Fix struct, union, and enum nesting in C++
[external/binutils.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3    Copyright (C) 2004-2015 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40 \f
41 /* The m32c tdep structure.  */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48    BUF --- in either direction.  */
49 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
50                                                 struct regcache *cache,
51                                                 void *buf);
52
53 struct m32c_reg
54 {
55   /* The name of this register.  */
56   const char *name;
57
58   /* Its type.  */
59   struct type *type;
60
61   /* The architecture this register belongs to.  */
62   struct gdbarch *arch;
63
64   /* Its GDB register number.  */
65   int num;
66
67   /* Its sim register number.  */
68   int sim_num;
69
70   /* Its DWARF register number, or -1 if it doesn't have one.  */
71   int dwarf_num;
72
73   /* Register group memberships.  */
74   unsigned int general_p : 1;
75   unsigned int dma_p : 1;
76   unsigned int system_p : 1;
77   unsigned int save_restore_p : 1;
78
79   /* Functions to read its value from a regcache, and write its value
80      to a regcache.  */
81   m32c_move_reg_t *read, *write;
82
83   /* Data for READ and WRITE functions.  The exact meaning depends on
84      the specific functions selected; see the comments for those
85      functions.  */
86   struct m32c_reg *rx, *ry;
87   int n;
88 };
89
90
91 /* An overestimate of the number of raw and pseudoregisters we will
92    have.  The exact answer depends on the variant of the architecture
93    at hand, but we can use this to declare statically allocated
94    arrays, and bump it up when needed.  */
95 #define M32C_MAX_NUM_REGS (75)
96
97 /* The largest assigned DWARF register number.  */
98 #define M32C_MAX_DWARF_REGNUM (40)
99
100
101 struct gdbarch_tdep
102 {
103   /* All the registers for this variant, indexed by GDB register
104      number, and the number of registers present.  */
105   struct m32c_reg regs[M32C_MAX_NUM_REGS];
106
107   /* The number of valid registers.  */
108   int num_regs;
109
110   /* Interesting registers.  These are pointers into REGS.  */
111   struct m32c_reg *pc, *flg;
112   struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
113   struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
114   struct m32c_reg *sb, *fb, *sp;
115
116   /* A table indexed by DWARF register numbers, pointing into
117      REGS.  */
118   struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
119
120   /* Types for this architecture.  We can't use the builtin_type_foo
121      types, because they're not initialized when building a gdbarch
122      structure.  */
123   struct type *voyd, *ptr_voyd, *func_voyd;
124   struct type *uint8, *uint16;
125   struct type *int8, *int16, *int32, *int64;
126
127   /* The types for data address and code address registers.  */
128   struct type *data_addr_reg_type, *code_addr_reg_type;
129
130   /* The number of bytes a return address pushed by a 'jsr' instruction
131      occupies on the stack.  */
132   int ret_addr_bytes;
133
134   /* The number of bytes an address register occupies on the stack
135      when saved by an 'enter' or 'pushm' instruction.  */
136   int push_addr_bytes;
137 };
138
139 \f
140 /* Types.  */
141
142 static void
143 make_types (struct gdbarch *arch)
144 {
145   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
146   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
147   int data_addr_reg_bits, code_addr_reg_bits;
148   char type_name[50];
149
150 #if 0
151   /* This is used to clip CORE_ADDR values, so this value is
152      appropriate both on the m32c, where pointers are 32 bits long,
153      and on the m16c, where pointers are sixteen bits long, but there
154      may be code above the 64k boundary.  */
155   set_gdbarch_addr_bit (arch, 24);
156 #else
157   /* GCC uses 32 bits for addrs in the dwarf info, even though
158      only 16/24 bits are used.  Setting addr_bit to 24 causes
159      errors in reading the dwarf addresses.  */
160   set_gdbarch_addr_bit (arch, 32);
161 #endif
162
163   set_gdbarch_int_bit (arch, 16);
164   switch (mach)
165     {
166     case bfd_mach_m16c:
167       data_addr_reg_bits = 16;
168       code_addr_reg_bits = 24;
169       set_gdbarch_ptr_bit (arch, 16);
170       tdep->ret_addr_bytes = 3;
171       tdep->push_addr_bytes = 2;
172       break;
173
174     case bfd_mach_m32c:
175       data_addr_reg_bits = 24;
176       code_addr_reg_bits = 24;
177       set_gdbarch_ptr_bit (arch, 32);
178       tdep->ret_addr_bytes = 4;
179       tdep->push_addr_bytes = 4;
180       break;
181
182     default:
183       gdb_assert_not_reached ("unexpected mach");
184     }
185
186   /* The builtin_type_mumble variables are sometimes uninitialized when
187      this is called, so we avoid using them.  */
188   tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
189   tdep->ptr_voyd
190     = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
191                  NULL);
192   TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
193   TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
194   tdep->func_voyd = lookup_function_type (tdep->voyd);
195
196   xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
197              gdbarch_bfd_arch_info (arch)->printable_name);
198   tdep->data_addr_reg_type
199     = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
200                  xstrdup (type_name));
201   TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
202   TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
203
204   xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
205              gdbarch_bfd_arch_info (arch)->printable_name);
206   tdep->code_addr_reg_type
207     = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
208                  xstrdup (type_name));
209   TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
210   TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
211
212   tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
213   tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
214   tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
215   tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
216   tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
217   tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
218 }
219
220
221 \f
222 /* Register set.  */
223
224 static const char *
225 m32c_register_name (struct gdbarch *gdbarch, int num)
226 {
227   return gdbarch_tdep (gdbarch)->regs[num].name;
228 }
229
230
231 static struct type *
232 m32c_register_type (struct gdbarch *arch, int reg_nr)
233 {
234   return gdbarch_tdep (arch)->regs[reg_nr].type;
235 }
236
237
238 static int
239 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
240 {
241   return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
242 }
243
244
245 static int
246 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
247 {
248   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249   if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
250       && tdep->dwarf_regs[reg_nr])
251     return tdep->dwarf_regs[reg_nr]->num;
252   else
253     /* The DWARF CFI code expects to see -1 for invalid register
254        numbers.  */
255     return -1;
256 }
257
258
259 static int
260 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
261                           struct reggroup *group)
262 {
263   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264   struct m32c_reg *reg = &tdep->regs[regnum];
265
266   /* The anonymous raw registers aren't in any groups.  */
267   if (! reg->name)
268     return 0;
269
270   if (group == all_reggroup)
271     return 1;
272
273   if (group == general_reggroup
274       && reg->general_p)
275     return 1;
276
277   if (group == m32c_dma_reggroup
278       && reg->dma_p)
279     return 1;
280
281   if (group == system_reggroup
282       && reg->system_p)
283     return 1;
284
285   /* Since the m32c DWARF register numbers refer to cooked registers, not
286      raw registers, and frame_pop depends on the save and restore groups
287      containing registers the DWARF CFI will actually mention, our save
288      and restore groups are cooked registers, not raw registers.  (This is
289      why we can't use the default reggroup function.)  */
290   if ((group == save_reggroup
291        || group == restore_reggroup)
292       && reg->save_restore_p)
293     return 1;
294
295   return 0;
296 }
297
298
299 /* Register move functions.  We declare them here using
300    m32c_move_reg_t to check the types.  */
301 static m32c_move_reg_t m32c_raw_read,      m32c_raw_write;
302 static m32c_move_reg_t m32c_banked_read,   m32c_banked_write;
303 static m32c_move_reg_t m32c_sb_read,       m32c_sb_write;
304 static m32c_move_reg_t m32c_part_read,     m32c_part_write;
305 static m32c_move_reg_t m32c_cat_read,      m32c_cat_write;
306 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
307
308
309 /* Copy the value of the raw register REG from CACHE to BUF.  */
310 static enum register_status
311 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
312 {
313   return regcache_raw_read (cache, reg->num, buf);
314 }
315
316
317 /* Copy the value of the raw register REG from BUF to CACHE.  */
318 static enum register_status
319 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
320 {
321   regcache_raw_write (cache, reg->num, (const void *) buf);
322
323   return REG_VALID;
324 }
325
326
327 /* Return the value of the 'flg' register in CACHE.  */
328 static int
329 m32c_read_flg (struct regcache *cache)
330 {
331   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
332   ULONGEST flg;
333   regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
334   return flg & 0xffff;
335 }
336
337
338 /* Evaluate the real register number of a banked register.  */
339 static struct m32c_reg *
340 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
341 {
342   return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
343 }
344
345
346 /* Move the value of a banked register from CACHE to BUF.
347    If the value of the 'flg' register in CACHE has any of the bits
348    masked in REG->n set, then read REG->ry.  Otherwise, read
349    REG->rx.  */
350 static enum register_status
351 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
352 {
353   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
354   return regcache_raw_read (cache, bank_reg->num, buf);
355 }
356
357
358 /* Move the value of a banked register from BUF to CACHE.
359    If the value of the 'flg' register in CACHE has any of the bits
360    masked in REG->n set, then write REG->ry.  Otherwise, write
361    REG->rx.  */
362 static enum register_status
363 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
364 {
365   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
366   regcache_raw_write (cache, bank_reg->num, (const void *) buf);
367
368   return REG_VALID;
369 }
370
371
372 /* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
373    banked register; on bfd_mach_m16c, it's not.  */
374 static enum register_status
375 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
376 {
377   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
378     return m32c_raw_read (reg->rx, cache, buf);
379   else
380     return m32c_banked_read (reg, cache, buf);
381 }
382
383
384 /* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
385    banked register; on bfd_mach_m16c, it's not.  */
386 static enum register_status
387 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
388 {
389   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
390     m32c_raw_write (reg->rx, cache, buf);
391   else
392     m32c_banked_write (reg, cache, buf);
393
394   return REG_VALID;
395 }
396
397
398 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
399    and *LEN_P to the offset and length, in bytes, of the part REG
400    occupies in its underlying register.  The offset is from the
401    lower-addressed end, regardless of the architecture's endianness.
402    (The M32C family is always little-endian, but let's keep those
403    assumptions out of here.)  */
404 static void
405 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
406 {
407   /* The length of the containing register, of which REG is one part.  */
408   int containing_len = TYPE_LENGTH (reg->rx->type);
409
410   /* The length of one "element" in our imaginary array.  */
411   int elt_len = TYPE_LENGTH (reg->type);
412
413   /* The offset of REG's "element" from the least significant end of
414      the containing register.  */
415   int elt_offset = reg->n * elt_len;
416
417   /* If we extend off the end, trim the length of the element.  */
418   if (elt_offset + elt_len > containing_len)
419     {
420       elt_len = containing_len - elt_offset;
421       /* We shouldn't be declaring partial registers that go off the
422          end of their containing registers.  */
423       gdb_assert (elt_len > 0);
424     }
425
426   /* Flip the offset around if we're big-endian.  */
427   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
428     elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
429
430   *offset_p = elt_offset;
431   *len_p = elt_len;
432 }
433
434
435 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
436    to BUF.  Treating the value of the register REG->rx as an array of
437    REG->type values, where higher indices refer to more significant
438    bits, read the value of the REG->n'th element.  */
439 static enum register_status
440 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
441 {
442   int offset, len;
443
444   memset (buf, 0, TYPE_LENGTH (reg->type));
445   m32c_find_part (reg, &offset, &len);
446   return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
447 }
448
449
450 /* Move the value of a banked register from BUF to CACHE.
451    Treating the value of the register REG->rx as an array of REG->type
452    values, where higher indices refer to more significant bits, write
453    the value of the REG->n'th element.  */
454 static enum register_status
455 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
456 {
457   int offset, len;
458
459   m32c_find_part (reg, &offset, &len);
460   regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
461
462   return REG_VALID;
463 }
464
465
466 /* Move the value of REG from CACHE to BUF.  REG's value is the
467    concatenation of the values of the registers REG->rx and REG->ry,
468    with REG->rx contributing the more significant bits.  */
469 static enum register_status
470 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
471 {
472   int high_bytes = TYPE_LENGTH (reg->rx->type);
473   int low_bytes  = TYPE_LENGTH (reg->ry->type);
474   /* For address arithmetic.  */
475   unsigned char *cbuf = buf;
476   enum register_status status;
477
478   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
479
480   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
481     {
482       status = regcache_cooked_read (cache, reg->rx->num, cbuf);
483       if (status == REG_VALID)
484         status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
485     }
486   else
487     {
488       status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
489       if (status == REG_VALID)
490         status = regcache_cooked_read (cache, reg->ry->num, cbuf);
491     }
492
493   return status;
494 }
495
496
497 /* Move the value of REG from CACHE to BUF.  REG's value is the
498    concatenation of the values of the registers REG->rx and REG->ry,
499    with REG->rx contributing the more significant bits.  */
500 static enum register_status
501 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
502 {
503   int high_bytes = TYPE_LENGTH (reg->rx->type);
504   int low_bytes  = TYPE_LENGTH (reg->ry->type);
505   /* For address arithmetic.  */
506   unsigned char *cbuf = buf;
507
508   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
509
510   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
511     {
512       regcache_cooked_write (cache, reg->rx->num, cbuf);
513       regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
514     }
515   else
516     {
517       regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
518       regcache_cooked_write (cache, reg->ry->num, cbuf);
519     }
520
521   return REG_VALID;
522 }
523
524
525 /* Copy the value of the raw register REG from CACHE to BUF.  REG is
526    the concatenation (from most significant to least) of r3, r2, r1,
527    and r0.  */
528 static enum register_status
529 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
530 {
531   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
532   int len = TYPE_LENGTH (tdep->r0->type);
533   enum register_status status;
534
535   /* For address arithmetic.  */
536   unsigned char *cbuf = buf;
537
538   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
539     {
540       status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
541       if (status == REG_VALID)
542         status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
543       if (status == REG_VALID)
544         status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
545       if (status == REG_VALID)
546         status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
547     }
548   else
549     {
550       status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
551       if (status == REG_VALID)
552         status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
553       if (status == REG_VALID)
554         status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
555       if (status == REG_VALID)
556         status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
557     }
558
559   return status;
560 }
561
562
563 /* Copy the value of the raw register REG from BUF to CACHE.  REG is
564    the concatenation (from most significant to least) of r3, r2, r1,
565    and r0.  */
566 static enum register_status
567 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
568 {
569   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570   int len = TYPE_LENGTH (tdep->r0->type);
571
572   /* For address arithmetic.  */
573   unsigned char *cbuf = buf;
574
575   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
576     {
577       regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
578       regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
579       regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
580       regcache_cooked_write (cache, tdep->r3->num, cbuf);
581     }
582   else
583     {
584       regcache_cooked_write (cache, tdep->r0->num, cbuf);
585       regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
586       regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
587       regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
588     }
589
590   return REG_VALID;
591 }
592
593
594 static enum register_status
595 m32c_pseudo_register_read (struct gdbarch *arch,
596                            struct regcache *cache,
597                            int cookednum,
598                            gdb_byte *buf)
599 {
600   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
601   struct m32c_reg *reg;
602
603   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
604   gdb_assert (arch == get_regcache_arch (cache));
605   gdb_assert (arch == tdep->regs[cookednum].arch);
606   reg = &tdep->regs[cookednum];
607
608   return reg->read (reg, cache, buf);
609 }
610
611
612 static void
613 m32c_pseudo_register_write (struct gdbarch *arch,
614                             struct regcache *cache,
615                             int cookednum,
616                             const gdb_byte *buf)
617 {
618   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
619   struct m32c_reg *reg;
620
621   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
622   gdb_assert (arch == get_regcache_arch (cache));
623   gdb_assert (arch == tdep->regs[cookednum].arch);
624   reg = &tdep->regs[cookednum];
625
626   reg->write (reg, cache, (void *) buf);
627 }
628
629
630 /* Add a register with the given fields to the end of ARCH's table.
631    Return a pointer to the newly added register.  */
632 static struct m32c_reg *
633 add_reg (struct gdbarch *arch,
634          const char *name,
635          struct type *type,
636          int sim_num,
637          m32c_move_reg_t *read,
638          m32c_move_reg_t *write,
639          struct m32c_reg *rx,
640          struct m32c_reg *ry,
641          int n)
642 {
643   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
644   struct m32c_reg *r = &tdep->regs[tdep->num_regs];
645
646   gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
647
648   r->name           = name;
649   r->type           = type;
650   r->arch           = arch;
651   r->num            = tdep->num_regs;
652   r->sim_num        = sim_num;
653   r->dwarf_num      = -1;
654   r->general_p      = 0;
655   r->dma_p          = 0;
656   r->system_p       = 0;
657   r->save_restore_p = 0;
658   r->read           = read;
659   r->write          = write;
660   r->rx             = rx;
661   r->ry             = ry;
662   r->n              = n;
663
664   tdep->num_regs++;
665
666   return r;
667 }
668
669
670 /* Record NUM as REG's DWARF register number.  */
671 static void
672 set_dwarf_regnum (struct m32c_reg *reg, int num)
673 {
674   gdb_assert (num < M32C_MAX_NUM_REGS);
675
676   /* Update the reg->DWARF mapping.  Only count the first number
677      assigned to this register.  */
678   if (reg->dwarf_num == -1)
679     reg->dwarf_num = num;
680
681   /* Update the DWARF->reg mapping.  */
682   gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
683 }
684
685
686 /* Mark REG as a general-purpose register, and return it.  */
687 static struct m32c_reg *
688 mark_general (struct m32c_reg *reg)
689 {
690   reg->general_p = 1;
691   return reg;
692 }
693
694
695 /* Mark REG as a DMA register, and return it.  */
696 static struct m32c_reg *
697 mark_dma (struct m32c_reg *reg)
698 {
699   reg->dma_p = 1;
700   return reg;
701 }
702
703
704 /* Mark REG as a SYSTEM register, and return it.  */
705 static struct m32c_reg *
706 mark_system (struct m32c_reg *reg)
707 {
708   reg->system_p = 1;
709   return reg;
710 }
711
712
713 /* Mark REG as a save-restore register, and return it.  */
714 static struct m32c_reg *
715 mark_save_restore (struct m32c_reg *reg)
716 {
717   reg->save_restore_p = 1;
718   return reg;
719 }
720
721
722 #define FLAGBIT_B       0x0010
723 #define FLAGBIT_U       0x0080
724
725 /* Handy macros for declaring registers.  These all evaluate to
726    pointers to the register declared.  Macros that define two
727    registers evaluate to a pointer to the first.  */
728
729 /* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
730 #define R(name, type, sim_num)                                  \
731   (add_reg (arch, (name), (type), (sim_num),                    \
732             m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
733
734 /* The simulator register number for a raw register named NAME.  */
735 #define SIM(name) (m32c_sim_reg_ ## name)
736
737 /* A raw unsigned 16-bit data register named NAME.
738    NAME should be an identifier, not a string.  */
739 #define R16U(name)                                              \
740   (R(#name, tdep->uint16, SIM (name)))
741
742 /* A raw data address register named NAME.
743    NAME should be an identifier, not a string.  */
744 #define RA(name)                                                \
745   (R(#name, tdep->data_addr_reg_type, SIM (name)))
746
747 /* A raw code address register named NAME.  NAME should
748    be an identifier, not a string.  */
749 #define RC(name)                                                \
750   (R(#name, tdep->code_addr_reg_type, SIM (name)))
751
752 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
753    NAME should be an identifier, not a string.  */
754 #define RP(name, type)                          \
755   (R(#name "0", (type), SIM (name ## 0)),       \
756    R(#name "1", (type), SIM (name ## 1)) - 1)
757
758 /* A raw banked general-purpose data register named NAME.
759    NAME should be an identifier, not a string.  */
760 #define RBD(name)                                               \
761   (R(NULL, tdep->int16, SIM (name ## _bank0)),          \
762    R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
763
764 /* A raw banked data address register named NAME.
765    NAME should be an identifier, not a string.  */
766 #define RBA(name)                                               \
767   (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),     \
768    R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
769
770 /* A cooked register named NAME referring to a raw banked register
771    from the bank selected by the current value of FLG.  RAW_PAIR
772    should be a pointer to the first register in the banked pair.
773    NAME must be an identifier, not a string.  */
774 #define CB(name, raw_pair)                              \
775   (add_reg (arch, #name, (raw_pair)->type, 0,           \
776             m32c_banked_read, m32c_banked_write,        \
777             (raw_pair), (raw_pair + 1), FLAGBIT_B))
778
779 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
780    access the top and bottom halves of the register pointed to by
781    NAME.  NAME should be an identifier.  */
782 #define CHL(name, type)                                                 \
783   (add_reg (arch, #name "h", (type), 0,                                 \
784             m32c_part_read, m32c_part_write, name, NULL, 1),            \
785    add_reg (arch, #name "l", (type), 0,                                 \
786             m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
787
788 /* A register constructed by concatenating the two registers HIGH and
789    LOW, whose name is HIGHLOW and whose type is TYPE.  */
790 #define CCAT(high, low, type)                                   \
791   (add_reg (arch, #high #low, (type), 0,                        \
792             m32c_cat_read, m32c_cat_write, (high), (low), 0))
793
794 /* Abbreviations for marking register group membership.  */
795 #define G(reg)   (mark_general (reg))
796 #define S(reg)   (mark_system  (reg))
797 #define DMA(reg) (mark_dma     (reg))
798
799
800 /* Construct the register set for ARCH.  */
801 static void
802 make_regs (struct gdbarch *arch)
803 {
804   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
805   int mach = gdbarch_bfd_arch_info (arch)->mach;
806   int num_raw_regs;
807   int num_cooked_regs;
808
809   struct m32c_reg *r0;
810   struct m32c_reg *r1;
811   struct m32c_reg *r2;
812   struct m32c_reg *r3;
813   struct m32c_reg *a0;
814   struct m32c_reg *a1;
815   struct m32c_reg *fb;
816   struct m32c_reg *sb;
817   struct m32c_reg *sp;
818   struct m32c_reg *r0hl;
819   struct m32c_reg *r1hl;
820   struct m32c_reg *r2hl;
821   struct m32c_reg *r3hl;
822   struct m32c_reg *intbhl;
823   struct m32c_reg *r2r0;
824   struct m32c_reg *r3r1;
825   struct m32c_reg *r3r1r2r0;
826   struct m32c_reg *r3r2r1r0;
827   struct m32c_reg *a1a0;
828
829   struct m32c_reg *raw_r0_pair = RBD (r0);
830   struct m32c_reg *raw_r1_pair = RBD (r1);
831   struct m32c_reg *raw_r2_pair = RBD (r2);
832   struct m32c_reg *raw_r3_pair = RBD (r3);
833   struct m32c_reg *raw_a0_pair = RBA (a0);
834   struct m32c_reg *raw_a1_pair = RBA (a1);
835   struct m32c_reg *raw_fb_pair = RBA (fb);
836
837   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
838      We always declare both raw registers, and deal with the distinction
839      in the pseudoregister.  */
840   struct m32c_reg *raw_sb_pair = RBA (sb);
841
842   struct m32c_reg *usp         = S (RA (usp));
843   struct m32c_reg *isp         = S (RA (isp));
844   struct m32c_reg *intb        = S (RC (intb));
845   struct m32c_reg *pc          = G (RC (pc));
846   struct m32c_reg *flg         = G (R16U (flg));
847
848   if (mach == bfd_mach_m32c)
849     {
850       struct m32c_reg *svf     = S (R16U (svf));
851       struct m32c_reg *svp     = S (RC (svp));
852       struct m32c_reg *vct     = S (RC (vct));
853
854       struct m32c_reg *dmd01   = DMA (RP (dmd, tdep->uint8));
855       struct m32c_reg *dct01   = DMA (RP (dct, tdep->uint16));
856       struct m32c_reg *drc01   = DMA (RP (drc, tdep->uint16));
857       struct m32c_reg *dma01   = DMA (RP (dma, tdep->data_addr_reg_type));
858       struct m32c_reg *dsa01   = DMA (RP (dsa, tdep->data_addr_reg_type));
859       struct m32c_reg *dra01   = DMA (RP (dra, tdep->data_addr_reg_type));
860     }
861
862   num_raw_regs = tdep->num_regs;
863
864   r0          = G (CB (r0, raw_r0_pair));
865   r1          = G (CB (r1, raw_r1_pair));
866   r2          = G (CB (r2, raw_r2_pair));
867   r3          = G (CB (r3, raw_r3_pair));
868   a0          = G (CB (a0, raw_a0_pair));
869   a1          = G (CB (a1, raw_a1_pair));
870   fb          = G (CB (fb, raw_fb_pair));
871
872   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
873      Specify custom read/write functions that do the right thing.  */
874   sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
875                             m32c_sb_read, m32c_sb_write,
876                             raw_sb_pair, raw_sb_pair + 1, 0));
877
878   /* The current sp is either usp or isp, depending on the value of
879      the FLG register's U bit.  */
880   sp          = G (add_reg (arch, "sp", usp->type, 0,
881                             m32c_banked_read, m32c_banked_write,
882                             isp, usp, FLAGBIT_U));
883
884   r0hl        = CHL (r0, tdep->int8);
885   r1hl        = CHL (r1, tdep->int8);
886   r2hl        = CHL (r2, tdep->int8);
887   r3hl        = CHL (r3, tdep->int8);
888   intbhl      = CHL (intb, tdep->int16);
889
890   r2r0        = CCAT (r2,   r0,   tdep->int32);
891   r3r1        = CCAT (r3,   r1,   tdep->int32);
892   r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
893
894   r3r2r1r0
895     = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
896                m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
897
898   if (mach == bfd_mach_m16c)
899     a1a0 = CCAT (a1, a0, tdep->int32);
900   else
901     a1a0 = NULL;
902
903   num_cooked_regs = tdep->num_regs - num_raw_regs;
904
905   tdep->pc       = pc;
906   tdep->flg      = flg;
907   tdep->r0       = r0;
908   tdep->r1       = r1;
909   tdep->r2       = r2;
910   tdep->r3       = r3;
911   tdep->r2r0     = r2r0;
912   tdep->r3r2r1r0 = r3r2r1r0;
913   tdep->r3r1r2r0 = r3r1r2r0;
914   tdep->a0       = a0;
915   tdep->a1       = a1;
916   tdep->sb       = sb;
917   tdep->fb       = fb;
918   tdep->sp       = sp;
919
920   /* Set up the DWARF register table.  */
921   memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
922   set_dwarf_regnum (r0hl + 1, 0x01);
923   set_dwarf_regnum (r0hl + 0, 0x02);
924   set_dwarf_regnum (r1hl + 1, 0x03);
925   set_dwarf_regnum (r1hl + 0, 0x04);
926   set_dwarf_regnum (r0,       0x05);
927   set_dwarf_regnum (r1,       0x06);
928   set_dwarf_regnum (r2,       0x07);
929   set_dwarf_regnum (r3,       0x08);
930   set_dwarf_regnum (a0,       0x09);
931   set_dwarf_regnum (a1,       0x0a);
932   set_dwarf_regnum (fb,       0x0b);
933   set_dwarf_regnum (sp,       0x0c);
934   set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
935   set_dwarf_regnum (sb,       0x13);
936   set_dwarf_regnum (r2r0,     0x15);
937   set_dwarf_regnum (r3r1,     0x16);
938   if (a1a0)
939     set_dwarf_regnum (a1a0,   0x17);
940
941   /* Enumerate the save/restore register group.
942
943      The regcache_save and regcache_restore functions apply their read
944      function to each register in this group.
945
946      Since frame_pop supplies frame_unwind_register as its read
947      function, the registers meaningful to the Dwarf unwinder need to
948      be in this group.
949
950      On the other hand, when we make inferior calls, save_inferior_status
951      and restore_inferior_status use them to preserve the current register
952      values across the inferior call.  For this, you'd kind of like to
953      preserve all the raw registers, to protect the interrupted code from
954      any sort of bank switching the callee might have done.  But we handle
955      those cases so badly anyway --- for example, it matters whether we
956      restore FLG before or after we restore the general-purpose registers,
957      but there's no way to express that --- that it isn't worth worrying
958      about.
959
960      We omit control registers like inthl: if you call a function that
961      changes those, it's probably because you wanted that change to be
962      visible to the interrupted code.  */
963   mark_save_restore (r0);
964   mark_save_restore (r1);
965   mark_save_restore (r2);
966   mark_save_restore (r3);
967   mark_save_restore (a0);
968   mark_save_restore (a1);
969   mark_save_restore (sb);
970   mark_save_restore (fb);
971   mark_save_restore (sp);
972   mark_save_restore (pc);
973   mark_save_restore (flg);
974
975   set_gdbarch_num_regs (arch, num_raw_regs);
976   set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
977   set_gdbarch_pc_regnum (arch, pc->num);
978   set_gdbarch_sp_regnum (arch, sp->num);
979   set_gdbarch_register_name (arch, m32c_register_name);
980   set_gdbarch_register_type (arch, m32c_register_type);
981   set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
982   set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
983   set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
984   set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
985   set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
986   set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
987
988   reggroup_add (arch, general_reggroup);
989   reggroup_add (arch, all_reggroup);
990   reggroup_add (arch, save_reggroup);
991   reggroup_add (arch, restore_reggroup);
992   reggroup_add (arch, system_reggroup);
993   reggroup_add (arch, m32c_dma_reggroup);
994 }
995
996
997 \f
998 /* Breakpoints.  */
999
1000 static const unsigned char *
1001 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1002 {
1003   static unsigned char break_insn[] = { 0x00 }; /* brk */
1004
1005   *len = sizeof (break_insn);
1006   return break_insn;
1007 }
1008
1009
1010 \f
1011 /* Prologue analysis.  */
1012
1013 enum m32c_prologue_kind
1014 {
1015   /* This function uses a frame pointer.  */
1016   prologue_with_frame_ptr,
1017
1018   /* This function has no frame pointer.  */
1019   prologue_sans_frame_ptr,
1020
1021   /* This function sets up the stack, so its frame is the first
1022      frame on the stack.  */
1023   prologue_first_frame
1024 };
1025
1026 struct m32c_prologue
1027 {
1028   /* For consistency with the DWARF 2 .debug_frame info generated by
1029      GCC, a frame's CFA is the address immediately after the saved
1030      return address.  */
1031
1032   /* The architecture for which we generated this prologue info.  */
1033   struct gdbarch *arch;
1034
1035   enum m32c_prologue_kind kind;
1036
1037   /* If KIND is prologue_with_frame_ptr, this is the offset from the
1038      CFA to where the frame pointer points.  This is always zero or
1039      negative.  */
1040   LONGEST frame_ptr_offset;
1041
1042   /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1043      the stack pointer --- always zero or negative.
1044
1045      Calling this a "size" is a bit misleading, but given that the
1046      stack grows downwards, using offsets for everything keeps one
1047      from going completely sign-crazy: you never change anything's
1048      sign for an ADD instruction; always change the second operand's
1049      sign for a SUB instruction; and everything takes care of
1050      itself.
1051
1052      Functions that use alloca don't have a constant frame size.  But
1053      they always have frame pointers, so we must use that to find the
1054      CFA (and perhaps to unwind the stack pointer).  */
1055   LONGEST frame_size;
1056
1057   /* The address of the first instruction at which the frame has been
1058      set up and the arguments are where the debug info says they are
1059      --- as best as we can tell.  */
1060   CORE_ADDR prologue_end;
1061
1062   /* reg_offset[R] is the offset from the CFA at which register R is
1063      saved, or 1 if register R has not been saved.  (Real values are
1064      always zero or negative.)  */
1065   LONGEST reg_offset[M32C_MAX_NUM_REGS];
1066 };
1067
1068
1069 /* The longest I've seen, anyway.  */
1070 #define M32C_MAX_INSN_LEN (9)
1071
1072 /* Processor state, for the prologue analyzer.  */
1073 struct m32c_pv_state
1074 {
1075   struct gdbarch *arch;
1076   pv_t r0, r1, r2, r3;
1077   pv_t a0, a1;
1078   pv_t sb, fb, sp;
1079   pv_t pc;
1080   struct pv_area *stack;
1081
1082   /* Bytes from the current PC, the address they were read from,
1083      and the address of the next unconsumed byte.  */
1084   gdb_byte insn[M32C_MAX_INSN_LEN];
1085   CORE_ADDR scan_pc, next_addr;
1086 };
1087
1088
1089 /* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1090    all went well, or non-zero if simulating the action would trash our
1091    state.  */
1092 static int
1093 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1094 {
1095   if (pv_area_store_would_trash (state->stack, state->sp))
1096     return 1;
1097
1098   state->sp = pv_add_constant (state->sp, -size);
1099   pv_area_store (state->stack, state->sp, size, value);
1100
1101   return 0;
1102 }
1103
1104
1105 enum srcdest_kind
1106 {
1107   srcdest_reg,
1108   srcdest_partial_reg,
1109   srcdest_mem
1110 };
1111
1112 /* A source or destination location for an m16c or m32c
1113    instruction.  */
1114 struct srcdest
1115 {
1116   /* If srcdest_reg, the location is a register pointed to by REG.
1117      If srcdest_partial_reg, the location is part of a register pointed
1118      to by REG.  We don't try to handle this too well.
1119      If srcdest_mem, the location is memory whose address is ADDR.  */
1120   enum srcdest_kind kind;
1121   pv_t *reg, addr;
1122 };
1123
1124
1125 /* Return the SIZE-byte value at LOC in STATE.  */
1126 static pv_t
1127 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1128 {
1129   if (loc.kind == srcdest_mem)
1130     return pv_area_fetch (state->stack, loc.addr, size);
1131   else if (loc.kind == srcdest_partial_reg)
1132     return pv_unknown ();
1133   else
1134     return *loc.reg;
1135 }
1136
1137
1138 /* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1139    all went well, or non-zero if simulating the store would trash our
1140    state.  */
1141 static int
1142 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1143                     pv_t value, int size)
1144 {
1145   if (loc.kind == srcdest_mem)
1146     {
1147       if (pv_area_store_would_trash (state->stack, loc.addr))
1148         return 1;
1149       pv_area_store (state->stack, loc.addr, size, value);
1150     }
1151   else if (loc.kind == srcdest_partial_reg)
1152     *loc.reg = pv_unknown ();
1153   else
1154     *loc.reg = value;
1155
1156   return 0;
1157 }
1158
1159
1160 static int
1161 m32c_sign_ext (int v, int bits)
1162 {
1163   int mask = 1 << (bits - 1);
1164   return (v ^ mask) - mask;
1165 }
1166
1167 static unsigned int
1168 m32c_next_byte (struct m32c_pv_state *st)
1169 {
1170   gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1171   return st->insn[st->next_addr++ - st->scan_pc];
1172 }
1173
1174 static int
1175 m32c_udisp8 (struct m32c_pv_state *st)
1176 {
1177   return m32c_next_byte (st);
1178 }
1179
1180
1181 static int
1182 m32c_sdisp8 (struct m32c_pv_state *st)
1183 {
1184   return m32c_sign_ext (m32c_next_byte (st), 8);
1185 }
1186
1187
1188 static int
1189 m32c_udisp16 (struct m32c_pv_state *st)
1190 {
1191   int low  = m32c_next_byte (st);
1192   int high = m32c_next_byte (st);
1193
1194   return low + (high << 8);
1195 }
1196
1197
1198 static int
1199 m32c_sdisp16 (struct m32c_pv_state *st)
1200 {
1201   int low  = m32c_next_byte (st);
1202   int high = m32c_next_byte (st);
1203
1204   return m32c_sign_ext (low + (high << 8), 16);
1205 }
1206
1207
1208 static int
1209 m32c_udisp24 (struct m32c_pv_state *st)
1210 {
1211   int low  = m32c_next_byte (st);
1212   int mid  = m32c_next_byte (st);
1213   int high = m32c_next_byte (st);
1214
1215   return low + (mid << 8) + (high << 16);
1216 }
1217
1218
1219 /* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1220 static int
1221 m32c_get_src23 (unsigned char *i)
1222 {
1223   return (((i[0] & 0x70) >> 2)
1224           | ((i[1] & 0x30) >> 4));
1225 }
1226
1227
1228 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1229 static int
1230 m32c_get_dest23 (unsigned char *i)
1231 {
1232   return (((i[0] & 0x0e) << 1)
1233           | ((i[1] & 0xc0) >> 6));
1234 }
1235
1236
1237 static struct srcdest
1238 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1239                       int code, int size)
1240 {
1241   struct srcdest sd;
1242
1243   if (code < 6)
1244     sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1245   else
1246     sd.kind = srcdest_mem;
1247
1248   sd.addr = pv_unknown ();
1249   sd.reg = 0;
1250
1251   switch (code)
1252     {
1253     case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1254     case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1255     case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1256     case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1257
1258     case 0x4: sd.reg = &st->a0; break;
1259     case 0x5: sd.reg = &st->a1; break;
1260
1261     case 0x6: sd.addr = st->a0; break;
1262     case 0x7: sd.addr = st->a1; break;
1263
1264     case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1265     case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1266     case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1267     case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1268
1269     case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1270     case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1271     case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1272     case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1273
1274     default:
1275       gdb_assert_not_reached ("unexpected srcdest4");
1276     }
1277
1278   return sd;
1279 }
1280
1281
1282 static struct srcdest
1283 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1284 {
1285   struct srcdest sd;
1286
1287   sd.addr = pv_unknown ();
1288   sd.reg = 0;
1289
1290   switch (code)
1291     {
1292     case 0x12:
1293     case 0x13:
1294     case 0x10:
1295     case 0x11:
1296       sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1297       break;
1298
1299     case 0x02:
1300     case 0x03:
1301       sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1302       break;
1303
1304     default:
1305       sd.kind = srcdest_mem;
1306       break;
1307
1308     }
1309
1310   switch (code)
1311     {
1312     case 0x12: sd.reg = &st->r0; break;
1313     case 0x13: sd.reg = &st->r1; break;
1314     case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1315     case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1316     case 0x02: sd.reg = &st->a0; break;
1317     case 0x03: sd.reg = &st->a1; break;
1318
1319     case 0x00: sd.addr = st->a0; break;
1320     case 0x01: sd.addr = st->a1; break;
1321     case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1322     case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1323     case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1324     case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1325     case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1326     case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1327     case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1328     case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1329     case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1330     case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1331     case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1332     case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1333     default:
1334       gdb_assert_not_reached ("unexpected sd23");
1335     }
1336
1337   if (ind)
1338     {
1339       sd.addr = m32c_srcdest_fetch (st, sd, 4);
1340       sd.kind = srcdest_mem;
1341     }
1342
1343   return sd;
1344 }
1345
1346
1347 /* The r16c and r32c machines have instructions with similar
1348    semantics, but completely different machine language encodings.  So
1349    we break out the semantics into their own functions, and leave
1350    machine-specific decoding in m32c_analyze_prologue.
1351
1352    The following functions all expect their arguments already decoded,
1353    and they all return zero if analysis should continue past this
1354    instruction, or non-zero if analysis should stop.  */
1355
1356
1357 /* Simulate an 'enter SIZE' instruction in STATE.  */
1358 static int
1359 m32c_pv_enter (struct m32c_pv_state *state, int size)
1360 {
1361   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1362
1363   /* If simulating this store would require us to forget
1364      everything we know about the stack frame in the name of
1365      accuracy, it would be better to just quit now.  */
1366   if (pv_area_store_would_trash (state->stack, state->sp))
1367     return 1;
1368
1369   if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1370     return 1;
1371   state->fb = state->sp;
1372   state->sp = pv_add_constant (state->sp, -size);
1373
1374   return 0;
1375 }
1376
1377
1378 static int
1379 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1380                    int bit, int src, int size)
1381 {
1382   if (bit & src)
1383     {
1384       if (m32c_pv_push (state, reg, size))
1385         return 1;
1386     }
1387
1388   return 0;
1389 }
1390
1391
1392 /* Simulate a 'pushm SRC' instruction in STATE.  */
1393 static int
1394 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1395 {
1396   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1397
1398   /* The bits in SRC indicating which registers to save are:
1399      r0 r1 r2 r3 a0 a1 sb fb */
1400   return
1401     (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1402      || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1403      || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1404      || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1405      || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1406      || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1407      || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1408      || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1409 }
1410
1411 /* Return non-zero if VALUE is the first incoming argument register.  */
1412
1413 static int
1414 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1415 {
1416   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1417   return (value.kind == pvk_register
1418           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1419               ? (value.reg == tdep->r1->num)
1420               : (value.reg == tdep->r0->num))
1421           && value.k == 0);
1422 }
1423
1424 /* Return non-zero if VALUE is an incoming argument register.  */
1425
1426 static int
1427 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1428 {
1429   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1430   return (value.kind == pvk_register
1431           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1432               ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1433               : (value.reg == tdep->r0->num))
1434           && value.k == 0);
1435 }
1436
1437 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1438    argument register to its stack slot in STATE.  Such instructions
1439    should be included in the prologue, if possible.
1440
1441    The store is a spill if:
1442    - the value being stored is the original value of an argument register;
1443    - the value has not already been stored somewhere in STACK; and
1444    - LOC is a stack slot (e.g., a memory location whose address is
1445      relative to the original value of the SP).  */
1446
1447 static int
1448 m32c_is_arg_spill (struct m32c_pv_state *st, 
1449                    struct srcdest loc, 
1450                    pv_t value)
1451 {
1452   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1453
1454   return (m32c_is_arg_reg (st, value)
1455           && loc.kind == srcdest_mem
1456           && pv_is_register (loc.addr, tdep->sp->num)
1457           && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1458 }
1459
1460 /* Return non-zero if a store of VALUE to LOC is probably 
1461    copying the struct return address into an address register
1462    for immediate use.  This is basically a "spill" into the
1463    address register, instead of onto the stack. 
1464
1465    The prerequisites are:
1466    - value being stored is original value of the FIRST arg register;
1467    - value has not already been stored on stack; and
1468    - LOC is an address register (a0 or a1).  */
1469
1470 static int
1471 m32c_is_struct_return (struct m32c_pv_state *st,
1472                        struct srcdest loc, 
1473                        pv_t value)
1474 {
1475   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1476
1477   return (m32c_is_1st_arg_reg (st, value)
1478           && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1479           && loc.kind == srcdest_reg
1480           && (pv_is_register (*loc.reg, tdep->a0->num)
1481               || pv_is_register (*loc.reg, tdep->a1->num)));
1482 }
1483
1484 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1485    was a register save:
1486    - all the named registers should have their original values, and
1487    - the stack pointer should be at a constant offset from the
1488      original stack pointer.  */
1489 static int
1490 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1491 {
1492   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1493   /* The bits in SRC indicating which registers to save are:
1494      r0 r1 r2 r3 a0 a1 sb fb */
1495   return
1496     (pv_is_register (st->sp, tdep->sp->num)
1497      && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1498      && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1499      && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1500      && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1501      && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1502      && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1503      && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1504      && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1505 }
1506
1507
1508 /* Function for finding saved registers in a 'struct pv_area'; we pass
1509    this to pv_area_scan.
1510
1511    If VALUE is a saved register, ADDR says it was saved at a constant
1512    offset from the frame base, and SIZE indicates that the whole
1513    register was saved, record its offset in RESULT_UNTYPED.  */
1514 static void
1515 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1516 {
1517   struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1518   struct gdbarch *arch = prologue->arch;
1519   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1520
1521   /* Is this the unchanged value of some register being saved on the
1522      stack?  */
1523   if (value.kind == pvk_register
1524       && value.k == 0
1525       && pv_is_register (addr, tdep->sp->num))
1526     {
1527       /* Some registers require special handling: they're saved as a
1528          larger value than the register itself.  */
1529       CORE_ADDR saved_size = register_size (arch, value.reg);
1530
1531       if (value.reg == tdep->pc->num)
1532         saved_size = tdep->ret_addr_bytes;
1533       else if (register_type (arch, value.reg)
1534                == tdep->data_addr_reg_type)
1535         saved_size = tdep->push_addr_bytes;
1536
1537       if (size == saved_size)
1538         {
1539           /* Find which end of the saved value corresponds to our
1540              register.  */
1541           if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1542             prologue->reg_offset[value.reg]
1543               = (addr.k + saved_size - register_size (arch, value.reg));
1544           else
1545             prologue->reg_offset[value.reg] = addr.k;
1546         }
1547     }
1548 }
1549
1550
1551 /* Analyze the function prologue for ARCH at START, going no further
1552    than LIMIT, and place a description of what we found in
1553    PROLOGUE.  */
1554 static void
1555 m32c_analyze_prologue (struct gdbarch *arch,
1556                        CORE_ADDR start, CORE_ADDR limit,
1557                        struct m32c_prologue *prologue)
1558 {
1559   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1560   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1561   CORE_ADDR after_last_frame_related_insn;
1562   struct cleanup *back_to;
1563   struct m32c_pv_state st;
1564
1565   st.arch = arch;
1566   st.r0 = pv_register (tdep->r0->num, 0);
1567   st.r1 = pv_register (tdep->r1->num, 0);
1568   st.r2 = pv_register (tdep->r2->num, 0);
1569   st.r3 = pv_register (tdep->r3->num, 0);
1570   st.a0 = pv_register (tdep->a0->num, 0);
1571   st.a1 = pv_register (tdep->a1->num, 0);
1572   st.sb = pv_register (tdep->sb->num, 0);
1573   st.fb = pv_register (tdep->fb->num, 0);
1574   st.sp = pv_register (tdep->sp->num, 0);
1575   st.pc = pv_register (tdep->pc->num, 0);
1576   st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1577   back_to = make_cleanup_free_pv_area (st.stack);
1578
1579   /* Record that the call instruction has saved the return address on
1580      the stack.  */
1581   m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1582
1583   memset (prologue, 0, sizeof (*prologue));
1584   prologue->arch = arch;
1585   {
1586     int i;
1587     for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1588       prologue->reg_offset[i] = 1;
1589   }
1590
1591   st.scan_pc = after_last_frame_related_insn = start;
1592
1593   while (st.scan_pc < limit)
1594     {
1595       pv_t pre_insn_fb = st.fb;
1596       pv_t pre_insn_sp = st.sp;
1597
1598       /* In theory we could get in trouble by trying to read ahead
1599          here, when we only know we're expecting one byte.  In
1600          practice I doubt anyone will care, and it makes the rest of
1601          the code easier.  */
1602       if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1603         /* If we can't fetch the instruction from memory, stop here
1604            and hope for the best.  */
1605         break;
1606       st.next_addr = st.scan_pc;
1607
1608       /* The assembly instructions are written as they appear in the
1609          section of the processor manuals that describe the
1610          instruction encodings.
1611
1612          When a single assembly language instruction has several
1613          different machine-language encodings, the manual
1614          distinguishes them by a number in parens, before the
1615          mnemonic.  Those numbers are included, as well.
1616
1617          The srcdest decoding instructions have the same names as the
1618          analogous functions in the simulator.  */
1619       if (mach == bfd_mach_m16c)
1620         {
1621           /* (1) ENTER #imm8 */
1622           if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1623             {
1624               if (m32c_pv_enter (&st, st.insn[2]))
1625                 break;
1626               st.next_addr += 3;
1627             }
1628           /* (1) PUSHM src */
1629           else if (st.insn[0] == 0xec)
1630             {
1631               int src = st.insn[1];
1632               if (m32c_pv_pushm (&st, src))
1633                 break;
1634               st.next_addr += 2;
1635
1636               if (m32c_pushm_is_reg_save (&st, src))
1637                 after_last_frame_related_insn = st.next_addr;
1638             }
1639
1640           /* (6) MOV.size:G src, dest */
1641           else if ((st.insn[0] & 0xfe) == 0x72)
1642             {
1643               int size = (st.insn[0] & 0x01) ? 2 : 1;
1644               struct srcdest src;
1645               struct srcdest dest;
1646               pv_t src_value;
1647               st.next_addr += 2;
1648
1649               src
1650                 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1651               dest
1652                 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1653               src_value = m32c_srcdest_fetch (&st, src, size);
1654
1655               if (m32c_is_arg_spill (&st, dest, src_value))
1656                 after_last_frame_related_insn = st.next_addr;
1657               else if (m32c_is_struct_return (&st, dest, src_value))
1658                 after_last_frame_related_insn = st.next_addr;
1659
1660               if (m32c_srcdest_store (&st, dest, src_value, size))
1661                 break;
1662             }
1663
1664           /* (1) LDC #IMM16, sp */
1665           else if (st.insn[0] == 0xeb
1666                    && st.insn[1] == 0x50)
1667             {
1668               st.next_addr += 2;
1669               st.sp = pv_constant (m32c_udisp16 (&st));
1670             }
1671
1672           else
1673             /* We've hit some instruction we don't know how to simulate.
1674                Strictly speaking, we should set every value we're
1675                tracking to "unknown".  But we'll be optimistic, assume
1676                that we have enough information already, and stop
1677                analysis here.  */
1678             break;
1679         }
1680       else
1681         {
1682           int src_indirect = 0;
1683           int dest_indirect = 0;
1684           int i = 0;
1685
1686           gdb_assert (mach == bfd_mach_m32c);
1687
1688           /* Check for prefix bytes indicating indirect addressing.  */
1689           if (st.insn[0] == 0x41)
1690             {
1691               src_indirect = 1;
1692               i++;
1693             }
1694           else if (st.insn[0] == 0x09)
1695             {
1696               dest_indirect = 1;
1697               i++;
1698             }
1699           else if (st.insn[0] == 0x49)
1700             {
1701               src_indirect = dest_indirect = 1;
1702               i++;
1703             }
1704
1705           /* (1) ENTER #imm8 */
1706           if (st.insn[i] == 0xec)
1707             {
1708               if (m32c_pv_enter (&st, st.insn[i + 1]))
1709                 break;
1710               st.next_addr += 2;
1711             }
1712
1713           /* (1) PUSHM src */
1714           else if (st.insn[i] == 0x8f)
1715             {
1716               int src = st.insn[i + 1];
1717               if (m32c_pv_pushm (&st, src))
1718                 break;
1719               st.next_addr += 2;
1720
1721               if (m32c_pushm_is_reg_save (&st, src))
1722                 after_last_frame_related_insn = st.next_addr;
1723             }
1724
1725           /* (7) MOV.size:G src, dest */
1726           else if ((st.insn[i] & 0x80) == 0x80
1727                    && (st.insn[i + 1] & 0x0f) == 0x0b
1728                    && m32c_get_src23 (&st.insn[i]) < 20
1729                    && m32c_get_dest23 (&st.insn[i]) < 20)
1730             {
1731               struct srcdest src;
1732               struct srcdest dest;
1733               pv_t src_value;
1734               int bw = st.insn[i] & 0x01;
1735               int size = bw ? 2 : 1;
1736               st.next_addr += 2;
1737
1738               src
1739                 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1740                                     size, src_indirect);
1741               dest
1742                 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1743                                     size, dest_indirect);
1744               src_value = m32c_srcdest_fetch (&st, src, size);
1745
1746               if (m32c_is_arg_spill (&st, dest, src_value))
1747                 after_last_frame_related_insn = st.next_addr;
1748
1749               if (m32c_srcdest_store (&st, dest, src_value, size))
1750                 break;
1751             }
1752           /* (2) LDC #IMM24, sp */
1753           else if (st.insn[i] == 0xd5
1754                    && st.insn[i + 1] == 0x29)
1755             {
1756               st.next_addr += 2;
1757               st.sp = pv_constant (m32c_udisp24 (&st));
1758             }
1759           else
1760             /* We've hit some instruction we don't know how to simulate.
1761                Strictly speaking, we should set every value we're
1762                tracking to "unknown".  But we'll be optimistic, assume
1763                that we have enough information already, and stop
1764                analysis here.  */
1765             break;
1766         }
1767
1768       /* If this instruction changed the FB or decreased the SP (i.e.,
1769          allocated more stack space), then this may be a good place to
1770          declare the prologue finished.  However, there are some
1771          exceptions:
1772
1773          - If the instruction just changed the FB back to its original
1774            value, then that's probably a restore instruction.  The
1775            prologue should definitely end before that.
1776
1777          - If the instruction increased the value of the SP (that is,
1778            shrunk the frame), then it's probably part of a frame
1779            teardown sequence, and the prologue should end before
1780            that.  */
1781
1782       if (! pv_is_identical (st.fb, pre_insn_fb))
1783         {
1784           if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1785             after_last_frame_related_insn = st.next_addr;
1786         }
1787       else if (! pv_is_identical (st.sp, pre_insn_sp))
1788         {
1789           /* The comparison of the constants looks odd, there, because
1790              .k is unsigned.  All it really means is that the SP is
1791              lower than it was before the instruction.  */
1792           if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1793               && pv_is_register (st.sp,       tdep->sp->num)
1794               && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1795             after_last_frame_related_insn = st.next_addr;
1796         }
1797
1798       st.scan_pc = st.next_addr;
1799     }
1800
1801   /* Did we load a constant value into the stack pointer?  */
1802   if (pv_is_constant (st.sp))
1803     prologue->kind = prologue_first_frame;
1804
1805   /* Alternatively, did we initialize the frame pointer?  Remember
1806      that the CFA is the address after the return address.  */
1807   if (pv_is_register (st.fb, tdep->sp->num))
1808     {
1809       prologue->kind = prologue_with_frame_ptr;
1810       prologue->frame_ptr_offset = st.fb.k;
1811     }
1812
1813   /* Is the frame size a known constant?  Remember that frame_size is
1814      actually the offset from the CFA to the SP (i.e., a negative
1815      value).  */
1816   else if (pv_is_register (st.sp, tdep->sp->num))
1817     {
1818       prologue->kind = prologue_sans_frame_ptr;
1819       prologue->frame_size = st.sp.k;
1820     }
1821
1822   /* We haven't been able to make sense of this function's frame.  Treat
1823      it as the first frame.  */
1824   else
1825     prologue->kind = prologue_first_frame;
1826
1827   /* Record where all the registers were saved.  */
1828   pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1829
1830   prologue->prologue_end = after_last_frame_related_insn;
1831
1832   do_cleanups (back_to);
1833 }
1834
1835
1836 static CORE_ADDR
1837 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1838 {
1839   const char *name;
1840   CORE_ADDR func_addr, func_end, sal_end;
1841   struct m32c_prologue p;
1842
1843   /* Try to find the extent of the function that contains IP.  */
1844   if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1845     return ip;
1846
1847   /* Find end by prologue analysis.  */
1848   m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1849   /* Find end by line info.  */
1850   sal_end = skip_prologue_using_sal (gdbarch, ip);
1851   /* Return whichever is lower.  */
1852   if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1853     return sal_end;
1854   else
1855     return p.prologue_end;
1856 }
1857
1858
1859 \f
1860 /* Stack unwinding.  */
1861
1862 static struct m32c_prologue *
1863 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1864                              void **this_prologue_cache)
1865 {
1866   if (! *this_prologue_cache)
1867     {
1868       CORE_ADDR func_start = get_frame_func (this_frame);
1869       CORE_ADDR stop_addr = get_frame_pc (this_frame);
1870
1871       /* If we couldn't find any function containing the PC, then
1872          just initialize the prologue cache, but don't do anything.  */
1873       if (! func_start)
1874         stop_addr = func_start;
1875
1876       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1877       m32c_analyze_prologue (get_frame_arch (this_frame),
1878                              func_start, stop_addr, *this_prologue_cache);
1879     }
1880
1881   return *this_prologue_cache;
1882 }
1883
1884
1885 static CORE_ADDR
1886 m32c_frame_base (struct frame_info *this_frame,
1887                 void **this_prologue_cache)
1888 {
1889   struct m32c_prologue *p
1890     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1891   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1892
1893   /* In functions that use alloca, the distance between the stack
1894      pointer and the frame base varies dynamically, so we can't use
1895      the SP plus static information like prologue analysis to find the
1896      frame base.  However, such functions must have a frame pointer,
1897      to be able to restore the SP on exit.  So whenever we do have a
1898      frame pointer, use that to find the base.  */
1899   switch (p->kind)
1900     {
1901     case prologue_with_frame_ptr:
1902       {
1903         CORE_ADDR fb
1904           = get_frame_register_unsigned (this_frame, tdep->fb->num);
1905         return fb - p->frame_ptr_offset;
1906       }
1907
1908     case prologue_sans_frame_ptr:
1909       {
1910         CORE_ADDR sp
1911           = get_frame_register_unsigned (this_frame, tdep->sp->num);
1912         return sp - p->frame_size;
1913       }
1914
1915     case prologue_first_frame:
1916       return 0;
1917
1918     default:
1919       gdb_assert_not_reached ("unexpected prologue kind");
1920     }
1921 }
1922
1923
1924 static void
1925 m32c_this_id (struct frame_info *this_frame,
1926               void **this_prologue_cache,
1927               struct frame_id *this_id)
1928 {
1929   CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1930
1931   if (base)
1932     *this_id = frame_id_build (base, get_frame_func (this_frame));
1933   /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1934 }
1935
1936
1937 static struct value *
1938 m32c_prev_register (struct frame_info *this_frame,
1939                     void **this_prologue_cache, int regnum)
1940 {
1941   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1942   struct m32c_prologue *p
1943     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1944   CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1945   int reg_size = register_size (get_frame_arch (this_frame), regnum);
1946
1947   if (regnum == tdep->sp->num)
1948     return frame_unwind_got_constant (this_frame, regnum, frame_base);
1949
1950   /* If prologue analysis says we saved this register somewhere,
1951      return a description of the stack slot holding it.  */
1952   if (p->reg_offset[regnum] != 1)
1953     return frame_unwind_got_memory (this_frame, regnum,
1954                                     frame_base + p->reg_offset[regnum]);
1955
1956   /* Otherwise, presume we haven't changed the value of this
1957      register, and get it from the next frame.  */
1958   return frame_unwind_got_register (this_frame, regnum, regnum);
1959 }
1960
1961
1962 static const struct frame_unwind m32c_unwind = {
1963   NORMAL_FRAME,
1964   default_frame_unwind_stop_reason,
1965   m32c_this_id,
1966   m32c_prev_register,
1967   NULL,
1968   default_frame_sniffer
1969 };
1970
1971
1972 static CORE_ADDR
1973 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1974 {
1975   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1976   return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1977 }
1978
1979
1980 static CORE_ADDR
1981 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1982 {
1983   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1984   return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1985 }
1986
1987 \f
1988 /* Inferior calls.  */
1989
1990 /* The calling conventions, according to GCC:
1991
1992    r8c, m16c
1993    ---------
1994    First arg may be passed in r1l or r1 if it (1) fits (QImode or
1995    HImode), (2) is named, and (3) is an integer or pointer type (no
1996    structs, floats, etc).  Otherwise, it's passed on the stack.
1997
1998    Second arg may be passed in r2, same restrictions (but not QImode),
1999    even if the first arg is passed on the stack.
2000
2001    Third and further args are passed on the stack.  No padding is
2002    used, stack "alignment" is 8 bits.
2003
2004    m32cm, m32c
2005    -----------
2006
2007    First arg may be passed in r0l or r0, same restrictions as above.
2008
2009    Second and further args are passed on the stack.  Padding is used
2010    after QImode parameters (i.e. lower-addressed byte is the value,
2011    higher-addressed byte is the padding), stack "alignment" is 16
2012    bits.  */
2013
2014
2015 /* Return true if TYPE is a type that can be passed in registers.  (We
2016    ignore the size, and pay attention only to the type code;
2017    acceptable sizes depends on which register is being considered to
2018    hold it.)  */
2019 static int
2020 m32c_reg_arg_type (struct type *type)
2021 {
2022   enum type_code code = TYPE_CODE (type);
2023
2024   return (code == TYPE_CODE_INT
2025           || code == TYPE_CODE_ENUM
2026           || code == TYPE_CODE_PTR
2027           || code == TYPE_CODE_REF
2028           || code == TYPE_CODE_BOOL
2029           || code == TYPE_CODE_CHAR);
2030 }
2031
2032
2033 static CORE_ADDR
2034 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2035                       struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2036                       struct value **args, CORE_ADDR sp, int struct_return,
2037                       CORE_ADDR struct_addr)
2038 {
2039   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2040   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2041   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2042   CORE_ADDR cfa;
2043   int i;
2044
2045   /* The number of arguments given in this function's prototype, or
2046      zero if it has a non-prototyped function type.  The m32c ABI
2047      passes arguments mentioned in the prototype differently from
2048      those in the ellipsis of a varargs function, or from those passed
2049      to a non-prototyped function.  */
2050   int num_prototyped_args = 0;
2051
2052   {
2053     struct type *func_type = value_type (function);
2054
2055     /* Dereference function pointer types.  */
2056     if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2057       func_type = TYPE_TARGET_TYPE (func_type);
2058
2059     gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2060                 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2061
2062 #if 0
2063     /* The ABI description in gcc/config/m32c/m32c.abi says that
2064        we need to handle prototyped and non-prototyped functions
2065        separately, but the code in GCC doesn't actually do so.  */
2066     if (TYPE_PROTOTYPED (func_type))
2067 #endif
2068       num_prototyped_args = TYPE_NFIELDS (func_type);
2069   }
2070
2071   /* First, if the function returns an aggregate by value, push a
2072      pointer to a buffer for it.  This doesn't affect the way
2073      subsequent arguments are allocated to registers.  */
2074   if (struct_return)
2075     {
2076       int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2077       sp -= ptr_len;
2078       write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2079     }
2080
2081   /* Push the arguments.  */
2082   for (i = nargs - 1; i >= 0; i--)
2083     {
2084       struct value *arg = args[i];
2085       const gdb_byte *arg_bits = value_contents (arg);
2086       struct type *arg_type = value_type (arg);
2087       ULONGEST arg_size = TYPE_LENGTH (arg_type);
2088
2089       /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2090       if (i == 0
2091           && arg_size <= 2
2092           && i < num_prototyped_args
2093           && m32c_reg_arg_type (arg_type))
2094         {
2095           /* Extract and re-store as an integer as a terse way to make
2096              sure it ends up in the least significant end of r1.  (GDB
2097              should avoid assuming endianness, even on uni-endian
2098              processors.)  */
2099           ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2100                                                  byte_order);
2101           struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2102           regcache_cooked_write_unsigned (regcache, reg->num, u);
2103         }
2104
2105       /* Can it go in r2?  */
2106       else if (mach == bfd_mach_m16c
2107                && i == 1
2108                && arg_size == 2
2109                && i < num_prototyped_args
2110                && m32c_reg_arg_type (arg_type))
2111         regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2112
2113       /* Everything else goes on the stack.  */
2114       else
2115         {
2116           sp -= arg_size;
2117
2118           /* Align the stack.  */
2119           if (mach == bfd_mach_m32c)
2120             sp &= ~1;
2121
2122           write_memory (sp, arg_bits, arg_size);
2123         }
2124     }
2125
2126   /* This is the CFA we use to identify the dummy frame.  */
2127   cfa = sp;
2128
2129   /* Push the return address.  */
2130   sp -= tdep->ret_addr_bytes;
2131   write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2132                                  bp_addr);
2133
2134   /* Update the stack pointer.  */
2135   regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2136
2137   /* We need to borrow an odd trick from the i386 target here.
2138
2139      The value we return from this function gets used as the stack
2140      address (the CFA) for the dummy frame's ID.  The obvious thing is
2141      to return the new TOS.  However, that points at the return
2142      address, saved on the stack, which is inconsistent with the CFA's
2143      described by GCC's DWARF 2 .debug_frame information: DWARF 2
2144      .debug_frame info uses the address immediately after the saved
2145      return address.  So you end up with a dummy frame whose CFA
2146      points at the return address, but the frame for the function
2147      being called has a CFA pointing after the return address: the
2148      younger CFA is *greater than* the older CFA.  The sanity checks
2149      in frame.c don't like that.
2150
2151      So we try to be consistent with the CFA's used by DWARF 2.
2152      Having a dummy frame and a real frame with the *same* CFA is
2153      tolerable.  */
2154   return cfa;
2155 }
2156
2157
2158 static struct frame_id
2159 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2160 {
2161   /* This needs to return a frame ID whose PC is the return address
2162      passed to m32c_push_dummy_call, and whose stack_addr is the SP
2163      m32c_push_dummy_call returned.
2164
2165      m32c_unwind_sp gives us the CFA, which is the value the SP had
2166      before the return address was pushed.  */
2167   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2168   CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2169   return frame_id_build (sp, get_frame_pc (this_frame));
2170 }
2171
2172
2173 \f
2174 /* Return values.  */
2175
2176 /* Return value conventions, according to GCC:
2177
2178    r8c, m16c
2179    ---------
2180
2181    QImode in r0l
2182    HImode in r0
2183    SImode in r2r0
2184    near pointer in r0
2185    far pointer in r2r0
2186
2187    Aggregate values (regardless of size) are returned by pushing a
2188    pointer to a temporary area on the stack after the args are pushed.
2189    The function fills in this area with the value.  Note that this
2190    pointer on the stack does not affect how register arguments, if any,
2191    are configured.
2192
2193    m32cm, m32c
2194    -----------
2195    Same.  */
2196
2197 /* Return non-zero if values of type TYPE are returned by storing them
2198    in a buffer whose address is passed on the stack, ahead of the
2199    other arguments.  */
2200 static int
2201 m32c_return_by_passed_buf (struct type *type)
2202 {
2203   enum type_code code = TYPE_CODE (type);
2204
2205   return (code == TYPE_CODE_STRUCT
2206           || code == TYPE_CODE_UNION);
2207 }
2208
2209 static enum return_value_convention
2210 m32c_return_value (struct gdbarch *gdbarch,
2211                    struct value *function,
2212                    struct type *valtype,
2213                    struct regcache *regcache,
2214                    gdb_byte *readbuf,
2215                    const gdb_byte *writebuf)
2216 {
2217   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2219   enum return_value_convention conv;
2220   ULONGEST valtype_len = TYPE_LENGTH (valtype);
2221
2222   if (m32c_return_by_passed_buf (valtype))
2223     conv = RETURN_VALUE_STRUCT_CONVENTION;
2224   else
2225     conv = RETURN_VALUE_REGISTER_CONVENTION;
2226
2227   if (readbuf)
2228     {
2229       /* We should never be called to find values being returned by
2230          RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2231          unless we made the call ourselves.  */
2232       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2233
2234       gdb_assert (valtype_len <= 8);
2235
2236       /* Anything that fits in r0 is returned there.  */
2237       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2238         {
2239           ULONGEST u;
2240           regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2241           store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2242         }
2243       else
2244         {
2245           /* Everything else is passed in mem0, using as many bytes as
2246              needed.  This is not what the Renesas tools do, but it's
2247              what GCC does at the moment.  */
2248           struct bound_minimal_symbol mem0
2249             = lookup_minimal_symbol ("mem0", NULL, NULL);
2250
2251           if (! mem0.minsym)
2252             error (_("The return value is stored in memory at 'mem0', "
2253                      "but GDB cannot find\n"
2254                      "its address."));
2255           read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2256         }
2257     }
2258
2259   if (writebuf)
2260     {
2261       /* We should never be called to store values to be returned
2262          using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2263          finding the buffer, unless we made the call ourselves.  */
2264       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2265
2266       gdb_assert (valtype_len <= 8);
2267
2268       /* Anything that fits in r0 is returned there.  */
2269       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2270         {
2271           ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2272                                                  byte_order);
2273           regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2274         }
2275       else
2276         {
2277           /* Everything else is passed in mem0, using as many bytes as
2278              needed.  This is not what the Renesas tools do, but it's
2279              what GCC does at the moment.  */
2280           struct bound_minimal_symbol mem0
2281             = lookup_minimal_symbol ("mem0", NULL, NULL);
2282
2283           if (! mem0.minsym)
2284             error (_("The return value is stored in memory at 'mem0', "
2285                      "but GDB cannot find\n"
2286                      " its address."));
2287           write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2288         }
2289     }
2290
2291   return conv;
2292 }
2293
2294
2295 \f
2296 /* Trampolines.  */
2297
2298 /* The m16c and m32c use a trampoline function for indirect function
2299    calls.  An indirect call looks like this:
2300
2301              ... push arguments ...
2302              ... push target function address ...
2303              jsr.a m32c_jsri16
2304
2305    The code for m32c_jsri16 looks like this:
2306
2307      m32c_jsri16:
2308
2309              # Save return address.
2310              pop.w      m32c_jsri_ret
2311              pop.b      m32c_jsri_ret+2
2312
2313              # Store target function address.
2314              pop.w      m32c_jsri_addr
2315
2316              # Re-push return address.
2317              push.b     m32c_jsri_ret+2
2318              push.w     m32c_jsri_ret
2319
2320              # Call the target function.
2321              jmpi.a     m32c_jsri_addr
2322
2323    Without further information, GDB will treat calls to m32c_jsri16
2324    like calls to any other function.  Since m32c_jsri16 doesn't have
2325    debugging information, that normally means that GDB sets a step-
2326    resume breakpoint and lets the program continue --- which is not
2327    what the user wanted.  (Giving the trampoline debugging info
2328    doesn't help: the user expects the program to stop in the function
2329    their program is calling, not in some trampoline code they've never
2330    seen before.)
2331
2332    The gdbarch_skip_trampoline_code method tells GDB how to step
2333    through such trampoline functions transparently to the user.  When
2334    given the address of a trampoline function's first instruction,
2335    gdbarch_skip_trampoline_code should return the address of the first
2336    instruction of the function really being called.  If GDB decides it
2337    wants to step into that function, it will set a breakpoint there
2338    and silently continue to it.
2339
2340    We recognize the trampoline by name, and extract the target address
2341    directly from the stack.  This isn't great, but recognizing by its
2342    code sequence seems more fragile.  */
2343
2344 static CORE_ADDR
2345 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2346 {
2347   struct gdbarch *gdbarch = get_frame_arch (frame);
2348   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2349   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2350
2351   /* It would be nicer to simply look up the addresses of known
2352      trampolines once, and then compare stop_pc with them.  However,
2353      we'd need to ensure that that cached address got invalidated when
2354      someone loaded a new executable, and I'm not quite sure of the
2355      best way to do that.  find_pc_partial_function does do some
2356      caching, so we'll see how this goes.  */
2357   const char *name;
2358   CORE_ADDR start, end;
2359
2360   if (find_pc_partial_function (stop_pc, &name, &start, &end))
2361     {
2362       /* Are we stopped at the beginning of the trampoline function?  */
2363       if (strcmp (name, "m32c_jsri16") == 0
2364           && stop_pc == start)
2365         {
2366           /* Get the stack pointer.  The return address is at the top,
2367              and the target function's address is just below that.  We
2368              know it's a two-byte address, since the trampoline is
2369              m32c_jsri*16*.  */
2370           CORE_ADDR sp = get_frame_sp (get_current_frame ());
2371           CORE_ADDR target
2372             = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2373                                             2, byte_order);
2374
2375           /* What we have now is the address of a jump instruction.
2376              What we need is the destination of that jump.
2377              The opcode is 1 byte, and the destination is the next 3 bytes.  */
2378
2379           target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2380           return target;
2381         }
2382     }
2383
2384   return 0;
2385 }
2386
2387
2388 /* Address/pointer conversions.  */
2389
2390 /* On the m16c, there is a 24-bit address space, but only a very few
2391    instructions can generate addresses larger than 0xffff: jumps,
2392    jumps to subroutines, and the lde/std (load/store extended)
2393    instructions.
2394
2395    Since GCC can only support one size of pointer, we can't have
2396    distinct 'near' and 'far' pointer types; we have to pick one size
2397    for everything.  If we wanted to use 24-bit pointers, then GCC
2398    would have to use lde and ste for all memory references, which
2399    would be terrible for performance and code size.  So the GNU
2400    toolchain uses 16-bit pointers for everything, and gives up the
2401    ability to have pointers point outside the first 64k of memory.
2402
2403    However, as a special hack, we let the linker place functions at
2404    addresses above 0xffff, as long as it also places a trampoline in
2405    the low 64k for every function whose address is taken.  Each
2406    trampoline consists of a single jmp.a instruction that jumps to the
2407    function's real entry point.  Pointers to functions can be 16 bits
2408    long, even though the functions themselves are at higher addresses:
2409    the pointers refer to the trampolines, not the functions.
2410
2411    This complicates things for GDB, however: given the address of a
2412    function (from debug info or linker symbols, say) which could be
2413    anywhere in the 24-bit address space, how can we find an
2414    appropriate 16-bit value to use as a pointer to it?
2415
2416    If the linker has not generated a trampoline for the function,
2417    we're out of luck.  Well, I guess we could malloc some space and
2418    write a jmp.a instruction to it, but I'm not going to get into that
2419    at the moment.
2420
2421    If the linker has generated a trampoline for the function, then it
2422    also emitted a symbol for the trampoline: if the function's linker
2423    symbol is named NAME, then the function's trampoline's linker
2424    symbol is named NAME.plt.
2425
2426    So, given a code address:
2427    - We try to find a linker symbol at that address.
2428    - If we find such a symbol named NAME, we look for a linker symbol
2429      named NAME.plt.
2430    - If we find such a symbol, we assume it is a trampoline, and use
2431      its address as the pointer value.
2432
2433    And, given a function pointer:
2434    - We try to find a linker symbol at that address named NAME.plt.
2435    - If we find such a symbol, we look for a linker symbol named NAME.
2436    - If we find that, we provide that as the function's address.
2437    - If any of the above steps fail, we return the original address
2438      unchanged; it might really be a function in the low 64k.
2439
2440    See?  You *knew* there was a reason you wanted to be a computer
2441    programmer!  :)  */
2442
2443 static void
2444 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2445                               struct type *type, gdb_byte *buf, CORE_ADDR addr)
2446 {
2447   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2448   enum type_code target_code;
2449   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2450               TYPE_CODE (type) == TYPE_CODE_REF);
2451
2452   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2453
2454   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2455     {
2456       const char *func_name;
2457       char *tramp_name;
2458       struct bound_minimal_symbol tramp_msym;
2459
2460       /* Try to find a linker symbol at this address.  */
2461       struct bound_minimal_symbol func_msym
2462         = lookup_minimal_symbol_by_pc (addr);
2463
2464       if (! func_msym.minsym)
2465         error (_("Cannot convert code address %s to function pointer:\n"
2466                "couldn't find a symbol at that address, to find trampoline."),
2467                paddress (gdbarch, addr));
2468
2469       func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2470       tramp_name = xmalloc (strlen (func_name) + 5);
2471       strcpy (tramp_name, func_name);
2472       strcat (tramp_name, ".plt");
2473
2474       /* Try to find a linker symbol for the trampoline.  */
2475       tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2476
2477       /* We've either got another copy of the name now, or don't need
2478          the name any more.  */
2479       xfree (tramp_name);
2480
2481       if (! tramp_msym.minsym)
2482         {
2483           CORE_ADDR ptrval;
2484
2485           /* No PLT entry found.  Mask off the upper bits of the address
2486              to make a pointer.  As noted in the warning to the user
2487              below, this value might be useful if converted back into
2488              an address by GDB, but will otherwise, almost certainly,
2489              be garbage.
2490              
2491              Using this masked result does seem to be useful
2492              in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2493              PASSes.  These results appear to be correct as well.
2494              
2495              We print a warning here so that the user can make a
2496              determination about whether the result is useful or not.  */
2497           ptrval = addr & 0xffff;
2498
2499           warning (_("Cannot convert code address %s to function pointer:\n"
2500                    "couldn't find trampoline named '%s.plt'.\n"
2501                    "Returning pointer value %s instead; this may produce\n"
2502                    "a useful result if converted back into an address by GDB,\n"
2503                    "but will most likely not be useful otherwise.\n"),
2504                    paddress (gdbarch, addr), func_name,
2505                    paddress (gdbarch, ptrval));
2506
2507           addr = ptrval;
2508
2509         }
2510       else
2511         {
2512           /* The trampoline's address is our pointer.  */
2513           addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2514         }
2515     }
2516
2517   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2518 }
2519
2520
2521 static CORE_ADDR
2522 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2523                               struct type *type, const gdb_byte *buf)
2524 {
2525   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2526   CORE_ADDR ptr;
2527   enum type_code target_code;
2528
2529   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2530               TYPE_CODE (type) == TYPE_CODE_REF);
2531
2532   ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2533
2534   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2535
2536   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2537     {
2538       /* See if there is a minimal symbol at that address whose name is
2539          "NAME.plt".  */
2540       struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2541
2542       if (ptr_msym.minsym)
2543         {
2544           const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2545           int len = strlen (ptr_msym_name);
2546
2547           if (len > 4
2548               && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2549             {
2550               struct bound_minimal_symbol func_msym;
2551               /* We have a .plt symbol; try to find the symbol for the
2552                  corresponding function.
2553
2554                  Since the trampoline contains a jump instruction, we
2555                  could also just extract the jump's target address.  I
2556                  don't see much advantage one way or the other.  */
2557               char *func_name = xmalloc (len - 4 + 1);
2558               memcpy (func_name, ptr_msym_name, len - 4);
2559               func_name[len - 4] = '\0';
2560               func_msym
2561                 = lookup_minimal_symbol (func_name, NULL, NULL);
2562
2563               /* If we do have such a symbol, return its value as the
2564                  function's true address.  */
2565               if (func_msym.minsym)
2566                 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2567             }
2568         }
2569       else
2570         {
2571           int aspace;
2572
2573           for (aspace = 1; aspace <= 15; aspace++)
2574             {
2575               ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2576               
2577               if (ptr_msym.minsym)
2578                 ptr |= aspace << 16;
2579             }
2580         }
2581     }
2582
2583   return ptr;
2584 }
2585
2586 static void
2587 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2588                             int *frame_regnum,
2589                             LONGEST *frame_offset)
2590 {
2591   const char *name;
2592   CORE_ADDR func_addr, func_end;
2593   struct m32c_prologue p;
2594
2595   struct regcache *regcache = get_current_regcache ();
2596   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2597   
2598   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2599     internal_error (__FILE__, __LINE__,
2600                     _("No virtual frame pointer available"));
2601
2602   m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2603   switch (p.kind)
2604     {
2605     case prologue_with_frame_ptr:
2606       *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2607       *frame_offset = p.frame_ptr_offset;
2608       break;
2609     case prologue_sans_frame_ptr:
2610       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2611       *frame_offset = p.frame_size;
2612       break;
2613     default:
2614       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2615       *frame_offset = 0;
2616       break;
2617     }
2618   /* Sanity check */
2619   if (*frame_regnum > gdbarch_num_regs (gdbarch))
2620     internal_error (__FILE__, __LINE__,
2621                     _("No virtual frame pointer available"));
2622 }
2623
2624 \f
2625 /* Initialization.  */
2626
2627 static struct gdbarch *
2628 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2629 {
2630   struct gdbarch *arch;
2631   struct gdbarch_tdep *tdep;
2632   unsigned long mach = info.bfd_arch_info->mach;
2633
2634   /* Find a candidate among the list of architectures we've created
2635      already.  */
2636   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2637        arches != NULL;
2638        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2639     return arches->gdbarch;
2640
2641   tdep = xcalloc (1, sizeof (*tdep));
2642   arch = gdbarch_alloc (&info, tdep);
2643
2644   /* Essential types.  */
2645   make_types (arch);
2646
2647   /* Address/pointer conversions.  */
2648   if (mach == bfd_mach_m16c)
2649     {
2650       set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2651       set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2652     }
2653
2654   /* Register set.  */
2655   make_regs (arch);
2656
2657   /* Disassembly.  */
2658   set_gdbarch_print_insn (arch, print_insn_m32c);
2659
2660   /* Breakpoints.  */
2661   set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2662
2663   /* Prologue analysis and unwinding.  */
2664   set_gdbarch_inner_than (arch, core_addr_lessthan);
2665   set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2666   set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2667   set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2668 #if 0
2669   /* I'm dropping the dwarf2 sniffer because it has a few problems.
2670      They may be in the dwarf2 cfi code in GDB, or they may be in
2671      the debug info emitted by the upstream toolchain.  I don't 
2672      know which, but I do know that the prologue analyzer works better.
2673      MVS 04/13/06  */
2674   dwarf2_append_sniffers (arch);
2675 #endif
2676   frame_unwind_append_unwinder (arch, &m32c_unwind);
2677
2678   /* Inferior calls.  */
2679   set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2680   set_gdbarch_return_value (arch, m32c_return_value);
2681   set_gdbarch_dummy_id (arch, m32c_dummy_id);
2682
2683   /* Trampolines.  */
2684   set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2685
2686   set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2687
2688   /* m32c function boundary addresses are not necessarily even.
2689      Therefore, the `vbit', which indicates a pointer to a virtual
2690      member function, is stored in the delta field, rather than as
2691      the low bit of a function pointer address.
2692
2693      In order to verify this, see the definition of
2694      TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2695      definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
2696   set_gdbarch_vbit_in_delta (arch, 1);
2697
2698   return arch;
2699 }
2700
2701 /* Provide a prototype to silence -Wmissing-prototypes.  */
2702 extern initialize_file_ftype _initialize_m32c_tdep;
2703
2704 void
2705 _initialize_m32c_tdep (void)
2706 {
2707   register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2708
2709   m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2710 }