1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 2004-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "gdb_assert.h"
28 #include "gdb/sim-m32c.h"
32 #include "arch-utils.h"
34 #include "frame-unwind.h"
35 #include "dwarf2-frame.h"
36 #include "dwarf2expr.h"
40 #include "reggroups.h"
41 #include "prologue-value.h"
46 /* The m32c tdep structure. */
48 static struct reggroup *m32c_dma_reggroup;
52 /* The type of a function that moves the value of REG between CACHE or
53 BUF --- in either direction. */
54 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
55 struct regcache *cache,
60 /* The name of this register. */
66 /* The architecture this register belongs to. */
69 /* Its GDB register number. */
72 /* Its sim register number. */
75 /* Its DWARF register number, or -1 if it doesn't have one. */
78 /* Register group memberships. */
79 unsigned int general_p : 1;
80 unsigned int dma_p : 1;
81 unsigned int system_p : 1;
82 unsigned int save_restore_p : 1;
84 /* Functions to read its value from a regcache, and write its value
86 m32c_move_reg_t *read, *write;
88 /* Data for READ and WRITE functions. The exact meaning depends on
89 the specific functions selected; see the comments for those
91 struct m32c_reg *rx, *ry;
96 /* An overestimate of the number of raw and pseudoregisters we will
97 have. The exact answer depends on the variant of the architecture
98 at hand, but we can use this to declare statically allocated
99 arrays, and bump it up when needed. */
100 #define M32C_MAX_NUM_REGS (75)
102 /* The largest assigned DWARF register number. */
103 #define M32C_MAX_DWARF_REGNUM (40)
108 /* All the registers for this variant, indexed by GDB register
109 number, and the number of registers present. */
110 struct m32c_reg regs[M32C_MAX_NUM_REGS];
112 /* The number of valid registers. */
115 /* Interesting registers. These are pointers into REGS. */
116 struct m32c_reg *pc, *flg;
117 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119 struct m32c_reg *sb, *fb, *sp;
121 /* A table indexed by DWARF register numbers, pointing into
123 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
125 /* Types for this architecture. We can't use the builtin_type_foo
126 types, because they're not initialized when building a gdbarch
128 struct type *voyd, *ptr_voyd, *func_voyd;
129 struct type *uint8, *uint16;
130 struct type *int8, *int16, *int32, *int64;
132 /* The types for data address and code address registers. */
133 struct type *data_addr_reg_type, *code_addr_reg_type;
135 /* The number of bytes a return address pushed by a 'jsr' instruction
136 occupies on the stack. */
139 /* The number of bytes an address register occupies on the stack
140 when saved by an 'enter' or 'pushm' instruction. */
148 make_types (struct gdbarch *arch)
150 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152 int data_addr_reg_bits, code_addr_reg_bits;
156 /* This is used to clip CORE_ADDR values, so this value is
157 appropriate both on the m32c, where pointers are 32 bits long,
158 and on the m16c, where pointers are sixteen bits long, but there
159 may be code above the 64k boundary. */
160 set_gdbarch_addr_bit (arch, 24);
162 /* GCC uses 32 bits for addrs in the dwarf info, even though
163 only 16/24 bits are used. Setting addr_bit to 24 causes
164 errors in reading the dwarf addresses. */
165 set_gdbarch_addr_bit (arch, 32);
168 set_gdbarch_int_bit (arch, 16);
172 data_addr_reg_bits = 16;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 16);
175 tdep->ret_addr_bytes = 3;
176 tdep->push_addr_bytes = 2;
180 data_addr_reg_bits = 24;
181 code_addr_reg_bits = 24;
182 set_gdbarch_ptr_bit (arch, 32);
183 tdep->ret_addr_bytes = 4;
184 tdep->push_addr_bytes = 4;
188 gdb_assert_not_reached ("unexpected mach");
191 /* The builtin_type_mumble variables are sometimes uninitialized when
192 this is called, so we avoid using them. */
193 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
195 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
197 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
198 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
199 tdep->func_voyd = lookup_function_type (tdep->voyd);
201 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
202 gdbarch_bfd_arch_info (arch)->printable_name);
203 tdep->data_addr_reg_type
204 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
205 xstrdup (type_name));
206 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
209 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
210 gdbarch_bfd_arch_info (arch)->printable_name);
211 tdep->code_addr_reg_type
212 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
213 xstrdup (type_name));
214 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
215 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
217 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
218 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
219 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
220 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
221 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
222 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
230 m32c_register_name (struct gdbarch *gdbarch, int num)
232 return gdbarch_tdep (gdbarch)->regs[num].name;
237 m32c_register_type (struct gdbarch *arch, int reg_nr)
239 return gdbarch_tdep (arch)->regs[reg_nr].type;
244 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
246 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
251 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
254 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
255 && tdep->dwarf_regs[reg_nr])
256 return tdep->dwarf_regs[reg_nr]->num;
258 /* The DWARF CFI code expects to see -1 for invalid register
265 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
266 struct reggroup *group)
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 struct m32c_reg *reg = &tdep->regs[regnum];
271 /* The anonymous raw registers aren't in any groups. */
275 if (group == all_reggroup)
278 if (group == general_reggroup
282 if (group == m32c_dma_reggroup
286 if (group == system_reggroup
290 /* Since the m32c DWARF register numbers refer to cooked registers, not
291 raw registers, and frame_pop depends on the save and restore groups
292 containing registers the DWARF CFI will actually mention, our save
293 and restore groups are cooked registers, not raw registers. (This is
294 why we can't use the default reggroup function.) */
295 if ((group == save_reggroup
296 || group == restore_reggroup)
297 && reg->save_restore_p)
304 /* Register move functions. We declare them here using
305 m32c_move_reg_t to check the types. */
306 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
307 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
308 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
309 static m32c_move_reg_t m32c_part_read, m32c_part_write;
310 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
311 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
314 /* Copy the value of the raw register REG from CACHE to BUF. */
315 static enum register_status
316 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
318 return regcache_raw_read (cache, reg->num, buf);
322 /* Copy the value of the raw register REG from BUF to CACHE. */
323 static enum register_status
324 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
326 regcache_raw_write (cache, reg->num, (const void *) buf);
332 /* Return the value of the 'flg' register in CACHE. */
334 m32c_read_flg (struct regcache *cache)
336 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
338 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
343 /* Evaluate the real register number of a banked register. */
344 static struct m32c_reg *
345 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
347 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
351 /* Move the value of a banked register from CACHE to BUF.
352 If the value of the 'flg' register in CACHE has any of the bits
353 masked in REG->n set, then read REG->ry. Otherwise, read
355 static enum register_status
356 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
358 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
359 return regcache_raw_read (cache, bank_reg->num, buf);
363 /* Move the value of a banked register from BUF to CACHE.
364 If the value of the 'flg' register in CACHE has any of the bits
365 masked in REG->n set, then write REG->ry. Otherwise, write
367 static enum register_status
368 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
370 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
371 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
377 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
378 banked register; on bfd_mach_m16c, it's not. */
379 static enum register_status
380 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
382 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
383 return m32c_raw_read (reg->rx, cache, buf);
385 return m32c_banked_read (reg, cache, buf);
389 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
390 banked register; on bfd_mach_m16c, it's not. */
391 static enum register_status
392 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
394 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
395 m32c_raw_write (reg->rx, cache, buf);
397 m32c_banked_write (reg, cache, buf);
403 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
404 and *LEN_P to the offset and length, in bytes, of the part REG
405 occupies in its underlying register. The offset is from the
406 lower-addressed end, regardless of the architecture's endianness.
407 (The M32C family is always little-endian, but let's keep those
408 assumptions out of here.) */
410 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
412 /* The length of the containing register, of which REG is one part. */
413 int containing_len = TYPE_LENGTH (reg->rx->type);
415 /* The length of one "element" in our imaginary array. */
416 int elt_len = TYPE_LENGTH (reg->type);
418 /* The offset of REG's "element" from the least significant end of
419 the containing register. */
420 int elt_offset = reg->n * elt_len;
422 /* If we extend off the end, trim the length of the element. */
423 if (elt_offset + elt_len > containing_len)
425 elt_len = containing_len - elt_offset;
426 /* We shouldn't be declaring partial registers that go off the
427 end of their containing registers. */
428 gdb_assert (elt_len > 0);
431 /* Flip the offset around if we're big-endian. */
432 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
433 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
435 *offset_p = elt_offset;
440 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
441 to BUF. Treating the value of the register REG->rx as an array of
442 REG->type values, where higher indices refer to more significant
443 bits, read the value of the REG->n'th element. */
444 static enum register_status
445 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
449 memset (buf, 0, TYPE_LENGTH (reg->type));
450 m32c_find_part (reg, &offset, &len);
451 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
455 /* Move the value of a banked register from BUF to CACHE.
456 Treating the value of the register REG->rx as an array of REG->type
457 values, where higher indices refer to more significant bits, write
458 the value of the REG->n'th element. */
459 static enum register_status
460 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
464 m32c_find_part (reg, &offset, &len);
465 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
471 /* Move the value of REG from CACHE to BUF. REG's value is the
472 concatenation of the values of the registers REG->rx and REG->ry,
473 with REG->rx contributing the more significant bits. */
474 static enum register_status
475 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
477 int high_bytes = TYPE_LENGTH (reg->rx->type);
478 int low_bytes = TYPE_LENGTH (reg->ry->type);
479 /* For address arithmetic. */
480 unsigned char *cbuf = buf;
481 enum register_status status;
483 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
485 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
487 status = regcache_cooked_read (cache, reg->rx->num, cbuf);
488 if (status == REG_VALID)
489 status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
493 status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
494 if (status == REG_VALID)
495 status = regcache_cooked_read (cache, reg->ry->num, cbuf);
502 /* Move the value of REG from CACHE to BUF. REG's value is the
503 concatenation of the values of the registers REG->rx and REG->ry,
504 with REG->rx contributing the more significant bits. */
505 static enum register_status
506 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
508 int high_bytes = TYPE_LENGTH (reg->rx->type);
509 int low_bytes = TYPE_LENGTH (reg->ry->type);
510 /* For address arithmetic. */
511 unsigned char *cbuf = buf;
513 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
515 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
517 regcache_cooked_write (cache, reg->rx->num, cbuf);
518 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
522 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
523 regcache_cooked_write (cache, reg->ry->num, cbuf);
530 /* Copy the value of the raw register REG from CACHE to BUF. REG is
531 the concatenation (from most significant to least) of r3, r2, r1,
533 static enum register_status
534 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
536 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
537 int len = TYPE_LENGTH (tdep->r0->type);
538 enum register_status status;
540 /* For address arithmetic. */
541 unsigned char *cbuf = buf;
543 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
545 status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
546 if (status == REG_VALID)
547 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
548 if (status == REG_VALID)
549 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
550 if (status == REG_VALID)
551 status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
555 status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
556 if (status == REG_VALID)
557 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
558 if (status == REG_VALID)
559 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
560 if (status == REG_VALID)
561 status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
568 /* Copy the value of the raw register REG from BUF to CACHE. REG is
569 the concatenation (from most significant to least) of r3, r2, r1,
571 static enum register_status
572 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
574 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
575 int len = TYPE_LENGTH (tdep->r0->type);
577 /* For address arithmetic. */
578 unsigned char *cbuf = buf;
580 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
582 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
583 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
584 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
585 regcache_cooked_write (cache, tdep->r3->num, cbuf);
589 regcache_cooked_write (cache, tdep->r0->num, cbuf);
590 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
591 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
592 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
599 static enum register_status
600 m32c_pseudo_register_read (struct gdbarch *arch,
601 struct regcache *cache,
605 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
606 struct m32c_reg *reg;
608 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
609 gdb_assert (arch == get_regcache_arch (cache));
610 gdb_assert (arch == tdep->regs[cookednum].arch);
611 reg = &tdep->regs[cookednum];
613 return reg->read (reg, cache, buf);
618 m32c_pseudo_register_write (struct gdbarch *arch,
619 struct regcache *cache,
623 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
624 struct m32c_reg *reg;
626 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
627 gdb_assert (arch == get_regcache_arch (cache));
628 gdb_assert (arch == tdep->regs[cookednum].arch);
629 reg = &tdep->regs[cookednum];
631 reg->write (reg, cache, (void *) buf);
635 /* Add a register with the given fields to the end of ARCH's table.
636 Return a pointer to the newly added register. */
637 static struct m32c_reg *
638 add_reg (struct gdbarch *arch,
642 m32c_move_reg_t *read,
643 m32c_move_reg_t *write,
648 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
649 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
651 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
656 r->num = tdep->num_regs;
657 r->sim_num = sim_num;
662 r->save_restore_p = 0;
675 /* Record NUM as REG's DWARF register number. */
677 set_dwarf_regnum (struct m32c_reg *reg, int num)
679 gdb_assert (num < M32C_MAX_NUM_REGS);
681 /* Update the reg->DWARF mapping. Only count the first number
682 assigned to this register. */
683 if (reg->dwarf_num == -1)
684 reg->dwarf_num = num;
686 /* Update the DWARF->reg mapping. */
687 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
691 /* Mark REG as a general-purpose register, and return it. */
692 static struct m32c_reg *
693 mark_general (struct m32c_reg *reg)
700 /* Mark REG as a DMA register, and return it. */
701 static struct m32c_reg *
702 mark_dma (struct m32c_reg *reg)
709 /* Mark REG as a SYSTEM register, and return it. */
710 static struct m32c_reg *
711 mark_system (struct m32c_reg *reg)
718 /* Mark REG as a save-restore register, and return it. */
719 static struct m32c_reg *
720 mark_save_restore (struct m32c_reg *reg)
722 reg->save_restore_p = 1;
727 #define FLAGBIT_B 0x0010
728 #define FLAGBIT_U 0x0080
730 /* Handy macros for declaring registers. These all evaluate to
731 pointers to the register declared. Macros that define two
732 registers evaluate to a pointer to the first. */
734 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
735 #define R(name, type, sim_num) \
736 (add_reg (arch, (name), (type), (sim_num), \
737 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
739 /* The simulator register number for a raw register named NAME. */
740 #define SIM(name) (m32c_sim_reg_ ## name)
742 /* A raw unsigned 16-bit data register named NAME.
743 NAME should be an identifier, not a string. */
745 (R(#name, tdep->uint16, SIM (name)))
747 /* A raw data address register named NAME.
748 NAME should be an identifier, not a string. */
750 (R(#name, tdep->data_addr_reg_type, SIM (name)))
752 /* A raw code address register named NAME. NAME should
753 be an identifier, not a string. */
755 (R(#name, tdep->code_addr_reg_type, SIM (name)))
757 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
758 NAME should be an identifier, not a string. */
759 #define RP(name, type) \
760 (R(#name "0", (type), SIM (name ## 0)), \
761 R(#name "1", (type), SIM (name ## 1)) - 1)
763 /* A raw banked general-purpose data register named NAME.
764 NAME should be an identifier, not a string. */
766 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
767 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
769 /* A raw banked data address register named NAME.
770 NAME should be an identifier, not a string. */
772 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
773 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
775 /* A cooked register named NAME referring to a raw banked register
776 from the bank selected by the current value of FLG. RAW_PAIR
777 should be a pointer to the first register in the banked pair.
778 NAME must be an identifier, not a string. */
779 #define CB(name, raw_pair) \
780 (add_reg (arch, #name, (raw_pair)->type, 0, \
781 m32c_banked_read, m32c_banked_write, \
782 (raw_pair), (raw_pair + 1), FLAGBIT_B))
784 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
785 access the top and bottom halves of the register pointed to by
786 NAME. NAME should be an identifier. */
787 #define CHL(name, type) \
788 (add_reg (arch, #name "h", (type), 0, \
789 m32c_part_read, m32c_part_write, name, NULL, 1), \
790 add_reg (arch, #name "l", (type), 0, \
791 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
793 /* A register constructed by concatenating the two registers HIGH and
794 LOW, whose name is HIGHLOW and whose type is TYPE. */
795 #define CCAT(high, low, type) \
796 (add_reg (arch, #high #low, (type), 0, \
797 m32c_cat_read, m32c_cat_write, (high), (low), 0))
799 /* Abbreviations for marking register group membership. */
800 #define G(reg) (mark_general (reg))
801 #define S(reg) (mark_system (reg))
802 #define DMA(reg) (mark_dma (reg))
805 /* Construct the register set for ARCH. */
807 make_regs (struct gdbarch *arch)
809 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
810 int mach = gdbarch_bfd_arch_info (arch)->mach;
823 struct m32c_reg *r0hl;
824 struct m32c_reg *r1hl;
825 struct m32c_reg *r2hl;
826 struct m32c_reg *r3hl;
827 struct m32c_reg *intbhl;
828 struct m32c_reg *r2r0;
829 struct m32c_reg *r3r1;
830 struct m32c_reg *r3r1r2r0;
831 struct m32c_reg *r3r2r1r0;
832 struct m32c_reg *a1a0;
834 struct m32c_reg *raw_r0_pair = RBD (r0);
835 struct m32c_reg *raw_r1_pair = RBD (r1);
836 struct m32c_reg *raw_r2_pair = RBD (r2);
837 struct m32c_reg *raw_r3_pair = RBD (r3);
838 struct m32c_reg *raw_a0_pair = RBA (a0);
839 struct m32c_reg *raw_a1_pair = RBA (a1);
840 struct m32c_reg *raw_fb_pair = RBA (fb);
842 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
843 We always declare both raw registers, and deal with the distinction
844 in the pseudoregister. */
845 struct m32c_reg *raw_sb_pair = RBA (sb);
847 struct m32c_reg *usp = S (RA (usp));
848 struct m32c_reg *isp = S (RA (isp));
849 struct m32c_reg *intb = S (RC (intb));
850 struct m32c_reg *pc = G (RC (pc));
851 struct m32c_reg *flg = G (R16U (flg));
853 if (mach == bfd_mach_m32c)
855 struct m32c_reg *svf = S (R16U (svf));
856 struct m32c_reg *svp = S (RC (svp));
857 struct m32c_reg *vct = S (RC (vct));
859 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
860 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
861 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
862 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
863 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
864 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
867 num_raw_regs = tdep->num_regs;
869 r0 = G (CB (r0, raw_r0_pair));
870 r1 = G (CB (r1, raw_r1_pair));
871 r2 = G (CB (r2, raw_r2_pair));
872 r3 = G (CB (r3, raw_r3_pair));
873 a0 = G (CB (a0, raw_a0_pair));
874 a1 = G (CB (a1, raw_a1_pair));
875 fb = G (CB (fb, raw_fb_pair));
877 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
878 Specify custom read/write functions that do the right thing. */
879 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
880 m32c_sb_read, m32c_sb_write,
881 raw_sb_pair, raw_sb_pair + 1, 0));
883 /* The current sp is either usp or isp, depending on the value of
884 the FLG register's U bit. */
885 sp = G (add_reg (arch, "sp", usp->type, 0,
886 m32c_banked_read, m32c_banked_write,
887 isp, usp, FLAGBIT_U));
889 r0hl = CHL (r0, tdep->int8);
890 r1hl = CHL (r1, tdep->int8);
891 r2hl = CHL (r2, tdep->int8);
892 r3hl = CHL (r3, tdep->int8);
893 intbhl = CHL (intb, tdep->int16);
895 r2r0 = CCAT (r2, r0, tdep->int32);
896 r3r1 = CCAT (r3, r1, tdep->int32);
897 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
900 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
901 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
903 if (mach == bfd_mach_m16c)
904 a1a0 = CCAT (a1, a0, tdep->int32);
908 num_cooked_regs = tdep->num_regs - num_raw_regs;
917 tdep->r3r2r1r0 = r3r2r1r0;
918 tdep->r3r1r2r0 = r3r1r2r0;
925 /* Set up the DWARF register table. */
926 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
927 set_dwarf_regnum (r0hl + 1, 0x01);
928 set_dwarf_regnum (r0hl + 0, 0x02);
929 set_dwarf_regnum (r1hl + 1, 0x03);
930 set_dwarf_regnum (r1hl + 0, 0x04);
931 set_dwarf_regnum (r0, 0x05);
932 set_dwarf_regnum (r1, 0x06);
933 set_dwarf_regnum (r2, 0x07);
934 set_dwarf_regnum (r3, 0x08);
935 set_dwarf_regnum (a0, 0x09);
936 set_dwarf_regnum (a1, 0x0a);
937 set_dwarf_regnum (fb, 0x0b);
938 set_dwarf_regnum (sp, 0x0c);
939 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
940 set_dwarf_regnum (sb, 0x13);
941 set_dwarf_regnum (r2r0, 0x15);
942 set_dwarf_regnum (r3r1, 0x16);
944 set_dwarf_regnum (a1a0, 0x17);
946 /* Enumerate the save/restore register group.
948 The regcache_save and regcache_restore functions apply their read
949 function to each register in this group.
951 Since frame_pop supplies frame_unwind_register as its read
952 function, the registers meaningful to the Dwarf unwinder need to
955 On the other hand, when we make inferior calls, save_inferior_status
956 and restore_inferior_status use them to preserve the current register
957 values across the inferior call. For this, you'd kind of like to
958 preserve all the raw registers, to protect the interrupted code from
959 any sort of bank switching the callee might have done. But we handle
960 those cases so badly anyway --- for example, it matters whether we
961 restore FLG before or after we restore the general-purpose registers,
962 but there's no way to express that --- that it isn't worth worrying
965 We omit control registers like inthl: if you call a function that
966 changes those, it's probably because you wanted that change to be
967 visible to the interrupted code. */
968 mark_save_restore (r0);
969 mark_save_restore (r1);
970 mark_save_restore (r2);
971 mark_save_restore (r3);
972 mark_save_restore (a0);
973 mark_save_restore (a1);
974 mark_save_restore (sb);
975 mark_save_restore (fb);
976 mark_save_restore (sp);
977 mark_save_restore (pc);
978 mark_save_restore (flg);
980 set_gdbarch_num_regs (arch, num_raw_regs);
981 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
982 set_gdbarch_pc_regnum (arch, pc->num);
983 set_gdbarch_sp_regnum (arch, sp->num);
984 set_gdbarch_register_name (arch, m32c_register_name);
985 set_gdbarch_register_type (arch, m32c_register_type);
986 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
987 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
988 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
989 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
990 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
991 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
993 reggroup_add (arch, general_reggroup);
994 reggroup_add (arch, all_reggroup);
995 reggroup_add (arch, save_reggroup);
996 reggroup_add (arch, restore_reggroup);
997 reggroup_add (arch, system_reggroup);
998 reggroup_add (arch, m32c_dma_reggroup);
1005 static const unsigned char *
1006 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1008 static unsigned char break_insn[] = { 0x00 }; /* brk */
1010 *len = sizeof (break_insn);
1016 /* Prologue analysis. */
1018 struct m32c_prologue
1020 /* For consistency with the DWARF 2 .debug_frame info generated by
1021 GCC, a frame's CFA is the address immediately after the saved
1024 /* The architecture for which we generated this prologue info. */
1025 struct gdbarch *arch;
1028 /* This function uses a frame pointer. */
1029 prologue_with_frame_ptr,
1031 /* This function has no frame pointer. */
1032 prologue_sans_frame_ptr,
1034 /* This function sets up the stack, so its frame is the first
1035 frame on the stack. */
1036 prologue_first_frame
1040 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1041 CFA to where the frame pointer points. This is always zero or
1043 LONGEST frame_ptr_offset;
1045 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1046 the stack pointer --- always zero or negative.
1048 Calling this a "size" is a bit misleading, but given that the
1049 stack grows downwards, using offsets for everything keeps one
1050 from going completely sign-crazy: you never change anything's
1051 sign for an ADD instruction; always change the second operand's
1052 sign for a SUB instruction; and everything takes care of
1055 Functions that use alloca don't have a constant frame size. But
1056 they always have frame pointers, so we must use that to find the
1057 CFA (and perhaps to unwind the stack pointer). */
1060 /* The address of the first instruction at which the frame has been
1061 set up and the arguments are where the debug info says they are
1062 --- as best as we can tell. */
1063 CORE_ADDR prologue_end;
1065 /* reg_offset[R] is the offset from the CFA at which register R is
1066 saved, or 1 if register R has not been saved. (Real values are
1067 always zero or negative.) */
1068 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1072 /* The longest I've seen, anyway. */
1073 #define M32C_MAX_INSN_LEN (9)
1075 /* Processor state, for the prologue analyzer. */
1076 struct m32c_pv_state
1078 struct gdbarch *arch;
1079 pv_t r0, r1, r2, r3;
1083 struct pv_area *stack;
1085 /* Bytes from the current PC, the address they were read from,
1086 and the address of the next unconsumed byte. */
1087 gdb_byte insn[M32C_MAX_INSN_LEN];
1088 CORE_ADDR scan_pc, next_addr;
1092 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1093 all went well, or non-zero if simulating the action would trash our
1096 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1098 if (pv_area_store_would_trash (state->stack, state->sp))
1101 state->sp = pv_add_constant (state->sp, -size);
1102 pv_area_store (state->stack, state->sp, size, value);
1108 /* A source or destination location for an m16c or m32c
1112 /* If srcdest_reg, the location is a register pointed to by REG.
1113 If srcdest_partial_reg, the location is part of a register pointed
1114 to by REG. We don't try to handle this too well.
1115 If srcdest_mem, the location is memory whose address is ADDR. */
1116 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1121 /* Return the SIZE-byte value at LOC in STATE. */
1123 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1125 if (loc.kind == srcdest_mem)
1126 return pv_area_fetch (state->stack, loc.addr, size);
1127 else if (loc.kind == srcdest_partial_reg)
1128 return pv_unknown ();
1134 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1135 all went well, or non-zero if simulating the store would trash our
1138 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1139 pv_t value, int size)
1141 if (loc.kind == srcdest_mem)
1143 if (pv_area_store_would_trash (state->stack, loc.addr))
1145 pv_area_store (state->stack, loc.addr, size, value);
1147 else if (loc.kind == srcdest_partial_reg)
1148 *loc.reg = pv_unknown ();
1157 m32c_sign_ext (int v, int bits)
1159 int mask = 1 << (bits - 1);
1160 return (v ^ mask) - mask;
1164 m32c_next_byte (struct m32c_pv_state *st)
1166 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1167 return st->insn[st->next_addr++ - st->scan_pc];
1171 m32c_udisp8 (struct m32c_pv_state *st)
1173 return m32c_next_byte (st);
1178 m32c_sdisp8 (struct m32c_pv_state *st)
1180 return m32c_sign_ext (m32c_next_byte (st), 8);
1185 m32c_udisp16 (struct m32c_pv_state *st)
1187 int low = m32c_next_byte (st);
1188 int high = m32c_next_byte (st);
1190 return low + (high << 8);
1195 m32c_sdisp16 (struct m32c_pv_state *st)
1197 int low = m32c_next_byte (st);
1198 int high = m32c_next_byte (st);
1200 return m32c_sign_ext (low + (high << 8), 16);
1205 m32c_udisp24 (struct m32c_pv_state *st)
1207 int low = m32c_next_byte (st);
1208 int mid = m32c_next_byte (st);
1209 int high = m32c_next_byte (st);
1211 return low + (mid << 8) + (high << 16);
1215 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1217 m32c_get_src23 (unsigned char *i)
1219 return (((i[0] & 0x70) >> 2)
1220 | ((i[1] & 0x30) >> 4));
1224 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1226 m32c_get_dest23 (unsigned char *i)
1228 return (((i[0] & 0x0e) << 1)
1229 | ((i[1] & 0xc0) >> 6));
1233 static struct srcdest
1234 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1240 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1242 sd.kind = srcdest_mem;
1244 sd.addr = pv_unknown ();
1249 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1250 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1251 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1252 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1254 case 0x4: sd.reg = &st->a0; break;
1255 case 0x5: sd.reg = &st->a1; break;
1257 case 0x6: sd.addr = st->a0; break;
1258 case 0x7: sd.addr = st->a1; break;
1260 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1261 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1262 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1263 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1265 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1266 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1267 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1268 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1271 gdb_assert_not_reached ("unexpected srcdest4");
1278 static struct srcdest
1279 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1283 sd.addr = pv_unknown ();
1292 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1297 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1301 sd.kind = srcdest_mem;
1308 case 0x12: sd.reg = &st->r0; break;
1309 case 0x13: sd.reg = &st->r1; break;
1310 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1311 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1312 case 0x02: sd.reg = &st->a0; break;
1313 case 0x03: sd.reg = &st->a1; break;
1315 case 0x00: sd.addr = st->a0; break;
1316 case 0x01: sd.addr = st->a1; break;
1317 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1318 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1319 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1320 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1321 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1322 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1323 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1324 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1325 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1326 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1327 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1328 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1330 gdb_assert_not_reached ("unexpected sd23");
1335 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1336 sd.kind = srcdest_mem;
1343 /* The r16c and r32c machines have instructions with similar
1344 semantics, but completely different machine language encodings. So
1345 we break out the semantics into their own functions, and leave
1346 machine-specific decoding in m32c_analyze_prologue.
1348 The following functions all expect their arguments already decoded,
1349 and they all return zero if analysis should continue past this
1350 instruction, or non-zero if analysis should stop. */
1353 /* Simulate an 'enter SIZE' instruction in STATE. */
1355 m32c_pv_enter (struct m32c_pv_state *state, int size)
1357 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1359 /* If simulating this store would require us to forget
1360 everything we know about the stack frame in the name of
1361 accuracy, it would be better to just quit now. */
1362 if (pv_area_store_would_trash (state->stack, state->sp))
1365 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1367 state->fb = state->sp;
1368 state->sp = pv_add_constant (state->sp, -size);
1375 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1376 int bit, int src, int size)
1380 if (m32c_pv_push (state, reg, size))
1388 /* Simulate a 'pushm SRC' instruction in STATE. */
1390 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1392 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1394 /* The bits in SRC indicating which registers to save are:
1395 r0 r1 r2 r3 a0 a1 sb fb */
1397 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1398 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1399 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1400 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1401 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1402 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1403 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1404 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1407 /* Return non-zero if VALUE is the first incoming argument register. */
1410 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1412 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1413 return (value.kind == pvk_register
1414 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1415 ? (value.reg == tdep->r1->num)
1416 : (value.reg == tdep->r0->num))
1420 /* Return non-zero if VALUE is an incoming argument register. */
1423 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1425 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1426 return (value.kind == pvk_register
1427 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1428 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1429 : (value.reg == tdep->r0->num))
1433 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1434 argument register to its stack slot in STATE. Such instructions
1435 should be included in the prologue, if possible.
1437 The store is a spill if:
1438 - the value being stored is the original value of an argument register;
1439 - the value has not already been stored somewhere in STACK; and
1440 - LOC is a stack slot (e.g., a memory location whose address is
1441 relative to the original value of the SP). */
1444 m32c_is_arg_spill (struct m32c_pv_state *st,
1448 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1450 return (m32c_is_arg_reg (st, value)
1451 && loc.kind == srcdest_mem
1452 && pv_is_register (loc.addr, tdep->sp->num)
1453 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1456 /* Return non-zero if a store of VALUE to LOC is probably
1457 copying the struct return address into an address register
1458 for immediate use. This is basically a "spill" into the
1459 address register, instead of onto the stack.
1461 The prerequisites are:
1462 - value being stored is original value of the FIRST arg register;
1463 - value has not already been stored on stack; and
1464 - LOC is an address register (a0 or a1). */
1467 m32c_is_struct_return (struct m32c_pv_state *st,
1471 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1473 return (m32c_is_1st_arg_reg (st, value)
1474 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1475 && loc.kind == srcdest_reg
1476 && (pv_is_register (*loc.reg, tdep->a0->num)
1477 || pv_is_register (*loc.reg, tdep->a1->num)));
1480 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1481 was a register save:
1482 - all the named registers should have their original values, and
1483 - the stack pointer should be at a constant offset from the
1484 original stack pointer. */
1486 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1489 /* The bits in SRC indicating which registers to save are:
1490 r0 r1 r2 r3 a0 a1 sb fb */
1492 (pv_is_register (st->sp, tdep->sp->num)
1493 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1494 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1495 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1496 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1497 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1498 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1499 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1500 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1504 /* Function for finding saved registers in a 'struct pv_area'; we pass
1505 this to pv_area_scan.
1507 If VALUE is a saved register, ADDR says it was saved at a constant
1508 offset from the frame base, and SIZE indicates that the whole
1509 register was saved, record its offset in RESULT_UNTYPED. */
1511 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1513 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1514 struct gdbarch *arch = prologue->arch;
1515 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1517 /* Is this the unchanged value of some register being saved on the
1519 if (value.kind == pvk_register
1521 && pv_is_register (addr, tdep->sp->num))
1523 /* Some registers require special handling: they're saved as a
1524 larger value than the register itself. */
1525 CORE_ADDR saved_size = register_size (arch, value.reg);
1527 if (value.reg == tdep->pc->num)
1528 saved_size = tdep->ret_addr_bytes;
1529 else if (register_type (arch, value.reg)
1530 == tdep->data_addr_reg_type)
1531 saved_size = tdep->push_addr_bytes;
1533 if (size == saved_size)
1535 /* Find which end of the saved value corresponds to our
1537 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1538 prologue->reg_offset[value.reg]
1539 = (addr.k + saved_size - register_size (arch, value.reg));
1541 prologue->reg_offset[value.reg] = addr.k;
1547 /* Analyze the function prologue for ARCH at START, going no further
1548 than LIMIT, and place a description of what we found in
1551 m32c_analyze_prologue (struct gdbarch *arch,
1552 CORE_ADDR start, CORE_ADDR limit,
1553 struct m32c_prologue *prologue)
1555 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1556 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1557 CORE_ADDR after_last_frame_related_insn;
1558 struct cleanup *back_to;
1559 struct m32c_pv_state st;
1562 st.r0 = pv_register (tdep->r0->num, 0);
1563 st.r1 = pv_register (tdep->r1->num, 0);
1564 st.r2 = pv_register (tdep->r2->num, 0);
1565 st.r3 = pv_register (tdep->r3->num, 0);
1566 st.a0 = pv_register (tdep->a0->num, 0);
1567 st.a1 = pv_register (tdep->a1->num, 0);
1568 st.sb = pv_register (tdep->sb->num, 0);
1569 st.fb = pv_register (tdep->fb->num, 0);
1570 st.sp = pv_register (tdep->sp->num, 0);
1571 st.pc = pv_register (tdep->pc->num, 0);
1572 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1573 back_to = make_cleanup_free_pv_area (st.stack);
1575 /* Record that the call instruction has saved the return address on
1577 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1579 memset (prologue, 0, sizeof (*prologue));
1580 prologue->arch = arch;
1583 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1584 prologue->reg_offset[i] = 1;
1587 st.scan_pc = after_last_frame_related_insn = start;
1589 while (st.scan_pc < limit)
1591 pv_t pre_insn_fb = st.fb;
1592 pv_t pre_insn_sp = st.sp;
1594 /* In theory we could get in trouble by trying to read ahead
1595 here, when we only know we're expecting one byte. In
1596 practice I doubt anyone will care, and it makes the rest of
1598 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1599 /* If we can't fetch the instruction from memory, stop here
1600 and hope for the best. */
1602 st.next_addr = st.scan_pc;
1604 /* The assembly instructions are written as they appear in the
1605 section of the processor manuals that describe the
1606 instruction encodings.
1608 When a single assembly language instruction has several
1609 different machine-language encodings, the manual
1610 distinguishes them by a number in parens, before the
1611 mnemonic. Those numbers are included, as well.
1613 The srcdest decoding instructions have the same names as the
1614 analogous functions in the simulator. */
1615 if (mach == bfd_mach_m16c)
1617 /* (1) ENTER #imm8 */
1618 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1620 if (m32c_pv_enter (&st, st.insn[2]))
1625 else if (st.insn[0] == 0xec)
1627 int src = st.insn[1];
1628 if (m32c_pv_pushm (&st, src))
1632 if (m32c_pushm_is_reg_save (&st, src))
1633 after_last_frame_related_insn = st.next_addr;
1636 /* (6) MOV.size:G src, dest */
1637 else if ((st.insn[0] & 0xfe) == 0x72)
1639 int size = (st.insn[0] & 0x01) ? 2 : 1;
1641 struct srcdest dest;
1646 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1648 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1649 src_value = m32c_srcdest_fetch (&st, src, size);
1651 if (m32c_is_arg_spill (&st, dest, src_value))
1652 after_last_frame_related_insn = st.next_addr;
1653 else if (m32c_is_struct_return (&st, dest, src_value))
1654 after_last_frame_related_insn = st.next_addr;
1656 if (m32c_srcdest_store (&st, dest, src_value, size))
1660 /* (1) LDC #IMM16, sp */
1661 else if (st.insn[0] == 0xeb
1662 && st.insn[1] == 0x50)
1665 st.sp = pv_constant (m32c_udisp16 (&st));
1669 /* We've hit some instruction we don't know how to simulate.
1670 Strictly speaking, we should set every value we're
1671 tracking to "unknown". But we'll be optimistic, assume
1672 that we have enough information already, and stop
1678 int src_indirect = 0;
1679 int dest_indirect = 0;
1682 gdb_assert (mach == bfd_mach_m32c);
1684 /* Check for prefix bytes indicating indirect addressing. */
1685 if (st.insn[0] == 0x41)
1690 else if (st.insn[0] == 0x09)
1695 else if (st.insn[0] == 0x49)
1697 src_indirect = dest_indirect = 1;
1701 /* (1) ENTER #imm8 */
1702 if (st.insn[i] == 0xec)
1704 if (m32c_pv_enter (&st, st.insn[i + 1]))
1710 else if (st.insn[i] == 0x8f)
1712 int src = st.insn[i + 1];
1713 if (m32c_pv_pushm (&st, src))
1717 if (m32c_pushm_is_reg_save (&st, src))
1718 after_last_frame_related_insn = st.next_addr;
1721 /* (7) MOV.size:G src, dest */
1722 else if ((st.insn[i] & 0x80) == 0x80
1723 && (st.insn[i + 1] & 0x0f) == 0x0b
1724 && m32c_get_src23 (&st.insn[i]) < 20
1725 && m32c_get_dest23 (&st.insn[i]) < 20)
1728 struct srcdest dest;
1730 int bw = st.insn[i] & 0x01;
1731 int size = bw ? 2 : 1;
1735 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1736 size, src_indirect);
1738 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1739 size, dest_indirect);
1740 src_value = m32c_srcdest_fetch (&st, src, size);
1742 if (m32c_is_arg_spill (&st, dest, src_value))
1743 after_last_frame_related_insn = st.next_addr;
1745 if (m32c_srcdest_store (&st, dest, src_value, size))
1748 /* (2) LDC #IMM24, sp */
1749 else if (st.insn[i] == 0xd5
1750 && st.insn[i + 1] == 0x29)
1753 st.sp = pv_constant (m32c_udisp24 (&st));
1756 /* We've hit some instruction we don't know how to simulate.
1757 Strictly speaking, we should set every value we're
1758 tracking to "unknown". But we'll be optimistic, assume
1759 that we have enough information already, and stop
1764 /* If this instruction changed the FB or decreased the SP (i.e.,
1765 allocated more stack space), then this may be a good place to
1766 declare the prologue finished. However, there are some
1769 - If the instruction just changed the FB back to its original
1770 value, then that's probably a restore instruction. The
1771 prologue should definitely end before that.
1773 - If the instruction increased the value of the SP (that is,
1774 shrunk the frame), then it's probably part of a frame
1775 teardown sequence, and the prologue should end before
1778 if (! pv_is_identical (st.fb, pre_insn_fb))
1780 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1781 after_last_frame_related_insn = st.next_addr;
1783 else if (! pv_is_identical (st.sp, pre_insn_sp))
1785 /* The comparison of the constants looks odd, there, because
1786 .k is unsigned. All it really means is that the SP is
1787 lower than it was before the instruction. */
1788 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1789 && pv_is_register (st.sp, tdep->sp->num)
1790 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1791 after_last_frame_related_insn = st.next_addr;
1794 st.scan_pc = st.next_addr;
1797 /* Did we load a constant value into the stack pointer? */
1798 if (pv_is_constant (st.sp))
1799 prologue->kind = prologue_first_frame;
1801 /* Alternatively, did we initialize the frame pointer? Remember
1802 that the CFA is the address after the return address. */
1803 if (pv_is_register (st.fb, tdep->sp->num))
1805 prologue->kind = prologue_with_frame_ptr;
1806 prologue->frame_ptr_offset = st.fb.k;
1809 /* Is the frame size a known constant? Remember that frame_size is
1810 actually the offset from the CFA to the SP (i.e., a negative
1812 else if (pv_is_register (st.sp, tdep->sp->num))
1814 prologue->kind = prologue_sans_frame_ptr;
1815 prologue->frame_size = st.sp.k;
1818 /* We haven't been able to make sense of this function's frame. Treat
1819 it as the first frame. */
1821 prologue->kind = prologue_first_frame;
1823 /* Record where all the registers were saved. */
1824 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1826 prologue->prologue_end = after_last_frame_related_insn;
1828 do_cleanups (back_to);
1833 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1836 CORE_ADDR func_addr, func_end, sal_end;
1837 struct m32c_prologue p;
1839 /* Try to find the extent of the function that contains IP. */
1840 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1843 /* Find end by prologue analysis. */
1844 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1845 /* Find end by line info. */
1846 sal_end = skip_prologue_using_sal (gdbarch, ip);
1847 /* Return whichever is lower. */
1848 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1851 return p.prologue_end;
1856 /* Stack unwinding. */
1858 static struct m32c_prologue *
1859 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1860 void **this_prologue_cache)
1862 if (! *this_prologue_cache)
1864 CORE_ADDR func_start = get_frame_func (this_frame);
1865 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1867 /* If we couldn't find any function containing the PC, then
1868 just initialize the prologue cache, but don't do anything. */
1870 stop_addr = func_start;
1872 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1873 m32c_analyze_prologue (get_frame_arch (this_frame),
1874 func_start, stop_addr, *this_prologue_cache);
1877 return *this_prologue_cache;
1882 m32c_frame_base (struct frame_info *this_frame,
1883 void **this_prologue_cache)
1885 struct m32c_prologue *p
1886 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1887 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1889 /* In functions that use alloca, the distance between the stack
1890 pointer and the frame base varies dynamically, so we can't use
1891 the SP plus static information like prologue analysis to find the
1892 frame base. However, such functions must have a frame pointer,
1893 to be able to restore the SP on exit. So whenever we do have a
1894 frame pointer, use that to find the base. */
1897 case prologue_with_frame_ptr:
1900 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1901 return fb - p->frame_ptr_offset;
1904 case prologue_sans_frame_ptr:
1907 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1908 return sp - p->frame_size;
1911 case prologue_first_frame:
1915 gdb_assert_not_reached ("unexpected prologue kind");
1921 m32c_this_id (struct frame_info *this_frame,
1922 void **this_prologue_cache,
1923 struct frame_id *this_id)
1925 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1928 *this_id = frame_id_build (base, get_frame_func (this_frame));
1929 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1933 static struct value *
1934 m32c_prev_register (struct frame_info *this_frame,
1935 void **this_prologue_cache, int regnum)
1937 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1938 struct m32c_prologue *p
1939 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1940 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1941 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1943 if (regnum == tdep->sp->num)
1944 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1946 /* If prologue analysis says we saved this register somewhere,
1947 return a description of the stack slot holding it. */
1948 if (p->reg_offset[regnum] != 1)
1949 return frame_unwind_got_memory (this_frame, regnum,
1950 frame_base + p->reg_offset[regnum]);
1952 /* Otherwise, presume we haven't changed the value of this
1953 register, and get it from the next frame. */
1954 return frame_unwind_got_register (this_frame, regnum, regnum);
1958 static const struct frame_unwind m32c_unwind = {
1960 default_frame_unwind_stop_reason,
1964 default_frame_sniffer
1969 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1971 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1972 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1977 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1979 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1980 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1984 /* Inferior calls. */
1986 /* The calling conventions, according to GCC:
1990 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1991 HImode), (2) is named, and (3) is an integer or pointer type (no
1992 structs, floats, etc). Otherwise, it's passed on the stack.
1994 Second arg may be passed in r2, same restrictions (but not QImode),
1995 even if the first arg is passed on the stack.
1997 Third and further args are passed on the stack. No padding is
1998 used, stack "alignment" is 8 bits.
2003 First arg may be passed in r0l or r0, same restrictions as above.
2005 Second and further args are passed on the stack. Padding is used
2006 after QImode parameters (i.e. lower-addressed byte is the value,
2007 higher-addressed byte is the padding), stack "alignment" is 16
2011 /* Return true if TYPE is a type that can be passed in registers. (We
2012 ignore the size, and pay attention only to the type code;
2013 acceptable sizes depends on which register is being considered to
2016 m32c_reg_arg_type (struct type *type)
2018 enum type_code code = TYPE_CODE (type);
2020 return (code == TYPE_CODE_INT
2021 || code == TYPE_CODE_ENUM
2022 || code == TYPE_CODE_PTR
2023 || code == TYPE_CODE_REF
2024 || code == TYPE_CODE_BOOL
2025 || code == TYPE_CODE_CHAR);
2030 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2031 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2032 struct value **args, CORE_ADDR sp, int struct_return,
2033 CORE_ADDR struct_addr)
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2037 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2041 /* The number of arguments given in this function's prototype, or
2042 zero if it has a non-prototyped function type. The m32c ABI
2043 passes arguments mentioned in the prototype differently from
2044 those in the ellipsis of a varargs function, or from those passed
2045 to a non-prototyped function. */
2046 int num_prototyped_args = 0;
2049 struct type *func_type = value_type (function);
2051 /* Dereference function pointer types. */
2052 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2053 func_type = TYPE_TARGET_TYPE (func_type);
2055 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2056 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2059 /* The ABI description in gcc/config/m32c/m32c.abi says that
2060 we need to handle prototyped and non-prototyped functions
2061 separately, but the code in GCC doesn't actually do so. */
2062 if (TYPE_PROTOTYPED (func_type))
2064 num_prototyped_args = TYPE_NFIELDS (func_type);
2067 /* First, if the function returns an aggregate by value, push a
2068 pointer to a buffer for it. This doesn't affect the way
2069 subsequent arguments are allocated to registers. */
2072 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2074 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2077 /* Push the arguments. */
2078 for (i = nargs - 1; i >= 0; i--)
2080 struct value *arg = args[i];
2081 const gdb_byte *arg_bits = value_contents (arg);
2082 struct type *arg_type = value_type (arg);
2083 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2085 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2088 && i < num_prototyped_args
2089 && m32c_reg_arg_type (arg_type))
2091 /* Extract and re-store as an integer as a terse way to make
2092 sure it ends up in the least significant end of r1. (GDB
2093 should avoid assuming endianness, even on uni-endian
2095 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2097 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2098 regcache_cooked_write_unsigned (regcache, reg->num, u);
2101 /* Can it go in r2? */
2102 else if (mach == bfd_mach_m16c
2105 && i < num_prototyped_args
2106 && m32c_reg_arg_type (arg_type))
2107 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2109 /* Everything else goes on the stack. */
2114 /* Align the stack. */
2115 if (mach == bfd_mach_m32c)
2118 write_memory (sp, arg_bits, arg_size);
2122 /* This is the CFA we use to identify the dummy frame. */
2125 /* Push the return address. */
2126 sp -= tdep->ret_addr_bytes;
2127 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2130 /* Update the stack pointer. */
2131 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2133 /* We need to borrow an odd trick from the i386 target here.
2135 The value we return from this function gets used as the stack
2136 address (the CFA) for the dummy frame's ID. The obvious thing is
2137 to return the new TOS. However, that points at the return
2138 address, saved on the stack, which is inconsistent with the CFA's
2139 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2140 .debug_frame info uses the address immediately after the saved
2141 return address. So you end up with a dummy frame whose CFA
2142 points at the return address, but the frame for the function
2143 being called has a CFA pointing after the return address: the
2144 younger CFA is *greater than* the older CFA. The sanity checks
2145 in frame.c don't like that.
2147 So we try to be consistent with the CFA's used by DWARF 2.
2148 Having a dummy frame and a real frame with the *same* CFA is
2154 static struct frame_id
2155 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2157 /* This needs to return a frame ID whose PC is the return address
2158 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2159 m32c_push_dummy_call returned.
2161 m32c_unwind_sp gives us the CFA, which is the value the SP had
2162 before the return address was pushed. */
2163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2164 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2165 return frame_id_build (sp, get_frame_pc (this_frame));
2170 /* Return values. */
2172 /* Return value conventions, according to GCC:
2183 Aggregate values (regardless of size) are returned by pushing a
2184 pointer to a temporary area on the stack after the args are pushed.
2185 The function fills in this area with the value. Note that this
2186 pointer on the stack does not affect how register arguments, if any,
2193 /* Return non-zero if values of type TYPE are returned by storing them
2194 in a buffer whose address is passed on the stack, ahead of the
2197 m32c_return_by_passed_buf (struct type *type)
2199 enum type_code code = TYPE_CODE (type);
2201 return (code == TYPE_CODE_STRUCT
2202 || code == TYPE_CODE_UNION);
2205 static enum return_value_convention
2206 m32c_return_value (struct gdbarch *gdbarch,
2207 struct value *function,
2208 struct type *valtype,
2209 struct regcache *regcache,
2211 const gdb_byte *writebuf)
2213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2215 enum return_value_convention conv;
2216 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2218 if (m32c_return_by_passed_buf (valtype))
2219 conv = RETURN_VALUE_STRUCT_CONVENTION;
2221 conv = RETURN_VALUE_REGISTER_CONVENTION;
2225 /* We should never be called to find values being returned by
2226 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2227 unless we made the call ourselves. */
2228 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2230 gdb_assert (valtype_len <= 8);
2232 /* Anything that fits in r0 is returned there. */
2233 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2236 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2237 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2241 /* Everything else is passed in mem0, using as many bytes as
2242 needed. This is not what the Renesas tools do, but it's
2243 what GCC does at the moment. */
2244 struct bound_minimal_symbol mem0
2245 = lookup_minimal_symbol ("mem0", NULL, NULL);
2248 error (_("The return value is stored in memory at 'mem0', "
2249 "but GDB cannot find\n"
2251 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2257 /* We should never be called to store values to be returned
2258 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2259 finding the buffer, unless we made the call ourselves. */
2260 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2262 gdb_assert (valtype_len <= 8);
2264 /* Anything that fits in r0 is returned there. */
2265 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2267 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2269 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2273 /* Everything else is passed in mem0, using as many bytes as
2274 needed. This is not what the Renesas tools do, but it's
2275 what GCC does at the moment. */
2276 struct bound_minimal_symbol mem0
2277 = lookup_minimal_symbol ("mem0", NULL, NULL);
2280 error (_("The return value is stored in memory at 'mem0', "
2281 "but GDB cannot find\n"
2283 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2294 /* The m16c and m32c use a trampoline function for indirect function
2295 calls. An indirect call looks like this:
2297 ... push arguments ...
2298 ... push target function address ...
2301 The code for m32c_jsri16 looks like this:
2305 # Save return address.
2307 pop.b m32c_jsri_ret+2
2309 # Store target function address.
2310 pop.w m32c_jsri_addr
2312 # Re-push return address.
2313 push.b m32c_jsri_ret+2
2314 push.w m32c_jsri_ret
2316 # Call the target function.
2317 jmpi.a m32c_jsri_addr
2319 Without further information, GDB will treat calls to m32c_jsri16
2320 like calls to any other function. Since m32c_jsri16 doesn't have
2321 debugging information, that normally means that GDB sets a step-
2322 resume breakpoint and lets the program continue --- which is not
2323 what the user wanted. (Giving the trampoline debugging info
2324 doesn't help: the user expects the program to stop in the function
2325 their program is calling, not in some trampoline code they've never
2328 The gdbarch_skip_trampoline_code method tells GDB how to step
2329 through such trampoline functions transparently to the user. When
2330 given the address of a trampoline function's first instruction,
2331 gdbarch_skip_trampoline_code should return the address of the first
2332 instruction of the function really being called. If GDB decides it
2333 wants to step into that function, it will set a breakpoint there
2334 and silently continue to it.
2336 We recognize the trampoline by name, and extract the target address
2337 directly from the stack. This isn't great, but recognizing by its
2338 code sequence seems more fragile. */
2341 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2343 struct gdbarch *gdbarch = get_frame_arch (frame);
2344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2347 /* It would be nicer to simply look up the addresses of known
2348 trampolines once, and then compare stop_pc with them. However,
2349 we'd need to ensure that that cached address got invalidated when
2350 someone loaded a new executable, and I'm not quite sure of the
2351 best way to do that. find_pc_partial_function does do some
2352 caching, so we'll see how this goes. */
2354 CORE_ADDR start, end;
2356 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2358 /* Are we stopped at the beginning of the trampoline function? */
2359 if (strcmp (name, "m32c_jsri16") == 0
2360 && stop_pc == start)
2362 /* Get the stack pointer. The return address is at the top,
2363 and the target function's address is just below that. We
2364 know it's a two-byte address, since the trampoline is
2366 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2368 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2371 /* What we have now is the address of a jump instruction.
2372 What we need is the destination of that jump.
2373 The opcode is 1 byte, and the destination is the next 3 bytes. */
2375 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2384 /* Address/pointer conversions. */
2386 /* On the m16c, there is a 24-bit address space, but only a very few
2387 instructions can generate addresses larger than 0xffff: jumps,
2388 jumps to subroutines, and the lde/std (load/store extended)
2391 Since GCC can only support one size of pointer, we can't have
2392 distinct 'near' and 'far' pointer types; we have to pick one size
2393 for everything. If we wanted to use 24-bit pointers, then GCC
2394 would have to use lde and ste for all memory references, which
2395 would be terrible for performance and code size. So the GNU
2396 toolchain uses 16-bit pointers for everything, and gives up the
2397 ability to have pointers point outside the first 64k of memory.
2399 However, as a special hack, we let the linker place functions at
2400 addresses above 0xffff, as long as it also places a trampoline in
2401 the low 64k for every function whose address is taken. Each
2402 trampoline consists of a single jmp.a instruction that jumps to the
2403 function's real entry point. Pointers to functions can be 16 bits
2404 long, even though the functions themselves are at higher addresses:
2405 the pointers refer to the trampolines, not the functions.
2407 This complicates things for GDB, however: given the address of a
2408 function (from debug info or linker symbols, say) which could be
2409 anywhere in the 24-bit address space, how can we find an
2410 appropriate 16-bit value to use as a pointer to it?
2412 If the linker has not generated a trampoline for the function,
2413 we're out of luck. Well, I guess we could malloc some space and
2414 write a jmp.a instruction to it, but I'm not going to get into that
2417 If the linker has generated a trampoline for the function, then it
2418 also emitted a symbol for the trampoline: if the function's linker
2419 symbol is named NAME, then the function's trampoline's linker
2420 symbol is named NAME.plt.
2422 So, given a code address:
2423 - We try to find a linker symbol at that address.
2424 - If we find such a symbol named NAME, we look for a linker symbol
2426 - If we find such a symbol, we assume it is a trampoline, and use
2427 its address as the pointer value.
2429 And, given a function pointer:
2430 - We try to find a linker symbol at that address named NAME.plt.
2431 - If we find such a symbol, we look for a linker symbol named NAME.
2432 - If we find that, we provide that as the function's address.
2433 - If any of the above steps fail, we return the original address
2434 unchanged; it might really be a function in the low 64k.
2436 See? You *knew* there was a reason you wanted to be a computer
2440 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2441 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2443 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2444 enum type_code target_code;
2445 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2446 TYPE_CODE (type) == TYPE_CODE_REF);
2448 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2450 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2452 const char *func_name;
2454 struct bound_minimal_symbol tramp_msym;
2456 /* Try to find a linker symbol at this address. */
2457 struct bound_minimal_symbol func_msym
2458 = lookup_minimal_symbol_by_pc (addr);
2460 if (! func_msym.minsym)
2461 error (_("Cannot convert code address %s to function pointer:\n"
2462 "couldn't find a symbol at that address, to find trampoline."),
2463 paddress (gdbarch, addr));
2465 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2466 tramp_name = xmalloc (strlen (func_name) + 5);
2467 strcpy (tramp_name, func_name);
2468 strcat (tramp_name, ".plt");
2470 /* Try to find a linker symbol for the trampoline. */
2471 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2473 /* We've either got another copy of the name now, or don't need
2474 the name any more. */
2477 if (! tramp_msym.minsym)
2481 /* No PLT entry found. Mask off the upper bits of the address
2482 to make a pointer. As noted in the warning to the user
2483 below, this value might be useful if converted back into
2484 an address by GDB, but will otherwise, almost certainly,
2487 Using this masked result does seem to be useful
2488 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2489 PASSes. These results appear to be correct as well.
2491 We print a warning here so that the user can make a
2492 determination about whether the result is useful or not. */
2493 ptrval = addr & 0xffff;
2495 warning (_("Cannot convert code address %s to function pointer:\n"
2496 "couldn't find trampoline named '%s.plt'.\n"
2497 "Returning pointer value %s instead; this may produce\n"
2498 "a useful result if converted back into an address by GDB,\n"
2499 "but will most likely not be useful otherwise.\n"),
2500 paddress (gdbarch, addr), func_name,
2501 paddress (gdbarch, ptrval));
2508 /* The trampoline's address is our pointer. */
2509 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2513 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2518 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2519 struct type *type, const gdb_byte *buf)
2521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2523 enum type_code target_code;
2525 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2526 TYPE_CODE (type) == TYPE_CODE_REF);
2528 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2530 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2532 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2534 /* See if there is a minimal symbol at that address whose name is
2536 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2538 if (ptr_msym.minsym)
2540 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2541 int len = strlen (ptr_msym_name);
2544 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2546 struct bound_minimal_symbol func_msym;
2547 /* We have a .plt symbol; try to find the symbol for the
2548 corresponding function.
2550 Since the trampoline contains a jump instruction, we
2551 could also just extract the jump's target address. I
2552 don't see much advantage one way or the other. */
2553 char *func_name = xmalloc (len - 4 + 1);
2554 memcpy (func_name, ptr_msym_name, len - 4);
2555 func_name[len - 4] = '\0';
2557 = lookup_minimal_symbol (func_name, NULL, NULL);
2559 /* If we do have such a symbol, return its value as the
2560 function's true address. */
2561 if (func_msym.minsym)
2562 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2569 for (aspace = 1; aspace <= 15; aspace++)
2571 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2573 if (ptr_msym.minsym)
2574 ptr |= aspace << 16;
2583 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2585 LONGEST *frame_offset)
2588 CORE_ADDR func_addr, func_end;
2589 struct m32c_prologue p;
2591 struct regcache *regcache = get_current_regcache ();
2592 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2594 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2595 internal_error (__FILE__, __LINE__,
2596 _("No virtual frame pointer available"));
2598 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2601 case prologue_with_frame_ptr:
2602 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2603 *frame_offset = p.frame_ptr_offset;
2605 case prologue_sans_frame_ptr:
2606 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2607 *frame_offset = p.frame_size;
2610 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2615 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2616 internal_error (__FILE__, __LINE__,
2617 _("No virtual frame pointer available"));
2621 /* Initialization. */
2623 static struct gdbarch *
2624 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2626 struct gdbarch *arch;
2627 struct gdbarch_tdep *tdep;
2628 unsigned long mach = info.bfd_arch_info->mach;
2630 /* Find a candidate among the list of architectures we've created
2632 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2634 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2635 return arches->gdbarch;
2637 tdep = xcalloc (1, sizeof (*tdep));
2638 arch = gdbarch_alloc (&info, tdep);
2640 /* Essential types. */
2643 /* Address/pointer conversions. */
2644 if (mach == bfd_mach_m16c)
2646 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2647 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2654 set_gdbarch_print_insn (arch, print_insn_m32c);
2657 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2659 /* Prologue analysis and unwinding. */
2660 set_gdbarch_inner_than (arch, core_addr_lessthan);
2661 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2662 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2663 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2665 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2666 They may be in the dwarf2 cfi code in GDB, or they may be in
2667 the debug info emitted by the upstream toolchain. I don't
2668 know which, but I do know that the prologue analyzer works better.
2670 dwarf2_append_sniffers (arch);
2672 frame_unwind_append_unwinder (arch, &m32c_unwind);
2674 /* Inferior calls. */
2675 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2676 set_gdbarch_return_value (arch, m32c_return_value);
2677 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2680 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2682 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2684 /* m32c function boundary addresses are not necessarily even.
2685 Therefore, the `vbit', which indicates a pointer to a virtual
2686 member function, is stored in the delta field, rather than as
2687 the low bit of a function pointer address.
2689 In order to verify this, see the definition of
2690 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2691 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2692 set_gdbarch_vbit_in_delta (arch, 1);
2697 /* Provide a prototype to silence -Wmissing-prototypes. */
2698 extern initialize_file_ftype _initialize_m32c_tdep;
2701 _initialize_m32c_tdep (void)
2703 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2705 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);