1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
4 Copyright (C) 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "frame-unwind.h"
24 #include "frame-base.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
40 #include "gdb_string.h"
42 /* Macros to extract fields from an instruction. */
43 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
44 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
45 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
46 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
47 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
51 /* gdbarch target dependent data here. Currently unused for LM32. */
54 struct lm32_frame_cache
56 /* The frame's base. Used when constructing a frame ID. */
61 /* Table indicating the location of each and every register. */
62 struct trad_frame_saved_reg *saved_regs;
65 /* Add the available register groups. */
68 lm32_add_reggroups (struct gdbarch *gdbarch)
70 reggroup_add (gdbarch, general_reggroup);
71 reggroup_add (gdbarch, all_reggroup);
72 reggroup_add (gdbarch, system_reggroup);
75 /* Return whether a given register is in a given group. */
78 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
79 struct reggroup *group)
81 if (group == general_reggroup)
82 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
83 || (regnum == SIM_LM32_PC_REGNUM);
84 else if (group == system_reggroup)
85 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
86 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
87 return default_register_reggroup_p (gdbarch, regnum, group);
90 /* Return a name that corresponds to the given register number. */
93 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
95 static char *register_names[] = {
96 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
97 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
98 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
99 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
100 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
103 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
106 return register_names[reg_nr];
109 /* Return type of register. */
112 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
114 return builtin_type_int32;
117 /* Return non-zero if a register can't be written. */
120 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
122 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
125 /* Analyze a function's prologue. */
128 lm32_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
129 struct lm32_frame_cache *info)
131 unsigned long instruction;
133 /* Keep reading though instructions, until we come across an instruction
134 that isn't likely to be part of the prologue. */
136 for (; pc < limit; pc += 4)
139 /* Read an instruction. */
140 instruction = read_memory_integer (pc, 4);
142 if ((LM32_OPCODE (instruction) == OP_SW)
143 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
145 /* Any stack displaced store is likely part of the prologue.
146 Record that the register is being saved, and the offset
148 info->saved_regs[LM32_REG1 (instruction)].addr =
149 LM32_IMM16 (instruction);
151 else if ((LM32_OPCODE (instruction) == OP_ADDI)
152 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
154 /* An add to the SP is likely to be part of the prologue.
155 Adjust stack size by whatever the instruction adds to the sp. */
156 info->size -= LM32_IMM16 (instruction);
158 else if ( /* add fp,fp,sp */
159 ((LM32_OPCODE (instruction) == OP_ADD)
160 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
161 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
164 || ((LM32_OPCODE (instruction) == OP_ADDI)
165 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
166 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
168 /* Likely to be in the prologue for functions that require
173 /* Any other instruction is likely not to be part of the prologue. */
181 /* Return PC of first non prologue instruction, for the function at the
182 specified address. */
185 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
187 CORE_ADDR func_addr, limit_pc;
188 struct symtab_and_line sal;
189 struct lm32_frame_cache frame_info;
190 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
192 /* See if we can determine the end of the prologue via the symbol table.
193 If so, then return either PC, or the PC after the prologue, whichever
195 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
197 CORE_ADDR post_prologue_pc
198 = skip_prologue_using_sal (gdbarch, func_addr);
199 if (post_prologue_pc != 0)
200 return max (pc, post_prologue_pc);
203 /* Can't determine prologue from the symbol table, need to examine
206 /* Find an upper limit on the function prologue using the debug
207 information. If the debug information could not be used to provide
208 that bound, then use an arbitrary large number as the upper bound. */
209 limit_pc = skip_prologue_using_sal (gdbarch, pc);
211 limit_pc = pc + 100; /* Magic. */
213 frame_info.saved_regs = saved_regs;
214 return lm32_analyze_prologue (pc, limit_pc, &frame_info);
217 /* Create a breakpoint instruction. */
219 static const gdb_byte *
220 lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
223 static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
225 *lenptr = sizeof (breakpoint);
229 /* Setup registers and stack for faking a call to a function in the
233 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
234 struct regcache *regcache, CORE_ADDR bp_addr,
235 int nargs, struct value **args, CORE_ADDR sp,
236 int struct_return, CORE_ADDR struct_addr)
238 int first_arg_reg = SIM_LM32_R1_REGNUM;
239 int num_arg_regs = 8;
242 /* Set the return address. */
243 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
245 /* If we're returning a large struct, a pointer to the address to
246 store it at is passed as a first hidden parameter. */
249 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
255 /* Setup parameters. */
256 for (i = 0; i < nargs; i++)
258 struct value *arg = args[i];
259 struct type *arg_type = check_typedef (value_type (arg));
266 /* Promote small integer types to int. */
267 switch (TYPE_CODE (arg_type))
272 case TYPE_CODE_RANGE:
274 if (TYPE_LENGTH (arg_type) < 4)
276 arg_type = builtin_type_int32;
277 arg = value_cast (arg_type, arg);
282 /* FIXME: Handle structures. */
284 contents = (gdb_byte *) value_contents (arg);
285 len = TYPE_LENGTH (arg_type);
286 val = extract_unsigned_integer (contents, len);
288 /* First num_arg_regs parameters are passed by registers,
289 and the rest are passed on the stack. */
290 if (i < num_arg_regs)
291 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
294 write_memory (sp, (void *) &val, len);
299 /* Update stack pointer. */
300 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
302 /* Return adjusted stack pointer. */
306 /* Extract return value after calling a function in the inferior. */
309 lm32_extract_return_value (struct type *type, struct regcache *regcache,
314 CORE_ADDR return_buffer;
316 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
317 && TYPE_CODE (type) != TYPE_CODE_UNION
318 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
320 /* Return value is returned in a single register. */
321 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
322 store_unsigned_integer (valbuf, TYPE_LENGTH (type), l);
324 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
326 /* 64-bit values are returned in a register pair. */
327 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
328 memcpy (valbuf, &l, 4);
329 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
330 memcpy (valbuf + 4, &l, 4);
334 /* Aggregate types greater than a single register are returned in memory.
335 FIXME: Unless they are only 2 regs?. */
336 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
338 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
342 /* Write into appropriate registers a function return value of type
343 TYPE, given in virtual format. */
345 lm32_store_return_value (struct type *type, struct regcache *regcache,
346 const gdb_byte *valbuf)
349 int len = TYPE_LENGTH (type);
353 val = extract_unsigned_integer (valbuf, len);
354 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
358 val = extract_unsigned_integer (valbuf, 4);
359 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
360 val = extract_unsigned_integer (valbuf + 4, len - 4);
361 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
364 error (_("lm32_store_return_value: type length too large."));
367 /* Determine whether a functions return value is in a register or memory. */
368 static enum return_value_convention
369 lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
370 struct type *valtype, struct regcache *regcache,
371 gdb_byte *readbuf, const gdb_byte *writebuf)
373 enum type_code code = TYPE_CODE (valtype);
375 if (code == TYPE_CODE_STRUCT
376 || code == TYPE_CODE_UNION
377 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
378 return RETURN_VALUE_STRUCT_CONVENTION;
381 lm32_extract_return_value (valtype, regcache, readbuf);
383 lm32_store_return_value (valtype, regcache, writebuf);
385 return RETURN_VALUE_REGISTER_CONVENTION;
389 lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
391 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
395 lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
397 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
400 static struct frame_id
401 lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
403 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
405 return frame_id_build (sp, get_frame_pc (this_frame));
408 /* Put here the code to store, into fi->saved_regs, the addresses of
409 the saved registers of frame described by FRAME_INFO. This
410 includes special registers such as pc and fp saved in special ways
411 in the stack frame. sp is even more special: the address we return
412 for it IS the sp for the next frame. */
414 static struct lm32_frame_cache *
415 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
417 CORE_ADDR prologue_pc;
418 CORE_ADDR current_pc;
421 struct lm32_frame_cache *info;
423 unsigned long instruction;
429 if ((*this_prologue_cache))
430 return (*this_prologue_cache);
432 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
433 (*this_prologue_cache) = info;
434 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
436 info->pc = get_frame_func (this_frame);
437 current_pc = get_frame_pc (this_frame);
438 lm32_analyze_prologue (info->pc, current_pc, info);
440 /* Compute the frame's base, and the previous frame's SP. */
441 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
442 prev_sp = this_base + info->size;
443 info->base = this_base;
445 /* Convert callee save offsets into addresses. */
446 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
448 if (trad_frame_addr_p (info->saved_regs, i))
449 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
452 /* The call instruction moves the caller's PC in the callee's RA register.
453 Since this is an unwind, do the reverse. Copy the location of RA register
454 into PC (the address / regnum) so that a request for PC will be
455 converted into a request for the RA register. */
456 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
458 /* The previous frame's SP needed to be computed. Save the computed value. */
459 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
465 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
466 struct frame_id *this_id)
468 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
470 /* This marks the outermost frame. */
471 if (cache->base == 0)
474 (*this_id) = frame_id_build (cache->base, cache->pc);
477 static struct value *
478 lm32_frame_prev_register (struct frame_info *this_frame,
479 void **this_prologue_cache, int regnum)
481 struct lm32_frame_cache *info;
483 info = lm32_frame_cache (this_frame, this_prologue_cache);
484 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
487 static const struct frame_unwind lm32_frame_unwind = {
490 lm32_frame_prev_register,
492 default_frame_sniffer
496 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
498 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
503 static const struct frame_base lm32_frame_base = {
505 lm32_frame_base_address,
506 lm32_frame_base_address,
507 lm32_frame_base_address
511 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
513 /* Align to the size of an instruction (so that they can safely be
514 pushed onto the stack. */
518 static struct gdbarch *
519 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
521 struct gdbarch *gdbarch;
522 struct gdbarch_tdep *tdep;
524 /* If there is already a candidate, use it. */
525 arches = gdbarch_list_lookup_by_info (arches, &info);
527 return arches->gdbarch;
529 /* None found, create a new architecture from the information provided. */
530 tdep = XMALLOC (struct gdbarch_tdep);
531 gdbarch = gdbarch_alloc (&info, tdep);
534 set_gdbarch_short_bit (gdbarch, 16);
535 set_gdbarch_int_bit (gdbarch, 32);
536 set_gdbarch_long_bit (gdbarch, 32);
537 set_gdbarch_long_long_bit (gdbarch, 64);
538 set_gdbarch_float_bit (gdbarch, 32);
539 set_gdbarch_double_bit (gdbarch, 64);
540 set_gdbarch_long_double_bit (gdbarch, 64);
541 set_gdbarch_ptr_bit (gdbarch, 32);
544 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
545 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
546 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
547 set_gdbarch_register_name (gdbarch, lm32_register_name);
548 set_gdbarch_register_type (gdbarch, lm32_register_type);
549 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
552 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
553 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
554 set_gdbarch_decr_pc_after_break (gdbarch, 0);
555 set_gdbarch_frame_args_skip (gdbarch, 0);
557 /* Frame unwinding. */
558 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
559 frame_base_set_default (gdbarch, &lm32_frame_base);
560 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
561 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
562 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
563 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
566 set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
567 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
569 /* Calling functions in the inferior. */
570 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
571 set_gdbarch_return_value (gdbarch, lm32_return_value);
573 /* Instruction disassembler. */
574 set_gdbarch_print_insn (gdbarch, print_insn_lm32);
576 lm32_add_reggroups (gdbarch);
577 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
583 _initialize_lm32_tdep (void)
585 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);