Automatic date update in version.in
[external/binutils.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2    Contributed by Jon Beniston <jon@beniston.com>
3
4    Copyright (C) 2009-2017 Free Software Foundation, Inc.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39 #include <algorithm>
40
41 /* Macros to extract fields from an instruction.  */
42 #define LM32_OPCODE(insn)       ((insn >> 26) & 0x3f)
43 #define LM32_REG0(insn)         ((insn >> 21) & 0x1f)
44 #define LM32_REG1(insn)         ((insn >> 16) & 0x1f)
45 #define LM32_REG2(insn)         ((insn >> 11) & 0x1f)
46 #define LM32_IMM16(insn)        ((((long)insn & 0xffff) << 16) >> 16)
47
48 struct gdbarch_tdep
49 {
50   /* gdbarch target dependent data here.  Currently unused for LM32.  */
51 };
52
53 struct lm32_frame_cache
54 {
55   /* The frame's base.  Used when constructing a frame ID.  */
56   CORE_ADDR base;
57   CORE_ADDR pc;
58   /* Size of frame.  */
59   int size;
60   /* Table indicating the location of each and every register.  */
61   struct trad_frame_saved_reg *saved_regs;
62 };
63
64 /* Add the available register groups.  */
65
66 static void
67 lm32_add_reggroups (struct gdbarch *gdbarch)
68 {
69   reggroup_add (gdbarch, general_reggroup);
70   reggroup_add (gdbarch, all_reggroup);
71   reggroup_add (gdbarch, system_reggroup);
72 }
73
74 /* Return whether a given register is in a given group.  */
75
76 static int
77 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
78                           struct reggroup *group)
79 {
80   if (group == general_reggroup)
81     return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
82       || (regnum == SIM_LM32_PC_REGNUM);
83   else if (group == system_reggroup)
84     return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
85       || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
86   return default_register_reggroup_p (gdbarch, regnum, group);
87 }
88
89 /* Return a name that corresponds to the given register number.  */
90
91 static const char *
92 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
93 {
94   static const char *register_names[] = {
95     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
96     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
97     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
98     "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
99     "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
100   };
101
102   if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
103     return NULL;
104   else
105     return register_names[reg_nr];
106 }
107
108 /* Return type of register.  */
109
110 static struct type *
111 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
112 {
113   return builtin_type (gdbarch)->builtin_int32;
114 }
115
116 /* Return non-zero if a register can't be written.  */
117
118 static int
119 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
120 {
121   return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
122 }
123
124 /* Analyze a function's prologue.  */
125
126 static CORE_ADDR
127 lm32_analyze_prologue (struct gdbarch *gdbarch,
128                        CORE_ADDR pc, CORE_ADDR limit,
129                        struct lm32_frame_cache *info)
130 {
131   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
132   unsigned long instruction;
133
134   /* Keep reading though instructions, until we come across an instruction 
135      that isn't likely to be part of the prologue.  */
136   info->size = 0;
137   for (; pc < limit; pc += 4)
138     {
139
140       /* Read an instruction.  */
141       instruction = read_memory_integer (pc, 4, byte_order);
142
143       if ((LM32_OPCODE (instruction) == OP_SW)
144           && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
145         {
146           /* Any stack displaced store is likely part of the prologue.
147              Record that the register is being saved, and the offset 
148              into the stack.  */
149           info->saved_regs[LM32_REG1 (instruction)].addr =
150             LM32_IMM16 (instruction);
151         }
152       else if ((LM32_OPCODE (instruction) == OP_ADDI)
153                && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
154         {
155           /* An add to the SP is likely to be part of the prologue.
156              Adjust stack size by whatever the instruction adds to the sp.  */
157           info->size -= LM32_IMM16 (instruction);
158         }
159       else if (                 /* add fp,fp,sp */
160                 ((LM32_OPCODE (instruction) == OP_ADD)
161                  && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
162                  && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
163                  && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
164                 /* mv fp,imm */
165                 || ((LM32_OPCODE (instruction) == OP_ADDI)
166                     && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
167                     && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
168         {
169           /* Likely to be in the prologue for functions that require 
170              a frame pointer.  */
171         }
172       else
173         {
174           /* Any other instruction is likely not to be part of the
175              prologue.  */
176           break;
177         }
178     }
179
180   return pc;
181 }
182
183 /* Return PC of first non prologue instruction, for the function at the 
184    specified address.  */
185
186 static CORE_ADDR
187 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
188 {
189   CORE_ADDR func_addr, limit_pc;
190   struct lm32_frame_cache frame_info;
191   struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
192
193   /* See if we can determine the end of the prologue via the symbol table.
194      If so, then return either PC, or the PC after the prologue, whichever
195      is greater.  */
196   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
197     {
198       CORE_ADDR post_prologue_pc
199         = skip_prologue_using_sal (gdbarch, func_addr);
200       if (post_prologue_pc != 0)
201         return std::max (pc, post_prologue_pc);
202     }
203
204   /* Can't determine prologue from the symbol table, need to examine
205      instructions.  */
206
207   /* Find an upper limit on the function prologue using the debug
208      information.  If the debug information could not be used to provide
209      that bound, then use an arbitrary large number as the upper bound.  */
210   limit_pc = skip_prologue_using_sal (gdbarch, pc);
211   if (limit_pc == 0)
212     limit_pc = pc + 100;        /* Magic.  */
213
214   frame_info.saved_regs = saved_regs;
215   return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
216 }
217
218 /* Create a breakpoint instruction.  */
219 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
220
221 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
222
223
224 /* Setup registers and stack for faking a call to a function in the 
225    inferior.  */
226
227 static CORE_ADDR
228 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
229                       struct regcache *regcache, CORE_ADDR bp_addr,
230                       int nargs, struct value **args, CORE_ADDR sp,
231                       int struct_return, CORE_ADDR struct_addr)
232 {
233   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
234   int first_arg_reg = SIM_LM32_R1_REGNUM;
235   int num_arg_regs = 8;
236   int i;
237
238   /* Set the return address.  */
239   regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
240
241   /* If we're returning a large struct, a pointer to the address to
242      store it at is passed as a first hidden parameter.  */
243   if (struct_return)
244     {
245       regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
246       first_arg_reg++;
247       num_arg_regs--;
248       sp -= 4;
249     }
250
251   /* Setup parameters.  */
252   for (i = 0; i < nargs; i++)
253     {
254       struct value *arg = args[i];
255       struct type *arg_type = check_typedef (value_type (arg));
256       gdb_byte *contents;
257       ULONGEST val;
258
259       /* Promote small integer types to int.  */
260       switch (TYPE_CODE (arg_type))
261         {
262         case TYPE_CODE_INT:
263         case TYPE_CODE_BOOL:
264         case TYPE_CODE_CHAR:
265         case TYPE_CODE_RANGE:
266         case TYPE_CODE_ENUM:
267           if (TYPE_LENGTH (arg_type) < 4)
268             {
269               arg_type = builtin_type (gdbarch)->builtin_int32;
270               arg = value_cast (arg_type, arg);
271             }
272           break;
273         }
274
275       /* FIXME: Handle structures.  */
276
277       contents = (gdb_byte *) value_contents (arg);
278       val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
279                                       byte_order);
280
281       /* First num_arg_regs parameters are passed by registers, 
282          and the rest are passed on the stack.  */
283       if (i < num_arg_regs)
284         regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
285       else
286         {
287           write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
288                                          val);
289           sp -= 4;
290         }
291     }
292
293   /* Update stack pointer.  */
294   regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
295
296   /* Return adjusted stack pointer.  */
297   return sp;
298 }
299
300 /* Extract return value after calling a function in the inferior.  */
301
302 static void
303 lm32_extract_return_value (struct type *type, struct regcache *regcache,
304                            gdb_byte *valbuf)
305 {
306   struct gdbarch *gdbarch = get_regcache_arch (regcache);
307   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308   ULONGEST l;
309   CORE_ADDR return_buffer;
310
311   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
312       && TYPE_CODE (type) != TYPE_CODE_UNION
313       && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
314     {
315       /* Return value is returned in a single register.  */
316       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
317       store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
318     }
319   else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
320     {
321       /* 64-bit values are returned in a register pair.  */
322       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
323       memcpy (valbuf, &l, 4);
324       regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
325       memcpy (valbuf + 4, &l, 4);
326     }
327   else
328     {
329       /* Aggregate types greater than a single register are returned
330          in memory.  FIXME: Unless they are only 2 regs?.  */
331       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
332       return_buffer = l;
333       read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
334     }
335 }
336
337 /* Write into appropriate registers a function return value of type
338    TYPE, given in virtual format.  */
339 static void
340 lm32_store_return_value (struct type *type, struct regcache *regcache,
341                          const gdb_byte *valbuf)
342 {
343   struct gdbarch *gdbarch = get_regcache_arch (regcache);
344   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
345   ULONGEST val;
346   int len = TYPE_LENGTH (type);
347
348   if (len <= 4)
349     {
350       val = extract_unsigned_integer (valbuf, len, byte_order);
351       regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
352     }
353   else if (len <= 8)
354     {
355       val = extract_unsigned_integer (valbuf, 4, byte_order);
356       regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
357       val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
358       regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
359     }
360   else
361     error (_("lm32_store_return_value: type length too large."));
362 }
363
364 /* Determine whether a functions return value is in a register or memory.  */
365 static enum return_value_convention
366 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
367                    struct type *valtype, struct regcache *regcache,
368                    gdb_byte *readbuf, const gdb_byte *writebuf)
369 {
370   enum type_code code = TYPE_CODE (valtype);
371
372   if (code == TYPE_CODE_STRUCT
373       || code == TYPE_CODE_UNION
374       || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
375     return RETURN_VALUE_STRUCT_CONVENTION;
376
377   if (readbuf)
378     lm32_extract_return_value (valtype, regcache, readbuf);
379   if (writebuf)
380     lm32_store_return_value (valtype, regcache, writebuf);
381
382   return RETURN_VALUE_REGISTER_CONVENTION;
383 }
384
385 static CORE_ADDR
386 lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
387 {
388   return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
389 }
390
391 static CORE_ADDR
392 lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
393 {
394   return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
395 }
396
397 static struct frame_id
398 lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
399 {
400   CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
401
402   return frame_id_build (sp, get_frame_pc (this_frame));
403 }
404
405 /* Put here the code to store, into fi->saved_regs, the addresses of
406    the saved registers of frame described by FRAME_INFO.  This
407    includes special registers such as pc and fp saved in special ways
408    in the stack frame.  sp is even more special: the address we return
409    for it IS the sp for the next frame.  */
410
411 static struct lm32_frame_cache *
412 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
413 {
414   CORE_ADDR current_pc;
415   ULONGEST prev_sp;
416   ULONGEST this_base;
417   struct lm32_frame_cache *info;
418   int i;
419
420   if ((*this_prologue_cache))
421     return (struct lm32_frame_cache *) (*this_prologue_cache);
422
423   info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
424   (*this_prologue_cache) = info;
425   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
426
427   info->pc = get_frame_func (this_frame);
428   current_pc = get_frame_pc (this_frame);
429   lm32_analyze_prologue (get_frame_arch (this_frame),
430                          info->pc, current_pc, info);
431
432   /* Compute the frame's base, and the previous frame's SP.  */
433   this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
434   prev_sp = this_base + info->size;
435   info->base = this_base;
436
437   /* Convert callee save offsets into addresses.  */
438   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
439     {
440       if (trad_frame_addr_p (info->saved_regs, i))
441         info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
442     }
443
444   /* The call instruction moves the caller's PC in the callee's RA register.
445      Since this is an unwind, do the reverse.  Copy the location of RA register
446      into PC (the address / regnum) so that a request for PC will be
447      converted into a request for the RA register.  */
448   info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
449
450   /* The previous frame's SP needed to be computed.  Save the computed
451      value.  */
452   trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
453
454   return info;
455 }
456
457 static void
458 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
459                     struct frame_id *this_id)
460 {
461   struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
462
463   /* This marks the outermost frame.  */
464   if (cache->base == 0)
465     return;
466
467   (*this_id) = frame_id_build (cache->base, cache->pc);
468 }
469
470 static struct value *
471 lm32_frame_prev_register (struct frame_info *this_frame,
472                           void **this_prologue_cache, int regnum)
473 {
474   struct lm32_frame_cache *info;
475
476   info = lm32_frame_cache (this_frame, this_prologue_cache);
477   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
478 }
479
480 static const struct frame_unwind lm32_frame_unwind = {
481   NORMAL_FRAME,
482   default_frame_unwind_stop_reason,
483   lm32_frame_this_id,
484   lm32_frame_prev_register,
485   NULL,
486   default_frame_sniffer
487 };
488
489 static CORE_ADDR
490 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
491 {
492   struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
493
494   return info->base;
495 }
496
497 static const struct frame_base lm32_frame_base = {
498   &lm32_frame_unwind,
499   lm32_frame_base_address,
500   lm32_frame_base_address,
501   lm32_frame_base_address
502 };
503
504 static CORE_ADDR
505 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
506 {
507   /* Align to the size of an instruction (so that they can safely be
508      pushed onto the stack.  */
509   return sp & ~3;
510 }
511
512 static struct gdbarch *
513 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
514 {
515   struct gdbarch *gdbarch;
516   struct gdbarch_tdep *tdep;
517
518   /* If there is already a candidate, use it.  */
519   arches = gdbarch_list_lookup_by_info (arches, &info);
520   if (arches != NULL)
521     return arches->gdbarch;
522
523   /* None found, create a new architecture from the information provided.  */
524   tdep = XCNEW (struct gdbarch_tdep);
525   gdbarch = gdbarch_alloc (&info, tdep);
526
527   /* Type sizes.  */
528   set_gdbarch_short_bit (gdbarch, 16);
529   set_gdbarch_int_bit (gdbarch, 32);
530   set_gdbarch_long_bit (gdbarch, 32);
531   set_gdbarch_long_long_bit (gdbarch, 64);
532   set_gdbarch_float_bit (gdbarch, 32);
533   set_gdbarch_double_bit (gdbarch, 64);
534   set_gdbarch_long_double_bit (gdbarch, 64);
535   set_gdbarch_ptr_bit (gdbarch, 32);
536
537   /* Register info.  */
538   set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
539   set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
540   set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
541   set_gdbarch_register_name (gdbarch, lm32_register_name);
542   set_gdbarch_register_type (gdbarch, lm32_register_type);
543   set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
544
545   /* Frame info.  */
546   set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
547   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
548   set_gdbarch_decr_pc_after_break (gdbarch, 0);
549   set_gdbarch_frame_args_skip (gdbarch, 0);
550
551   /* Frame unwinding.  */
552   set_gdbarch_frame_align (gdbarch, lm32_frame_align);
553   frame_base_set_default (gdbarch, &lm32_frame_base);
554   set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
555   set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
556   set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
557   frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
558
559   /* Breakpoints.  */
560   set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
561   set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
562   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
563
564   /* Calling functions in the inferior.  */
565   set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
566   set_gdbarch_return_value (gdbarch, lm32_return_value);
567
568   lm32_add_reggroups (gdbarch);
569   set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
570
571   return gdbarch;
572 }
573
574 void
575 _initialize_lm32_tdep (void)
576 {
577   register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
578 }