1 /* Target-dependent code for GNU/Linux, architecture independent.
3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "linux-tdep.h"
25 #include "gdbthread.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
44 /* This enum represents the values that the user can choose when
45 informing the Linux kernel about which memory mappings will be
46 dumped in a corefile. They are described in the file
47 Documentation/filesystems/proc.txt, inside the Linux kernel
52 COREFILTER_ANON_PRIVATE = 1 << 0,
53 COREFILTER_ANON_SHARED = 1 << 1,
54 COREFILTER_MAPPED_PRIVATE = 1 << 2,
55 COREFILTER_MAPPED_SHARED = 1 << 3,
56 COREFILTER_ELF_HEADERS = 1 << 4,
57 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
58 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62 /* This struct is used to map flags found in the "VmFlags:" field (in
63 the /proc/<PID>/smaps file). */
67 /* Zero if this structure has not been initialized yet. It
68 probably means that the Linux kernel being used does not emit
69 the "VmFlags:" field on "/proc/PID/smaps". */
71 unsigned int initialized_p : 1;
73 /* Memory mapped I/O area (VM_IO, "io"). */
75 unsigned int io_page : 1;
77 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79 unsigned int uses_huge_tlb : 1;
81 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83 unsigned int exclude_coredump : 1;
85 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87 unsigned int shared_mapping : 1;
90 /* Whether to take the /proc/PID/coredump_filter into account when
91 generating a corefile. */
93 static int use_coredump_filter = 1;
95 /* This enum represents the signals' numbers on a generic architecture
96 running the Linux kernel. The definition of "generic" comes from
97 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
98 tree, which is the "de facto" implementation of signal numbers to
99 be used by new architecture ports.
101 For those architectures which have differences between the generic
102 standard (e.g., Alpha), we define the different signals (and *only*
103 those) in the specific target-dependent file (e.g.,
104 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
105 tdep file for more information.
107 ARM deserves a special mention here. On the file
108 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
109 (and ARM-only) signal, which is SIGSWI, with the same number as
110 SIGRTMIN. This signal is used only for a very specific target,
111 called ArthurOS (from RISCOS). Therefore, we do not handle it on
112 the ARM-tdep file, and we can safely use the generic signal handler
113 here for ARM targets.
115 As stated above, this enum is derived from
116 <include/uapi/asm-generic/signal.h>, from the Linux kernel
137 LINUX_SIGSTKFLT = 16,
147 LINUX_SIGVTALRM = 26,
151 LINUX_SIGPOLL = LINUX_SIGIO,
154 LINUX_SIGUNUSED = 31,
160 static struct gdbarch_data *linux_gdbarch_data_handle;
162 struct linux_gdbarch_data
164 struct type *siginfo_type;
168 init_linux_gdbarch_data (struct gdbarch *gdbarch)
170 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
173 static struct linux_gdbarch_data *
174 get_linux_gdbarch_data (struct gdbarch *gdbarch)
176 return ((struct linux_gdbarch_data *)
177 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
180 /* Per-inferior data key. */
181 static const struct inferior_data *linux_inferior_data;
183 /* Linux-specific cached data. This is used by GDB for caching
184 purposes for each inferior. This helps reduce the overhead of
185 transfering data from a remote target to the local host. */
188 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
189 if VSYSCALL_RANGE_P is positive. This is cached because getting
190 at this info requires an auxv lookup (which is itself cached),
191 and looking through the inferior's mappings (which change
192 throughout execution and therefore cannot be cached). */
193 struct mem_range vsyscall_range;
195 /* Zero if we haven't tried looking up the vsyscall's range before
196 yet. Positive if we tried looking it up, and found it. Negative
197 if we tried looking it up but failed. */
198 int vsyscall_range_p;
201 /* Frees whatever allocated space there is to be freed and sets INF's
202 linux cache data pointer to NULL. */
205 invalidate_linux_cache_inf (struct inferior *inf)
207 struct linux_info *info;
209 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
213 set_inferior_data (inf, linux_inferior_data, NULL);
217 /* Handles the cleanup of the linux cache for inferior INF. ARG is
218 ignored. Callback for the inferior_appeared and inferior_exit
222 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224 invalidate_linux_cache_inf (inf);
227 /* Fetch the linux cache info for INF. This function always returns a
228 valid INFO pointer. */
230 static struct linux_info *
231 get_linux_inferior_data (void)
233 struct linux_info *info;
234 struct inferior *inf = current_inferior ();
236 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
239 info = XCNEW (struct linux_info);
240 set_inferior_data (inf, linux_inferior_data, info);
246 /* This function is suitable for architectures that
247 extend/override the standard siginfo in a specific way. */
250 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
253 struct linux_gdbarch_data *linux_gdbarch_data;
254 struct type *int_type, *uint_type, *long_type, *void_ptr_type;
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
270 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
274 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
275 append_composite_type_field (sigval_type, "sival_int", int_type);
276 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
280 TYPE_LENGTH (int_type), "__pid_t");
281 TYPE_TARGET_TYPE (pid_type) = int_type;
282 TYPE_TARGET_STUB (pid_type) = 1;
285 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
286 TYPE_LENGTH (uint_type), "__uid_t");
287 TYPE_TARGET_TYPE (uid_type) = uint_type;
288 TYPE_TARGET_STUB (uid_type) = 1;
291 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
292 TYPE_LENGTH (long_type), "__clock_t");
293 TYPE_TARGET_TYPE (clock_type) = long_type;
294 TYPE_TARGET_STUB (clock_type) = 1;
297 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
300 const int si_max_size = 128;
302 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
305 if (gdbarch_ptr_bit (gdbarch) == 64)
306 si_pad_size = (si_max_size / size_of_int) - 4;
308 si_pad_size = (si_max_size / size_of_int) - 3;
309 append_composite_type_field (sifields_type, "_pad",
310 init_vector_type (int_type, si_pad_size));
314 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
315 append_composite_type_field (type, "si_pid", pid_type);
316 append_composite_type_field (type, "si_uid", uid_type);
317 append_composite_type_field (sifields_type, "_kill", type);
320 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
321 append_composite_type_field (type, "si_tid", int_type);
322 append_composite_type_field (type, "si_overrun", int_type);
323 append_composite_type_field (type, "si_sigval", sigval_type);
324 append_composite_type_field (sifields_type, "_timer", type);
327 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
328 append_composite_type_field (type, "si_pid", pid_type);
329 append_composite_type_field (type, "si_uid", uid_type);
330 append_composite_type_field (type, "si_sigval", sigval_type);
331 append_composite_type_field (sifields_type, "_rt", type);
334 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
335 append_composite_type_field (type, "si_pid", pid_type);
336 append_composite_type_field (type, "si_uid", uid_type);
337 append_composite_type_field (type, "si_status", int_type);
338 append_composite_type_field (type, "si_utime", clock_type);
339 append_composite_type_field (type, "si_stime", clock_type);
340 append_composite_type_field (sifields_type, "_sigchld", type);
343 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
344 append_composite_type_field (type, "si_addr", void_ptr_type);
345 append_composite_type_field (sifields_type, "_sigfault", type);
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
363 linux_gdbarch_data->siginfo_type = siginfo_type;
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
377 /* Return true if the target is running on uClinux instead of normal
381 linux_is_uclinux (void)
385 return (target_auxv_search (¤t_target, AT_NULL, &dummy) > 0
386 && target_auxv_search (¤t_target, AT_PAGESZ, &dummy) == 0);
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
392 return linux_is_uclinux ();
395 /* This is how we want PTIDs from core files to be printed. */
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
402 if (ptid_get_lwp (ptid) != 0)
404 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
408 return normal_pid_to_str (ptid);
411 /* Service function for corefiles and info proc. */
414 read_mapping (const char *line,
415 ULONGEST *addr, ULONGEST *endaddr,
416 const char **permissions, size_t *permissions_len,
418 const char **device, size_t *device_len,
420 const char **filename)
422 const char *p = line;
424 *addr = strtoulst (p, &p, 16);
427 *endaddr = strtoulst (p, &p, 16);
429 p = skip_spaces_const (p);
431 while (*p && !isspace (*p))
433 *permissions_len = p - *permissions;
435 *offset = strtoulst (p, &p, 16);
437 p = skip_spaces_const (p);
439 while (*p && !isspace (*p))
441 *device_len = p - *device;
443 *inode = strtoulst (p, &p, 10);
445 p = skip_spaces_const (p);
449 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
451 This function was based on the documentation found on
452 <Documentation/filesystems/proc.txt>, on the Linux kernel.
454 Linux kernels before commit
455 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
459 decode_vmflags (char *p, struct smaps_vmflags *v)
461 char *saveptr = NULL;
464 v->initialized_p = 1;
465 p = skip_to_space (p);
468 for (s = strtok_r (p, " ", &saveptr);
470 s = strtok_r (NULL, " ", &saveptr))
472 if (strcmp (s, "io") == 0)
474 else if (strcmp (s, "ht") == 0)
475 v->uses_huge_tlb = 1;
476 else if (strcmp (s, "dd") == 0)
477 v->exclude_coredump = 1;
478 else if (strcmp (s, "sh") == 0)
479 v->shared_mapping = 1;
483 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
485 FILENAME is the name of the file present in the first line of the
486 memory mapping, in the "/proc/PID/smaps" output. For example, if
489 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
491 Then FILENAME will be "/path/to/file". */
494 mapping_is_anonymous_p (const char *filename)
496 static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex;
497 static int init_regex_p = 0;
501 struct cleanup *c = make_cleanup (null_cleanup, NULL);
503 /* Let's be pessimistic and assume there will be an error while
504 compiling the regex'es. */
507 /* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or
508 without the "(deleted)" string in the end). We know for
509 sure, based on the Linux kernel code, that memory mappings
510 whose associated filename is "/dev/zero" are guaranteed to be
512 compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$",
513 _("Could not compile regex to match /dev/zero "
515 /* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or
516 without the "(deleted)" string in the end). These filenames
517 refer to shared memory (shmem), and memory mappings
518 associated with them are MAP_ANONYMOUS as well. */
519 compile_rx_or_error (&shmem_file_regex,
520 "^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$",
521 _("Could not compile regex to match shmem "
523 /* FILE_DELETED_REGEX is a heuristic we use to try to mimic the
524 Linux kernel's 'n_link == 0' code, which is responsible to
525 decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS'
526 mapping. In other words, if FILE_DELETED_REGEX matches, it
527 does not necessarily mean that we are dealing with an
528 anonymous shared mapping. However, there is no easy way to
529 detect this currently, so this is the best approximation we
532 As a result, GDB will dump readonly pages of deleted
533 executables when using the default value of coredump_filter
534 (0x33), while the Linux kernel will not dump those pages.
535 But we can live with that. */
536 compile_rx_or_error (&file_deleted_regex, " (deleted)$",
537 _("Could not compile regex to match "
538 "'<file> (deleted)'"));
539 /* We will never release these regexes, so just discard the
541 discard_cleanups (c);
543 /* If we reached this point, then everything succeeded. */
547 if (init_regex_p == -1)
549 const char deleted[] = " (deleted)";
550 size_t del_len = sizeof (deleted) - 1;
551 size_t filename_len = strlen (filename);
553 /* There was an error while compiling the regex'es above. In
554 order to try to give some reliable information to the caller,
555 we just try to find the string " (deleted)" in the filename.
556 If we managed to find it, then we assume the mapping is
558 return (filename_len >= del_len
559 && strcmp (filename + filename_len - del_len, deleted) == 0);
562 if (*filename == '\0'
563 || regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0
564 || regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0
565 || regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0)
571 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
572 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
573 greater than 0 if it should.
575 In a nutshell, this is the logic that we follow in order to decide
576 if a mapping should be dumped or not.
578 - If the mapping is associated to a file whose name ends with
579 " (deleted)", or if the file is "/dev/zero", or if it is
580 "/SYSV%08x" (shared memory), or if there is no file associated
581 with it, or if the AnonHugePages: or the Anonymous: fields in the
582 /proc/PID/smaps have contents, then GDB considers this mapping to
583 be anonymous. Otherwise, GDB considers this mapping to be a
584 file-backed mapping (because there will be a file associated with
587 It is worth mentioning that, from all those checks described
588 above, the most fragile is the one to see if the file name ends
589 with " (deleted)". This does not necessarily mean that the
590 mapping is anonymous, because the deleted file associated with
591 the mapping may have been a hard link to another file, for
592 example. The Linux kernel checks to see if "i_nlink == 0", but
593 GDB cannot easily (and normally) do this check (iff running as
594 root, it could find the mapping in /proc/PID/map_files/ and
595 determine whether there still are other hard links to the
596 inode/file). Therefore, we made a compromise here, and we assume
597 that if the file name ends with " (deleted)", then the mapping is
598 indeed anonymous. FWIW, this is something the Linux kernel could
599 do better: expose this information in a more direct way.
601 - If we see the flag "sh" in the "VmFlags:" field (in
602 /proc/PID/smaps), then certainly the memory mapping is shared
603 (VM_SHARED). If we have access to the VmFlags, and we don't see
604 the "sh" there, then certainly the mapping is private. However,
605 Linux kernels before commit
606 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
607 "VmFlags:" field; in that case, we use another heuristic: if we
608 see 'p' in the permission flags, then we assume that the mapping
609 is private, even though the presence of the 's' flag there would
610 mean VM_MAYSHARE, which means the mapping could still be private.
611 This should work OK enough, however. */
614 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
615 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
616 const char *filename)
618 /* Initially, we trust in what we received from our caller. This
619 value may not be very precise (i.e., it was probably gathered
620 from the permission line in the /proc/PID/smaps list, which
621 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
622 what we have until we take a look at the "VmFlags:" field
623 (assuming that the version of the Linux kernel being used
624 supports it, of course). */
625 int private_p = maybe_private_p;
627 /* We always dump vDSO and vsyscall mappings, because it's likely that
628 there'll be no file to read the contents from at core load time.
629 The kernel does the same. */
630 if (strcmp ("[vdso]", filename) == 0
631 || strcmp ("[vsyscall]", filename) == 0)
634 if (v->initialized_p)
636 /* We never dump I/O mappings. */
640 /* Check if we should exclude this mapping. */
641 if (v->exclude_coredump)
644 /* Update our notion of whether this mapping is shared or
645 private based on a trustworthy value. */
646 private_p = !v->shared_mapping;
648 /* HugeTLB checking. */
649 if (v->uses_huge_tlb)
651 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
652 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
661 if (mapping_anon_p && mapping_file_p)
663 /* This is a special situation. It can happen when we see a
664 mapping that is file-backed, but that contains anonymous
666 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
667 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
669 else if (mapping_anon_p)
670 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
672 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 if (mapping_anon_p && mapping_file_p)
678 /* This is a special situation. It can happen when we see a
679 mapping that is file-backed, but that contains anonymous
681 return ((filterflags & COREFILTER_ANON_SHARED) != 0
682 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
684 else if (mapping_anon_p)
685 return (filterflags & COREFILTER_ANON_SHARED) != 0;
687 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 /* Implement the "info proc" command. */
694 linux_info_proc (struct gdbarch *gdbarch, const char *args,
695 enum info_proc_what what)
697 /* A long is used for pid instead of an int to avoid a loss of precision
698 compiler warning from the output of strtoul. */
700 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
701 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
702 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
703 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
704 int status_f = (what == IP_STATUS || what == IP_ALL);
705 int stat_f = (what == IP_STAT || what == IP_ALL);
710 if (args && isdigit (args[0]))
714 pid = strtoul (args, &tem, 10);
719 if (!target_has_execution)
720 error (_("No current process: you must name one."));
721 if (current_inferior ()->fake_pid_p)
722 error (_("Can't determine the current process's PID: you must name one."));
724 pid = current_inferior ()->pid;
727 args = skip_spaces_const (args);
729 error (_("Too many parameters: %s"), args);
731 printf_filtered (_("process %ld\n"), pid);
734 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
735 data = target_fileio_read_stralloc (NULL, filename);
738 struct cleanup *cleanup = make_cleanup (xfree, data);
739 printf_filtered ("cmdline = '%s'\n", data);
740 do_cleanups (cleanup);
743 warning (_("unable to open /proc file '%s'"), filename);
747 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
748 data = target_fileio_readlink (NULL, filename, &target_errno);
751 struct cleanup *cleanup = make_cleanup (xfree, data);
752 printf_filtered ("cwd = '%s'\n", data);
753 do_cleanups (cleanup);
756 warning (_("unable to read link '%s'"), filename);
760 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
761 data = target_fileio_readlink (NULL, filename, &target_errno);
764 struct cleanup *cleanup = make_cleanup (xfree, data);
765 printf_filtered ("exe = '%s'\n", data);
766 do_cleanups (cleanup);
769 warning (_("unable to read link '%s'"), filename);
773 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
774 data = target_fileio_read_stralloc (NULL, filename);
777 struct cleanup *cleanup = make_cleanup (xfree, data);
780 printf_filtered (_("Mapped address spaces:\n\n"));
781 if (gdbarch_addr_bit (gdbarch) == 32)
783 printf_filtered ("\t%10s %10s %10s %10s %s\n",
786 " Size", " Offset", "objfile");
790 printf_filtered (" %18s %18s %10s %10s %s\n",
793 " Size", " Offset", "objfile");
796 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
798 ULONGEST addr, endaddr, offset, inode;
799 const char *permissions, *device, *filename;
800 size_t permissions_len, device_len;
802 read_mapping (line, &addr, &endaddr,
803 &permissions, &permissions_len,
804 &offset, &device, &device_len,
807 if (gdbarch_addr_bit (gdbarch) == 32)
809 printf_filtered ("\t%10s %10s %10s %10s %s\n",
810 paddress (gdbarch, addr),
811 paddress (gdbarch, endaddr),
812 hex_string (endaddr - addr),
814 *filename? filename : "");
818 printf_filtered (" %18s %18s %10s %10s %s\n",
819 paddress (gdbarch, addr),
820 paddress (gdbarch, endaddr),
821 hex_string (endaddr - addr),
823 *filename? filename : "");
827 do_cleanups (cleanup);
830 warning (_("unable to open /proc file '%s'"), filename);
834 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
835 data = target_fileio_read_stralloc (NULL, filename);
838 struct cleanup *cleanup = make_cleanup (xfree, data);
839 puts_filtered (data);
840 do_cleanups (cleanup);
843 warning (_("unable to open /proc file '%s'"), filename);
847 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
848 data = target_fileio_read_stralloc (NULL, filename);
851 struct cleanup *cleanup = make_cleanup (xfree, data);
852 const char *p = data;
854 printf_filtered (_("Process: %s\n"),
855 pulongest (strtoulst (p, &p, 10)));
857 p = skip_spaces_const (p);
860 /* ps command also relies on no trailing fields
862 const char *ep = strrchr (p, ')');
865 printf_filtered ("Exec file: %.*s\n",
866 (int) (ep - p - 1), p + 1);
871 p = skip_spaces_const (p);
873 printf_filtered (_("State: %c\n"), *p++);
876 printf_filtered (_("Parent process: %s\n"),
877 pulongest (strtoulst (p, &p, 10)));
879 printf_filtered (_("Process group: %s\n"),
880 pulongest (strtoulst (p, &p, 10)));
882 printf_filtered (_("Session id: %s\n"),
883 pulongest (strtoulst (p, &p, 10)));
885 printf_filtered (_("TTY: %s\n"),
886 pulongest (strtoulst (p, &p, 10)));
888 printf_filtered (_("TTY owner process group: %s\n"),
889 pulongest (strtoulst (p, &p, 10)));
892 printf_filtered (_("Flags: %s\n"),
893 hex_string (strtoulst (p, &p, 10)));
895 printf_filtered (_("Minor faults (no memory page): %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
898 printf_filtered (_("Minor faults, children: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
901 printf_filtered (_("Major faults (memory page faults): %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
904 printf_filtered (_("Major faults, children: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
907 printf_filtered (_("utime: %s\n"),
908 pulongest (strtoulst (p, &p, 10)));
910 printf_filtered (_("stime: %s\n"),
911 pulongest (strtoulst (p, &p, 10)));
913 printf_filtered (_("utime, children: %s\n"),
914 pulongest (strtoulst (p, &p, 10)));
916 printf_filtered (_("stime, children: %s\n"),
917 pulongest (strtoulst (p, &p, 10)));
919 printf_filtered (_("jiffies remaining in current "
921 pulongest (strtoulst (p, &p, 10)));
923 printf_filtered (_("'nice' value: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
926 printf_filtered (_("jiffies until next timeout: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
929 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
932 printf_filtered (_("start time (jiffies since "
933 "system boot): %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
936 printf_filtered (_("Virtual memory size: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
939 printf_filtered (_("Resident set size: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
942 printf_filtered (_("rlim: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
945 printf_filtered (_("Start of text: %s\n"),
946 hex_string (strtoulst (p, &p, 10)));
948 printf_filtered (_("End of text: %s\n"),
949 hex_string (strtoulst (p, &p, 10)));
951 printf_filtered (_("Start of stack: %s\n"),
952 hex_string (strtoulst (p, &p, 10)));
953 #if 0 /* Don't know how architecture-dependent the rest is...
954 Anyway the signal bitmap info is available from "status". */
956 printf_filtered (_("Kernel stack pointer: %s\n"),
957 hex_string (strtoulst (p, &p, 10)));
959 printf_filtered (_("Kernel instr pointer: %s\n"),
960 hex_string (strtoulst (p, &p, 10)));
962 printf_filtered (_("Pending signals bitmap: %s\n"),
963 hex_string (strtoulst (p, &p, 10)));
965 printf_filtered (_("Blocked signals bitmap: %s\n"),
966 hex_string (strtoulst (p, &p, 10)));
968 printf_filtered (_("Ignored signals bitmap: %s\n"),
969 hex_string (strtoulst (p, &p, 10)));
971 printf_filtered (_("Catched signals bitmap: %s\n"),
972 hex_string (strtoulst (p, &p, 10)));
974 printf_filtered (_("wchan (system call): %s\n"),
975 hex_string (strtoulst (p, &p, 10)));
977 do_cleanups (cleanup);
980 warning (_("unable to open /proc file '%s'"), filename);
984 /* Implement "info proc mappings" for a corefile. */
987 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
990 ULONGEST count, page_size;
991 unsigned char *descdata, *filenames, *descend, *contents;
993 unsigned int addr_size_bits, addr_size;
994 struct cleanup *cleanup;
995 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
996 /* We assume this for reading 64-bit core files. */
997 gdb_static_assert (sizeof (ULONGEST) >= 8);
999 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1000 if (section == NULL)
1002 warning (_("unable to find mappings in core file"));
1006 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1007 addr_size = addr_size_bits / 8;
1008 note_size = bfd_get_section_size (section);
1010 if (note_size < 2 * addr_size)
1011 error (_("malformed core note - too short for header"));
1013 contents = (unsigned char *) xmalloc (note_size);
1014 cleanup = make_cleanup (xfree, contents);
1015 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1016 error (_("could not get core note contents"));
1018 descdata = contents;
1019 descend = descdata + note_size;
1021 if (descdata[note_size - 1] != '\0')
1022 error (_("malformed note - does not end with \\0"));
1024 count = bfd_get (addr_size_bits, core_bfd, descdata);
1025 descdata += addr_size;
1027 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1028 descdata += addr_size;
1030 if (note_size < 2 * addr_size + count * 3 * addr_size)
1031 error (_("malformed note - too short for supplied file count"));
1033 printf_filtered (_("Mapped address spaces:\n\n"));
1034 if (gdbarch_addr_bit (gdbarch) == 32)
1036 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1039 " Size", " Offset", "objfile");
1043 printf_filtered (" %18s %18s %10s %10s %s\n",
1046 " Size", " Offset", "objfile");
1049 filenames = descdata + count * 3 * addr_size;
1052 ULONGEST start, end, file_ofs;
1054 if (filenames == descend)
1055 error (_("malformed note - filenames end too early"));
1057 start = bfd_get (addr_size_bits, core_bfd, descdata);
1058 descdata += addr_size;
1059 end = bfd_get (addr_size_bits, core_bfd, descdata);
1060 descdata += addr_size;
1061 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1062 descdata += addr_size;
1064 file_ofs *= page_size;
1066 if (gdbarch_addr_bit (gdbarch) == 32)
1067 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1068 paddress (gdbarch, start),
1069 paddress (gdbarch, end),
1070 hex_string (end - start),
1071 hex_string (file_ofs),
1074 printf_filtered (" %18s %18s %10s %10s %s\n",
1075 paddress (gdbarch, start),
1076 paddress (gdbarch, end),
1077 hex_string (end - start),
1078 hex_string (file_ofs),
1081 filenames += 1 + strlen ((char *) filenames);
1084 do_cleanups (cleanup);
1087 /* Implement "info proc" for a corefile. */
1090 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1091 enum info_proc_what what)
1093 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1094 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1100 exe = bfd_core_file_failing_command (core_bfd);
1102 printf_filtered ("exe = '%s'\n", exe);
1104 warning (_("unable to find command name in core file"));
1108 linux_core_info_proc_mappings (gdbarch, args);
1110 if (!exe_f && !mappings_f)
1111 error (_("unable to handle request"));
1114 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1115 ULONGEST offset, ULONGEST inode,
1116 int read, int write,
1117 int exec, int modified,
1118 const char *filename,
1121 /* List memory regions in the inferior for a corefile. */
1124 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1125 linux_find_memory_region_ftype *func,
1128 char mapsfilename[100];
1129 char coredumpfilter_name[100];
1130 char *data, *coredumpfilterdata;
1132 /* Default dump behavior of coredump_filter (0x33), according to
1133 Documentation/filesystems/proc.txt from the Linux kernel
1135 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1136 | COREFILTER_ANON_SHARED
1137 | COREFILTER_ELF_HEADERS
1138 | COREFILTER_HUGETLB_PRIVATE);
1140 /* We need to know the real target PID to access /proc. */
1141 if (current_inferior ()->fake_pid_p)
1144 pid = current_inferior ()->pid;
1146 if (use_coredump_filter)
1148 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1149 "/proc/%d/coredump_filter", pid);
1150 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1151 coredumpfilter_name);
1152 if (coredumpfilterdata != NULL)
1156 sscanf (coredumpfilterdata, "%x", &flags);
1157 filterflags = (enum filter_flag) flags;
1158 xfree (coredumpfilterdata);
1162 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1163 data = target_fileio_read_stralloc (NULL, mapsfilename);
1166 /* Older Linux kernels did not support /proc/PID/smaps. */
1167 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1168 data = target_fileio_read_stralloc (NULL, mapsfilename);
1173 struct cleanup *cleanup = make_cleanup (xfree, data);
1176 line = strtok_r (data, "\n", &t);
1177 while (line != NULL)
1179 ULONGEST addr, endaddr, offset, inode;
1180 const char *permissions, *device, *filename;
1181 struct smaps_vmflags v;
1182 size_t permissions_len, device_len;
1183 int read, write, exec, priv;
1184 int has_anonymous = 0;
1185 int should_dump_p = 0;
1189 memset (&v, 0, sizeof (v));
1190 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1191 &offset, &device, &device_len, &inode, &filename);
1192 mapping_anon_p = mapping_is_anonymous_p (filename);
1193 /* If the mapping is not anonymous, then we can consider it
1194 to be file-backed. These two states (anonymous or
1195 file-backed) seem to be exclusive, but they can actually
1196 coexist. For example, if a file-backed mapping has
1197 "Anonymous:" pages (see more below), then the Linux
1198 kernel will dump this mapping when the user specified
1199 that she only wants anonymous mappings in the corefile
1200 (*even* when she explicitly disabled the dumping of
1201 file-backed mappings). */
1202 mapping_file_p = !mapping_anon_p;
1204 /* Decode permissions. */
1205 read = (memchr (permissions, 'r', permissions_len) != 0);
1206 write = (memchr (permissions, 'w', permissions_len) != 0);
1207 exec = (memchr (permissions, 'x', permissions_len) != 0);
1208 /* 'private' here actually means VM_MAYSHARE, and not
1209 VM_SHARED. In order to know if a mapping is really
1210 private or not, we must check the flag "sh" in the
1211 VmFlags field. This is done by decode_vmflags. However,
1212 if we are using a Linux kernel released before the commit
1213 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1214 not have the VmFlags there. In this case, there is
1215 really no way to know if we are dealing with VM_SHARED,
1216 so we just assume that VM_MAYSHARE is enough. */
1217 priv = memchr (permissions, 'p', permissions_len) != 0;
1219 /* Try to detect if region should be dumped by parsing smaps
1221 for (line = strtok_r (NULL, "\n", &t);
1222 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1223 line = strtok_r (NULL, "\n", &t))
1225 char keyword[64 + 1];
1227 if (sscanf (line, "%64s", keyword) != 1)
1229 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1233 if (strcmp (keyword, "Anonymous:") == 0)
1235 /* Older Linux kernels did not support the
1236 "Anonymous:" counter. Check it here. */
1239 else if (strcmp (keyword, "VmFlags:") == 0)
1240 decode_vmflags (line, &v);
1242 if (strcmp (keyword, "AnonHugePages:") == 0
1243 || strcmp (keyword, "Anonymous:") == 0)
1245 unsigned long number;
1247 if (sscanf (line, "%*s%lu", &number) != 1)
1249 warning (_("Error parsing {s,}maps file '%s' number"),
1255 /* Even if we are dealing with a file-backed
1256 mapping, if it contains anonymous pages we
1257 consider it to be *also* an anonymous
1258 mapping, because this is what the Linux
1261 // Dump segments that have been written to.
1262 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1265 Note that if the mapping is already marked as
1266 file-backed (i.e., mapping_file_p is
1267 non-zero), then this is a special case, and
1268 this mapping will be dumped either when the
1269 user wants to dump file-backed *or* anonymous
1277 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1278 mapping_anon_p, mapping_file_p,
1282 /* Older Linux kernels did not support the "Anonymous:" counter.
1283 If it is missing, we can't be sure - dump all the pages. */
1287 /* Invoke the callback function to create the corefile segment. */
1289 func (addr, endaddr - addr, offset, inode,
1290 read, write, exec, 1, /* MODIFIED is true because we
1291 want to dump the mapping. */
1295 do_cleanups (cleanup);
1302 /* A structure for passing information through
1303 linux_find_memory_regions_full. */
1305 struct linux_find_memory_regions_data
1307 /* The original callback. */
1309 find_memory_region_ftype func;
1311 /* The original datum. */
1316 /* A callback for linux_find_memory_regions that converts between the
1317 "full"-style callback and find_memory_region_ftype. */
1320 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1321 ULONGEST offset, ULONGEST inode,
1322 int read, int write, int exec, int modified,
1323 const char *filename, void *arg)
1325 struct linux_find_memory_regions_data *data
1326 = (struct linux_find_memory_regions_data *) arg;
1328 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1331 /* A variant of linux_find_memory_regions_full that is suitable as the
1332 gdbarch find_memory_regions method. */
1335 linux_find_memory_regions (struct gdbarch *gdbarch,
1336 find_memory_region_ftype func, void *obfd)
1338 struct linux_find_memory_regions_data data;
1343 return linux_find_memory_regions_full (gdbarch,
1344 linux_find_memory_regions_thunk,
1348 /* Determine which signal stopped execution. */
1351 find_signalled_thread (struct thread_info *info, void *data)
1353 if (info->suspend.stop_signal != GDB_SIGNAL_0
1354 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1360 /* Generate corefile notes for SPU contexts. */
1363 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1365 static const char *spu_files[] =
1387 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1391 /* Determine list of SPU ids. */
1392 size = target_read_alloc (¤t_target, TARGET_OBJECT_SPU,
1395 /* Generate corefile notes for each SPU file. */
1396 for (i = 0; i < size; i += 4)
1398 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1400 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1402 char annex[32], note_name[32];
1406 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1407 spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU,
1411 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1412 note_data = elfcore_write_note (obfd, note_data, note_size,
1432 /* This is used to pass information from
1433 linux_make_mappings_corefile_notes through
1434 linux_find_memory_regions_full. */
1436 struct linux_make_mappings_data
1438 /* Number of files mapped. */
1439 ULONGEST file_count;
1441 /* The obstack for the main part of the data. */
1442 struct obstack *data_obstack;
1444 /* The filename obstack. */
1445 struct obstack *filename_obstack;
1447 /* The architecture's "long" type. */
1448 struct type *long_type;
1451 static linux_find_memory_region_ftype linux_make_mappings_callback;
1453 /* A callback for linux_find_memory_regions_full that updates the
1454 mappings data for linux_make_mappings_corefile_notes. */
1457 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1458 ULONGEST offset, ULONGEST inode,
1459 int read, int write, int exec, int modified,
1460 const char *filename, void *data)
1462 struct linux_make_mappings_data *map_data
1463 = (struct linux_make_mappings_data *) data;
1464 gdb_byte buf[sizeof (ULONGEST)];
1466 if (*filename == '\0' || inode == 0)
1469 ++map_data->file_count;
1471 pack_long (buf, map_data->long_type, vaddr);
1472 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1473 pack_long (buf, map_data->long_type, vaddr + size);
1474 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1475 pack_long (buf, map_data->long_type, offset);
1476 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1478 obstack_grow_str0 (map_data->filename_obstack, filename);
1483 /* Write the file mapping data to the core file, if possible. OBFD is
1484 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1485 is a pointer to the note size. Returns the new NOTE_DATA and
1486 updates NOTE_SIZE. */
1489 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1490 char *note_data, int *note_size)
1492 struct cleanup *cleanup;
1493 struct obstack data_obstack, filename_obstack;
1494 struct linux_make_mappings_data mapping_data;
1495 struct type *long_type
1496 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1497 gdb_byte buf[sizeof (ULONGEST)];
1499 obstack_init (&data_obstack);
1500 cleanup = make_cleanup_obstack_free (&data_obstack);
1501 obstack_init (&filename_obstack);
1502 make_cleanup_obstack_free (&filename_obstack);
1504 mapping_data.file_count = 0;
1505 mapping_data.data_obstack = &data_obstack;
1506 mapping_data.filename_obstack = &filename_obstack;
1507 mapping_data.long_type = long_type;
1509 /* Reserve space for the count. */
1510 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1511 /* We always write the page size as 1 since we have no good way to
1512 determine the correct value. */
1513 pack_long (buf, long_type, 1);
1514 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1516 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1519 if (mapping_data.file_count != 0)
1521 /* Write the count to the obstack. */
1522 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1523 long_type, mapping_data.file_count);
1525 /* Copy the filenames to the data obstack. */
1526 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1527 obstack_object_size (&filename_obstack));
1529 note_data = elfcore_write_note (obfd, note_data, note_size,
1531 obstack_base (&data_obstack),
1532 obstack_object_size (&data_obstack));
1535 do_cleanups (cleanup);
1539 /* Structure for passing information from
1540 linux_collect_thread_registers via an iterator to
1541 linux_collect_regset_section_cb. */
1543 struct linux_collect_regset_section_cb_data
1545 struct gdbarch *gdbarch;
1546 const struct regcache *regcache;
1551 enum gdb_signal stop_signal;
1552 int abort_iteration;
1555 /* Callback for iterate_over_regset_sections that records a single
1556 regset in the corefile note section. */
1559 linux_collect_regset_section_cb (const char *sect_name, int size,
1560 const struct regset *regset,
1561 const char *human_name, void *cb_data)
1564 struct linux_collect_regset_section_cb_data *data
1565 = (struct linux_collect_regset_section_cb_data *) cb_data;
1567 if (data->abort_iteration)
1570 gdb_assert (regset && regset->collect_regset);
1572 buf = (char *) xmalloc (size);
1573 regset->collect_regset (regset, data->regcache, -1, buf, size);
1575 /* PRSTATUS still needs to be treated specially. */
1576 if (strcmp (sect_name, ".reg") == 0)
1577 data->note_data = (char *) elfcore_write_prstatus
1578 (data->obfd, data->note_data, data->note_size, data->lwp,
1579 gdb_signal_to_host (data->stop_signal), buf);
1581 data->note_data = (char *) elfcore_write_register_note
1582 (data->obfd, data->note_data, data->note_size,
1583 sect_name, buf, size);
1586 if (data->note_data == NULL)
1587 data->abort_iteration = 1;
1590 /* Records the thread's register state for the corefile note
1594 linux_collect_thread_registers (const struct regcache *regcache,
1595 ptid_t ptid, bfd *obfd,
1596 char *note_data, int *note_size,
1597 enum gdb_signal stop_signal)
1599 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1600 struct linux_collect_regset_section_cb_data data;
1602 data.gdbarch = gdbarch;
1603 data.regcache = regcache;
1605 data.note_data = note_data;
1606 data.note_size = note_size;
1607 data.stop_signal = stop_signal;
1608 data.abort_iteration = 0;
1610 /* For remote targets the LWP may not be available, so use the TID. */
1611 data.lwp = ptid_get_lwp (ptid);
1613 data.lwp = ptid_get_tid (ptid);
1615 gdbarch_iterate_over_regset_sections (gdbarch,
1616 linux_collect_regset_section_cb,
1618 return data.note_data;
1621 /* Fetch the siginfo data for the current thread, if it exists. If
1622 there is no data, or we could not read it, return NULL. Otherwise,
1623 return a newly malloc'd buffer holding the data and fill in *SIZE
1624 with the size of the data. The caller is responsible for freeing
1628 linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1630 struct type *siginfo_type;
1633 struct cleanup *cleanups;
1635 if (!gdbarch_get_siginfo_type_p (gdbarch))
1638 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1640 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
1641 cleanups = make_cleanup (xfree, buf);
1643 bytes_read = target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1644 buf, 0, TYPE_LENGTH (siginfo_type));
1645 if (bytes_read == TYPE_LENGTH (siginfo_type))
1647 discard_cleanups (cleanups);
1652 do_cleanups (cleanups);
1659 struct linux_corefile_thread_data
1661 struct gdbarch *gdbarch;
1665 enum gdb_signal stop_signal;
1668 /* Records the thread's register state for the corefile note
1672 linux_corefile_thread (struct thread_info *info,
1673 struct linux_corefile_thread_data *args)
1675 struct cleanup *old_chain;
1676 struct regcache *regcache;
1677 gdb_byte *siginfo_data;
1678 LONGEST siginfo_size = 0;
1680 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1682 old_chain = save_inferior_ptid ();
1683 inferior_ptid = info->ptid;
1684 target_fetch_registers (regcache, -1);
1685 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1686 do_cleanups (old_chain);
1688 old_chain = make_cleanup (xfree, siginfo_data);
1690 args->note_data = linux_collect_thread_registers
1691 (regcache, info->ptid, args->obfd, args->note_data,
1692 args->note_size, args->stop_signal);
1694 /* Don't return anything if we got no register information above,
1695 such a core file is useless. */
1696 if (args->note_data != NULL)
1697 if (siginfo_data != NULL)
1698 args->note_data = elfcore_write_note (args->obfd,
1702 siginfo_data, siginfo_size);
1704 do_cleanups (old_chain);
1707 /* Fill the PRPSINFO structure with information about the process being
1708 debugged. Returns 1 in case of success, 0 for failures. Please note that
1709 even if the structure cannot be entirely filled (e.g., GDB was unable to
1710 gather information about the process UID/GID), this function will still
1711 return 1 since some information was already recorded. It will only return
1712 0 iff nothing can be gathered. */
1715 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1717 /* The filename which we will use to obtain some info about the process.
1718 We will basically use this to store the `/proc/PID/FILENAME' file. */
1720 /* The full name of the program which generated the corefile. */
1722 /* The basename of the executable. */
1723 const char *basename;
1724 /* The arguments of the program. */
1727 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1728 char *proc_stat, *proc_status;
1729 /* Temporary buffer. */
1731 /* The valid states of a process, according to the Linux kernel. */
1732 const char valid_states[] = "RSDTZW";
1733 /* The program state. */
1734 const char *prog_state;
1735 /* The state of the process. */
1737 /* The PID of the program which generated the corefile. */
1739 /* Process flags. */
1740 unsigned int pr_flag;
1741 /* Process nice value. */
1743 /* The number of fields read by `sscanf'. */
1749 gdb_assert (p != NULL);
1751 /* Obtaining PID and filename. */
1752 pid = ptid_get_pid (inferior_ptid);
1753 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1754 fname = target_fileio_read_stralloc (NULL, filename);
1756 if (fname == NULL || *fname == '\0')
1758 /* No program name was read, so we won't be able to retrieve more
1759 information about the process. */
1764 c = make_cleanup (xfree, fname);
1765 memset (p, 0, sizeof (*p));
1767 /* Defining the PID. */
1770 /* Copying the program name. Only the basename matters. */
1771 basename = lbasename (fname);
1772 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1773 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1775 infargs = get_inferior_args ();
1777 psargs = xstrdup (fname);
1778 if (infargs != NULL)
1779 psargs = reconcat (psargs, psargs, " ", infargs, NULL);
1781 make_cleanup (xfree, psargs);
1783 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1784 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1786 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1787 proc_stat = target_fileio_read_stralloc (NULL, filename);
1788 make_cleanup (xfree, proc_stat);
1790 if (proc_stat == NULL || *proc_stat == '\0')
1792 /* Despite being unable to read more information about the
1793 process, we return 1 here because at least we have its
1794 command line, PID and arguments. */
1799 /* Ok, we have the stats. It's time to do a little parsing of the
1800 contents of the buffer, so that we end up reading what we want.
1802 The following parsing mechanism is strongly based on the
1803 information generated by the `fs/proc/array.c' file, present in
1804 the Linux kernel tree. More details about how the information is
1805 displayed can be obtained by seeing the manpage of proc(5),
1806 specifically under the entry of `/proc/[pid]/stat'. */
1808 /* Getting rid of the PID, since we already have it. */
1809 while (isdigit (*proc_stat))
1812 proc_stat = skip_spaces (proc_stat);
1814 /* ps command also relies on no trailing fields ever contain ')'. */
1815 proc_stat = strrchr (proc_stat, ')');
1816 if (proc_stat == NULL)
1823 proc_stat = skip_spaces (proc_stat);
1825 n_fields = sscanf (proc_stat,
1826 "%c" /* Process state. */
1827 "%d%d%d" /* Parent PID, group ID, session ID. */
1828 "%*d%*d" /* tty_nr, tpgid (not used). */
1830 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1831 cmajflt (not used). */
1832 "%*s%*s%*s%*s" /* utime, stime, cutime,
1833 cstime (not used). */
1834 "%*s" /* Priority (not used). */
1837 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1843 /* Again, we couldn't read the complementary information about
1844 the process state. However, we already have minimal
1845 information, so we just return 1 here. */
1850 /* Filling the structure fields. */
1851 prog_state = strchr (valid_states, pr_sname);
1852 if (prog_state != NULL)
1853 p->pr_state = prog_state - valid_states;
1856 /* Zero means "Running". */
1860 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1861 p->pr_zomb = p->pr_sname == 'Z';
1862 p->pr_nice = pr_nice;
1863 p->pr_flag = pr_flag;
1865 /* Finally, obtaining the UID and GID. For that, we read and parse the
1866 contents of the `/proc/PID/status' file. */
1867 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1868 proc_status = target_fileio_read_stralloc (NULL, filename);
1869 make_cleanup (xfree, proc_status);
1871 if (proc_status == NULL || *proc_status == '\0')
1873 /* Returning 1 since we already have a bunch of information. */
1878 /* Extracting the UID. */
1879 tmpstr = strstr (proc_status, "Uid:");
1882 /* Advancing the pointer to the beginning of the UID. */
1883 tmpstr += sizeof ("Uid:");
1884 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1887 if (isdigit (*tmpstr))
1888 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1891 /* Extracting the GID. */
1892 tmpstr = strstr (proc_status, "Gid:");
1895 /* Advancing the pointer to the beginning of the GID. */
1896 tmpstr += sizeof ("Gid:");
1897 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1900 if (isdigit (*tmpstr))
1901 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1909 /* Build the note section for a corefile, and return it in a malloc
1913 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1915 struct linux_corefile_thread_data thread_args;
1916 struct elf_internal_linux_prpsinfo prpsinfo;
1917 char *note_data = NULL;
1920 struct thread_info *curr_thr, *signalled_thr, *thr;
1922 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1925 if (linux_fill_prpsinfo (&prpsinfo))
1927 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1929 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1930 note_data, note_size,
1935 if (gdbarch_ptr_bit (gdbarch) == 64)
1936 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1937 note_data, note_size,
1940 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1941 note_data, note_size,
1946 /* Thread register information. */
1949 update_thread_list ();
1951 CATCH (e, RETURN_MASK_ERROR)
1953 exception_print (gdb_stderr, e);
1957 /* Like the kernel, prefer dumping the signalled thread first.
1958 "First thread" is what tools use to infer the signalled thread.
1959 In case there's more than one signalled thread, prefer the
1960 current thread, if it is signalled. */
1961 curr_thr = inferior_thread ();
1962 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1963 signalled_thr = curr_thr;
1966 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1967 if (signalled_thr == NULL)
1968 signalled_thr = curr_thr;
1971 thread_args.gdbarch = gdbarch;
1972 thread_args.obfd = obfd;
1973 thread_args.note_data = note_data;
1974 thread_args.note_size = note_size;
1975 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1977 linux_corefile_thread (signalled_thr, &thread_args);
1978 ALL_NON_EXITED_THREADS (thr)
1980 if (thr == signalled_thr)
1982 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1985 linux_corefile_thread (thr, &thread_args);
1988 note_data = thread_args.note_data;
1992 /* Auxillary vector. */
1993 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
1997 note_data = elfcore_write_note (obfd, note_data, note_size,
1998 "CORE", NT_AUXV, auxv, auxv_len);
2005 /* SPU information. */
2006 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2010 /* File mappings. */
2011 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2012 note_data, note_size);
2017 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2018 gdbarch.h. This function is not static because it is exported to
2019 other -tdep files. */
2022 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2027 return GDB_SIGNAL_0;
2030 return GDB_SIGNAL_HUP;
2033 return GDB_SIGNAL_INT;
2036 return GDB_SIGNAL_QUIT;
2039 return GDB_SIGNAL_ILL;
2042 return GDB_SIGNAL_TRAP;
2045 return GDB_SIGNAL_ABRT;
2048 return GDB_SIGNAL_BUS;
2051 return GDB_SIGNAL_FPE;
2054 return GDB_SIGNAL_KILL;
2057 return GDB_SIGNAL_USR1;
2060 return GDB_SIGNAL_SEGV;
2063 return GDB_SIGNAL_USR2;
2066 return GDB_SIGNAL_PIPE;
2069 return GDB_SIGNAL_ALRM;
2072 return GDB_SIGNAL_TERM;
2075 return GDB_SIGNAL_CHLD;
2078 return GDB_SIGNAL_CONT;
2081 return GDB_SIGNAL_STOP;
2084 return GDB_SIGNAL_TSTP;
2087 return GDB_SIGNAL_TTIN;
2090 return GDB_SIGNAL_TTOU;
2093 return GDB_SIGNAL_URG;
2096 return GDB_SIGNAL_XCPU;
2099 return GDB_SIGNAL_XFSZ;
2101 case LINUX_SIGVTALRM:
2102 return GDB_SIGNAL_VTALRM;
2105 return GDB_SIGNAL_PROF;
2107 case LINUX_SIGWINCH:
2108 return GDB_SIGNAL_WINCH;
2110 /* No way to differentiate between SIGIO and SIGPOLL.
2111 Therefore, we just handle the first one. */
2113 return GDB_SIGNAL_IO;
2116 return GDB_SIGNAL_PWR;
2119 return GDB_SIGNAL_SYS;
2121 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2122 therefore we have to handle them here. */
2123 case LINUX_SIGRTMIN:
2124 return GDB_SIGNAL_REALTIME_32;
2126 case LINUX_SIGRTMAX:
2127 return GDB_SIGNAL_REALTIME_64;
2130 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2132 int offset = signal - LINUX_SIGRTMIN + 1;
2134 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2137 return GDB_SIGNAL_UNKNOWN;
2140 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2141 gdbarch.h. This function is not static because it is exported to
2142 other -tdep files. */
2145 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2146 enum gdb_signal signal)
2153 case GDB_SIGNAL_HUP:
2154 return LINUX_SIGHUP;
2156 case GDB_SIGNAL_INT:
2157 return LINUX_SIGINT;
2159 case GDB_SIGNAL_QUIT:
2160 return LINUX_SIGQUIT;
2162 case GDB_SIGNAL_ILL:
2163 return LINUX_SIGILL;
2165 case GDB_SIGNAL_TRAP:
2166 return LINUX_SIGTRAP;
2168 case GDB_SIGNAL_ABRT:
2169 return LINUX_SIGABRT;
2171 case GDB_SIGNAL_FPE:
2172 return LINUX_SIGFPE;
2174 case GDB_SIGNAL_KILL:
2175 return LINUX_SIGKILL;
2177 case GDB_SIGNAL_BUS:
2178 return LINUX_SIGBUS;
2180 case GDB_SIGNAL_SEGV:
2181 return LINUX_SIGSEGV;
2183 case GDB_SIGNAL_SYS:
2184 return LINUX_SIGSYS;
2186 case GDB_SIGNAL_PIPE:
2187 return LINUX_SIGPIPE;
2189 case GDB_SIGNAL_ALRM:
2190 return LINUX_SIGALRM;
2192 case GDB_SIGNAL_TERM:
2193 return LINUX_SIGTERM;
2195 case GDB_SIGNAL_URG:
2196 return LINUX_SIGURG;
2198 case GDB_SIGNAL_STOP:
2199 return LINUX_SIGSTOP;
2201 case GDB_SIGNAL_TSTP:
2202 return LINUX_SIGTSTP;
2204 case GDB_SIGNAL_CONT:
2205 return LINUX_SIGCONT;
2207 case GDB_SIGNAL_CHLD:
2208 return LINUX_SIGCHLD;
2210 case GDB_SIGNAL_TTIN:
2211 return LINUX_SIGTTIN;
2213 case GDB_SIGNAL_TTOU:
2214 return LINUX_SIGTTOU;
2219 case GDB_SIGNAL_XCPU:
2220 return LINUX_SIGXCPU;
2222 case GDB_SIGNAL_XFSZ:
2223 return LINUX_SIGXFSZ;
2225 case GDB_SIGNAL_VTALRM:
2226 return LINUX_SIGVTALRM;
2228 case GDB_SIGNAL_PROF:
2229 return LINUX_SIGPROF;
2231 case GDB_SIGNAL_WINCH:
2232 return LINUX_SIGWINCH;
2234 case GDB_SIGNAL_USR1:
2235 return LINUX_SIGUSR1;
2237 case GDB_SIGNAL_USR2:
2238 return LINUX_SIGUSR2;
2240 case GDB_SIGNAL_PWR:
2241 return LINUX_SIGPWR;
2243 case GDB_SIGNAL_POLL:
2244 return LINUX_SIGPOLL;
2246 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2247 therefore we have to handle it here. */
2248 case GDB_SIGNAL_REALTIME_32:
2249 return LINUX_SIGRTMIN;
2251 /* Same comment applies to _64. */
2252 case GDB_SIGNAL_REALTIME_64:
2253 return LINUX_SIGRTMAX;
2256 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2257 if (signal >= GDB_SIGNAL_REALTIME_33
2258 && signal <= GDB_SIGNAL_REALTIME_63)
2260 int offset = signal - GDB_SIGNAL_REALTIME_33;
2262 return LINUX_SIGRTMIN + 1 + offset;
2268 /* Rummage through mappings to find a mapping's size. */
2271 find_mapping_size (CORE_ADDR vaddr, unsigned long size,
2272 int read, int write, int exec, int modified,
2275 struct mem_range *range = (struct mem_range *) data;
2277 if (vaddr == range->start)
2279 range->length = size;
2285 /* Helper for linux_vsyscall_range that does the real work of finding
2286 the vsyscall's address range. */
2289 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2291 if (target_auxv_search (¤t_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2294 /* This is installed by linux_init_abi below, so should always be
2296 gdb_assert (gdbarch_find_memory_regions_p (target_gdbarch ()));
2299 gdbarch_find_memory_regions (gdbarch, find_mapping_size, range);
2303 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2304 caching, and defers the real work to linux_vsyscall_range_raw. */
2307 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2309 struct linux_info *info = get_linux_inferior_data ();
2311 if (info->vsyscall_range_p == 0)
2313 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2314 info->vsyscall_range_p = 1;
2316 info->vsyscall_range_p = -1;
2319 if (info->vsyscall_range_p < 0)
2322 *range = info->vsyscall_range;
2326 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2327 definitions would be dependent on compilation host. */
2328 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2329 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2331 /* See gdbarch.sh 'infcall_mmap'. */
2334 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2336 struct objfile *objf;
2337 /* Do there still exist any Linux systems without "mmap64"?
2338 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2339 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2340 struct value *addr_val;
2341 struct gdbarch *gdbarch = get_objfile_arch (objf);
2345 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2347 struct value *arg[ARG_LAST];
2349 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2351 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2352 arg[ARG_LENGTH] = value_from_ulongest
2353 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2354 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2355 | GDB_MMAP_PROT_EXEC))
2357 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2358 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2359 GDB_MMAP_MAP_PRIVATE
2360 | GDB_MMAP_MAP_ANONYMOUS);
2361 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2362 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2364 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
2365 retval = value_as_address (addr_val);
2366 if (retval == (CORE_ADDR) -1)
2367 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2372 /* See gdbarch.sh 'infcall_munmap'. */
2375 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2377 struct objfile *objf;
2378 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2379 struct value *retval_val;
2380 struct gdbarch *gdbarch = get_objfile_arch (objf);
2384 ARG_ADDR, ARG_LENGTH, ARG_LAST
2386 struct value *arg[ARG_LAST];
2388 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2390 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2391 arg[ARG_LENGTH] = value_from_ulongest
2392 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2393 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2394 retval = value_as_long (retval_val);
2396 warning (_("Failed inferior munmap call at %s for %s bytes, "
2397 "errno is changed."),
2398 hex_string (addr), pulongest (size));
2401 /* See linux-tdep.h. */
2404 linux_displaced_step_location (struct gdbarch *gdbarch)
2409 /* Determine entry point from target auxiliary vector. This avoids
2410 the need for symbols. Also, when debugging a stand-alone SPU
2411 executable, entry_point_address () will point to an SPU
2412 local-store address and is thus not usable as displaced stepping
2413 location. The auxiliary vector gets us the PowerPC-side entry
2414 point address instead. */
2415 if (target_auxv_search (¤t_target, AT_ENTRY, &addr) <= 0)
2416 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
2418 /* Make certain that the address points at real code, and not a
2419 function descriptor. */
2420 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2423 /* Inferior calls also use the entry point as a breakpoint location.
2424 We don't want displaced stepping to interfere with those
2425 breakpoints, so leave space. */
2426 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2432 /* Display whether the gcore command is using the
2433 /proc/PID/coredump_filter file. */
2436 show_use_coredump_filter (struct ui_file *file, int from_tty,
2437 struct cmd_list_element *c, const char *value)
2439 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2440 " corefiles is %s.\n"), value);
2443 /* To be called from the various GDB_OSABI_LINUX handlers for the
2444 various GNU/Linux architectures and machine types. */
2447 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2449 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2450 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2451 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2452 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2453 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2454 set_gdbarch_has_shared_address_space (gdbarch,
2455 linux_has_shared_address_space);
2456 set_gdbarch_gdb_signal_from_target (gdbarch,
2457 linux_gdb_signal_from_target);
2458 set_gdbarch_gdb_signal_to_target (gdbarch,
2459 linux_gdb_signal_to_target);
2460 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2461 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2462 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2463 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2466 /* Provide a prototype to silence -Wmissing-prototypes. */
2467 extern initialize_file_ftype _initialize_linux_tdep;
2470 _initialize_linux_tdep (void)
2472 linux_gdbarch_data_handle =
2473 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2475 /* Set a cache per-inferior. */
2477 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2478 /* Observers used to invalidate the cache when needed. */
2479 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2480 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2482 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2483 &use_coredump_filter, _("\
2484 Set whether gcore should consider /proc/PID/coredump_filter."),
2486 Show whether gcore should consider /proc/PID/coredump_filter."),
2488 Use this command to set whether gcore should consider the contents\n\
2489 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2490 about this file, refer to the manpage of core(5)."),
2491 NULL, show_use_coredump_filter,
2492 &setlist, &showlist);