int cookednum,
616                             const gdb_byte *buf)
617 {
618   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
619   struct m32c_reg *reg;
620
621   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
622   gdb_assert (arch == get_regcache_arch (cache));
623   gdb_assert (arch == tdep->regs[cookednum].arch);
624   reg = &tdep->regs[cookednum];
625
626   reg->write (reg, cache, (void *) buf);
627 }
628
629
630 /* Add a register with the given fields to the end of ARCH's table.
631    Return a pointer to the newly added register.  */
632 static struct m32c_reg *
633 add_reg (struct gdbarch *arch,
634          const char *name,
635          struct type *type,
636          int sim_num,
637          m32c_move_reg_t *read,
638          m32c_move_reg_t *write,
639          struct m32c_reg *rx,
640          struct m32c_reg *ry,
641          int n)
642 {
643   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
644   struct m32c_reg *r = &tdep->regs[tdep->num_regs];
645
646   gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
647
648   r->name           = name;
649   r->type           = type;
650   r->arch           = arch;
651   r->num            = tdep->num_regs;
652   r->sim_num        = sim_num;
653   r->dwarf_num      = -1;
654   r->general_p      = 0;
655   r->dma_p          = 0;
656   r->system_p       = 0;
657   r->save_restore_p = 0;
658   r->read           = read;
659   r->write          = write;
660   r->rx             = rx;
661   r->ry             = ry;
662   r->n              = n;
663
664   tdep->num_regs++;
665
666   return r;
667 }
668
669
670 /* Record NUM as REG's DWARF register number.  */
671 static void
672 set_dwarf_regnum (struct m32c_reg *reg, int num)
673 {
674   gdb_assert (num < M32C_MAX_NUM_REGS);
675
676   /* Update the reg->DWARF mapping.  Only count the first number
677      assigned to this register.  */
678   if (reg->dwarf_num == -1)
679     reg->dwarf_num = num;
680
681   /* Update the DWARF->reg mapping.  */
682   gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
683 }
684
685
686 /* Mark REG as a general-purpose register, and return it.  */
687 static struct m32c_reg *
688 mark_general (struct m32c_reg *reg)
689 {
690   reg->general_p = 1;
691   return reg;
692 }
693
694
695 /* Mark REG as a DMA register, and return it.  */
696 static struct m32c_reg *
697 mark_dma (struct m32c_reg *reg)
698 {
699   reg->dma_p = 1;
700   return reg;
701 }
702
703
704 /* Mark REG as a SYSTEM register, and return it.  */
705 static struct m32c_reg *
706 mark_system (struct m32c_reg *reg)
707 {
708   reg->system_p = 1;
709   return reg;
710 }
711
712
713 /* Mark REG as a save-restore register, and return it.  */
714 static struct m32c_reg *
715 mark_save_restore (struct m32c_reg *reg)
716 {
717   reg->save_restore_p = 1;
718   return reg;
719 }
720
721
722 #define FLAGBIT_B       0x0010
723 #define FLAGBIT_U       0x0080
724
725 /* Handy macros for declaring registers.  These all evaluate to
726    pointers to the register declared.  Macros that define two
727    registers evaluate to a pointer to the first.  */
728
729 /* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
730 #define R(name, type, sim_num)                                  \
731   (add_reg (arch, (name), (type), (sim_num),                    \
732             m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
733
734 /* The simulator register number for a raw register named NAME.  */
735 #define SIM(name) (m32c_sim_reg_ ## name)
736
737 /* A raw unsigned 16-bit data register named NAME.
738    NAME should be an identifier, not a string.  */
739 #define R16U(name)                                              \
740   (R(#name, tdep->uint16, SIM (name)))
741
742 /* A raw data address register named NAME.
743    NAME should be an identifier, not a string.  */
744 #define RA(name)                                                \
745   (R(#name, tdep->data_addr_reg_type, SIM (name)))
746
747 /* A raw code address register named NAME.  NAME should
748    be an identifier, not a string.  */
749 #define RC(name)                                                \
750   (R(#name, tdep->code_addr_reg_type, SIM (name)))
751
752 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
753    NAME should be an identifier, not a string.  */
754 #define RP(name, type)                          \
755   (R(#name "0", (type), SIM (name ## 0)),       \
756    R(#name "1", (type), SIM (name ## 1)) - 1)
757
758 /* A raw banked general-purpose data register named NAME.
759    NAME should be an identifier, not a string.  */
760 #define RBD(name)                                               \
761   (R(NULL, tdep->int16, SIM (name ## _bank0)),          \
762    R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
763
764 /* A raw banked data address register named NAME.
765    NAME should be an identifier, not a string.  */
766 #define RBA(name)                                               \
767   (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),     \
768    R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
769
770 /* A cooked register named NAME referring to a raw banked register
771    from the bank selected by the current value of FLG.  RAW_PAIR
772    should be a pointer to the first register in the banked pair.
773    NAME must be an identifier, not a string.  */
774 #define CB(name, raw_pair)                              \
775   (add_reg (arch, #name, (raw_pair)->type, 0,           \
776             m32c_banked_read, m32c_banked_write,        \
777             (raw_pair), (raw_pair + 1), FLAGBIT_B))
778
779 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
780    access the top and bottom halves of the register pointed to by
781    NAME.  NAME should be an identifier.  */
782 #define CHL(name, type)                                                 \
783   (add_reg (arch, #name "h", (type), 0,                                 \
784             m32c_part_read, m32c_part_write, name, NULL, 1),            \
785    add_reg (arch, #name "l", (type), 0,                                 \
786             m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
787
788 /* A register constructed by concatenating the two registers HIGH and
789    LOW, whose name is HIGHLOW and whose type is TYPE.  */
790 #define CCAT(high, low, type)                                   \
791   (add_reg (arch, #high #low, (type), 0,                        \
792             m32c_cat_read, m32c_cat_write, (high), (low), 0))
793
794 /* Abbreviations for marking register group membership.  */
795 #define G(reg)   (mark_general (reg))
796 #define S(reg)   (mark_system  (reg))
797 #define DMA(reg) (mark_dma     (reg))
798
799
800 /* Construct the register set for ARCH.  */
801 static void
802 make_regs (struct gdbarch *arch)
803 {
804   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
805   int mach = gdbarch_bfd_arch_info (arch)->mach;
806   int num_raw_regs;
807   int num_cooked_regs;
808
809   struct m32c_reg *r0;
810   struct m32c_reg *r1;
811   struct m32c_reg *r2;
812   struct m32c_reg *r3;
813   struct m32c_reg *a0;
814   struct m32c_reg *a1;
815   struct m32c_reg *fb;
816   struct m32c_reg *sb;
817   struct m32c_reg *sp;
818   struct m32c_reg *r0hl;
819   struct m32c_reg *r1hl;
820   struct m32c_reg *r2hl;
821   struct m32c_reg *r3hl;
822   struct m32c_reg *intbhl;
823   struct m32c_reg *r2r0;
824   struct m32c_reg *r3r1;
825   struct m32c_reg *r3r1r2r0;
826   struct m32c_reg *r3r2r1r0;
827   struct m32c_reg *a1a0;
828
829   struct m32c_reg *raw_r0_pair = RBD (r0);
830   struct m32c_reg *raw_r1_pair = RBD (r1);
831   struct m32c_reg *raw_r2_pair = RBD (r2);
832   struct m32c_reg *raw_r3_pair = RBD (r3);
833   struct m32c_reg *raw_a0_pair = RBA (a0);
834   struct m32c_reg *raw_a1_pair = RBA (a1);
835   struct m32c_reg *raw_fb_pair = RBA (fb);
836
837   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
838      We always declare both raw registers, and deal with the distinction
839      in the pseudoregister.  */
840   struct m32c_reg *raw_sb_pair = RBA (sb);
841
842   struct m32c_reg *usp         = S (RA (usp));
843   struct m32c_reg *isp         = S (RA (isp));
844   struct m32c_reg *intb        = S (RC (intb));
845   struct m32c_reg *pc          = G (RC (pc));
846   struct m32c_reg *flg         = G (R16U (flg));
847
848   if (mach == bfd_mach_m32c)
849     {
850       struct m32c_reg *svf     = S (R16U (svf));
851       struct m32c_reg *svp     = S (RC (svp));
852       struct m32c_reg *vct     = S (RC (vct));
853
854       struct m32c_reg *dmd01   = DMA (RP (dmd, tdep->uint8));
855       struct m32c_reg *dct01   = DMA (RP (dct, tdep->uint16));
856       struct m32c_reg *drc01   = DMA (RP (drc, tdep->uint16));
857       struct m32c_reg *dma01   = DMA (RP (dma, tdep->data_addr_reg_type));
858       struct m32c_reg *dsa01   = DMA (RP (dsa, tdep->data_addr_reg_type));
859       struct m32c_reg *dra01   = DMA (RP (dra, tdep->data_addr_reg_type));
860     }
861
862   num_raw_regs = tdep->num_regs;
863
864   r0          = G (CB (r0, raw_r0_pair));
865   r1          = G (CB (r1, raw_r1_pair));
866   r2          = G (CB (r2, raw_r2_pair));
867   r3          = G (CB (r3, raw_r3_pair));
868   a0          = G (CB (a0, raw_a0_pair));
869   a1          = G (CB (a1, raw_a1_pair));
870   fb          = G (CB (fb, raw_fb_pair));
871
872   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
873      Specify custom read/write functions that do the right thing.  */
874   sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
875                             m32c_sb_read, m32c_sb_write,
876                             raw_sb_pair, raw_sb_pair + 1, 0));
877
878   /* The current sp is either usp or isp, depending on the value of
879      the FLG register's U bit.  */
880   sp          = G (add_reg (arch, "sp", usp->type, 0,
881                             m32c_banked_read, m32c_banked_write,
882                             isp, usp, FLAGBIT_U));
883
884   r0hl        = CHL (r0, tdep->int8);
885   r1hl        = CHL (r1, tdep->int8);
886   r2hl        = CHL (r2, tdep->int8);
887   r3hl        = CHL (r3, tdep->int8);
888   intbhl      = CHL (intb, tdep->int16);
889
890   r2r0        = CCAT (r2,   r0,   tdep->int32);
891   r3r1        = CCAT (r3,   r1,   tdep->int32);
892   r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
893
894   r3r2r1r0
895     = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
896                m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
897
898   if (mach == bfd_mach_m16c)
899     a1a0 = CCAT (a1, a0, tdep->int32);
900   else
901     a1a0 = NULL;
902
903   num_cooked_regs = tdep->num_regs - num_raw_regs;
904
905   tdep->pc       = pc;
906   tdep->flg      = flg;
907   tdep->r0       = r0;
908   tdep->r1       = r1;
909   tdep->r2       = r2;
910   tdep->r3       = r3;
911   tdep->r2r0     = r2r0;
912   tdep->r3r2r1r0 = r3r2r1r0;
913   tdep->r3r1r2r0 = r3r1r2r0;
914   tdep->a0       = a0;
915   tdep->a1       = a1;
916   tdep->sb       = sb;
917   tdep->fb       = fb;
918   tdep->sp       = sp;
919
920   /* Set up the DWARF register table.  */
921   memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
922   set_dwarf_regnum (r0hl + 1, 0x01);
923   set_dwarf_regnum (r0hl + 0, 0x02);
924   set_dwarf_regnum (r1hl + 1, 0x03);
925   set_dwarf_regnum (r1hl + 0, 0x04);
926   set_dwarf_regnum (r0,       0x05);
927   set_dwarf_regnum (r1,       0x06);
928   set_dwarf_regnum (r2,       0x07);
929   set_dwarf_regnum (r3,       0x08);
930   set_dwarf_regnum (a0,       0x09);
931   set_dwarf_regnum (a1,       0x0a);
932   set_dwarf_regnum (fb,       0x0b);
933   set_dwarf_regnum (sp,       0x0c);
934   set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
935   set_dwarf_regnum (sb,       0x13);
936   set_dwarf_regnum (r2r0,     0x15);
937   set_dwarf_regnum (r3r1,     0x16);
938   if (a1a0)
939     set_dwarf_regnum (a1a0,   0x17);
940
941   /* Enumerate the save/restore register group.
942
943      The regcache_save and regcache_restore functions apply their read
944      function to each register in this group.
945
946      Since frame_pop supplies frame_unwind_register as its read
947      function, the registers meaningful to the Dwarf unwinder need to
948      be in this group.
949
950      On the other hand, when we make inferior calls, save_inferior_status
951      and restore_inferior_status use them to preserve the current register
952      values across the inferior call.  For this, you'd kind of like to
953      preserve all the raw registers, to protect the interrupted code from
954      any sort of bank switching the callee might have done.  But we handle
955      those cases so badly anyway --- for example, it matters whether we
956      restore FLG before or after we restore the general-purpose registers,
957      but there's no way to express that --- that it isn't worth worrying
958      about.
959
960      We omit control registers like inthl: if you call a function that
961      changes those, it's probably because you wanted that change to be
962      visible to the interrupted code.  */
963   mark_save_restore (r0);
964   mark_save_restore (r1);
965   mark_save_restore (r2);
966   mark_save_restore (r3);
967   mark_save_restore (a0);
968   mark_save_restore (a1);
969   mark_save_restore (sb);
970   mark_save_restore (fb);
971   mark_save_restore (sp);
972   mark_save_restore (pc);
973   mark_save_restore (flg);
974
975   set_gdbarch_num_regs (arch, num_raw_regs);
976   set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
977   set_gdbarch_pc_regnum (arch, pc->num);
978   set_gdbarch_sp_regnum (arch, sp->num);
979   set_gdbarch_register_name (arch, m32c_register_name);
980   set_gdbarch_register_type (arch, m32c_register_type);
981   set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
982   set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
983   set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
984   set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
985   set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
986   set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
987
988   reggroup_add (arch, general_reggroup);
989   reggroup_add (arch, all_reggroup);
990   reggroup_add (arch, save_reggroup);
991   reggroup_add (arch, restore_reggroup);
992   reggroup_add (arch, system_reggroup);
993   reggroup_add (arch, m32c_dma_reggroup);
994 }
995
996
997 \f
998 /* Breakpoints.  */
999
1000 static const unsigned char *
1001 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1002 {
1003   static unsigned char break_insn[] = { 0x00 }; /* brk */
1004
1005   *len = sizeof (break_insn);
1006   return break_insn;
1007 }
1008
1009
1010 \f
1011 /* Prologue analysis.  */
1012
1013 struct m32c_prologue
1014 {
1015   /* For consistency with the DWARF 2 .debug_frame info generated by
1016      GCC, a frame's CFA is the address immediately after the saved
1017      return address.  */
1018
1019   /* The architecture for which we generated this prologue info.  */
1020   struct gdbarch *arch;
1021
1022   enum {
1023     /* This function uses a frame pointer.  */
1024     prologue_with_frame_ptr,
1025
1026     /* This function has no frame pointer.  */
1027     prologue_sans_frame_ptr,
1028
1029     /* This function sets up the stack, so its frame is the first
1030        frame on the stack.  */
1031     prologue_first_frame
1032
1033   } kind;
1034
1035   /* If KIND is prologue_with_frame_ptr, this is the offset from the
1036      CFA to where the frame pointer points.  This is always zero or
1037      negative.  */
1038   LONGEST frame_ptr_offset;
1039
1040   /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1041      the stack pointer --- always zero or negative.
1042
1043      Calling this a "size" is a bit misleading, but given that the
1044      stack grows downwards, using offsets for everything keeps one
1045      from going completely sign-crazy: you never change anything's
1046      sign for an ADD instruction; always change the second operand's
1047      sign for a SUB instruction; and everything takes care of
1048      itself.
1049
1050      Functions that use alloca don't have a constant frame size.  But
1051      they always have frame pointers, so we must use that to find the
1052      CFA (and perhaps to unwind the stack pointer).  */
1053   LONGEST frame_size;
1054
1055   /* The address of the first instruction at which the frame has been
1056      set up and the arguments are where the debug info says they are
1057      --- as best as we can tell.  */
1058   CORE_ADDR prologue_end;
1059
1060   /* reg_offset[R] is the offset from the CFA at which register R is
1061      saved, or 1 if register R has not been saved.  (Real values are
1062      always zero or negative.)  */
1063   LONGEST reg_offset[M32C_MAX_NUM_REGS];
1064 };
1065
1066
1067 /* The longest I've seen, anyway.  */
1068 #define M32C_MAX_INSN_LEN (9)
1069
1070 /* Processor state, for the prologue analyzer.  */
1071 struct m32c_pv_state
1072 {
1073   struct gdbarch *arch;
1074   pv_t r0, r1, r2, r3;
1075   pv_t a0, a1;
1076   pv_t sb, fb, sp;
1077   pv_t pc;
1078   struct pv_area *stack;
1079
1080   /* Bytes from the current PC, the address they were read from,
1081      and the address of the next unconsumed byte.  */
1082   gdb_byte insn[M32C_MAX_INSN_LEN];
1083   CORE_ADDR scan_pc, next_addr;
1084 };
1085
1086
1087 /* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1088    all went well, or non-zero if simulating the action would trash our
1089    state.  */
1090 static int
1091 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1092 {
1093   if (pv_area_store_would_trash (state->stack, state->sp))
1094     return 1;
1095
1096   state->sp = pv_add_constant (state->sp, -size);
1097   pv_area_store (state->stack, state->sp, size, value);
1098
1099   return 0;
1100 }
1101
1102
1103 /* A source or destination location for an m16c or m32c
1104    instruction.  */
1105 struct srcdest
1106 {
1107   /* If srcdest_reg, the location is a register pointed to by REG.
1108      If srcdest_partial_reg, the location is part of a register pointed
1109      to by REG.  We don't try to handle this too well.
1110      If srcdest_mem, the location is memory whose address is ADDR.  */
1111   enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1112   pv_t *reg, addr;
1113 };
1114
1115
1116 /* Return the SIZE-byte value at LOC in STATE.  */
1117 static pv_t
1118 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1119 {
1120   if (loc.kind == srcdest_mem)
1121     return pv_area_fetch (state->stack, loc.addr, size);
1122   else if (loc.kind == srcdest_partial_reg)
1123     return pv_unknown ();
1124   else
1125     return *loc.reg;
1126 }
1127
1128
1129 /* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1130    all went well, or non-zero if simulating the store would trash our
1131    state.  */
1132 static int
1133 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1134                     pv_t value, int size)
1135 {
1136   if (loc.kind == srcdest_mem)
1137     {
1138       if (pv_area_store_would_trash (state->stack, loc.addr))
1139         return 1;
1140       pv_area_store (state->stack, loc.addr, size, value);
1141     }
1142   else if (loc.kind == srcdest_partial_reg)
1143     *loc.reg = pv_unknown ();
1144   else
1145     *loc.reg = value;
1146
1147   return 0;
1148 }
1149
1150
1151 static int
1152 m32c_sign_ext (int v, int bits)
1153 {
1154   int mask = 1 << (bits - 1);
1155   return (v ^ mask) - mask;
1156 }
1157
1158 static unsigned int
1159 m32c_next_byte (struct m32c_pv_state *st)
1160 {
1161   gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1162   return st->insn[st->next_addr++ - st->scan_pc];
1163 }
1164
1165 static int
1166 m32c_udisp8 (struct m32c_pv_state *st)
1167 {
1168   return m32c_next_byte (st);
1169 }
1170
1171
1172 static int
1173 m32c_sdisp8 (struct m32c_pv_state *st)
1174 {
1175   return m32c_sign_ext (m32c_next_byte (st), 8);
1176 }
1177
1178
1179 static int
1180 m32c_udisp16 (struct m32c_pv_state *st)
1181 {
1182   int low  = m32c_next_byte (st);
1183   int high = m32c_next_byte (st);
1184
1185   return low + (high << 8);
1186 }
1187
1188
1189 static int
1190 m32c_sdisp16 (struct m32c_pv_state *st)
1191 {
1192   int low  = m32c_next_byte (st);
1193   int high = m32c_next_byte (st);
1194
1195   return m32c_sign_ext (low + (high << 8), 16);
1196 }
1197
1198
1199 static int
1200 m32c_udisp24 (struct m32c_pv_state *st)
1201 {
1202   int low  = m32c_next_byte (st);
1203   int mid  = m32c_next_byte (st);
1204   int high = m32c_next_byte (st);
1205
1206   return low + (mid << 8) + (high << 16);
1207 }
1208
1209
1210 /* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1211 static int
1212 m32c_get_src23 (unsigned char *i)
1213 {
1214   return (((i[0] & 0x70) >> 2)
1215           | ((i[1] & 0x30) >> 4));
1216 }
1217
1218
1219 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1220 static int
1221 m32c_get_dest23 (unsigned char *i)
1222 {
1223   return (((i[0] & 0x0e) << 1)
1224           | ((i[1] & 0xc0) >> 6));
1225 }
1226
1227
1228 static struct srcdest
1229 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1230                       int code, int size)
1231 {
1232   struct srcdest sd;
1233
1234   if (code < 6)
1235     sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1236   else
1237     sd.kind = srcdest_mem;
1238
1239   sd.addr = pv_unknown ();
1240   sd.reg = 0;
1241
1242   switch (code)
1243     {
1244     case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1245     case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1246     case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1247     case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1248
1249     case 0x4: sd.reg = &st->a0; break;
1250     case 0x5: sd.reg = &st->a1; break;
1251
1252     case 0x6: sd.addr = st->a0; break;
1253     case 0x7: sd.addr = st->a1; break;
1254
1255     case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1256     case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1257     case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1258     case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1259
1260     case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1261     case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1262     case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1263     case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1264
1265     default:
1266       gdb_assert_not_reached ("unexpected srcdest4");
1267     }
1268
1269   return sd;
1270 }
1271
1272
1273 static struct srcdest
1274 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1275 {
1276   struct srcdest sd;
1277
1278   sd.addr = pv_unknown ();
1279   sd.reg = 0;
1280
1281   switch (code)
1282     {
1283     case 0x12:
1284     case 0x13:
1285     case 0x10:
1286     case 0x11:
1287       sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1288       break;
1289
1290     case 0x02:
1291     case 0x03:
1292       sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1293       break;
1294
1295     default:
1296       sd.kind = srcdest_mem;
1297       break;
1298
1299     }
1300
1301   switch (code)
1302     {
1303     case 0x12: sd.reg = &st->r0; break;
1304     case 0x13: sd.reg = &st->r1; break;
1305     case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1306     case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1307     case 0x02: sd.reg = &st->a0; break;
1308     case 0x03: sd.reg = &st->a1; break;
1309
1310     case 0x00: sd.addr = st->a0; break;
1311     case 0x01: sd.addr = st->a1; break;
1312     case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1313     case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1314     case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1315     case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1316     case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1317     case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1318     case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1319     case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1320     case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1321     case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1322     case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1323     case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1324     default:
1325       gdb_assert_not_reached ("unexpected sd23");
1326     }
1327
1328   if (ind)
1329     {
1330       sd.addr = m32c_srcdest_fetch (st, sd, 4);
1331       sd.kind = srcdest_mem;
1332     }
1333
1334   return sd;
1335 }
1336
1337
1338 /* The r16c and r32c machines have instructions with similar
1339    semantics, but completely different machine language encodings.  So
1340    we break out the semantics into their own functions, and leave
1341    machine-specific decoding in m32c_analyze_prologue.
1342
1343    The following functions all expect their arguments already decoded,
1344    and they all return zero if analysis should continue past this
1345    instruction, or non-zero if analysis should stop.  */
1346
1347
1348 /* Simulate an 'enter SIZE' instruction in STATE.  */
1349 static int
1350 m32c_pv_enter (struct m32c_pv_state *state, int size)
1351 {
1352   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1353
1354   /* If simulating this store would require us to forget
1355      everything we know about the stack frame in the name of
1356      accuracy, it would be better to just quit now.  */
1357   if (pv_area_store_would_trash (state->stack, state->sp))
1358     return 1;
1359
1360   if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1361     return 1;
1362   state->fb = state->sp;
1363   state->sp = pv_add_constant (state->sp, -size);
1364
1365   return 0;
1366 }
1367
1368
1369 static int
1370 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1371                    int bit, int src, int size)
1372 {
1373   if (bit & src)
1374     {
1375       if (m32c_pv_push (state, reg, size))
1376         return 1;
1377     }
1378
1379   return 0;
1380 }
1381
1382
1383 /* Simulate a 'pushm SRC' instruction in STATE.  */
1384 static int
1385 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1386 {
1387   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1388
1389   /* The bits in SRC indicating which registers to save are:
1390      r0 r1 r2 r3 a0 a1 sb fb */
1391   return
1392     (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1393      || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1394      || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1395      || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1396      || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1397      || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1398      || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1399      || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1400 }
1401
1402 /* Return non-zero if VALUE is the first incoming argument register.  */
1403
1404 static int
1405 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1406 {
1407   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1408   return (value.kind == pvk_register
1409           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1410               ? (value.reg == tdep->r1->num)
1411               : (value.reg == tdep->r0->num))
1412           && value.k == 0);
1413 }
1414
1415 /* Return non-zero if VALUE is an incoming argument register.  */
1416
1417 static int
1418 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1419 {
1420   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1421   return (value.kind == pvk_register
1422           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1423               ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1424               : (value.reg == tdep->r0->num))
1425           && value.k == 0);
1426 }
1427
1428 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1429    argument register to its stack slot in STATE.  Such instructions
1430    should be included in the prologue, if possible.
1431
1432    The store is a spill if:
1433    - the value being stored is the original value of an argument register;
1434    - the value has not already been stored somewhere in STACK; and
1435    - LOC is a stack slot (e.g., a memory location whose address is
1436      relative to the original value of the SP).  */
1437
1438 static int
1439 m32c_is_arg_spill (struct m32c_pv_state *st, 
1440                    struct srcdest loc, 
1441                    pv_t value)
1442 {
1443   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1444
1445   return (m32c_is_arg_reg (st, value)
1446           && loc.kind == srcdest_mem
1447           && pv_is_register (loc.addr, tdep->sp->num)
1448           && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1449 }
1450
1451 /* Return non-zero if a store of VALUE to LOC is probably 
1452    copying the struct return address into an address register
1453    for immediate use.  This is basically a "spill" into the
1454    address register, instead of onto the stack. 
1455
1456    The prerequisites are:
1457    - value being stored is original value of the FIRST arg register;
1458    - value has not already been stored on stack; and
1459    - LOC is an address register (a0 or a1).  */
1460
1461 static int
1462 m32c_is_struct_return (struct m32c_pv_state *st,
1463                        struct srcdest loc, 
1464                        pv_t value)
1465 {
1466   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1467
1468   return (m32c_is_1st_arg_reg (st, value)
1469           && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1470           && loc.kind == srcdest_reg
1471           && (pv_is_register (*loc.reg, tdep->a0->num)
1472               || pv_is_register (*loc.reg, tdep->a1->num)));
1473 }
1474
1475 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1476    was a register save:
1477    - all the named registers should have their original values, and
1478    - the stack pointer should be at a constant offset from the
1479      original stack pointer.  */
1480 static int
1481 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1482 {
1483   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1484   /* The bits in SRC indicating which registers to save are:
1485      r0 r1 r2 r3 a0 a1 sb fb */
1486   return
1487     (pv_is_register (st->sp, tdep->sp->num)
1488      && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1489      && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1490      && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1491      && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1492      && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1493      && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1494      && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1495      && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1496 }
1497
1498
1499 /* Function for finding saved registers in a 'struct pv_area'; we pass
1500    this to pv_area_scan.
1501
1502    If VALUE is a saved register, ADDR says it was saved at a constant
1503    offset from the frame base, and SIZE indicates that the whole
1504    register was saved, record its offset in RESULT_UNTYPED.  */
1505 static void
1506 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1507 {
1508   struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1509   struct gdbarch *arch = prologue->arch;
1510   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1511
1512   /* Is this the unchanged value of some register being saved on the
1513      stack?  */
1514   if (value.kind == pvk_register
1515       && value.k == 0
1516       && pv_is_register (addr, tdep->sp->num))
1517     {
1518       /* Some registers require special handling: they're saved as a
1519          larger value than the register itself.  */
1520       CORE_ADDR saved_size = register_size (arch, value.reg);
1521
1522       if (value.reg == tdep->pc->num)
1523         saved_size = tdep->ret_addr_bytes;
1524       else if (register_type (arch, value.reg)
1525                == tdep->data_addr_reg_type)
1526         saved_size = tdep->push_addr_bytes;
1527
1528       if (size == saved_size)
1529         {
1530           /* Find which end of the saved value corresponds to our
1531              register.  */
1532           if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1533             prologue->reg_offset[value.reg]
1534               = (addr.k + saved_size - register_size (arch, value.reg));
1535           else
1536             prologue->reg_offset[value.reg] = addr.k;
1537         }
1538     }
1539 }
1540
1541
1542 /* Analyze the function prologue for ARCH at START, going no further
1543    than LIMIT, and place a description of what we found in
1544    PROLOGUE.  */
1545 static void
1546 m32c_analyze_prologue (struct gdbarch *arch,
1547                        CORE_ADDR start, CORE_ADDR limit,
1548                        struct m32c_prologue *prologue)
1549 {
1550   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1551   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1552   CORE_ADDR after_last_frame_related_insn;
1553   struct cleanup *back_to;
1554   struct m32c_pv_state st;
1555
1556   st.arch = arch;
1557   st.r0 = pv_register (tdep->r0->num, 0);
1558   st.r1 = pv_register (tdep->r1->num, 0);
1559   st.r2 = pv_register (tdep->r2->num, 0);
1560   st.r3 = pv_register (tdep->r3->num, 0);
1561   st.a0 = pv_register (tdep->a0->num, 0);
1562   st.a1 = pv_register (tdep->a1->num, 0);
1563   st.sb = pv_register (tdep->sb->num, 0);
1564   st.fb = pv_register (tdep->fb->num, 0);
1565   st.sp = pv_register (tdep->sp->num, 0);
1566   st.pc = pv_register (tdep->pc->num, 0);
1567   st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1568   back_to = make_cleanup_free_pv_area (st.stack);
1569
1570   /* Record that the call instruction has saved the return address on
1571      the stack.  */
1572   m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1573
1574   memset (prologue, 0, sizeof (*prologue));
1575   prologue->arch = arch;
1576   {
1577     int i;
1578     for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1579       prologue->reg_offset[i] = 1;
1580   }
1581
1582   st.scan_pc = after_last_frame_related_insn = start;
1583
1584   while (st.scan_pc < limit)
1585     {
1586       pv_t pre_insn_fb = st.fb;
1587       pv_t pre_insn_sp = st.sp;
1588
1589       /* In theory we could get in trouble by trying to read ahead
1590          here, when we only know we're expecting one byte.  In
1591          practice I doubt anyone will care, and it makes the rest of
1592          the code easier.  */
1593       if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1594         /* If we can't fetch the instruction from memory, stop here
1595            and hope for the best.  */
1596         break;
1597       st.next_addr = st.scan_pc;
1598
1599       /* The assembly instructions are written as they appear in the
1600          section of the processor manuals that describe the
1601          instruction encodings.
1602
1603          When a single assembly language instruction has several
1604          different machine-language encodings, the manual
1605          distinguishes them by a number in parens, before the
1606          mnemonic.  Those numbers are included, as well.
1607
1608          The srcdest decoding instructions have the same names as the
1609          analogous functions in the simulator.  */
1610       if (mach == bfd_mach_m16c)
1611         {
1612           /* (1) ENTER #imm8 */
1613           if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1614             {
1615               if (m32c_pv_enter (&st, st.insn[2]))
1616                 break;
1617               st.next_addr += 3;
1618             }
1619           /* (1) PUSHM src */
1620           else if (st.insn[0] == 0xec)
1621             {
1622               int src = st.insn[1];
1623               if (m32c_pv_pushm (&st, src))
1624                 break;
1625               st.next_addr += 2;
1626
1627               if (m32c_pushm_is_reg_save (&st, src))
1628                 after_last_frame_related_insn = st.next_addr;
1629             }
1630
1631           /* (6) MOV.size:G src, dest */
1632           else if ((st.insn[0] & 0xfe) == 0x72)
1633             {
1634               int size = (st.insn[0] & 0x01) ? 2 : 1;
1635               struct srcdest src;
1636               struct srcdest dest;
1637               pv_t src_value;
1638               st.next_addr += 2;
1639
1640               src
1641                 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1642               dest
1643                 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1644               src_value = m32c_srcdest_fetch (&st, src, size);
1645
1646               if (m32c_is_arg_spill (&st, dest, src_value))
1647                 after_last_frame_related_insn = st.next_addr;
1648               else if (m32c_is_struct_return (&st, dest, src_value))
1649                 after_last_frame_related_insn = st.next_addr;
1650
1651               if (m32c_srcdest_store (&st, dest, src_value, size))
1652                 break;
1653             }
1654
1655           /* (1) LDC #IMM16, sp */
1656           else if (st.insn[0] == 0xeb
1657                    && st.insn[1] == 0x50)
1658             {
1659               st.next_addr += 2;
1660               st.sp = pv_constant (m32c_udisp16 (&st));
1661             }
1662
1663           else
1664             /* We've hit some instruction we don't know how to simulate.
1665                Strictly speaking, we should set every value we're
1666                tracking to "unknown".  But we'll be optimistic, assume
1667                that we have enough information already, and stop
1668                analysis here.  */
1669             break;
1670         }
1671       else
1672         {
1673           int src_indirect = 0;
1674           int dest_indirect = 0;
1675           int i = 0;
1676
1677           gdb_assert (mach == bfd_mach_m32c);
1678
1679           /* Check for prefix bytes indicating indirect addressing.  */
1680           if (st.insn[0] == 0x41)
1681             {
1682               src_indirect = 1;
1683               i++;
1684             }
1685           else if (st.insn[0] == 0x09)
1686             {
1687               dest_indirect = 1;
1688               i++;
1689             }
1690           else if (st.insn[0] == 0x49)
1691             {
1692               src_indirect = dest_indirect = 1;
1693               i++;
1694             }
1695
1696           /* (1) ENTER #imm8 */
1697           if (st.insn[i] == 0xec)
1698             {
1699               if (m32c_pv_enter (&st, st.insn[i + 1]))
1700                 break;
1701               st.next_addr += 2;
1702             }
1703
1704           /* (1) PUSHM src */
1705           else if (st.insn[i] == 0x8f)
1706             {
1707               int src = st.insn[i + 1];
1708               if (m32c_pv_pushm (&st, src))
1709                 break;
1710               st.next_addr += 2;
1711
1712               if (m32c_pushm_is_reg_save (&st, src))
1713                 after_last_frame_related_insn = st.next_addr;
1714             }
1715
1716           /* (7) MOV.size:G src, dest */
1717           else if ((st.insn[i] & 0x80) == 0x80
1718                    && (st.insn[i + 1] & 0x0f) == 0x0b
1719                    && m32c_get_src23 (&st.insn[i]) < 20
1720                    && m32c_get_dest23 (&st.insn[i]) < 20)
1721             {
1722               struct srcdest src;
1723               struct srcdest dest;
1724               pv_t src_value;
1725               int bw = st.insn[i] & 0x01;
1726               int size = bw ? 2 : 1;
1727               st.next_addr += 2;
1728
1729               src
1730                 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1731                                     size, src_indirect);
1732               dest
1733                 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1734                                     size, dest_indirect);
1735               src_value = m32c_srcdest_fetch (&st, src, size);
1736
1737               if (m32c_is_arg_spill (&st, dest, src_value))
1738                 after_last_frame_related_insn = st.next_addr;
1739
1740               if (m32c_srcdest_store (&st, dest, src_value, size))
1741                 break;
1742             }
1743           /* (2) LDC #IMM24, sp */
1744           else if (st.insn[i] == 0xd5
1745                    && st.insn[i + 1] == 0x29)
1746             {
1747               st.next_addr += 2;
1748               st.sp = pv_constant (m32c_udisp24 (&st));
1749             }
1750           else
1751             /* We've hit some instruction we don't know how to simulate.
1752                Strictly speaking, we should set every value we're
1753                tracking to "unknown".  But we'll be optimistic, assume
1754                that we have enough information already, and stop
1755                analysis here.  */
1756             break;
1757         }
1758
1759       /* If this instruction changed the FB or decreased the SP (i.e.,
1760          allocated more stack space), then this may be a good place to
1761          declare the prologue finished.  However, there are some
1762          exceptions:
1763
1764          - If the instruction just changed the FB back to its original
1765            value, then that's probably a restore instruction.  The
1766            prologue should definitely end before that.
1767
1768          - If the instruction increased the value of the SP (that is,
1769            shrunk the frame), then it's probably part of a frame
1770            teardown sequence, and the prologue should end before
1771            that.  */
1772
1773       if (! pv_is_identical (st.fb, pre_insn_fb))
1774         {
1775           if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1776             after_last_frame_related_insn = st.next_addr;
1777         }
1778       else if (! pv_is_identical (st.sp, pre_insn_sp))
1779         {
1780           /* The comparison of the constants looks odd, there, because
1781              .k is unsigned.  All it really means is that the SP is
1782              lower than it was before the instruction.  */
1783           if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1784               && pv_is_register (st.sp,       tdep->sp->num)
1785               && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1786             after_last_frame_related_insn = st.next_addr;
1787         }
1788
1789       st.scan_pc = st.next_addr;
1790     }
1791
1792   /* Did we load a constant value into the stack pointer?  */
1793   if (pv_is_constant (st.sp))
1794     prologue->kind = prologue_first_frame;
1795
1796   /* Alternatively, did we initialize the frame pointer?  Remember
1797      that the CFA is the address after the return address.  */
1798   if (pv_is_register (st.fb, tdep->sp->num))
1799     {
1800       prologue->kind = prologue_with_frame_ptr;
1801       prologue->frame_ptr_offset = st.fb.k;
1802     }
1803
1804   /* Is the frame size a known constant?  Remember that frame_size is
1805      actually the offset from the CFA to the SP (i.e., a negative
1806      value).  */
1807   else if (pv_is_register (st.sp, tdep->sp->num))
1808     {
1809       prologue->kind = prologue_sans_frame_ptr;
1810       prologue->frame_size = st.sp.k;
1811     }
1812
1813   /* We haven't been able to make sense of this function's frame.  Treat
1814      it as the first frame.  */
1815   else
1816     prologue->kind = prologue_first_frame;
1817
1818   /* Record where all the registers were saved.  */
1819   pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1820
1821   prologue->prologue_end = after_last_frame_related_insn;
1822
1823   do_cleanups (back_to);
1824 }
1825
1826
1827 static CORE_ADDR
1828 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1829 {
1830   const char *name;
1831   CORE_ADDR func_addr, func_end, sal_end;
1832   struct m32c_prologue p;
1833
1834   /* Try to find the extent of the function that contains IP.  */
1835   if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1836     return ip;
1837
1838   /* Find end by prologue analysis.  */
1839   m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1840   /* Find end by line info.  */
1841   sal_end = skip_prologue_using_sal (gdbarch, ip);
1842   /* Return whichever is lower.  */
1843   if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1844     return sal_end;
1845   else
1846     return p.prologue_end;
1847 }
1848
1849
1850 \f
1851 /* Stack unwinding.  */
1852
1853 static struct m32c_prologue *
1854 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1855                              void **this_prologue_cache)
1856 {
1857   if (! *this_prologue_cache)
1858     {
1859       CORE_ADDR func_start = get_frame_func (this_frame);
1860       CORE_ADDR stop_addr = get_frame_pc (this_frame);
1861
1862       /* If we couldn't find any function containing the PC, then
1863          just initialize the prologue cache, but don't do anything.  */
1864       if (! func_start)
1865         stop_addr = func_start;
1866
1867       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1868       m32c_analyze_prologue (get_frame_arch (this_frame),
1869                              func_start, stop_addr, *this_prologue_cache);
1870     }
1871
1872   return *this_prologue_cache;
1873 }
1874
1875
1876 static CORE_ADDR
1877 m32c_frame_base (struct frame_info *this_frame,
1878                 void **this_prologue_cache)
1879 {
1880   struct m32c_prologue *p
1881     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1882   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1883
1884   /* In functions that use alloca, the distance between the stack
1885      pointer and the frame base varies dynamically, so we can't use
1886      the SP plus static information like prologue analysis to find the
1887      frame base.  However, such functions must have a frame pointer,
1888      to be able to restore the SP on exit.  So whenever we do have a
1889      frame pointer, use that to find the base.  */
1890   switch (p->kind)
1891     {
1892     case prologue_with_frame_ptr:
1893       {
1894         CORE_ADDR fb
1895           = get_frame_register_unsigned (this_frame, tdep->fb->num);
1896         return fb - p->frame_ptr_offset;
1897       }
1898
1899     case prologue_sans_frame_ptr:
1900       {
1901         CORE_ADDR sp
1902           = get_frame_register_unsigned (this_frame, tdep->sp->num);
1903         return sp - p->frame_size;
1904       }
1905
1906     case prologue_first_frame:
1907       return 0;
1908
1909     default:
1910       gdb_assert_not_reached ("unexpected prologue kind");
1911     }
1912 }
1913
1914
1915 static void
1916 m32c_this_id (struct frame_info *this_frame,
1917               void **this_prologue_cache,
1918               struct frame_id *this_id)
1919 {
1920   CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1921
1922   if (base)
1923     *this_id = frame_id_build (base, get_frame_func (this_frame));
1924   /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1925 }
1926
1927
1928 static struct value *
1929 m32c_prev_register (struct frame_info *this_frame,
1930                     void **this_prologue_cache, int regnum)
1931 {
1932   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1933   struct m32c_prologue *p
1934     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1935   CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1936   int reg_size = register_size (get_frame_arch (this_frame), regnum);
1937
1938   if (regnum == tdep->sp->num)
1939     return frame_unwind_got_constant (this_frame, regnum, frame_base);
1940
1941   /* If prologue analysis says we saved this register somewhere,
1942      return a description of the stack slot holding it.  */
1943   if (p->reg_offset[regnum] != 1)
1944     return frame_unwind_got_memory (this_frame, regnum,
1945                                     frame_base + p->reg_offset[regnum]);
1946
1947   /* Otherwise, presume we haven't changed the value of this
1948      register, and get it from the next frame.  */
1949   return frame_unwind_got_register (this_frame, regnum, regnum);
1950 }
1951
1952
1953 static const struct frame_unwind m32c_unwind = {
1954   NORMAL_FRAME,
1955   default_frame_unwind_stop_reason,
1956   m32c_this_id,
1957   m32c_prev_register,
1958   NULL,
1959   default_frame_sniffer
1960 };
1961
1962
1963 static CORE_ADDR
1964 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1965 {
1966   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1967   return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1968 }
1969
1970
1971 static CORE_ADDR
1972 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1973 {
1974   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1975   return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1976 }
1977
1978 \f
1979 /* Inferior calls.  */
1980
1981 /* The calling conventions, according to GCC:
1982
1983    r8c, m16c
1984    ---------
1985    First arg may be passed in r1l or r1 if it (1) fits (QImode or
1986    HImode), (2) is named, and (3) is an integer or pointer type (no
1987    structs, floats, etc).  Otherwise, it's passed on the stack.
1988
1989    Second arg may be passed in r2, same restrictions (but not QImode),
1990    even if the first arg is passed on the stack.
1991
1992    Third and further args are passed on the stack.  No padding is
1993    used, stack "alignment" is 8 bits.
1994
1995    m32cm, m32c
1996    -----------
1997
1998    First arg may be passed in r0l or r0, same restrictions as above.
1999
2000    Second and further args are passed on the stack.  Padding is used
2001    after QImode parameters (i.e. lower-addressed byte is the value,
2002    higher-addressed byte is the padding), stack "alignment" is 16
2003    bits.  */
2004
2005
2006 /* Return true if TYPE is a type that can be passed in registers.  (We
2007    ignore the size, and pay attention only to the type code;
2008    acceptable sizes depends on which register is being considered to
2009    hold it.)  */
2010 static int
2011 m32c_reg_arg_type (struct type *type)
2012 {
2013   enum type_code code = TYPE_CODE (type);
2014
2015   return (code == TYPE_CODE_INT
2016           || code == TYPE_CODE_ENUM
2017           || code == TYPE_CODE_PTR
2018           || code == TYPE_CODE_REF
2019           || code == TYPE_CODE_BOOL
2020           || code == TYPE_CODE_CHAR);
2021 }
2022
2023
2024 static CORE_ADDR
2025 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2026                       struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2027                       struct value **args, CORE_ADDR sp, int struct_return,
2028                       CORE_ADDR struct_addr)
2029 {
2030   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2031   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2032   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2033   CORE_ADDR cfa;
2034   int i;
2035
2036   /* The number of arguments given in this function's prototype, or
2037      zero if it has a non-prototyped function type.  The m32c ABI
2038      passes arguments mentioned in the prototype differently from
2039      those in the ellipsis of a varargs function, or from those passed
2040      to a non-prototyped function.  */
2041   int num_prototyped_args = 0;
2042
2043   {
2044     struct type *func_type = value_type (function);
2045
2046     /* Dereference function pointer types.  */
2047     if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2048       func_type = TYPE_TARGET_TYPE (func_type);
2049
2050     gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2051                 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2052
2053 #if 0
2054     /* The ABI description in gcc/config/m32c/m32c.abi says that
2055        we need to handle prototyped and non-prototyped functions
2056        separately, but the code in GCC doesn't actually do so.  */
2057     if (TYPE_PROTOTYPED (func_type))
2058 #endif
2059       num_prototyped_args = TYPE_NFIELDS (func_type);
2060   }
2061
2062   /* First, if the function returns an aggregate by value, push a
2063      pointer to a buffer for it.  This doesn't affect the way
2064      subsequent arguments are allocated to registers.  */
2065   if (struct_return)
2066     {
2067       int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2068       sp -= ptr_len;
2069       write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2070     }
2071
2072   /* Push the arguments.  */
2073   for (i = nargs - 1; i >= 0; i--)
2074     {
2075       struct value *arg = args[i];
2076       const gdb_byte *arg_bits = value_contents (arg);
2077       struct type *arg_type = value_type (arg);
2078       ULONGEST arg_size = TYPE_LENGTH (arg_type);
2079
2080       /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2081       if (i == 0
2082           && arg_size <= 2
2083           && i < num_prototyped_args
2084           && m32c_reg_arg_type (arg_type))
2085         {
2086           /* Extract and re-store as an integer as a terse way to make
2087              sure it ends up in the least significant end of r1.  (GDB
2088              should avoid assuming endianness, even on uni-endian
2089              processors.)  */
2090           ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2091                                                  byte_order);
2092           struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2093           regcache_cooked_write_unsigned (regcache, reg->num, u);
2094         }
2095
2096       /* Can it go in r2?  */
2097       else if (mach == bfd_mach_m16c
2098                && i == 1
2099                && arg_size == 2
2100                && i < num_prototyped_args
2101                && m32c_reg_arg_type (arg_type))
2102         regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2103
2104       /* Everything else goes on the stack.  */
2105       else
2106         {
2107           sp -= arg_size;
2108
2109           /* Align the stack.  */
2110           if (mach == bfd_mach_m32c)
2111             sp &= ~1;
2112
2113           write_memory (sp, arg_bits, arg_size);
2114         }
2115     }
2116
2117   /* This is the CFA we use to identify the dummy frame.  */
2118   cfa = sp;
2119
2120   /* Push the return address.  */
2121   sp -= tdep->ret_addr_bytes;
2122   write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2123                                  bp_addr);
2124
2125   /* Update the stack pointer.  */
2126   regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2127
2128   /* We need to borrow an odd trick from the i386 target here.
2129
2130      The value we return from this function gets used as the stack
2131      address (the CFA) for the dummy frame's ID.  The obvious thing is
2132      to return the new TOS.  However, that points at the return
2133      address, saved on the stack, which is inconsistent with the CFA's
2134      described by GCC's DWARF 2 .debug_frame information: DWARF 2
2135      .debug_frame info uses the address immediately after the saved
2136      return address.  So you end up with a dummy frame whose CFA
2137      points at the return address, but the frame for the function
2138      being called has a CFA pointing after the return address: the
2139      younger CFA is *greater than* the older CFA.  The sanity checks
2140      in frame.c don't like that.
2141
2142      So we try to be consistent with the CFA's used by DWARF 2.
2143      Having a dummy frame and a real frame with the *same* CFA is
2144      tolerable.  */
2145   return cfa;
2146 }
2147
2148
2149 static struct frame_id
2150 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2151 {
2152   /* This needs to return a frame ID whose PC is the return address
2153      passed to m32c_push_dummy_call, and whose stack_addr is the SP
2154      m32c_push_dummy_call returned.
2155
2156      m32c_unwind_sp gives us the CFA, which is the value the SP had
2157      before the return address was pushed.  */
2158   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2159   CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2160   return frame_id_build (sp, get_frame_pc (this_frame));
2161 }
2162
2163
2164 \f
2165 /* Return values.  */
2166
2167 /* Return value conventions, according to GCC:
2168
2169    r8c, m16c
2170    ---------
2171
2172    QImode in r0l
2173    HImode in r0
2174    SImode in r2r0
2175    near pointer in r0
2176    far pointer in r2r0
2177
2178    Aggregate values (regardless of size) are returned by pushing a
2179    pointer to a temporary area on the stack after the args are pushed.
2180    The function fills in this area with the value.  Note that this
2181    pointer on the stack does not affect how register arguments, if any,
2182    are configured.
2183
2184    m32cm, m32c
2185    -----------
2186    Same.  */
2187
2188 /* Return non-zero if values of type TYPE are returned by storing them
2189    in a buffer whose address is passed on the stack, ahead of the
2190    other arguments.  */
2191 static int
2192 m32c_return_by_passed_buf (struct type *type)
2193 {
2194   enum type_code code = TYPE_CODE (type);
2195
2196   return (code == TYPE_CODE_STRUCT
2197           || code == TYPE_CODE_UNION);
2198 }
2199
2200 static enum return_value_convention
2201 m32c_return_value (struct gdbarch *gdbarch,
2202                    struct value *function,
2203                    struct type *valtype,
2204                    struct regcache *regcache,
2205                    gdb_byte *readbuf,
2206                    const gdb_byte *writebuf)
2207 {
2208   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2209   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2210   enum return_value_convention conv;
2211   ULONGEST valtype_len = TYPE_LENGTH (valtype);
2212
2213   if (m32c_return_by_passed_buf (valtype))
2214     conv = RETURN_VALUE_STRUCT_CONVENTION;
2215   else
2216     conv = RETURN_VALUE_REGISTER_CONVENTION;
2217
2218   if (readbuf)
2219     {
2220       /* We should never be called to find values being returned by
2221          RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2222          unless we made the call ourselves.  */
2223       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2224
2225       gdb_assert (valtype_len <= 8);
2226
2227       /* Anything that fits in r0 is returned there.  */
2228       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2229         {
2230           ULONGEST u;
2231           regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2232           store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2233         }
2234       else
2235         {
2236           /* Everything else is passed in mem0, using as many bytes as
2237              needed.  This is not what the Renesas tools do, but it's
2238              what GCC does at the moment.  */
2239           struct bound_minimal_symbol mem0
2240             = lookup_minimal_symbol ("mem0", NULL, NULL);
2241
2242           if (! mem0.minsym)
2243             error (_("The return value is stored in memory at 'mem0', "
2244                      "but GDB cannot find\n"
2245                      "its address."));
2246           read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2247         }
2248     }
2249
2250   if (writebuf)
2251     {
2252       /* We should never be called to store values to be returned
2253          using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2254          finding the buffer, unless we made the call ourselves.  */
2255       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2256
2257       gdb_assert (valtype_len <= 8);
2258
2259       /* Anything that fits in r0 is returned there.  */
2260       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2261         {
2262           ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2263                                                  byte_order);
2264           regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2265         }
2266       else
2267         {
2268           /* Everything else is passed in mem0, using as many bytes as
2269              needed.  This is not what the Renesas tools do, but it's
2270              what GCC does at the moment.  */
2271           struct bound_minimal_symbol mem0
2272             = lookup_minimal_symbol ("mem0", NULL, NULL);
2273
2274           if (! mem0.minsym)
2275             error (_("The return value is stored in memory at 'mem0', "
2276                      "but GDB cannot find\n"
2277                      " its address."));
2278           write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2279         }
2280     }
2281
2282   return conv;
2283 }
2284
2285
2286 \f
2287 /* Trampolines.  */
2288
2289 /* The m16c and m32c use a trampoline function for indirect function
2290    calls.  An indirect call looks like this:
2291
2292              ... push arguments ...
2293              ... push target function address ...
2294              jsr.a m32c_jsri16
2295
2296    The code for m32c_jsri16 looks like this:
2297
2298      m32c_jsri16:
2299
2300              # Save return address.
2301              pop.w      m32c_jsri_ret
2302              pop.b      m32c_jsri_ret+2
2303
2304              # Store target function address.
2305              pop.w      m32c_jsri_addr
2306
2307              # Re-push return address.
2308              push.b     m32c_jsri_ret+2
2309              push.w     m32c_jsri_ret
2310
2311              # Call the target function.
2312              jmpi.a     m32c_jsri_addr
2313
2314    Without further information, GDB will treat calls to m32c_jsri16
2315    like calls to any other function.  Since m32c_jsri16 doesn't have
2316    debugging information, that normally means that GDB sets a step-
2317    resume breakpoint and lets the program continue --- which is not
2318    what the user wanted.  (Giving the trampoline debugging info
2319    doesn't help: the user expects the program to stop in the function
2320    their program is calling, not in some trampoline code they've never
2321    seen before.)
2322
2323    The gdbarch_skip_trampoline_code method tells GDB how to step
2324    through such trampoline functions transparently to the user.  When
2325    given the address of a trampoline function's first instruction,
2326    gdbarch_skip_trampoline_code should return the address of the first
2327    instruction of the function really being called.  If GDB decides it
2328    wants to step into that function, it will set a breakpoint there
2329    and silently continue to it.
2330
2331    We recognize the trampoline by name, and extract the target address
2332    directly from the stack.  This isn't great, but recognizing by its
2333    code sequence seems more fragile.  */
2334
2335 static CORE_ADDR
2336 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2337 {
2338   struct gdbarch *gdbarch = get_frame_arch (frame);
2339   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2340   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2341
2342   /* It would be nicer to simply look up the addresses of known
2343      trampolines once, and then compare stop_pc with them.  However,
2344      we'd need to ensure that that cached address got invalidated when
2345      someone loaded a new executable, and I'm not quite sure of the
2346      best way to do that.  find_pc_partial_function does do some
2347      caching, so we'll see how this goes.  */
2348   const char *name;
2349   CORE_ADDR start, end;
2350
2351   if (find_pc_partial_function (stop_pc, &name, &start, &end))
2352     {
2353       /* Are we stopped at the beginning of the trampoline function?  */
2354       if (strcmp (name, "m32c_jsri16") == 0
2355           && stop_pc == start)
2356         {
2357           /* Get the stack pointer.  The return address is at the top,
2358              and the target function's address is just below that.  We
2359              know it's a two-byte address, since the trampoline is
2360              m32c_jsri*16*.  */
2361           CORE_ADDR sp = get_frame_sp (get_current_frame ());
2362           CORE_ADDR target
2363             = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2364                                             2, byte_order);
2365
2366           /* What we have now is the address of a jump instruction.
2367              What we need is the destination of that jump.
2368              The opcode is 1 byte, and the destination is the next 3 bytes.  */
2369
2370           target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2371           return target;
2372         }
2373     }
2374
2375   return 0;
2376 }
2377
2378
2379 /* Address/pointer conversions.  */
2380
2381 /* On the m16c, there is a 24-bit address space, but only a very few
2382    instructions can generate addresses larger than 0xffff: jumps,
2383    jumps to subroutines, and the lde/std (load/store extended)
2384    instructions.
2385
2386    Since GCC can only support one size of pointer, we can't have
2387    distinct 'near' and 'far' pointer types; we have to pick one size
2388    for everything.  If we wanted to use 24-bit pointers, then GCC
2389    would have to use lde and ste for all memory references, which
2390    would be terrible for performance and code size.  So the GNU
2391    toolchain uses 16-bit pointers for everything, and gives up the
2392    ability to have pointers point outside the first 64k of memory.
2393
2394    However, as a special hack, we let the linker place functions at
2395    addresses above 0xffff, as long as it also places a trampoline in
2396    the low 64k for every function whose address is taken.  Each
2397    trampoline consists of a single jmp.a instruction that jumps to the
2398    function's real entry point.  Pointers to functions can be 16 bits
2399    long, even though the functions themselves are at higher addresses:
2400    the pointers refer to the trampolines, not the functions.
2401
2402    This complicates things for GDB, however: given the address of a
2403    function (from debug info or linker symbols, say) which could be
2404    anywhere in the 24-bit address space, how can we find an
2405    appropriate 16-bit value to use as a pointer to it?
2406
2407    If the linker has not generated a trampoline for the function,
2408    we're out of luck.  Well, I guess we could malloc some space and
2409    write a jmp.a instruction to it, but I'm not going to get into that
2410    at the moment.
2411
2412    If the linker has generated a trampoline for the function, then it
2413    also emitted a symbol for the trampoline: if the function's linker
2414    symbol is named NAME, then the function's trampoline's linker
2415    symbol is named NAME.plt.
2416
2417    So, given a code address:
2418    - We try to find a linker symbol at that address.
2419    - If we find such a symbol named NAME, we look for a linker symbol
2420      named NAME.plt.
2421    - If we find such a symbol, we assume it is a trampoline, and use
2422      its address as the pointer value.
2423
2424    And, given a function pointer:
2425    - We try to find a linker symbol at that address named NAME.plt.
2426    - If we find such a symbol, we look for a linker symbol named NAME.
2427    - If we find that, we provide that as the function's address.
2428    - If any of the above steps fail, we return the original address
2429      unchanged; it might really be a function in the low 64k.
2430
2431    See?  You *knew* there was a reason you wanted to be a computer
2432    programmer!  :)  */
2433
2434 static void
2435 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2436                               struct type *type, gdb_byte *buf, CORE_ADDR addr)
2437 {
2438   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439   enum type_code target_code;
2440   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2441               TYPE_CODE (type) == TYPE_CODE_REF);
2442
2443   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2444
2445   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2446     {
2447       const char *func_name;
2448       char *tramp_name;
2449       struct bound_minimal_symbol tramp_msym;
2450
2451       /* Try to find a linker symbol at this address.  */
2452       struct bound_minimal_symbol func_msym
2453         = lookup_minimal_symbol_by_pc (addr);
2454
2455       if (! func_msym.minsym)
2456         error (_("Cannot convert code address %s to function pointer:\n"
2457                "couldn't find a symbol at that address, to find trampoline."),
2458                paddress (gdbarch, addr));
2459
2460       func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2461       tramp_name = xmalloc (strlen (func_name) + 5);
2462       strcpy (tramp_name, func_name);
2463       strcat (tramp_name, ".plt");
2464
2465       /* Try to find a linker symbol for the trampoline.  */
2466       tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2467
2468       /* We've either got another copy of the name now, or don't need
2469          the name any more.  */
2470       xfree (tramp_name);
2471
2472       if (! tramp_msym.minsym)
2473         {
2474           CORE_ADDR ptrval;
2475
2476           /* No PLT entry found.  Mask off the upper bits of the address
2477              to make a pointer.  As noted in the warning to the user
2478              below, this value might be useful if converted back into
2479              an address by GDB, but will otherwise, almost certainly,
2480              be garbage.
2481              
2482              Using this masked result does seem to be useful
2483              in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2484              PASSes.  These results appear to be correct as well.
2485              
2486              We print a warning here so that the user can make a
2487              determination about whether the result is useful or not.  */
2488           ptrval = addr & 0xffff;
2489
2490           warning (_("Cannot convert code address %s to function pointer:\n"
2491                    "couldn't find trampoline named '%s.plt'.\n"
2492                    "Returning pointer value %s instead; this may produce\n"
2493                    "a useful result if converted back into an address by GDB,\n"
2494                    "but will most likely not be useful otherwise.\n"),
2495                    paddress (gdbarch, addr), func_name,
2496                    paddress (gdbarch, ptrval));
2497
2498           addr = ptrval;
2499
2500         }
2501       else
2502         {
2503           /* The trampoline's address is our pointer.  */
2504           addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2505         }
2506     }
2507
2508   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2509 }
2510
2511
2512 static CORE_ADDR
2513 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2514                               struct type *type, const gdb_byte *buf)
2515 {
2516   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2517   CORE_ADDR ptr;
2518   enum type_code target_code;
2519
2520   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2521               TYPE_CODE (type) == TYPE_CODE_REF);
2522
2523   ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2524
2525   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2526
2527   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2528     {
2529       /* See if there is a minimal symbol at that address whose name is
2530          "NAME.plt".  */
2531       struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2532
2533       if (ptr_msym.minsym)
2534         {
2535           const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2536           int len = strlen (ptr_msym_name);
2537
2538           if (len > 4
2539               && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2540             {
2541               struct bound_minimal_symbol func_msym;
2542               /* We have a .plt symbol; try to find the symbol for the
2543                  corresponding function.
2544
2545                  Since the trampoline contains a jump instruction, we
2546                  could also just extract the jump's target address.  I
2547                  don't see much advantage one way or the other.  */
2548               char *func_name = xmalloc (len - 4 + 1);
2549               memcpy (func_name, ptr_msym_name, len - 4);
2550               func_name[len - 4] = '\0';
2551               func_msym
2552                 = lookup_minimal_symbol (func_name, NULL, NULL);
2553
2554               /* If we do have such a symbol, return its value as the
2555                  function's true address.  */
2556               if (func_msym.minsym)
2557                 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2558             }
2559         }
2560       else
2561         {
2562           int aspace;
2563
2564           for (aspace = 1; aspace <= 15; aspace++)
2565             {
2566               ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2567               
2568               if (ptr_msym.minsym)
2569                 ptr |= aspace << 16;
2570             }
2571         }
2572     }
2573
2574   return ptr;
2575 }
2576
2577 static void
2578 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2579                             int *frame_regnum,
2580                             LONGEST *frame_offset)
2581 {
2582   const char *name;
2583   CORE_ADDR func_addr, func_end;
2584   struct m32c_prologue p;
2585
2586   struct regcache *regcache = get_current_regcache ();
2587   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2588   
2589   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2590     internal_error (__FILE__, __LINE__,
2591                     _("No virtual frame pointer available"));
2592
2593   m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2594   switch (p.kind)
2595     {
2596     case prologue_with_frame_ptr:
2597       *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2598       *frame_offset = p.frame_ptr_offset;
2599       break;
2600     case prologue_sans_frame_ptr:
2601       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2602       *frame_offset = p.frame_size;
2603       break;
2604     default:
2605       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2606       *frame_offset = 0;
2607       break;
2608     }
2609   /* Sanity check */
2610   if (*frame_regnum > gdbarch_num_regs (gdbarch))
2611     internal_error (__FILE__, __LINE__,
2612                     _("No virtual frame pointer available"));
2613 }
2614
2615 \f
2616 /* Initialization.  */
2617
2618 static struct gdbarch *
2619 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2620 {
2621   struct gdbarch *arch;
2622   struct gdbarch_tdep *tdep;
2623   unsigned long mach = info.bfd_arch_info->mach;
2624
2625   /* Find a candidate among the list of architectures we've created
2626      already.  */
2627   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2628        arches != NULL;
2629        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2630     return arches->gdbarch;
2631
2632   tdep = xcalloc (1, sizeof (*tdep));
2633   arch = gdbarch_alloc (&info, tdep);
2634
2635   /* Essential types.  */
2636   make_types (arch);
2637
2638   /* Address/pointer conversions.  */
2639   if (mach == bfd_mach_m16c)
2640     {
2641       set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2642       set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2643     }
2644
2645   /* Register set.  */
2646   make_regs (arch);
2647
2648   /* Disassembly.  */
2649   set_gdbarch_print_insn (arch, print_insn_m32c);
2650
2651   /* Breakpoints.  */
2652   set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2653
2654   /* Prologue analysis and unwinding.  */
2655   set_gdbarch_inner_than (arch, core_addr_lessthan);
2656   set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2657   set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2658   set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2659 #if 0
2660   /* I'm dropping the dwarf2 sniffer because it has a few problems.
2661      They may be in the dwarf2 cfi code in GDB, or they may be in
2662      the debug info emitted by the upstream toolchain.  I don't 
2663      know which, but I do know that the prologue analyzer works better.
2664      MVS 04/13/06  */
2665   dwarf2_append_sniffers (arch);
2666 #endif
2667   frame_unwind_append_unwinder (arch, &m32c_unwind);
2668
2669   /* Inferior calls.  */
2670   set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2671   set_gdbarch_return_value (arch, m32c_return_value);
2672   set_gdbarch_dummy_id (arch, m32c_dummy_id);
2673
2674   /* Trampolines.  */
2675   set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2676
2677   set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2678
2679   /* m32c function boundary addresses are not necessarily even.
2680      Therefore, the `vbit', which indicates a pointer to a virtual
2681      member function, is stored in the delta field, rather than as
2682      the low bit of a function pointer address.
2683
2684      In order to verify this, see the definition of
2685      TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2686      definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
2687   set_gdbarch_vbit_in_delta (arch, 1);
2688
2689   return arch;
2690 }
2691
2692 /* Provide a prototype to silence -Wmissing-prototypes.  */
2693 extern initialize_file_ftype _initialize_m32c_tdep;
2694
2695 void
2696 _initialize_m32c_tdep (void)
2697 {
2698   register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2699
2700   m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2701 }