Allow ARC target to be configured with --with-cpu=<cpu-name>.
[external/binutils.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2    Contributed by Jon Beniston <jon@beniston.com>
3
4    Copyright (C) 2009-2016 Free Software Foundation, Inc.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39
40 /* Macros to extract fields from an instruction.  */
41 #define LM32_OPCODE(insn)       ((insn >> 26) & 0x3f)
42 #define LM32_REG0(insn)         ((insn >> 21) & 0x1f)
43 #define LM32_REG1(insn)         ((insn >> 16) & 0x1f)
44 #define LM32_REG2(insn)         ((insn >> 11) & 0x1f)
45 #define LM32_IMM16(insn)        ((((long)insn & 0xffff) << 16) >> 16)
46
47 struct gdbarch_tdep
48 {
49   /* gdbarch target dependent data here.  Currently unused for LM32.  */
50 };
51
52 struct lm32_frame_cache
53 {
54   /* The frame's base.  Used when constructing a frame ID.  */
55   CORE_ADDR base;
56   CORE_ADDR pc;
57   /* Size of frame.  */
58   int size;
59   /* Table indicating the location of each and every register.  */
60   struct trad_frame_saved_reg *saved_regs;
61 };
62
63 /* Add the available register groups.  */
64
65 static void
66 lm32_add_reggroups (struct gdbarch *gdbarch)
67 {
68   reggroup_add (gdbarch, general_reggroup);
69   reggroup_add (gdbarch, all_reggroup);
70   reggroup_add (gdbarch, system_reggroup);
71 }
72
73 /* Return whether a given register is in a given group.  */
74
75 static int
76 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
77                           struct reggroup *group)
78 {
79   if (group == general_reggroup)
80     return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
81       || (regnum == SIM_LM32_PC_REGNUM);
82   else if (group == system_reggroup)
83     return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
84       || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
85   return default_register_reggroup_p (gdbarch, regnum, group);
86 }
87
88 /* Return a name that corresponds to the given register number.  */
89
90 static const char *
91 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
92 {
93   static char *register_names[] = {
94     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
95     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
96     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
97     "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
98     "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
99   };
100
101   if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
102     return NULL;
103   else
104     return register_names[reg_nr];
105 }
106
107 /* Return type of register.  */
108
109 static struct type *
110 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
111 {
112   return builtin_type (gdbarch)->builtin_int32;
113 }
114
115 /* Return non-zero if a register can't be written.  */
116
117 static int
118 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
119 {
120   return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
121 }
122
123 /* Analyze a function's prologue.  */
124
125 static CORE_ADDR
126 lm32_analyze_prologue (struct gdbarch *gdbarch,
127                        CORE_ADDR pc, CORE_ADDR limit,
128                        struct lm32_frame_cache *info)
129 {
130   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
131   unsigned long instruction;
132
133   /* Keep reading though instructions, until we come across an instruction 
134      that isn't likely to be part of the prologue.  */
135   info->size = 0;
136   for (; pc < limit; pc += 4)
137     {
138
139       /* Read an instruction.  */
140       instruction = read_memory_integer (pc, 4, byte_order);
141
142       if ((LM32_OPCODE (instruction) == OP_SW)
143           && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
144         {
145           /* Any stack displaced store is likely part of the prologue.
146              Record that the register is being saved, and the offset 
147              into the stack.  */
148           info->saved_regs[LM32_REG1 (instruction)].addr =
149             LM32_IMM16 (instruction);
150         }
151       else if ((LM32_OPCODE (instruction) == OP_ADDI)
152                && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
153         {
154           /* An add to the SP is likely to be part of the prologue.
155              Adjust stack size by whatever the instruction adds to the sp.  */
156           info->size -= LM32_IMM16 (instruction);
157         }
158       else if (                 /* add fp,fp,sp */
159                 ((LM32_OPCODE (instruction) == OP_ADD)
160                  && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
161                  && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
162                  && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
163                 /* mv fp,imm */
164                 || ((LM32_OPCODE (instruction) == OP_ADDI)
165                     && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
166                     && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
167         {
168           /* Likely to be in the prologue for functions that require 
169              a frame pointer.  */
170         }
171       else
172         {
173           /* Any other instruction is likely not to be part of the
174              prologue.  */
175           break;
176         }
177     }
178
179   return pc;
180 }
181
182 /* Return PC of first non prologue instruction, for the function at the 
183    specified address.  */
184
185 static CORE_ADDR
186 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
187 {
188   CORE_ADDR func_addr, limit_pc;
189   struct lm32_frame_cache frame_info;
190   struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
191
192   /* See if we can determine the end of the prologue via the symbol table.
193      If so, then return either PC, or the PC after the prologue, whichever
194      is greater.  */
195   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
196     {
197       CORE_ADDR post_prologue_pc
198         = skip_prologue_using_sal (gdbarch, func_addr);
199       if (post_prologue_pc != 0)
200         return max (pc, post_prologue_pc);
201     }
202
203   /* Can't determine prologue from the symbol table, need to examine
204      instructions.  */
205
206   /* Find an upper limit on the function prologue using the debug
207      information.  If the debug information could not be used to provide
208      that bound, then use an arbitrary large number as the upper bound.  */
209   limit_pc = skip_prologue_using_sal (gdbarch, pc);
210   if (limit_pc == 0)
211     limit_pc = pc + 100;        /* Magic.  */
212
213   frame_info.saved_regs = saved_regs;
214   return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
215 }
216
217 /* Create a breakpoint instruction.  */
218
219 static const gdb_byte *
220 lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
221                          int *lenptr)
222 {
223   static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
224
225   *lenptr = sizeof (breakpoint);
226   return breakpoint;
227 }
228
229 /* Setup registers and stack for faking a call to a function in the 
230    inferior.  */
231
232 static CORE_ADDR
233 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
234                       struct regcache *regcache, CORE_ADDR bp_addr,
235                       int nargs, struct value **args, CORE_ADDR sp,
236                       int struct_return, CORE_ADDR struct_addr)
237 {
238   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
239   int first_arg_reg = SIM_LM32_R1_REGNUM;
240   int num_arg_regs = 8;
241   int i;
242
243   /* Set the return address.  */
244   regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
245
246   /* If we're returning a large struct, a pointer to the address to
247      store it at is passed as a first hidden parameter.  */
248   if (struct_return)
249     {
250       regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
251       first_arg_reg++;
252       num_arg_regs--;
253       sp -= 4;
254     }
255
256   /* Setup parameters.  */
257   for (i = 0; i < nargs; i++)
258     {
259       struct value *arg = args[i];
260       struct type *arg_type = check_typedef (value_type (arg));
261       gdb_byte *contents;
262       ULONGEST val;
263
264       /* Promote small integer types to int.  */
265       switch (TYPE_CODE (arg_type))
266         {
267         case TYPE_CODE_INT:
268         case TYPE_CODE_BOOL:
269         case TYPE_CODE_CHAR:
270         case TYPE_CODE_RANGE:
271         case TYPE_CODE_ENUM:
272           if (TYPE_LENGTH (arg_type) < 4)
273             {
274               arg_type = builtin_type (gdbarch)->builtin_int32;
275               arg = value_cast (arg_type, arg);
276             }
277           break;
278         }
279
280       /* FIXME: Handle structures.  */
281
282       contents = (gdb_byte *) value_contents (arg);
283       val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
284                                       byte_order);
285
286       /* First num_arg_regs parameters are passed by registers, 
287          and the rest are passed on the stack.  */
288       if (i < num_arg_regs)
289         regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
290       else
291         {
292           write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
293                                          val);
294           sp -= 4;
295         }
296     }
297
298   /* Update stack pointer.  */
299   regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
300
301   /* Return adjusted stack pointer.  */
302   return sp;
303 }
304
305 /* Extract return value after calling a function in the inferior.  */
306
307 static void
308 lm32_extract_return_value (struct type *type, struct regcache *regcache,
309                            gdb_byte *valbuf)
310 {
311   struct gdbarch *gdbarch = get_regcache_arch (regcache);
312   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
313   ULONGEST l;
314   CORE_ADDR return_buffer;
315
316   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
317       && TYPE_CODE (type) != TYPE_CODE_UNION
318       && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
319     {
320       /* Return value is returned in a single register.  */
321       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
322       store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
323     }
324   else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
325     {
326       /* 64-bit values are returned in a register pair.  */
327       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
328       memcpy (valbuf, &l, 4);
329       regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
330       memcpy (valbuf + 4, &l, 4);
331     }
332   else
333     {
334       /* Aggregate types greater than a single register are returned
335          in memory.  FIXME: Unless they are only 2 regs?.  */
336       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
337       return_buffer = l;
338       read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
339     }
340 }
341
342 /* Write into appropriate registers a function return value of type
343    TYPE, given in virtual format.  */
344 static void
345 lm32_store_return_value (struct type *type, struct regcache *regcache,
346                          const gdb_byte *valbuf)
347 {
348   struct gdbarch *gdbarch = get_regcache_arch (regcache);
349   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
350   ULONGEST val;
351   int len = TYPE_LENGTH (type);
352
353   if (len <= 4)
354     {
355       val = extract_unsigned_integer (valbuf, len, byte_order);
356       regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
357     }
358   else if (len <= 8)
359     {
360       val = extract_unsigned_integer (valbuf, 4, byte_order);
361       regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
362       val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
363       regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
364     }
365   else
366     error (_("lm32_store_return_value: type length too large."));
367 }
368
369 /* Determine whether a functions return value is in a register or memory.  */
370 static enum return_value_convention
371 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
372                    struct type *valtype, struct regcache *regcache,
373                    gdb_byte *readbuf, const gdb_byte *writebuf)
374 {
375   enum type_code code = TYPE_CODE (valtype);
376
377   if (code == TYPE_CODE_STRUCT
378       || code == TYPE_CODE_UNION
379       || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
380     return RETURN_VALUE_STRUCT_CONVENTION;
381
382   if (readbuf)
383     lm32_extract_return_value (valtype, regcache, readbuf);
384   if (writebuf)
385     lm32_store_return_value (valtype, regcache, writebuf);
386
387   return RETURN_VALUE_REGISTER_CONVENTION;
388 }
389
390 static CORE_ADDR
391 lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
392 {
393   return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
394 }
395
396 static CORE_ADDR
397 lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
398 {
399   return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
400 }
401
402 static struct frame_id
403 lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
404 {
405   CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
406
407   return frame_id_build (sp, get_frame_pc (this_frame));
408 }
409
410 /* Put here the code to store, into fi->saved_regs, the addresses of
411    the saved registers of frame described by FRAME_INFO.  This
412    includes special registers such as pc and fp saved in special ways
413    in the stack frame.  sp is even more special: the address we return
414    for it IS the sp for the next frame.  */
415
416 static struct lm32_frame_cache *
417 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
418 {
419   CORE_ADDR current_pc;
420   ULONGEST prev_sp;
421   ULONGEST this_base;
422   struct lm32_frame_cache *info;
423   int i;
424
425   if ((*this_prologue_cache))
426     return (struct lm32_frame_cache *) (*this_prologue_cache);
427
428   info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
429   (*this_prologue_cache) = info;
430   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
431
432   info->pc = get_frame_func (this_frame);
433   current_pc = get_frame_pc (this_frame);
434   lm32_analyze_prologue (get_frame_arch (this_frame),
435                          info->pc, current_pc, info);
436
437   /* Compute the frame's base, and the previous frame's SP.  */
438   this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
439   prev_sp = this_base + info->size;
440   info->base = this_base;
441
442   /* Convert callee save offsets into addresses.  */
443   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
444     {
445       if (trad_frame_addr_p (info->saved_regs, i))
446         info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
447     }
448
449   /* The call instruction moves the caller's PC in the callee's RA register.
450      Since this is an unwind, do the reverse.  Copy the location of RA register
451      into PC (the address / regnum) so that a request for PC will be
452      converted into a request for the RA register.  */
453   info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
454
455   /* The previous frame's SP needed to be computed.  Save the computed
456      value.  */
457   trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
458
459   return info;
460 }
461
462 static void
463 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
464                     struct frame_id *this_id)
465 {
466   struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
467
468   /* This marks the outermost frame.  */
469   if (cache->base == 0)
470     return;
471
472   (*this_id) = frame_id_build (cache->base, cache->pc);
473 }
474
475 static struct value *
476 lm32_frame_prev_register (struct frame_info *this_frame,
477                           void **this_prologue_cache, int regnum)
478 {
479   struct lm32_frame_cache *info;
480
481   info = lm32_frame_cache (this_frame, this_prologue_cache);
482   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
483 }
484
485 static const struct frame_unwind lm32_frame_unwind = {
486   NORMAL_FRAME,
487   default_frame_unwind_stop_reason,
488   lm32_frame_this_id,
489   lm32_frame_prev_register,
490   NULL,
491   default_frame_sniffer
492 };
493
494 static CORE_ADDR
495 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
496 {
497   struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
498
499   return info->base;
500 }
501
502 static const struct frame_base lm32_frame_base = {
503   &lm32_frame_unwind,
504   lm32_frame_base_address,
505   lm32_frame_base_address,
506   lm32_frame_base_address
507 };
508
509 static CORE_ADDR
510 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
511 {
512   /* Align to the size of an instruction (so that they can safely be
513      pushed onto the stack.  */
514   return sp & ~3;
515 }
516
517 static struct gdbarch *
518 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
519 {
520   struct gdbarch *gdbarch;
521   struct gdbarch_tdep *tdep;
522
523   /* If there is already a candidate, use it.  */
524   arches = gdbarch_list_lookup_by_info (arches, &info);
525   if (arches != NULL)
526     return arches->gdbarch;
527
528   /* None found, create a new architecture from the information provided.  */
529   tdep = XNEW (struct gdbarch_tdep);
530   gdbarch = gdbarch_alloc (&info, tdep);
531
532   /* Type sizes.  */
533   set_gdbarch_short_bit (gdbarch, 16);
534   set_gdbarch_int_bit (gdbarch, 32);
535   set_gdbarch_long_bit (gdbarch, 32);
536   set_gdbarch_long_long_bit (gdbarch, 64);
537   set_gdbarch_float_bit (gdbarch, 32);
538   set_gdbarch_double_bit (gdbarch, 64);
539   set_gdbarch_long_double_bit (gdbarch, 64);
540   set_gdbarch_ptr_bit (gdbarch, 32);
541
542   /* Register info.  */
543   set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
544   set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
545   set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
546   set_gdbarch_register_name (gdbarch, lm32_register_name);
547   set_gdbarch_register_type (gdbarch, lm32_register_type);
548   set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
549
550   /* Frame info.  */
551   set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
552   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
553   set_gdbarch_decr_pc_after_break (gdbarch, 0);
554   set_gdbarch_frame_args_skip (gdbarch, 0);
555
556   /* Frame unwinding.  */
557   set_gdbarch_frame_align (gdbarch, lm32_frame_align);
558   frame_base_set_default (gdbarch, &lm32_frame_base);
559   set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
560   set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
561   set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
562   frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
563
564   /* Breakpoints.  */
565   set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
566   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
567
568   /* Calling functions in the inferior.  */
569   set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
570   set_gdbarch_return_value (gdbarch, lm32_return_value);
571
572   /* Instruction disassembler.  */
573   set_gdbarch_print_insn (gdbarch, print_insn_lm32);
574
575   lm32_add_reggroups (gdbarch);
576   set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
577
578   return gdbarch;
579 }
580
581 /* -Wmissing-prototypes */
582 extern initialize_file_ftype _initialize_lm32_tdep;
583
584 void
585 _initialize_lm32_tdep (void)
586 {
587   register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
588 }