1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
4 Copyright (C) 2009-2019 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "frame-unwind.h"
24 #include "frame-base.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "../opcodes/lm32-desc.h"
41 /* Macros to extract fields from an instruction. */
42 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
43 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
44 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
45 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
46 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
50 /* gdbarch target dependent data here. Currently unused for LM32. */
53 struct lm32_frame_cache
55 /* The frame's base. Used when constructing a frame ID. */
60 /* Table indicating the location of each and every register. */
61 struct trad_frame_saved_reg *saved_regs;
64 /* Add the available register groups. */
67 lm32_add_reggroups (struct gdbarch *gdbarch)
69 reggroup_add (gdbarch, general_reggroup);
70 reggroup_add (gdbarch, all_reggroup);
71 reggroup_add (gdbarch, system_reggroup);
74 /* Return whether a given register is in a given group. */
77 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
78 struct reggroup *group)
80 if (group == general_reggroup)
81 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
82 || (regnum == SIM_LM32_PC_REGNUM);
83 else if (group == system_reggroup)
84 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
85 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
86 return default_register_reggroup_p (gdbarch, regnum, group);
89 /* Return a name that corresponds to the given register number. */
92 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
94 static const char *register_names[] = {
95 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
96 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
97 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
98 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
99 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
102 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
105 return register_names[reg_nr];
108 /* Return type of register. */
111 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
113 return builtin_type (gdbarch)->builtin_int32;
116 /* Return non-zero if a register can't be written. */
119 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
121 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
124 /* Analyze a function's prologue. */
127 lm32_analyze_prologue (struct gdbarch *gdbarch,
128 CORE_ADDR pc, CORE_ADDR limit,
129 struct lm32_frame_cache *info)
131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
132 unsigned long instruction;
134 /* Keep reading though instructions, until we come across an instruction
135 that isn't likely to be part of the prologue. */
137 for (; pc < limit; pc += 4)
140 /* Read an instruction. */
141 instruction = read_memory_integer (pc, 4, byte_order);
143 if ((LM32_OPCODE (instruction) == OP_SW)
144 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
146 /* Any stack displaced store is likely part of the prologue.
147 Record that the register is being saved, and the offset
149 info->saved_regs[LM32_REG1 (instruction)].addr =
150 LM32_IMM16 (instruction);
152 else if ((LM32_OPCODE (instruction) == OP_ADDI)
153 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
155 /* An add to the SP is likely to be part of the prologue.
156 Adjust stack size by whatever the instruction adds to the sp. */
157 info->size -= LM32_IMM16 (instruction);
159 else if ( /* add fp,fp,sp */
160 ((LM32_OPCODE (instruction) == OP_ADD)
161 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
163 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
165 || ((LM32_OPCODE (instruction) == OP_ADDI)
166 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
167 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
169 /* Likely to be in the prologue for functions that require
174 /* Any other instruction is likely not to be part of the
183 /* Return PC of first non prologue instruction, for the function at the
184 specified address. */
187 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
189 CORE_ADDR func_addr, limit_pc;
190 struct lm32_frame_cache frame_info;
191 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
193 /* See if we can determine the end of the prologue via the symbol table.
194 If so, then return either PC, or the PC after the prologue, whichever
196 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
198 CORE_ADDR post_prologue_pc
199 = skip_prologue_using_sal (gdbarch, func_addr);
200 if (post_prologue_pc != 0)
201 return std::max (pc, post_prologue_pc);
204 /* Can't determine prologue from the symbol table, need to examine
207 /* Find an upper limit on the function prologue using the debug
208 information. If the debug information could not be used to provide
209 that bound, then use an arbitrary large number as the upper bound. */
210 limit_pc = skip_prologue_using_sal (gdbarch, pc);
212 limit_pc = pc + 100; /* Magic. */
214 frame_info.saved_regs = saved_regs;
215 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
218 /* Create a breakpoint instruction. */
219 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
221 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
224 /* Setup registers and stack for faking a call to a function in the
228 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
229 struct regcache *regcache, CORE_ADDR bp_addr,
230 int nargs, struct value **args, CORE_ADDR sp,
231 function_call_return_method return_method,
232 CORE_ADDR struct_addr)
234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
235 int first_arg_reg = SIM_LM32_R1_REGNUM;
236 int num_arg_regs = 8;
239 /* Set the return address. */
240 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
242 /* If we're returning a large struct, a pointer to the address to
243 store it at is passed as a first hidden parameter. */
244 if (return_method == return_method_struct)
246 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
252 /* Setup parameters. */
253 for (i = 0; i < nargs; i++)
255 struct value *arg = args[i];
256 struct type *arg_type = check_typedef (value_type (arg));
260 /* Promote small integer types to int. */
261 switch (TYPE_CODE (arg_type))
266 case TYPE_CODE_RANGE:
268 if (TYPE_LENGTH (arg_type) < 4)
270 arg_type = builtin_type (gdbarch)->builtin_int32;
271 arg = value_cast (arg_type, arg);
276 /* FIXME: Handle structures. */
278 contents = (gdb_byte *) value_contents (arg);
279 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
282 /* First num_arg_regs parameters are passed by registers,
283 and the rest are passed on the stack. */
284 if (i < num_arg_regs)
285 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
288 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
294 /* Update stack pointer. */
295 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
297 /* Return adjusted stack pointer. */
301 /* Extract return value after calling a function in the inferior. */
304 lm32_extract_return_value (struct type *type, struct regcache *regcache,
307 struct gdbarch *gdbarch = regcache->arch ();
308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
310 CORE_ADDR return_buffer;
312 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
313 && TYPE_CODE (type) != TYPE_CODE_UNION
314 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
316 /* Return value is returned in a single register. */
317 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
318 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
320 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
322 /* 64-bit values are returned in a register pair. */
323 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
324 memcpy (valbuf, &l, 4);
325 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
326 memcpy (valbuf + 4, &l, 4);
330 /* Aggregate types greater than a single register are returned
331 in memory. FIXME: Unless they are only 2 regs?. */
332 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
334 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
338 /* Write into appropriate registers a function return value of type
339 TYPE, given in virtual format. */
341 lm32_store_return_value (struct type *type, struct regcache *regcache,
342 const gdb_byte *valbuf)
344 struct gdbarch *gdbarch = regcache->arch ();
345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
347 int len = TYPE_LENGTH (type);
351 val = extract_unsigned_integer (valbuf, len, byte_order);
352 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
356 val = extract_unsigned_integer (valbuf, 4, byte_order);
357 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
358 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
359 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
362 error (_("lm32_store_return_value: type length too large."));
365 /* Determine whether a functions return value is in a register or memory. */
366 static enum return_value_convention
367 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
368 struct type *valtype, struct regcache *regcache,
369 gdb_byte *readbuf, const gdb_byte *writebuf)
371 enum type_code code = TYPE_CODE (valtype);
373 if (code == TYPE_CODE_STRUCT
374 || code == TYPE_CODE_UNION
375 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
376 return RETURN_VALUE_STRUCT_CONVENTION;
379 lm32_extract_return_value (valtype, regcache, readbuf);
381 lm32_store_return_value (valtype, regcache, writebuf);
383 return RETURN_VALUE_REGISTER_CONVENTION;
386 /* Put here the code to store, into fi->saved_regs, the addresses of
387 the saved registers of frame described by FRAME_INFO. This
388 includes special registers such as pc and fp saved in special ways
389 in the stack frame. sp is even more special: the address we return
390 for it IS the sp for the next frame. */
392 static struct lm32_frame_cache *
393 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
395 CORE_ADDR current_pc;
398 struct lm32_frame_cache *info;
401 if ((*this_prologue_cache))
402 return (struct lm32_frame_cache *) (*this_prologue_cache);
404 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
405 (*this_prologue_cache) = info;
406 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
408 info->pc = get_frame_func (this_frame);
409 current_pc = get_frame_pc (this_frame);
410 lm32_analyze_prologue (get_frame_arch (this_frame),
411 info->pc, current_pc, info);
413 /* Compute the frame's base, and the previous frame's SP. */
414 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
415 prev_sp = this_base + info->size;
416 info->base = this_base;
418 /* Convert callee save offsets into addresses. */
419 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
421 if (trad_frame_addr_p (info->saved_regs, i))
422 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
425 /* The call instruction moves the caller's PC in the callee's RA register.
426 Since this is an unwind, do the reverse. Copy the location of RA register
427 into PC (the address / regnum) so that a request for PC will be
428 converted into a request for the RA register. */
429 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
431 /* The previous frame's SP needed to be computed. Save the computed
433 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
439 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
440 struct frame_id *this_id)
442 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
444 /* This marks the outermost frame. */
445 if (cache->base == 0)
448 (*this_id) = frame_id_build (cache->base, cache->pc);
451 static struct value *
452 lm32_frame_prev_register (struct frame_info *this_frame,
453 void **this_prologue_cache, int regnum)
455 struct lm32_frame_cache *info;
457 info = lm32_frame_cache (this_frame, this_prologue_cache);
458 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
461 static const struct frame_unwind lm32_frame_unwind = {
463 default_frame_unwind_stop_reason,
465 lm32_frame_prev_register,
467 default_frame_sniffer
471 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
473 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
478 static const struct frame_base lm32_frame_base = {
480 lm32_frame_base_address,
481 lm32_frame_base_address,
482 lm32_frame_base_address
486 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
488 /* Align to the size of an instruction (so that they can safely be
489 pushed onto the stack. */
493 static struct gdbarch *
494 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
496 struct gdbarch *gdbarch;
497 struct gdbarch_tdep *tdep;
499 /* If there is already a candidate, use it. */
500 arches = gdbarch_list_lookup_by_info (arches, &info);
502 return arches->gdbarch;
504 /* None found, create a new architecture from the information provided. */
505 tdep = XCNEW (struct gdbarch_tdep);
506 gdbarch = gdbarch_alloc (&info, tdep);
509 set_gdbarch_short_bit (gdbarch, 16);
510 set_gdbarch_int_bit (gdbarch, 32);
511 set_gdbarch_long_bit (gdbarch, 32);
512 set_gdbarch_long_long_bit (gdbarch, 64);
513 set_gdbarch_float_bit (gdbarch, 32);
514 set_gdbarch_double_bit (gdbarch, 64);
515 set_gdbarch_long_double_bit (gdbarch, 64);
516 set_gdbarch_ptr_bit (gdbarch, 32);
519 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
520 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
521 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
522 set_gdbarch_register_name (gdbarch, lm32_register_name);
523 set_gdbarch_register_type (gdbarch, lm32_register_type);
524 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
527 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
528 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
529 set_gdbarch_decr_pc_after_break (gdbarch, 0);
530 set_gdbarch_frame_args_skip (gdbarch, 0);
532 /* Frame unwinding. */
533 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
534 frame_base_set_default (gdbarch, &lm32_frame_base);
535 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
538 set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
539 set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
540 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
542 /* Calling functions in the inferior. */
543 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
544 set_gdbarch_return_value (gdbarch, lm32_return_value);
546 lm32_add_reggroups (gdbarch);
547 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
553 _initialize_lm32_tdep (void)
555 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);