1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
3 Copyright 2004, 2005, 2007 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
26 #if defined (HAVE_STRING_H)
30 #include "gdb_assert.h"
33 #include "gdb/sim-m32c.h"
37 #include "arch-utils.h"
39 #include "frame-unwind.h"
40 #include "dwarf2-frame.h"
41 #include "dwarf2expr.h"
45 #include "reggroups.h"
46 #include "prologue-value.h"
50 /* The m32c tdep structure. */
52 static struct reggroup *m32c_dma_reggroup;
56 /* The type of a function that moves the value of REG between CACHE or
57 BUF --- in either direction. */
58 typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
59 struct regcache *cache,
64 /* The name of this register. */
70 /* The architecture this register belongs to. */
73 /* Its GDB register number. */
76 /* Its sim register number. */
79 /* Its DWARF register number, or -1 if it doesn't have one. */
82 /* Register group memberships. */
83 unsigned int general_p : 1;
84 unsigned int dma_p : 1;
85 unsigned int system_p : 1;
86 unsigned int save_restore_p : 1;
88 /* Functions to read its value from a regcache, and write its value
90 m32c_move_reg_t *read, *write;
92 /* Data for READ and WRITE functions. The exact meaning depends on
93 the specific functions selected; see the comments for those
95 struct m32c_reg *rx, *ry;
100 /* An overestimate of the number of raw and pseudoregisters we will
101 have. The exact answer depends on the variant of the architecture
102 at hand, but we can use this to declare statically allocated
103 arrays, and bump it up when needed. */
104 #define M32C_MAX_NUM_REGS (75)
106 /* The largest assigned DWARF register number. */
107 #define M32C_MAX_DWARF_REGNUM (40)
112 /* All the registers for this variant, indexed by GDB register
113 number, and the number of registers present. */
114 struct m32c_reg regs[M32C_MAX_NUM_REGS];
116 /* The number of valid registers. */
119 /* Interesting registers. These are pointers into REGS. */
120 struct m32c_reg *pc, *flg;
121 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
122 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
123 struct m32c_reg *sb, *fb, *sp;
125 /* A table indexed by DWARF register numbers, pointing into
127 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
129 /* Types for this architecture. We can't use the builtin_type_foo
130 types, because they're not initialized when building a gdbarch
132 struct type *voyd, *ptr_voyd, *func_voyd;
133 struct type *uint8, *uint16;
134 struct type *int8, *int16, *int32, *int64;
136 /* The types for data address and code address registers. */
137 struct type *data_addr_reg_type, *code_addr_reg_type;
139 /* The number of bytes a return address pushed by a 'jsr' instruction
140 occupies on the stack. */
143 /* The number of bytes an address register occupies on the stack
144 when saved by an 'enter' or 'pushm' instruction. */
152 make_types (struct gdbarch *arch)
154 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
155 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
156 int data_addr_reg_bits, code_addr_reg_bits;
160 /* This is used to clip CORE_ADDR values, so this value is
161 appropriate both on the m32c, where pointers are 32 bits long,
162 and on the m16c, where pointers are sixteen bits long, but there
163 may be code above the 64k boundary. */
164 set_gdbarch_addr_bit (arch, 24);
166 /* GCC uses 32 bits for addrs in the dwarf info, even though
167 only 16/24 bits are used. Setting addr_bit to 24 causes
168 errors in reading the dwarf addresses. */
169 set_gdbarch_addr_bit (arch, 32);
172 set_gdbarch_int_bit (arch, 16);
176 data_addr_reg_bits = 16;
177 code_addr_reg_bits = 24;
178 set_gdbarch_ptr_bit (arch, 16);
179 tdep->ret_addr_bytes = 3;
180 tdep->push_addr_bytes = 2;
184 data_addr_reg_bits = 24;
185 code_addr_reg_bits = 24;
186 set_gdbarch_ptr_bit (arch, 32);
187 tdep->ret_addr_bytes = 4;
188 tdep->push_addr_bytes = 4;
195 /* The builtin_type_mumble variables are sometimes uninitialized when
196 this is called, so we avoid using them. */
197 tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
198 tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8,
199 TYPE_FLAG_UNSIGNED, NULL, NULL);
200 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
201 tdep->func_voyd = lookup_function_type (tdep->voyd);
203 sprintf (type_name, "%s_data_addr_t",
204 gdbarch_bfd_arch_info (arch)->printable_name);
205 tdep->data_addr_reg_type
206 = init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8,
207 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
208 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
210 sprintf (type_name, "%s_code_addr_t",
211 gdbarch_bfd_arch_info (arch)->printable_name);
212 tdep->code_addr_reg_type
213 = init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8,
214 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
215 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
217 tdep->uint8 = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
219 tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
221 tdep->int8 = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL);
222 tdep->int16 = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL);
223 tdep->int32 = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL);
224 tdep->int64 = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL);
232 m32c_register_name (int num)
234 return gdbarch_tdep (current_gdbarch)->regs[num].name;
239 m32c_register_type (struct gdbarch *arch, int reg_nr)
241 return gdbarch_tdep (arch)->regs[reg_nr].type;
246 m32c_register_sim_regno (int reg_nr)
248 return gdbarch_tdep (current_gdbarch)->regs[reg_nr].sim_num;
253 m32c_debug_info_reg_to_regnum (int reg_nr)
255 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
256 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
257 && tdep->dwarf_regs[reg_nr])
258 return tdep->dwarf_regs[reg_nr]->num;
260 /* The DWARF CFI code expects to see -1 for invalid register
267 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
268 struct reggroup *group)
270 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
271 struct m32c_reg *reg = &tdep->regs[regnum];
273 /* The anonymous raw registers aren't in any groups. */
277 if (group == all_reggroup)
280 if (group == general_reggroup
284 if (group == m32c_dma_reggroup
288 if (group == system_reggroup
292 /* Since the m32c DWARF register numbers refer to cooked registers, not
293 raw registers, and frame_pop depends on the save and restore groups
294 containing registers the DWARF CFI will actually mention, our save
295 and restore groups are cooked registers, not raw registers. (This is
296 why we can't use the default reggroup function.) */
297 if ((group == save_reggroup
298 || group == restore_reggroup)
299 && reg->save_restore_p)
306 /* Register move functions. We declare them here using
307 m32c_move_reg_t to check the types. */
308 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
309 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
310 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
311 static m32c_move_reg_t m32c_part_read, m32c_part_write;
312 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
313 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
316 /* Copy the value of the raw register REG from CACHE to BUF. */
318 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
320 regcache_raw_read (cache, reg->num, buf);
324 /* Copy the value of the raw register REG from BUF to CACHE. */
326 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
328 regcache_raw_write (cache, reg->num, (const void *) buf);
332 /* Return the value of the 'flg' register in CACHE. */
334 m32c_read_flg (struct regcache *cache)
336 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
338 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
343 /* Evaluate the real register number of a banked register. */
344 static struct m32c_reg *
345 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
347 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
351 /* Move the value of a banked register from CACHE to BUF.
352 If the value of the 'flg' register in CACHE has any of the bits
353 masked in REG->n set, then read REG->ry. Otherwise, read
356 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
358 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
359 regcache_raw_read (cache, bank_reg->num, buf);
363 /* Move the value of a banked register from BUF to CACHE.
364 If the value of the 'flg' register in CACHE has any of the bits
365 masked in REG->n set, then write REG->ry. Otherwise, write
368 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
370 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
371 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
375 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
376 banked register; on bfd_mach_m16c, it's not. */
378 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
380 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
381 m32c_raw_read (reg->rx, cache, buf);
383 m32c_banked_read (reg, cache, buf);
387 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
388 banked register; on bfd_mach_m16c, it's not. */
390 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
392 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
393 m32c_raw_write (reg->rx, cache, buf);
395 m32c_banked_write (reg, cache, buf);
399 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
400 and *LEN_P to the offset and length, in bytes, of the part REG
401 occupies in its underlying register. The offset is from the
402 lower-addressed end, regardless of the architecture's endianness.
403 (The M32C family is always little-endian, but let's keep those
404 assumptions out of here.) */
406 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
408 /* The length of the containing register, of which REG is one part. */
409 int containing_len = TYPE_LENGTH (reg->rx->type);
411 /* The length of one "element" in our imaginary array. */
412 int elt_len = TYPE_LENGTH (reg->type);
414 /* The offset of REG's "element" from the least significant end of
415 the containing register. */
416 int elt_offset = reg->n * elt_len;
418 /* If we extend off the end, trim the length of the element. */
419 if (elt_offset + elt_len > containing_len)
421 elt_len = containing_len - elt_offset;
422 /* We shouldn't be declaring partial registers that go off the
423 end of their containing registers. */
424 gdb_assert (elt_len > 0);
427 /* Flip the offset around if we're big-endian. */
428 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
429 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
431 *offset_p = elt_offset;
436 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
437 to BUF. Treating the value of the register REG->rx as an array of
438 REG->type values, where higher indices refer to more significant
439 bits, read the value of the REG->n'th element. */
441 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
444 memset (buf, 0, TYPE_LENGTH (reg->type));
445 m32c_find_part (reg, &offset, &len);
446 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
450 /* Move the value of a banked register from BUF to CACHE.
451 Treating the value of the register REG->rx as an array of REG->type
452 values, where higher indices refer to more significant bits, write
453 the value of the REG->n'th element. */
455 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
458 m32c_find_part (reg, &offset, &len);
459 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
463 /* Move the value of REG from CACHE to BUF. REG's value is the
464 concatenation of the values of the registers REG->rx and REG->ry,
465 with REG->rx contributing the more significant bits. */
467 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
469 int high_bytes = TYPE_LENGTH (reg->rx->type);
470 int low_bytes = TYPE_LENGTH (reg->ry->type);
471 /* For address arithmetic. */
472 unsigned char *cbuf = buf;
474 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
476 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
478 regcache_cooked_read (cache, reg->rx->num, cbuf);
479 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
483 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
484 regcache_cooked_read (cache, reg->ry->num, cbuf);
489 /* Move the value of REG from CACHE to BUF. REG's value is the
490 concatenation of the values of the registers REG->rx and REG->ry,
491 with REG->rx contributing the more significant bits. */
493 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
495 int high_bytes = TYPE_LENGTH (reg->rx->type);
496 int low_bytes = TYPE_LENGTH (reg->ry->type);
497 /* For address arithmetic. */
498 unsigned char *cbuf = buf;
500 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
502 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
504 regcache_cooked_write (cache, reg->rx->num, cbuf);
505 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
509 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
510 regcache_cooked_write (cache, reg->ry->num, cbuf);
515 /* Copy the value of the raw register REG from CACHE to BUF. REG is
516 the concatenation (from most significant to least) of r3, r2, r1,
519 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
521 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
522 int len = TYPE_LENGTH (tdep->r0->type);
524 /* For address arithmetic. */
525 unsigned char *cbuf = buf;
527 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
529 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
530 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
531 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
532 regcache_cooked_read (cache, tdep->r3->num, cbuf);
536 regcache_cooked_read (cache, tdep->r0->num, cbuf);
537 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
538 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
539 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
544 /* Copy the value of the raw register REG from BUF to CACHE. REG is
545 the concatenation (from most significant to least) of r3, r2, r1,
548 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
550 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
551 int len = TYPE_LENGTH (tdep->r0->type);
553 /* For address arithmetic. */
554 unsigned char *cbuf = buf;
556 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
558 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
559 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
560 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
561 regcache_cooked_write (cache, tdep->r3->num, cbuf);
565 regcache_cooked_write (cache, tdep->r0->num, cbuf);
566 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
567 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
568 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
574 m32c_pseudo_register_read (struct gdbarch *arch,
575 struct regcache *cache,
579 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
580 struct m32c_reg *reg;
582 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
583 gdb_assert (arch == get_regcache_arch (cache));
584 gdb_assert (arch == tdep->regs[cookednum].arch);
585 reg = &tdep->regs[cookednum];
587 reg->read (reg, cache, buf);
592 m32c_pseudo_register_write (struct gdbarch *arch,
593 struct regcache *cache,
597 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
598 struct m32c_reg *reg;
600 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
601 gdb_assert (arch == get_regcache_arch (cache));
602 gdb_assert (arch == tdep->regs[cookednum].arch);
603 reg = &tdep->regs[cookednum];
605 reg->write (reg, cache, (void *) buf);
609 /* Add a register with the given fields to the end of ARCH's table.
610 Return a pointer to the newly added register. */
611 static struct m32c_reg *
612 add_reg (struct gdbarch *arch,
616 m32c_move_reg_t *read,
617 m32c_move_reg_t *write,
622 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
623 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
625 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
630 r->num = tdep->num_regs;
631 r->sim_num = sim_num;
636 r->save_restore_p = 0;
649 /* Record NUM as REG's DWARF register number. */
651 set_dwarf_regnum (struct m32c_reg *reg, int num)
653 gdb_assert (num < M32C_MAX_NUM_REGS);
655 /* Update the reg->DWARF mapping. Only count the first number
656 assigned to this register. */
657 if (reg->dwarf_num == -1)
658 reg->dwarf_num = num;
660 /* Update the DWARF->reg mapping. */
661 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
665 /* Mark REG as a general-purpose register, and return it. */
666 static struct m32c_reg *
667 mark_general (struct m32c_reg *reg)
674 /* Mark REG as a DMA register, and return it. */
675 static struct m32c_reg *
676 mark_dma (struct m32c_reg *reg)
683 /* Mark REG as a SYSTEM register, and return it. */
684 static struct m32c_reg *
685 mark_system (struct m32c_reg *reg)
692 /* Mark REG as a save-restore register, and return it. */
693 static struct m32c_reg *
694 mark_save_restore (struct m32c_reg *reg)
696 reg->save_restore_p = 1;
701 #define FLAGBIT_B 0x0010
702 #define FLAGBIT_U 0x0080
704 /* Handy macros for declaring registers. These all evaluate to
705 pointers to the register declared. Macros that define two
706 registers evaluate to a pointer to the first. */
708 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
709 #define R(name, type, sim_num) \
710 (add_reg (arch, (name), (type), (sim_num), \
711 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
713 /* The simulator register number for a raw register named NAME. */
714 #define SIM(name) (m32c_sim_reg_ ## name)
716 /* A raw unsigned 16-bit data register named NAME.
717 NAME should be an identifier, not a string. */
719 (R(#name, tdep->uint16, SIM (name)))
721 /* A raw data address register named NAME.
722 NAME should be an identifier, not a string. */
724 (R(#name, tdep->data_addr_reg_type, SIM (name)))
726 /* A raw code address register named NAME. NAME should
727 be an identifier, not a string. */
729 (R(#name, tdep->code_addr_reg_type, SIM (name)))
731 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
732 NAME should be an identifier, not a string. */
733 #define RP(name, type) \
734 (R(#name "0", (type), SIM (name ## 0)), \
735 R(#name "1", (type), SIM (name ## 1)) - 1)
737 /* A raw banked general-purpose data register named NAME.
738 NAME should be an identifier, not a string. */
740 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
741 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
743 /* A raw banked data address register named NAME.
744 NAME should be an identifier, not a string. */
746 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
747 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
749 /* A cooked register named NAME referring to a raw banked register
750 from the bank selected by the current value of FLG. RAW_PAIR
751 should be a pointer to the first register in the banked pair.
752 NAME must be an identifier, not a string. */
753 #define CB(name, raw_pair) \
754 (add_reg (arch, #name, (raw_pair)->type, 0, \
755 m32c_banked_read, m32c_banked_write, \
756 (raw_pair), (raw_pair + 1), FLAGBIT_B))
758 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
759 access the top and bottom halves of the register pointed to by
760 NAME. NAME should be an identifier. */
761 #define CHL(name, type) \
762 (add_reg (arch, #name "h", (type), 0, \
763 m32c_part_read, m32c_part_write, name, NULL, 1), \
764 add_reg (arch, #name "l", (type), 0, \
765 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
767 /* A register constructed by concatenating the two registers HIGH and
768 LOW, whose name is HIGHLOW and whose type is TYPE. */
769 #define CCAT(high, low, type) \
770 (add_reg (arch, #high #low, (type), 0, \
771 m32c_cat_read, m32c_cat_write, (high), (low), 0))
773 /* Abbreviations for marking register group membership. */
774 #define G(reg) (mark_general (reg))
775 #define S(reg) (mark_system (reg))
776 #define DMA(reg) (mark_dma (reg))
779 /* Construct the register set for ARCH. */
781 make_regs (struct gdbarch *arch)
783 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
784 int mach = gdbarch_bfd_arch_info (arch)->mach;
786 struct m32c_reg *raw_r0_pair = RBD (r0);
787 struct m32c_reg *raw_r1_pair = RBD (r1);
788 struct m32c_reg *raw_r2_pair = RBD (r2);
789 struct m32c_reg *raw_r3_pair = RBD (r3);
790 struct m32c_reg *raw_a0_pair = RBA (a0);
791 struct m32c_reg *raw_a1_pair = RBA (a1);
792 struct m32c_reg *raw_fb_pair = RBA (fb);
794 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
795 We always declare both raw registers, and deal with the distinction
796 in the pseudoregister. */
797 struct m32c_reg *raw_sb_pair = RBA (sb);
799 struct m32c_reg *usp = S (RA (usp));
800 struct m32c_reg *isp = S (RA (isp));
801 struct m32c_reg *intb = S (RC (intb));
802 struct m32c_reg *pc = G (RC (pc));
803 struct m32c_reg *flg = G (R16U (flg));
805 if (mach == bfd_mach_m32c)
807 struct m32c_reg *svf = S (R16U (svf));
808 struct m32c_reg *svp = S (RC (svp));
809 struct m32c_reg *vct = S (RC (vct));
811 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
812 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
813 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
814 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
815 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
816 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
819 int num_raw_regs = tdep->num_regs;
821 struct m32c_reg *r0 = G (CB (r0, raw_r0_pair));
822 struct m32c_reg *r1 = G (CB (r1, raw_r1_pair));
823 struct m32c_reg *r2 = G (CB (r2, raw_r2_pair));
824 struct m32c_reg *r3 = G (CB (r3, raw_r3_pair));
825 struct m32c_reg *a0 = G (CB (a0, raw_a0_pair));
826 struct m32c_reg *a1 = G (CB (a1, raw_a1_pair));
827 struct m32c_reg *fb = G (CB (fb, raw_fb_pair));
829 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
830 Specify custom read/write functions that do the right thing. */
832 = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
833 m32c_sb_read, m32c_sb_write,
834 raw_sb_pair, raw_sb_pair + 1, 0));
836 /* The current sp is either usp or isp, depending on the value of
837 the FLG register's U bit. */
839 = G (add_reg (arch, "sp", usp->type, 0,
840 m32c_banked_read, m32c_banked_write, isp, usp, FLAGBIT_U));
842 struct m32c_reg *r0hl = CHL (r0, tdep->int8);
843 struct m32c_reg *r1hl = CHL (r1, tdep->int8);
844 struct m32c_reg *r2hl = CHL (r2, tdep->int8);
845 struct m32c_reg *r3hl = CHL (r3, tdep->int8);
846 struct m32c_reg *intbhl = CHL (intb, tdep->int16);
848 struct m32c_reg *r2r0 = CCAT (r2, r0, tdep->int32);
849 struct m32c_reg *r3r1 = CCAT (r3, r1, tdep->int32);
850 struct m32c_reg *r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
852 struct m32c_reg *r3r2r1r0
853 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
854 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
856 struct m32c_reg *a1a0;
857 if (mach == bfd_mach_m16c)
858 a1a0 = CCAT (a1, a0, tdep->int32);
862 int num_cooked_regs = tdep->num_regs - num_raw_regs;
871 tdep->r3r2r1r0 = r3r2r1r0;
872 tdep->r3r1r2r0 = r3r1r2r0;
879 /* Set up the DWARF register table. */
880 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
881 set_dwarf_regnum (r0hl + 1, 0x01);
882 set_dwarf_regnum (r0hl + 0, 0x02);
883 set_dwarf_regnum (r1hl + 1, 0x03);
884 set_dwarf_regnum (r1hl + 0, 0x04);
885 set_dwarf_regnum (r0, 0x05);
886 set_dwarf_regnum (r1, 0x06);
887 set_dwarf_regnum (r2, 0x07);
888 set_dwarf_regnum (r3, 0x08);
889 set_dwarf_regnum (a0, 0x09);
890 set_dwarf_regnum (a1, 0x0a);
891 set_dwarf_regnum (fb, 0x0b);
892 set_dwarf_regnum (sp, 0x0c);
893 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
894 set_dwarf_regnum (sb, 0x13);
895 set_dwarf_regnum (r2r0, 0x15);
896 set_dwarf_regnum (r3r1, 0x16);
898 set_dwarf_regnum (a1a0, 0x17);
900 /* Enumerate the save/restore register group.
902 The regcache_save and regcache_restore functions apply their read
903 function to each register in this group.
905 Since frame_pop supplies frame_unwind_register as its read
906 function, the registers meaningful to the Dwarf unwinder need to
909 On the other hand, when we make inferior calls, save_inferior_status
910 and restore_inferior_status use them to preserve the current register
911 values across the inferior call. For this, you'd kind of like to
912 preserve all the raw registers, to protect the interrupted code from
913 any sort of bank switching the callee might have done. But we handle
914 those cases so badly anyway --- for example, it matters whether we
915 restore FLG before or after we restore the general-purpose registers,
916 but there's no way to express that --- that it isn't worth worrying
919 We omit control registers like inthl: if you call a function that
920 changes those, it's probably because you wanted that change to be
921 visible to the interrupted code. */
922 mark_save_restore (r0);
923 mark_save_restore (r1);
924 mark_save_restore (r2);
925 mark_save_restore (r3);
926 mark_save_restore (a0);
927 mark_save_restore (a1);
928 mark_save_restore (sb);
929 mark_save_restore (fb);
930 mark_save_restore (sp);
931 mark_save_restore (pc);
932 mark_save_restore (flg);
934 set_gdbarch_num_regs (arch, num_raw_regs);
935 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
936 set_gdbarch_pc_regnum (arch, pc->num);
937 set_gdbarch_sp_regnum (arch, sp->num);
938 set_gdbarch_register_name (arch, m32c_register_name);
939 set_gdbarch_register_type (arch, m32c_register_type);
940 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
941 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
942 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
943 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
944 set_gdbarch_dwarf_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
945 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
946 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
948 reggroup_add (arch, general_reggroup);
949 reggroup_add (arch, all_reggroup);
950 reggroup_add (arch, save_reggroup);
951 reggroup_add (arch, restore_reggroup);
952 reggroup_add (arch, system_reggroup);
953 reggroup_add (arch, m32c_dma_reggroup);
960 static const unsigned char *
961 m32c_breakpoint_from_pc (CORE_ADDR *pc, int *len)
963 static unsigned char break_insn[] = { 0x00 }; /* brk */
965 *len = sizeof (break_insn);
971 /* Prologue analysis. */
975 /* For consistency with the DWARF 2 .debug_frame info generated by
976 GCC, a frame's CFA is the address immediately after the saved
979 /* The architecture for which we generated this prologue info. */
980 struct gdbarch *arch;
983 /* This function uses a frame pointer. */
984 prologue_with_frame_ptr,
986 /* This function has no frame pointer. */
987 prologue_sans_frame_ptr,
989 /* This function sets up the stack, so its frame is the first
990 frame on the stack. */
995 /* If KIND is prologue_with_frame_ptr, this is the offset from the
996 CFA to where the frame pointer points. This is always zero or
998 LONGEST frame_ptr_offset;
1000 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1001 the stack pointer --- always zero or negative.
1003 Calling this a "size" is a bit misleading, but given that the
1004 stack grows downwards, using offsets for everything keeps one
1005 from going completely sign-crazy: you never change anything's
1006 sign for an ADD instruction; always change the second operand's
1007 sign for a SUB instruction; and everything takes care of
1010 Functions that use alloca don't have a constant frame size. But
1011 they always have frame pointers, so we must use that to find the
1012 CFA (and perhaps to unwind the stack pointer). */
1015 /* The address of the first instruction at which the frame has been
1016 set up and the arguments are where the debug info says they are
1017 --- as best as we can tell. */
1018 CORE_ADDR prologue_end;
1020 /* reg_offset[R] is the offset from the CFA at which register R is
1021 saved, or 1 if register R has not been saved. (Real values are
1022 always zero or negative.) */
1023 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1027 /* The longest I've seen, anyway. */
1028 #define M32C_MAX_INSN_LEN (9)
1030 /* Processor state, for the prologue analyzer. */
1031 struct m32c_pv_state
1033 struct gdbarch *arch;
1034 pv_t r0, r1, r2, r3;
1038 struct pv_area *stack;
1040 /* Bytes from the current PC, the address they were read from,
1041 and the address of the next unconsumed byte. */
1042 gdb_byte insn[M32C_MAX_INSN_LEN];
1043 CORE_ADDR scan_pc, next_addr;
1047 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1048 all went well, or non-zero if simulating the action would trash our
1051 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1053 if (pv_area_store_would_trash (state->stack, state->sp))
1056 state->sp = pv_add_constant (state->sp, -size);
1057 pv_area_store (state->stack, state->sp, size, value);
1063 /* A source or destination location for an m16c or m32c
1067 /* If srcdest_reg, the location is a register pointed to by REG.
1068 If srcdest_partial_reg, the location is part of a register pointed
1069 to by REG. We don't try to handle this too well.
1070 If srcdest_mem, the location is memory whose address is ADDR. */
1071 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1076 /* Return the SIZE-byte value at LOC in STATE. */
1078 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1080 if (loc.kind == srcdest_mem)
1081 return pv_area_fetch (state->stack, loc.addr, size);
1082 else if (loc.kind == srcdest_partial_reg)
1083 return pv_unknown ();
1089 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1090 all went well, or non-zero if simulating the store would trash our
1093 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1094 pv_t value, int size)
1096 if (loc.kind == srcdest_mem)
1098 if (pv_area_store_would_trash (state->stack, loc.addr))
1100 pv_area_store (state->stack, loc.addr, size, value);
1102 else if (loc.kind == srcdest_partial_reg)
1103 *loc.reg = pv_unknown ();
1112 m32c_sign_ext (int v, int bits)
1114 int mask = 1 << (bits - 1);
1115 return (v ^ mask) - mask;
1119 m32c_next_byte (struct m32c_pv_state *st)
1121 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1122 return st->insn[st->next_addr++ - st->scan_pc];
1126 m32c_udisp8 (struct m32c_pv_state *st)
1128 return m32c_next_byte (st);
1133 m32c_sdisp8 (struct m32c_pv_state *st)
1135 return m32c_sign_ext (m32c_next_byte (st), 8);
1140 m32c_udisp16 (struct m32c_pv_state *st)
1142 int low = m32c_next_byte (st);
1143 int high = m32c_next_byte (st);
1145 return low + (high << 8);
1150 m32c_sdisp16 (struct m32c_pv_state *st)
1152 int low = m32c_next_byte (st);
1153 int high = m32c_next_byte (st);
1155 return m32c_sign_ext (low + (high << 8), 16);
1160 m32c_udisp24 (struct m32c_pv_state *st)
1162 int low = m32c_next_byte (st);
1163 int mid = m32c_next_byte (st);
1164 int high = m32c_next_byte (st);
1166 return low + (mid << 8) + (high << 16);
1170 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1172 m32c_get_src23 (unsigned char *i)
1174 return (((i[0] & 0x70) >> 2)
1175 | ((i[1] & 0x30) >> 4));
1179 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1181 m32c_get_dest23 (unsigned char *i)
1183 return (((i[0] & 0x0e) << 1)
1184 | ((i[1] & 0xc0) >> 6));
1188 static struct srcdest
1189 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1195 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1197 sd.kind = srcdest_mem;
1199 sd.addr = pv_unknown ();
1204 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1205 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1206 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1207 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1209 case 0x4: sd.reg = &st->a0; break;
1210 case 0x5: sd.reg = &st->a1; break;
1212 case 0x6: sd.addr = st->a0; break;
1213 case 0x7: sd.addr = st->a1; break;
1215 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1216 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1217 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1218 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1220 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1221 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1222 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1223 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1233 static struct srcdest
1234 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1238 sd.addr = pv_unknown ();
1247 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1252 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1256 sd.kind = srcdest_mem;
1263 case 0x12: sd.reg = &st->r0; break;
1264 case 0x13: sd.reg = &st->r1; break;
1265 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1266 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1267 case 0x02: sd.reg = &st->a0; break;
1268 case 0x03: sd.reg = &st->a1; break;
1270 case 0x00: sd.addr = st->a0; break;
1271 case 0x01: sd.addr = st->a1; break;
1272 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1273 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1274 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1275 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1276 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1277 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1278 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1279 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1280 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1281 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1282 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1283 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1290 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1291 sd.kind = srcdest_mem;
1298 /* The r16c and r32c machines have instructions with similar
1299 semantics, but completely different machine language encodings. So
1300 we break out the semantics into their own functions, and leave
1301 machine-specific decoding in m32c_analyze_prologue.
1303 The following functions all expect their arguments already decoded,
1304 and they all return zero if analysis should continue past this
1305 instruction, or non-zero if analysis should stop. */
1308 /* Simulate an 'enter SIZE' instruction in STATE. */
1310 m32c_pv_enter (struct m32c_pv_state *state, int size)
1312 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1314 /* If simulating this store would require us to forget
1315 everything we know about the stack frame in the name of
1316 accuracy, it would be better to just quit now. */
1317 if (pv_area_store_would_trash (state->stack, state->sp))
1320 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1322 state->fb = state->sp;
1323 state->sp = pv_add_constant (state->sp, -size);
1330 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1331 int bit, int src, int size)
1335 if (m32c_pv_push (state, reg, size))
1343 /* Simulate a 'pushm SRC' instruction in STATE. */
1345 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1347 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1349 /* The bits in SRC indicating which registers to save are:
1350 r0 r1 r2 r3 a0 a1 sb fb */
1352 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1353 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1354 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1355 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1356 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1357 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1358 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1359 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1362 /* Return non-zero if VALUE is the first incoming argument register. */
1365 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1367 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1368 return (value.kind == pvk_register
1369 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1370 ? (value.reg == tdep->r1->num)
1371 : (value.reg == tdep->r0->num))
1375 /* Return non-zero if VALUE is an incoming argument register. */
1378 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1380 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1381 return (value.kind == pvk_register
1382 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1383 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1384 : (value.reg == tdep->r0->num))
1388 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1389 argument register to its stack slot in STATE. Such instructions
1390 should be included in the prologue, if possible.
1392 The store is a spill if:
1393 - the value being stored is the original value of an argument register;
1394 - the value has not already been stored somewhere in STACK; and
1395 - LOC is a stack slot (e.g., a memory location whose address is
1396 relative to the original value of the SP). */
1399 m32c_is_arg_spill (struct m32c_pv_state *st,
1403 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1405 return (m32c_is_arg_reg (st, value)
1406 && loc.kind == srcdest_mem
1407 && pv_is_register (loc.addr, tdep->sp->num)
1408 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1411 /* Return non-zero if a store of VALUE to LOC is probably
1412 copying the struct return address into an address register
1413 for immediate use. This is basically a "spill" into the
1414 address register, instead of onto the stack.
1416 The prerequisites are:
1417 - value being stored is original value of the FIRST arg register;
1418 - value has not already been stored on stack; and
1419 - LOC is an address register (a0 or a1). */
1422 m32c_is_struct_return (struct m32c_pv_state *st,
1426 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1428 return (m32c_is_1st_arg_reg (st, value)
1429 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1430 && loc.kind == srcdest_reg
1431 && (pv_is_register (*loc.reg, tdep->a0->num)
1432 || pv_is_register (*loc.reg, tdep->a1->num)));
1435 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1436 was a register save:
1437 - all the named registers should have their original values, and
1438 - the stack pointer should be at a constant offset from the
1439 original stack pointer. */
1441 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1443 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1444 /* The bits in SRC indicating which registers to save are:
1445 r0 r1 r2 r3 a0 a1 sb fb */
1447 (pv_is_register (st->sp, tdep->sp->num)
1448 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1449 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1450 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1451 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1452 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1453 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1454 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1455 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1459 /* Function for finding saved registers in a 'struct pv_area'; we pass
1460 this to pv_area_scan.
1462 If VALUE is a saved register, ADDR says it was saved at a constant
1463 offset from the frame base, and SIZE indicates that the whole
1464 register was saved, record its offset in RESULT_UNTYPED. */
1466 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1468 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1469 struct gdbarch *arch = prologue->arch;
1470 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1472 /* Is this the unchanged value of some register being saved on the
1474 if (value.kind == pvk_register
1476 && pv_is_register (addr, tdep->sp->num))
1478 /* Some registers require special handling: they're saved as a
1479 larger value than the register itself. */
1480 CORE_ADDR saved_size = register_size (arch, value.reg);
1482 if (value.reg == tdep->pc->num)
1483 saved_size = tdep->ret_addr_bytes;
1484 else if (gdbarch_register_type (arch, value.reg)
1485 == tdep->data_addr_reg_type)
1486 saved_size = tdep->push_addr_bytes;
1488 if (size == saved_size)
1490 /* Find which end of the saved value corresponds to our
1492 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1493 prologue->reg_offset[value.reg]
1494 = (addr.k + saved_size - register_size (arch, value.reg));
1496 prologue->reg_offset[value.reg] = addr.k;
1502 /* Analyze the function prologue for ARCH at START, going no further
1503 than LIMIT, and place a description of what we found in
1506 m32c_analyze_prologue (struct gdbarch *arch,
1507 CORE_ADDR start, CORE_ADDR limit,
1508 struct m32c_prologue *prologue)
1510 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1511 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1512 CORE_ADDR after_last_frame_related_insn;
1513 struct cleanup *back_to;
1514 struct m32c_pv_state st;
1517 st.r0 = pv_register (tdep->r0->num, 0);
1518 st.r1 = pv_register (tdep->r1->num, 0);
1519 st.r2 = pv_register (tdep->r2->num, 0);
1520 st.r3 = pv_register (tdep->r3->num, 0);
1521 st.a0 = pv_register (tdep->a0->num, 0);
1522 st.a1 = pv_register (tdep->a1->num, 0);
1523 st.sb = pv_register (tdep->sb->num, 0);
1524 st.fb = pv_register (tdep->fb->num, 0);
1525 st.sp = pv_register (tdep->sp->num, 0);
1526 st.pc = pv_register (tdep->pc->num, 0);
1527 st.stack = make_pv_area (tdep->sp->num);
1528 back_to = make_cleanup_free_pv_area (st.stack);
1530 /* Record that the call instruction has saved the return address on
1532 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1534 memset (prologue, 0, sizeof (*prologue));
1535 prologue->arch = arch;
1538 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1539 prologue->reg_offset[i] = 1;
1542 st.scan_pc = after_last_frame_related_insn = start;
1544 while (st.scan_pc < limit)
1546 pv_t pre_insn_fb = st.fb;
1547 pv_t pre_insn_sp = st.sp;
1549 /* In theory we could get in trouble by trying to read ahead
1550 here, when we only know we're expecting one byte. In
1551 practice I doubt anyone will care, and it makes the rest of
1553 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1554 /* If we can't fetch the instruction from memory, stop here
1555 and hope for the best. */
1557 st.next_addr = st.scan_pc;
1559 /* The assembly instructions are written as they appear in the
1560 section of the processor manuals that describe the
1561 instruction encodings.
1563 When a single assembly language instruction has several
1564 different machine-language encodings, the manual
1565 distinguishes them by a number in parens, before the
1566 mnemonic. Those numbers are included, as well.
1568 The srcdest decoding instructions have the same names as the
1569 analogous functions in the simulator. */
1570 if (mach == bfd_mach_m16c)
1572 /* (1) ENTER #imm8 */
1573 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1575 if (m32c_pv_enter (&st, st.insn[2]))
1580 else if (st.insn[0] == 0xec)
1582 int src = st.insn[1];
1583 if (m32c_pv_pushm (&st, src))
1587 if (m32c_pushm_is_reg_save (&st, src))
1588 after_last_frame_related_insn = st.next_addr;
1591 /* (6) MOV.size:G src, dest */
1592 else if ((st.insn[0] & 0xfe) == 0x72)
1594 int size = (st.insn[0] & 0x01) ? 2 : 1;
1599 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1601 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1602 pv_t src_value = m32c_srcdest_fetch (&st, src, size);
1604 if (m32c_is_arg_spill (&st, dest, src_value))
1605 after_last_frame_related_insn = st.next_addr;
1606 else if (m32c_is_struct_return (&st, dest, src_value))
1607 after_last_frame_related_insn = st.next_addr;
1609 if (m32c_srcdest_store (&st, dest, src_value, size))
1613 /* (1) LDC #IMM16, sp */
1614 else if (st.insn[0] == 0xeb
1615 && st.insn[1] == 0x50)
1618 st.sp = pv_constant (m32c_udisp16 (&st));
1622 /* We've hit some instruction we don't know how to simulate.
1623 Strictly speaking, we should set every value we're
1624 tracking to "unknown". But we'll be optimistic, assume
1625 that we have enough information already, and stop
1631 int src_indirect = 0;
1632 int dest_indirect = 0;
1635 gdb_assert (mach == bfd_mach_m32c);
1637 /* Check for prefix bytes indicating indirect addressing. */
1638 if (st.insn[0] == 0x41)
1643 else if (st.insn[0] == 0x09)
1648 else if (st.insn[0] == 0x49)
1650 src_indirect = dest_indirect = 1;
1654 /* (1) ENTER #imm8 */
1655 if (st.insn[i] == 0xec)
1657 if (m32c_pv_enter (&st, st.insn[i + 1]))
1663 else if (st.insn[i] == 0x8f)
1665 int src = st.insn[i + 1];
1666 if (m32c_pv_pushm (&st, src))
1670 if (m32c_pushm_is_reg_save (&st, src))
1671 after_last_frame_related_insn = st.next_addr;
1674 /* (7) MOV.size:G src, dest */
1675 else if ((st.insn[i] & 0x80) == 0x80
1676 && (st.insn[i + 1] & 0x0f) == 0x0b
1677 && m32c_get_src23 (&st.insn[i]) < 20
1678 && m32c_get_dest23 (&st.insn[i]) < 20)
1680 int bw = st.insn[i] & 0x01;
1681 int size = bw ? 2 : 1;
1686 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1687 size, src_indirect);
1689 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1690 size, dest_indirect);
1691 pv_t src_value = m32c_srcdest_fetch (&st, src, size);
1693 if (m32c_is_arg_spill (&st, dest, src_value))
1694 after_last_frame_related_insn = st.next_addr;
1696 if (m32c_srcdest_store (&st, dest, src_value, size))
1699 /* (2) LDC #IMM24, sp */
1700 else if (st.insn[i] == 0xd5
1701 && st.insn[i + 1] == 0x29)
1704 st.sp = pv_constant (m32c_udisp24 (&st));
1707 /* We've hit some instruction we don't know how to simulate.
1708 Strictly speaking, we should set every value we're
1709 tracking to "unknown". But we'll be optimistic, assume
1710 that we have enough information already, and stop
1715 /* If this instruction changed the FB or decreased the SP (i.e.,
1716 allocated more stack space), then this may be a good place to
1717 declare the prologue finished. However, there are some
1720 - If the instruction just changed the FB back to its original
1721 value, then that's probably a restore instruction. The
1722 prologue should definitely end before that.
1724 - If the instruction increased the value of the SP (that is,
1725 shrunk the frame), then it's probably part of a frame
1726 teardown sequence, and the prologue should end before
1729 if (! pv_is_identical (st.fb, pre_insn_fb))
1731 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1732 after_last_frame_related_insn = st.next_addr;
1734 else if (! pv_is_identical (st.sp, pre_insn_sp))
1736 /* The comparison of the constants looks odd, there, because
1737 .k is unsigned. All it really means is that the SP is
1738 lower than it was before the instruction. */
1739 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1740 && pv_is_register (st.sp, tdep->sp->num)
1741 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1742 after_last_frame_related_insn = st.next_addr;
1745 st.scan_pc = st.next_addr;
1748 /* Did we load a constant value into the stack pointer? */
1749 if (pv_is_constant (st.sp))
1750 prologue->kind = prologue_first_frame;
1752 /* Alternatively, did we initialize the frame pointer? Remember
1753 that the CFA is the address after the return address. */
1754 if (pv_is_register (st.fb, tdep->sp->num))
1756 prologue->kind = prologue_with_frame_ptr;
1757 prologue->frame_ptr_offset = st.fb.k;
1760 /* Is the frame size a known constant? Remember that frame_size is
1761 actually the offset from the CFA to the SP (i.e., a negative
1763 else if (pv_is_register (st.sp, tdep->sp->num))
1765 prologue->kind = prologue_sans_frame_ptr;
1766 prologue->frame_size = st.sp.k;
1769 /* We haven't been able to make sense of this function's frame. Treat
1770 it as the first frame. */
1772 prologue->kind = prologue_first_frame;
1774 /* Record where all the registers were saved. */
1775 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1777 prologue->prologue_end = after_last_frame_related_insn;
1779 do_cleanups (back_to);
1784 m32c_skip_prologue (CORE_ADDR ip)
1787 CORE_ADDR func_addr, func_end, sal_end;
1788 struct m32c_prologue p;
1790 /* Try to find the extent of the function that contains IP. */
1791 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1794 /* Find end by prologue analysis. */
1795 m32c_analyze_prologue (current_gdbarch, ip, func_end, &p);
1796 /* Find end by line info. */
1797 sal_end = skip_prologue_using_sal (ip);
1798 /* Return whichever is lower. */
1799 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1802 return p.prologue_end;
1807 /* Stack unwinding. */
1809 static struct m32c_prologue *
1810 m32c_analyze_frame_prologue (struct frame_info *next_frame,
1811 void **this_prologue_cache)
1813 if (! *this_prologue_cache)
1815 CORE_ADDR func_start = frame_func_unwind (next_frame);
1816 CORE_ADDR stop_addr = frame_pc_unwind (next_frame);
1818 /* If we couldn't find any function containing the PC, then
1819 just initialize the prologue cache, but don't do anything. */
1821 stop_addr = func_start;
1823 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1824 m32c_analyze_prologue (get_frame_arch (next_frame),
1825 func_start, stop_addr, *this_prologue_cache);
1828 return *this_prologue_cache;
1833 m32c_frame_base (struct frame_info *next_frame,
1834 void **this_prologue_cache)
1836 struct m32c_prologue *p
1837 = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1838 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1840 /* In functions that use alloca, the distance between the stack
1841 pointer and the frame base varies dynamically, so we can't use
1842 the SP plus static information like prologue analysis to find the
1843 frame base. However, such functions must have a frame pointer,
1844 to be able to restore the SP on exit. So whenever we do have a
1845 frame pointer, use that to find the base. */
1848 case prologue_with_frame_ptr:
1851 = frame_unwind_register_unsigned (next_frame, tdep->fb->num);
1852 return fb - p->frame_ptr_offset;
1855 case prologue_sans_frame_ptr:
1858 = frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1859 return sp - p->frame_size;
1862 case prologue_first_frame:
1872 m32c_this_id (struct frame_info *next_frame,
1873 void **this_prologue_cache,
1874 struct frame_id *this_id)
1876 CORE_ADDR base = m32c_frame_base (next_frame, this_prologue_cache);
1879 *this_id = frame_id_build (base, frame_func_unwind (next_frame));
1880 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1885 m32c_prev_register (struct frame_info *next_frame,
1886 void **this_prologue_cache,
1887 int regnum, int *optimizedp,
1888 enum lval_type *lvalp, CORE_ADDR *addrp,
1889 int *realnump, gdb_byte *bufferp)
1891 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1892 struct m32c_prologue *p
1893 = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1894 CORE_ADDR frame_base = m32c_frame_base (next_frame, this_prologue_cache);
1895 int reg_size = register_size (get_frame_arch (next_frame), regnum);
1897 if (regnum == tdep->sp->num)
1904 store_unsigned_integer (bufferp, reg_size, frame_base);
1907 /* If prologue analysis says we saved this register somewhere,
1908 return a description of the stack slot holding it. */
1909 else if (p->reg_offset[regnum] != 1)
1912 *lvalp = lval_memory;
1913 *addrp = frame_base + p->reg_offset[regnum];
1916 get_frame_memory (next_frame, *addrp, bufferp, reg_size);
1919 /* Otherwise, presume we haven't changed the value of this
1920 register, and get it from the next frame. */
1924 *lvalp = lval_register;
1928 frame_unwind_register (next_frame, *realnump, bufferp);
1933 static const struct frame_unwind m32c_unwind = {
1940 static const struct frame_unwind *
1941 m32c_frame_sniffer (struct frame_info *next_frame)
1943 return &m32c_unwind;
1948 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1950 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1951 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1956 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1958 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1959 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1963 /* Inferior calls. */
1965 /* The calling conventions, according to GCC:
1969 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1970 HImode), (2) is named, and (3) is an integer or pointer type (no
1971 structs, floats, etc). Otherwise, it's passed on the stack.
1973 Second arg may be passed in r2, same restrictions (but not QImode),
1974 even if the first arg is passed on the stack.
1976 Third and further args are passed on the stack. No padding is
1977 used, stack "alignment" is 8 bits.
1982 First arg may be passed in r0l or r0, same restrictions as above.
1984 Second and further args are passed on the stack. Padding is used
1985 after QImode parameters (i.e. lower-addressed byte is the value,
1986 higher-addressed byte is the padding), stack "alignment" is 16
1990 /* Return true if TYPE is a type that can be passed in registers. (We
1991 ignore the size, and pay attention only to the type code;
1992 acceptable sizes depends on which register is being considered to
1995 m32c_reg_arg_type (struct type *type)
1997 enum type_code code = TYPE_CODE (type);
1999 return (code == TYPE_CODE_INT
2000 || code == TYPE_CODE_ENUM
2001 || code == TYPE_CODE_PTR
2002 || code == TYPE_CODE_REF
2003 || code == TYPE_CODE_BOOL
2004 || code == TYPE_CODE_CHAR);
2009 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2010 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2011 struct value **args, CORE_ADDR sp, int struct_return,
2012 CORE_ADDR struct_addr)
2014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2015 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2019 /* The number of arguments given in this function's prototype, or
2020 zero if it has a non-prototyped function type. The m32c ABI
2021 passes arguments mentioned in the prototype differently from
2022 those in the ellipsis of a varargs function, or from those passed
2023 to a non-prototyped function. */
2024 int num_prototyped_args = 0;
2027 struct type *func_type = value_type (function);
2029 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2030 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2033 /* The ABI description in gcc/config/m32c/m32c.abi says that
2034 we need to handle prototyped and non-prototyped functions
2035 separately, but the code in GCC doesn't actually do so. */
2036 if (TYPE_PROTOTYPED (func_type))
2038 num_prototyped_args = TYPE_NFIELDS (func_type);
2041 /* First, if the function returns an aggregate by value, push a
2042 pointer to a buffer for it. This doesn't affect the way
2043 subsequent arguments are allocated to registers. */
2046 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2048 write_memory_unsigned_integer (sp, ptr_len, struct_addr);
2051 /* Push the arguments. */
2052 for (i = nargs - 1; i >= 0; i--)
2054 struct value *arg = args[i];
2055 const gdb_byte *arg_bits = value_contents (arg);
2056 struct type *arg_type = value_type (arg);
2057 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2059 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2062 && i < num_prototyped_args
2063 && m32c_reg_arg_type (arg_type))
2065 /* Extract and re-store as an integer as a terse way to make
2066 sure it ends up in the least significant end of r1. (GDB
2067 should avoid assuming endianness, even on uni-endian
2069 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
2070 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2071 regcache_cooked_write_unsigned (regcache, reg->num, u);
2074 /* Can it go in r2? */
2075 else if (mach == bfd_mach_m16c
2078 && i < num_prototyped_args
2079 && m32c_reg_arg_type (arg_type))
2080 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2082 /* Everything else goes on the stack. */
2087 /* Align the stack. */
2088 if (mach == bfd_mach_m32c)
2091 write_memory (sp, arg_bits, arg_size);
2095 /* This is the CFA we use to identify the dummy frame. */
2098 /* Push the return address. */
2099 sp -= tdep->ret_addr_bytes;
2100 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
2102 /* Update the stack pointer. */
2103 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2105 /* We need to borrow an odd trick from the i386 target here.
2107 The value we return from this function gets used as the stack
2108 address (the CFA) for the dummy frame's ID. The obvious thing is
2109 to return the new TOS. However, that points at the return
2110 address, saved on the stack, which is inconsistent with the CFA's
2111 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2112 .debug_frame info uses the address immediately after the saved
2113 return address. So you end up with a dummy frame whose CFA
2114 points at the return address, but the frame for the function
2115 being called has a CFA pointing after the return address: the
2116 younger CFA is *greater than* the older CFA. The sanity checks
2117 in frame.c don't like that.
2119 So we try to be consistent with the CFA's used by DWARF 2.
2120 Having a dummy frame and a real frame with the *same* CFA is
2126 static struct frame_id
2127 m32c_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2129 /* This needs to return a frame ID whose PC is the return address
2130 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2131 m32c_push_dummy_call returned.
2133 m32c_unwind_sp gives us the CFA, which is the value the SP had
2134 before the return address was pushed. */
2135 return frame_id_build (m32c_unwind_sp (gdbarch, next_frame),
2136 frame_pc_unwind (next_frame));
2141 /* Return values. */
2143 /* Return value conventions, according to GCC:
2154 Aggregate values (regardless of size) are returned by pushing a
2155 pointer to a temporary area on the stack after the args are pushed.
2156 The function fills in this area with the value. Note that this
2157 pointer on the stack does not affect how register arguments, if any,
2164 /* Return non-zero if values of type TYPE are returned by storing them
2165 in a buffer whose address is passed on the stack, ahead of the
2168 m32c_return_by_passed_buf (struct type *type)
2170 enum type_code code = TYPE_CODE (type);
2172 return (code == TYPE_CODE_STRUCT
2173 || code == TYPE_CODE_UNION);
2176 static enum return_value_convention
2177 m32c_return_value (struct gdbarch *gdbarch,
2178 struct type *valtype,
2179 struct regcache *regcache,
2181 const gdb_byte *writebuf)
2183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2184 enum return_value_convention conv;
2185 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2187 if (m32c_return_by_passed_buf (valtype))
2188 conv = RETURN_VALUE_STRUCT_CONVENTION;
2190 conv = RETURN_VALUE_REGISTER_CONVENTION;
2194 /* We should never be called to find values being returned by
2195 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2196 unless we made the call ourselves. */
2197 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2199 gdb_assert (valtype_len <= 8);
2201 /* Anything that fits in r0 is returned there. */
2202 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2205 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2206 store_unsigned_integer (readbuf, valtype_len, u);
2210 /* Everything else is passed in mem0, using as many bytes as
2211 needed. This is not what the Renesas tools do, but it's
2212 what GCC does at the moment. */
2213 struct minimal_symbol *mem0
2214 = lookup_minimal_symbol ("mem0", NULL, NULL);
2217 error ("The return value is stored in memory at 'mem0', "
2218 "but GDB cannot find\n"
2220 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2226 /* We should never be called to store values to be returned
2227 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2228 finding the buffer, unless we made the call ourselves. */
2229 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2231 gdb_assert (valtype_len <= 8);
2233 /* Anything that fits in r0 is returned there. */
2234 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2236 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
2237 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2241 /* Everything else is passed in mem0, using as many bytes as
2242 needed. This is not what the Renesas tools do, but it's
2243 what GCC does at the moment. */
2244 struct minimal_symbol *mem0
2245 = lookup_minimal_symbol ("mem0", NULL, NULL);
2248 error ("The return value is stored in memory at 'mem0', "
2249 "but GDB cannot find\n"
2251 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2252 (char *) writebuf, valtype_len);
2263 /* The m16c and m32c use a trampoline function for indirect function
2264 calls. An indirect call looks like this:
2266 ... push arguments ...
2267 ... push target function address ...
2270 The code for m32c_jsri16 looks like this:
2274 # Save return address.
2276 pop.b m32c_jsri_ret+2
2278 # Store target function address.
2279 pop.w m32c_jsri_addr
2281 # Re-push return address.
2282 push.b m32c_jsri_ret+2
2283 push.w m32c_jsri_ret
2285 # Call the target function.
2286 jmpi.a m32c_jsri_addr
2288 Without further information, GDB will treat calls to m32c_jsri16
2289 like calls to any other function. Since m32c_jsri16 doesn't have
2290 debugging information, that normally means that GDB sets a step-
2291 resume breakpoint and lets the program continue --- which is not
2292 what the user wanted. (Giving the trampoline debugging info
2293 doesn't help: the user expects the program to stop in the function
2294 their program is calling, not in some trampoline code they've never
2297 The SKIP_TRAMPOLINE_CODE gdbarch method tells GDB how to step
2298 through such trampoline functions transparently to the user. When
2299 given the address of a trampoline function's first instruction,
2300 SKIP_TRAMPOLINE_CODE should return the address of the first
2301 instruction of the function really being called. If GDB decides it
2302 wants to step into that function, it will set a breakpoint there
2303 and silently continue to it.
2305 We recognize the trampoline by name, and extract the target address
2306 directly from the stack. This isn't great, but recognizing by its
2307 code sequence seems more fragile. */
2310 m32c_skip_trampoline_code (CORE_ADDR stop_pc)
2312 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2314 /* It would be nicer to simply look up the addresses of known
2315 trampolines once, and then compare stop_pc with them. However,
2316 we'd need to ensure that that cached address got invalidated when
2317 someone loaded a new executable, and I'm not quite sure of the
2318 best way to do that. find_pc_partial_function does do some
2319 caching, so we'll see how this goes. */
2321 CORE_ADDR start, end;
2323 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2325 /* Are we stopped at the beginning of the trampoline function? */
2326 if (strcmp (name, "m32c_jsri16") == 0
2327 && stop_pc == start)
2329 /* Get the stack pointer. The return address is at the top,
2330 and the target function's address is just below that. We
2331 know it's a two-byte address, since the trampoline is
2333 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2335 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
2337 /* What we have now is the address of a jump instruction.
2338 What we need is the destination of that jump.
2339 The opcode is 1 byte, and the destination is the next 3 bytes.
2341 target = read_memory_unsigned_integer (target + 1, 3);
2350 /* Address/pointer conversions. */
2352 /* On the m16c, there is a 24-bit address space, but only a very few
2353 instructions can generate addresses larger than 0xffff: jumps,
2354 jumps to subroutines, and the lde/std (load/store extended)
2357 Since GCC can only support one size of pointer, we can't have
2358 distinct 'near' and 'far' pointer types; we have to pick one size
2359 for everything. If we wanted to use 24-bit pointers, then GCC
2360 would have to use lde and ste for all memory references, which
2361 would be terrible for performance and code size. So the GNU
2362 toolchain uses 16-bit pointers for everything, and gives up the
2363 ability to have pointers point outside the first 64k of memory.
2365 However, as a special hack, we let the linker place functions at
2366 addresses above 0xffff, as long as it also places a trampoline in
2367 the low 64k for every function whose address is taken. Each
2368 trampoline consists of a single jmp.a instruction that jumps to the
2369 function's real entry point. Pointers to functions can be 16 bits
2370 long, even though the functions themselves are at higher addresses:
2371 the pointers refer to the trampolines, not the functions.
2373 This complicates things for GDB, however: given the address of a
2374 function (from debug info or linker symbols, say) which could be
2375 anywhere in the 24-bit address space, how can we find an
2376 appropriate 16-bit value to use as a pointer to it?
2378 If the linker has not generated a trampoline for the function,
2379 we're out of luck. Well, I guess we could malloc some space and
2380 write a jmp.a instruction to it, but I'm not going to get into that
2383 If the linker has generated a trampoline for the function, then it
2384 also emitted a symbol for the trampoline: if the function's linker
2385 symbol is named NAME, then the function's trampoline's linker
2386 symbol is named NAME.plt.
2388 So, given a code address:
2389 - We try to find a linker symbol at that address.
2390 - If we find such a symbol named NAME, we look for a linker symbol
2392 - If we find such a symbol, we assume it is a trampoline, and use
2393 its address as the pointer value.
2395 And, given a function pointer:
2396 - We try to find a linker symbol at that address named NAME.plt.
2397 - If we find such a symbol, we look for a linker symbol named NAME.
2398 - If we find that, we provide that as the function's address.
2399 - If any of the above steps fail, we return the original address
2400 unchanged; it might really be a function in the low 64k.
2402 See? You *knew* there was a reason you wanted to be a computer
2406 m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
2408 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2409 TYPE_CODE (type) == TYPE_CODE_REF);
2411 enum type_code target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2413 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2415 /* Try to find a linker symbol at this address. */
2416 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2419 error ("Cannot convert code address %s to function pointer:\n"
2420 "couldn't find a symbol at that address, to find trampoline.",
2423 char *func_name = SYMBOL_LINKAGE_NAME (func_msym);
2424 char *tramp_name = xmalloc (strlen (func_name) + 5);
2425 strcpy (tramp_name, func_name);
2426 strcat (tramp_name, ".plt");
2428 /* Try to find a linker symbol for the trampoline. */
2429 struct minimal_symbol *tramp_msym
2430 = lookup_minimal_symbol (tramp_name, NULL, NULL);
2432 /* We've either got another copy of the name now, or don't need
2433 the name any more. */
2437 error ("Cannot convert code address %s to function pointer:\n"
2438 "couldn't find trampoline named '%s.plt'.",
2439 paddr_nz (addr), func_name);
2441 /* The trampoline's address is our pointer. */
2442 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2445 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
2450 m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
2452 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2453 TYPE_CODE (type) == TYPE_CODE_REF);
2455 CORE_ADDR ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
2457 enum type_code target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2459 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2461 /* See if there is a minimal symbol at that address whose name is
2463 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2467 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2468 int len = strlen (ptr_msym_name);
2471 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2473 /* We have a .plt symbol; try to find the symbol for the
2474 corresponding function.
2476 Since the trampoline contains a jump instruction, we
2477 could also just extract the jump's target address. I
2478 don't see much advantage one way or the other. */
2479 char *func_name = xmalloc (len - 4 + 1);
2480 memcpy (func_name, ptr_msym_name, len - 4);
2481 func_name[len - 4] = '\0';
2482 struct minimal_symbol *func_msym
2483 = lookup_minimal_symbol (func_name, NULL, NULL);
2485 /* If we do have such a symbol, return its value as the
2486 function's true address. */
2488 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2497 m32c_virtual_frame_pointer (CORE_ADDR pc,
2499 LONGEST *frame_offset)
2502 CORE_ADDR func_addr, func_end, sal_end;
2503 struct m32c_prologue p;
2505 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2507 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2508 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2510 m32c_analyze_prologue (current_gdbarch, func_addr, pc, &p);
2513 case prologue_with_frame_ptr:
2514 *frame_regnum = m32c_banked_register (tdep->fb, current_regcache)->num;
2515 *frame_offset = p.frame_ptr_offset;
2517 case prologue_sans_frame_ptr:
2518 *frame_regnum = m32c_banked_register (tdep->sp, current_regcache)->num;
2519 *frame_offset = p.frame_size;
2522 *frame_regnum = m32c_banked_register (tdep->sp, current_regcache)->num;
2527 if (*frame_regnum > NUM_REGS)
2528 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2532 /* Initialization. */
2534 static struct gdbarch *
2535 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2537 struct gdbarch *arch;
2538 struct gdbarch_tdep *tdep;
2539 unsigned long mach = info.bfd_arch_info->mach;
2541 /* Find a candidate among the list of architectures we've created
2543 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2545 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2546 return arches->gdbarch;
2548 tdep = xcalloc (1, sizeof (*tdep));
2549 arch = gdbarch_alloc (&info, tdep);
2551 /* Essential types. */
2554 /* Address/pointer conversions. */
2555 if (mach == bfd_mach_m16c)
2557 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2558 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2565 set_gdbarch_print_insn (arch, print_insn_m32c);
2568 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2570 /* Prologue analysis and unwinding. */
2571 set_gdbarch_inner_than (arch, core_addr_lessthan);
2572 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2573 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2574 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2576 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2577 They may be in the dwarf2 cfi code in GDB, or they may be in
2578 the debug info emitted by the upstream toolchain. I don't
2579 know which, but I do know that the prologue analyzer works better.
2582 frame_unwind_append_sniffer (arch, dwarf2_frame_sniffer);
2584 frame_unwind_append_sniffer (arch, m32c_frame_sniffer);
2586 /* Inferior calls. */
2587 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2588 set_gdbarch_return_value (arch, m32c_return_value);
2589 set_gdbarch_unwind_dummy_id (arch, m32c_unwind_dummy_id);
2592 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2594 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2601 _initialize_m32c_tdep (void)
2603 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2605 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);