1 /* Native-dependent code for LynxOS.
2 Copyright 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
25 #include <sys/ptrace.h>
29 static unsigned long registers_addr PARAMS ((int pid));
31 #define X(ENTRY)(offsetof(struct econtext, ENTRY))
34 /* Mappings from tm-i386v.h */
52 X(ecode), /* Lynx doesn't give us either fs or gs, so */
53 X(fault), /* we just substitute these two in the hopes
54 that they are useful. */
59 /* Mappings from tm-m68k.h */
78 offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
82 X(fregs[0*3]), /* fp0 */
83 X(fregs[1*3]), /* fp1 */
84 X(fregs[2*3]), /* fp2 */
85 X(fregs[3*3]), /* fp3 */
86 X(fregs[4*3]), /* fp4 */
87 X(fregs[5*3]), /* fp5 */
88 X(fregs[6*3]), /* fp6 */
89 X(fregs[7*3]), /* fp7 */
91 X(fcregs[0]), /* fpcontrol */
92 X(fcregs[1]), /* fpstatus */
93 X(fcregs[2]), /* fpiaddr */
95 X(fault), /* fpflags */
100 /* Mappings from tm-sparc.h */
102 #define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
104 static int regmap[] =
111 -1, /* g5->g7 aren't saved by Lynx */
124 -1,-1,-1,-1,-1,-1,-1,-1, /* l0 -> l7 */
126 -1,-1,-1,-1,-1,-1,-1,-1, /* i0 -> i7 */
128 FX(f.fregs[0]), /* f0 */
174 static int regmap[] =
176 X(iregs[0]), /* r0 */
209 X(fregs[0]), /* f0 */
242 X(srr0), /* IAR (PC) */
243 X(srr1), /* MSR (PS) */
255 /* This routine handles some oddball cases for Sparc registers and LynxOS.
256 In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
257 It also handles knows where to find the I & L regs on the stack. */
260 fetch_inferior_registers (regno)
265 #define WHATREGS_FLOAT 1
266 #define WHATREGS_GEN 2
267 #define WHATREGS_STACK 4
270 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
271 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
272 whatregs = WHATREGS_STACK;
273 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
274 whatregs = WHATREGS_FLOAT;
276 whatregs = WHATREGS_GEN;
278 if (whatregs & WHATREGS_GEN)
280 struct econtext ec; /* general regs */
281 char buf[MAX_REGISTER_RAW_SIZE];
286 retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
289 perror_with_name ("ptrace(PTRACE_GETREGS)");
291 memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
292 supply_register (G0_REGNUM, buf);
293 supply_register (TBR_REGNUM, (char *)&ec.tbr);
295 memcpy (®isters[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
296 4 * REGISTER_RAW_SIZE (G1_REGNUM));
297 for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
298 register_valid[i] = 1;
300 supply_register (PS_REGNUM, (char *)&ec.psr);
301 supply_register (Y_REGNUM, (char *)&ec.y);
302 supply_register (PC_REGNUM, (char *)&ec.pc);
303 supply_register (NPC_REGNUM, (char *)&ec.npc);
304 supply_register (WIM_REGNUM, (char *)&ec.wim);
306 memcpy (®isters[REGISTER_BYTE (O0_REGNUM)], ec.o,
307 8 * REGISTER_RAW_SIZE (O0_REGNUM));
308 for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
309 register_valid[i] = 1;
312 if (whatregs & WHATREGS_STACK)
317 sp = read_register (SP_REGNUM);
319 target_xfer_memory (sp + FRAME_SAVED_I0,
320 ®isters[REGISTER_BYTE(I0_REGNUM)],
321 8 * REGISTER_RAW_SIZE (I0_REGNUM), 0);
322 for (i = I0_REGNUM; i <= I7_REGNUM; i++)
323 register_valid[i] = 1;
325 target_xfer_memory (sp + FRAME_SAVED_L0,
326 ®isters[REGISTER_BYTE(L0_REGNUM)],
327 8 * REGISTER_RAW_SIZE (L0_REGNUM), 0);
328 for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
329 register_valid[i] = 1;
332 if (whatregs & WHATREGS_FLOAT)
334 struct fcontext fc; /* fp regs */
339 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
342 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
344 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
345 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
346 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
347 register_valid[i] = 1;
349 supply_register (FPS_REGNUM, (char *)&fc.fsr);
353 /* This routine handles storing of the I & L regs for the Sparc. The trick
354 here is that they actually live on the stack. The really tricky part is
355 that when changing the stack pointer, the I & L regs must be written to
356 where the new SP points, otherwise the regs will be incorrect when the
357 process is started up again. We assume that the I & L regs are valid at
361 store_inferior_registers (regno)
367 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
368 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
369 whatregs = WHATREGS_STACK;
370 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
371 whatregs = WHATREGS_FLOAT;
372 else if (regno == SP_REGNUM)
373 whatregs = WHATREGS_STACK | WHATREGS_GEN;
375 whatregs = WHATREGS_GEN;
377 if (whatregs & WHATREGS_GEN)
379 struct econtext ec; /* general regs */
382 ec.tbr = read_register (TBR_REGNUM);
383 memcpy (&ec.g1, ®isters[REGISTER_BYTE (G1_REGNUM)],
384 4 * REGISTER_RAW_SIZE (G1_REGNUM));
386 ec.psr = read_register (PS_REGNUM);
387 ec.y = read_register (Y_REGNUM);
388 ec.pc = read_register (PC_REGNUM);
389 ec.npc = read_register (NPC_REGNUM);
390 ec.wim = read_register (WIM_REGNUM);
392 memcpy (ec.o, ®isters[REGISTER_BYTE (O0_REGNUM)],
393 8 * REGISTER_RAW_SIZE (O0_REGNUM));
396 retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
399 perror_with_name ("ptrace(PTRACE_SETREGS)");
402 if (whatregs & WHATREGS_STACK)
407 sp = read_register (SP_REGNUM);
409 if (regno == -1 || regno == SP_REGNUM)
411 if (!register_valid[L0_REGNUM+5])
413 target_xfer_memory (sp + FRAME_SAVED_I0,
414 ®isters[REGISTER_BYTE (I0_REGNUM)],
415 8 * REGISTER_RAW_SIZE (I0_REGNUM), 1);
417 target_xfer_memory (sp + FRAME_SAVED_L0,
418 ®isters[REGISTER_BYTE (L0_REGNUM)],
419 8 * REGISTER_RAW_SIZE (L0_REGNUM), 1);
421 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
423 if (!register_valid[regno])
425 if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
426 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
429 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
431 target_xfer_memory (sp + regoffset, ®isters[REGISTER_BYTE (regno)],
432 REGISTER_RAW_SIZE (regno), 1);
436 if (whatregs & WHATREGS_FLOAT)
438 struct fcontext fc; /* fp regs */
441 /* We read fcontext first so that we can get good values for fq_t... */
443 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
446 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
448 memcpy (fc.f.fregs, ®isters[REGISTER_BYTE (FP0_REGNUM)],
449 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
451 fc.fsr = read_register (FPS_REGNUM);
454 retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
457 perror_with_name ("ptrace(PTRACE_SETFPREGS)");
462 #if defined (I386) || defined (M68K) || defined (rs6000)
464 /* Return the offset relative to the start of the per-thread data to the
465 saved context block. */
472 int ecpoff = offsetof(st_t, ecp);
476 stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE)0,
479 perror_with_name ("ptrace(PTRACE_THREADUSER)");
481 ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE)ecpoff,
484 perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
486 return ecp - stblock;
489 /* Fetch one or more registers from the inferior. REGNO == -1 to get
490 them all. We actually fetch more than requested, when convenient,
491 marking them as valid so we won't fetch them again. */
494 fetch_inferior_registers (regno)
504 reghi = NUM_REGS - 1;
507 reglo = reghi = regno;
509 ecp = registers_addr (inferior_pid);
511 for (regno = reglo; regno <= reghi; regno++)
513 char buf[MAX_REGISTER_RAW_SIZE];
514 int ptrace_fun = PTRACE_PEEKTHREAD;
517 ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
520 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
525 reg = ptrace (ptrace_fun, inferior_pid,
526 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
528 perror_with_name ("ptrace(PTRACE_PEEKUSP)");
530 *(int *)&buf[i] = reg;
532 supply_register (regno, buf);
536 /* Store our register values back into the inferior.
537 If REGNO is -1, do this for all registers.
538 Otherwise, REGNO specifies which register (so we can save time). */
540 /* Registers we shouldn't try to store. */
541 #if !defined (CANNOT_STORE_REGISTER)
542 #define CANNOT_STORE_REGISTER(regno) 0
546 store_inferior_registers (regno)
556 reghi = NUM_REGS - 1;
559 reglo = reghi = regno;
561 ecp = registers_addr (inferior_pid);
563 for (regno = reglo; regno <= reghi; regno++)
565 int ptrace_fun = PTRACE_POKEUSER;
567 if (CANNOT_STORE_REGISTER (regno))
571 ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
574 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
578 reg = *(unsigned int *)®isters[REGISTER_BYTE (regno) + i];
581 ptrace (ptrace_fun, inferior_pid,
582 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
584 perror_with_name ("ptrace(PTRACE_POKEUSP)");
588 #endif /* defined (I386) || defined (M68K) || defined (rs6000) */
590 /* Wait for child to do something. Return pid of child, or -1 in case
591 of error; store status through argument pointer OURSTATUS. */
594 child_wait (pid, ourstatus)
596 struct target_waitstatus *ourstatus;
606 set_sigint_trap(); /* Causes SIGINT to be passed on to the
608 pid = wait (&status);
610 /* Swap halves of status so that the rest of GDB can understand it */
611 status = (status << 16) | ((unsigned)status >> 16);
620 if (save_errno == EINTR)
622 fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
623 safe_strerror (save_errno));
624 /* Claim it exited with unknown signal. */
625 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
626 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
630 if (pid != PIDGET (inferior_pid)) /* Some other process?!? */
633 thread = status.w_tid; /* Get thread id from status */
635 /* Initial thread value can only be acquired via wait, so we have to
636 resort to this hack. */
638 if (TIDGET (inferior_pid) == 0)
640 inferior_pid = BUILDPID (inferior_pid, thread);
641 add_thread (inferior_pid);
644 pid = BUILDPID (pid, thread);
646 if (WIFSTOPPED(status)
647 && WSTOPSIG(status) == SIGTRAP
648 && !in_thread_list (pid))
652 realsig = ptrace (PTRACE_GETTRACESIG, pid, 0);
654 if (realsig == SIGNEWTHREAD)
656 /* Simply ignore new thread notification, as we can't do anything
657 useful with such threads. All ptrace calls at this point just
658 fail for no apparent reason. The thread will eventually get a
659 real signal when it becomes real. */
660 child_resume (pid, 0, TARGET_SIGNAL_0);
665 store_waitstatus (ourstatus, status.w_status);
671 /* Resume execution of the inferior process.
672 If STEP is nonzero, single-step it.
673 If SIGNAL is nonzero, give it that signal. */
676 child_resume (pid, step, signal)
679 enum target_signal signal;
687 /* Resume all threads. */
692 func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT;
694 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
695 it was. (If GDB wanted it to start some other way, we have already
696 written a new PC value to the child.)
698 If this system does not support PT_STEP, a higher level function will
699 have called single_step() to transmute the step request into a
700 continue request (by setting breakpoints on all possible successor
701 instructions), so we don't have to worry about that here. */
703 ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
706 perror_with_name ("ptrace");
709 /* Convert a Lynx process ID to a string. Returns the string in a static
713 lynx_pid_to_str (pid)
718 sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
723 /* Extract the register values out of the core file and store
724 them where `read_register' will find them.
726 CORE_REG_SECT points to the register values themselves, read into memory.
727 CORE_REG_SIZE is the size of that area.
728 WHICH says which set of registers we are handling (0 = int, 2 = float
729 on machines where they are discontiguous).
730 REG_ADDR is the offset from u.u_ar0 to the register values relative to
731 core_reg_sect. This is used with old-fashioned core files to
732 locate the registers in a large upage-plus-stack ".reg" section.
733 Original upage address X is at location core_reg_sect+x+reg_addr.
737 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
739 unsigned core_reg_size;
746 for (regno = 0; regno < NUM_REGS; regno++)
747 supply_register (regno, core_reg_sect + offsetof (st_t, ec)
751 /* Fetching this register causes all of the I & L regs to be read from the
752 stack and validated. */
754 fetch_inferior_registers (I0_REGNUM);