1 /* Target-dependent code for GNU/Linux, architecture independent.
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "linux-tdep.h"
25 #include "gdbthread.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
72 unsigned int initialized_p : 1;
74 /* Memory mapped I/O area (VM_IO, "io"). */
76 unsigned int io_page : 1;
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
80 unsigned int uses_huge_tlb : 1;
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
84 unsigned int exclude_coredump : 1;
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
88 unsigned int shared_mapping : 1;
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
94 static int use_coredump_filter = 1;
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
99 static int dump_excluded_mappings = 0;
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
143 LINUX_SIGSTKFLT = 16,
153 LINUX_SIGVTALRM = 26,
157 LINUX_SIGPOLL = LINUX_SIGIO,
160 LINUX_SIGUNUSED = 31,
166 static struct gdbarch_data *linux_gdbarch_data_handle;
168 struct linux_gdbarch_data
170 struct type *siginfo_type;
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
211 invalidate_linux_cache_inf (struct inferior *inf)
213 linux_inferior_data.clear (inf);
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
219 static struct linux_info *
220 get_linux_inferior_data (void)
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
225 info = linux_inferior_data.get (inf);
227 info = linux_inferior_data.emplace (inf);
232 /* See linux-tdep.h. */
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 TYPE_TARGET_STUB (pid_type) = 1;
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 TYPE_TARGET_STUB (uid_type) = 1;
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 TYPE_TARGET_STUB (clock_type) = 1;
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
288 const int si_max_size = 128;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
337 struct type *sigfault_bnd_fields;
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
345 append_composite_type_field (sifields_type, "_sigfault", type);
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
363 linux_gdbarch_data->siginfo_type = siginfo_type;
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
377 /* Return true if the target is running on uClinux instead of normal
381 linux_is_uclinux (void)
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
392 return linux_is_uclinux ();
395 /* This is how we want PTIDs from core files to be printed. */
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
403 return normal_pid_to_str (ptid);
406 /* Service function for corefiles and info proc. */
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
413 const char **device, size_t *device_len,
415 const char **filename)
417 const char *p = line;
419 *addr = strtoulst (p, &p, 16);
422 *endaddr = strtoulst (p, &p, 16);
426 while (*p && !isspace (*p))
428 *permissions_len = p - *permissions;
430 *offset = strtoulst (p, &p, 16);
434 while (*p && !isspace (*p))
436 *device_len = p - *device;
438 *inode = strtoulst (p, &p, 10);
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
454 decode_vmflags (char *p, struct smaps_vmflags *v)
456 char *saveptr = NULL;
459 v->initialized_p = 1;
460 p = skip_to_space (p);
463 for (s = strtok_r (p, " ", &saveptr);
465 s = strtok_r (NULL, " ", &saveptr))
467 if (strcmp (s, "io") == 0)
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
481 struct mapping_regexes
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
524 Then FILENAME will be "/path/to/file". */
527 mapping_is_anonymous_p (const char *filename)
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
540 /* If we reached this point, then everything succeeded. */
544 if (init_regex_p == -1)
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
637 if (v->initialized_p)
639 /* We never dump I/O mappings. */
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
664 if (mapping_anon_p && mapping_file_p)
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
679 if (mapping_anon_p && mapping_file_p)
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
704 /* Let's check if we have an ELF header. */
705 gdb::unique_xmalloc_ptr<char> header;
708 /* Useful define specifying the size of the ELF magical
714 /* Read the first SELFMAG bytes and check if it is ELFMAG. */
715 if (target_read_string (addr, &header, SELFMAG, &errcode) == SELFMAG
718 const char *h = header.get ();
720 /* The EI_MAG* and ELFMAG* constants come from
722 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
723 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
725 /* This mapping contains an ELF header, so we
735 /* Implement the "info proc" command. */
738 linux_info_proc (struct gdbarch *gdbarch, const char *args,
739 enum info_proc_what what)
741 /* A long is used for pid instead of an int to avoid a loss of precision
742 compiler warning from the output of strtoul. */
744 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
745 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
746 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
747 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
748 int status_f = (what == IP_STATUS || what == IP_ALL);
749 int stat_f = (what == IP_STAT || what == IP_ALL);
753 if (args && isdigit (args[0]))
757 pid = strtoul (args, &tem, 10);
762 if (!target_has_execution)
763 error (_("No current process: you must name one."));
764 if (current_inferior ()->fake_pid_p)
765 error (_("Can't determine the current process's PID: you must name one."));
767 pid = current_inferior ()->pid;
770 args = skip_spaces (args);
772 error (_("Too many parameters: %s"), args);
774 printf_filtered (_("process %ld\n"), pid);
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
779 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
783 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
786 for (pos = 0; pos < len - 1; pos++)
788 if (buffer[pos] == '\0')
791 buffer[len - 1] = '\0';
792 printf_filtered ("cmdline = '%s'\n", buffer);
795 warning (_("unable to open /proc file '%s'"), filename);
799 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
800 gdb::optional<std::string> contents
801 = target_fileio_readlink (NULL, filename, &target_errno);
802 if (contents.has_value ())
803 printf_filtered ("cwd = '%s'\n", contents->c_str ());
805 warning (_("unable to read link '%s'"), filename);
809 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
810 gdb::optional<std::string> contents
811 = target_fileio_readlink (NULL, filename, &target_errno);
812 if (contents.has_value ())
813 printf_filtered ("exe = '%s'\n", contents->c_str ());
815 warning (_("unable to read link '%s'"), filename);
819 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
820 gdb::unique_xmalloc_ptr<char> map
821 = target_fileio_read_stralloc (NULL, filename);
826 printf_filtered (_("Mapped address spaces:\n\n"));
827 if (gdbarch_addr_bit (gdbarch) == 32)
829 printf_filtered ("\t%10s %10s %10s %10s %s\n",
832 " Size", " Offset", "objfile");
836 printf_filtered (" %18s %18s %10s %10s %s\n",
839 " Size", " Offset", "objfile");
842 for (line = strtok (map.get (), "\n");
844 line = strtok (NULL, "\n"))
846 ULONGEST addr, endaddr, offset, inode;
847 const char *permissions, *device, *mapping_filename;
848 size_t permissions_len, device_len;
850 read_mapping (line, &addr, &endaddr,
851 &permissions, &permissions_len,
852 &offset, &device, &device_len,
853 &inode, &mapping_filename);
855 if (gdbarch_addr_bit (gdbarch) == 32)
857 printf_filtered ("\t%10s %10s %10s %10s %s\n",
858 paddress (gdbarch, addr),
859 paddress (gdbarch, endaddr),
860 hex_string (endaddr - addr),
862 *mapping_filename ? mapping_filename : "");
866 printf_filtered (" %18s %18s %10s %10s %s\n",
867 paddress (gdbarch, addr),
868 paddress (gdbarch, endaddr),
869 hex_string (endaddr - addr),
871 *mapping_filename ? mapping_filename : "");
876 warning (_("unable to open /proc file '%s'"), filename);
880 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
881 gdb::unique_xmalloc_ptr<char> status
882 = target_fileio_read_stralloc (NULL, filename);
884 puts_filtered (status.get ());
886 warning (_("unable to open /proc file '%s'"), filename);
890 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
891 gdb::unique_xmalloc_ptr<char> statstr
892 = target_fileio_read_stralloc (NULL, filename);
895 const char *p = statstr.get ();
897 printf_filtered (_("Process: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
903 /* ps command also relies on no trailing fields
905 const char *ep = strrchr (p, ')');
908 printf_filtered ("Exec file: %.*s\n",
909 (int) (ep - p - 1), p + 1);
916 printf_filtered (_("State: %c\n"), *p++);
919 printf_filtered (_("Parent process: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
922 printf_filtered (_("Process group: %s\n"),
923 pulongest (strtoulst (p, &p, 10)));
925 printf_filtered (_("Session id: %s\n"),
926 pulongest (strtoulst (p, &p, 10)));
928 printf_filtered (_("TTY: %s\n"),
929 pulongest (strtoulst (p, &p, 10)));
931 printf_filtered (_("TTY owner process group: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
935 printf_filtered (_("Flags: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
938 printf_filtered (_("Minor faults (no memory page): %s\n"),
939 pulongest (strtoulst (p, &p, 10)));
941 printf_filtered (_("Minor faults, children: %s\n"),
942 pulongest (strtoulst (p, &p, 10)));
944 printf_filtered (_("Major faults (memory page faults): %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
947 printf_filtered (_("Major faults, children: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
950 printf_filtered (_("utime: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
953 printf_filtered (_("stime: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
956 printf_filtered (_("utime, children: %s\n"),
957 pulongest (strtoulst (p, &p, 10)));
959 printf_filtered (_("stime, children: %s\n"),
960 pulongest (strtoulst (p, &p, 10)));
962 printf_filtered (_("jiffies remaining in current "
964 pulongest (strtoulst (p, &p, 10)));
966 printf_filtered (_("'nice' value: %s\n"),
967 pulongest (strtoulst (p, &p, 10)));
969 printf_filtered (_("jiffies until next timeout: %s\n"),
970 pulongest (strtoulst (p, &p, 10)));
972 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
973 pulongest (strtoulst (p, &p, 10)));
975 printf_filtered (_("start time (jiffies since "
976 "system boot): %s\n"),
977 pulongest (strtoulst (p, &p, 10)));
979 printf_filtered (_("Virtual memory size: %s\n"),
980 pulongest (strtoulst (p, &p, 10)));
982 printf_filtered (_("Resident set size: %s\n"),
983 pulongest (strtoulst (p, &p, 10)));
985 printf_filtered (_("rlim: %s\n"),
986 pulongest (strtoulst (p, &p, 10)));
988 printf_filtered (_("Start of text: %s\n"),
989 hex_string (strtoulst (p, &p, 10)));
991 printf_filtered (_("End of text: %s\n"),
992 hex_string (strtoulst (p, &p, 10)));
994 printf_filtered (_("Start of stack: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996 #if 0 /* Don't know how architecture-dependent the rest is...
997 Anyway the signal bitmap info is available from "status". */
999 printf_filtered (_("Kernel stack pointer: %s\n"),
1000 hex_string (strtoulst (p, &p, 10)));
1002 printf_filtered (_("Kernel instr pointer: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1005 printf_filtered (_("Pending signals bitmap: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1008 printf_filtered (_("Blocked signals bitmap: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1011 printf_filtered (_("Ignored signals bitmap: %s\n"),
1012 hex_string (strtoulst (p, &p, 10)));
1014 printf_filtered (_("Catched signals bitmap: %s\n"),
1015 hex_string (strtoulst (p, &p, 10)));
1017 printf_filtered (_("wchan (system call): %s\n"),
1018 hex_string (strtoulst (p, &p, 10)));
1022 warning (_("unable to open /proc file '%s'"), filename);
1026 /* Implement "info proc mappings" for a corefile. */
1029 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1032 ULONGEST count, page_size;
1033 unsigned char *descdata, *filenames, *descend;
1035 unsigned int addr_size_bits, addr_size;
1036 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1037 /* We assume this for reading 64-bit core files. */
1038 gdb_static_assert (sizeof (ULONGEST) >= 8);
1040 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1041 if (section == NULL)
1043 warning (_("unable to find mappings in core file"));
1047 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1048 addr_size = addr_size_bits / 8;
1049 note_size = bfd_get_section_size (section);
1051 if (note_size < 2 * addr_size)
1052 error (_("malformed core note - too short for header"));
1054 gdb::def_vector<unsigned char> contents (note_size);
1055 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1057 error (_("could not get core note contents"));
1059 descdata = contents.data ();
1060 descend = descdata + note_size;
1062 if (descdata[note_size - 1] != '\0')
1063 error (_("malformed note - does not end with \\0"));
1065 count = bfd_get (addr_size_bits, core_bfd, descdata);
1066 descdata += addr_size;
1068 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1069 descdata += addr_size;
1071 if (note_size < 2 * addr_size + count * 3 * addr_size)
1072 error (_("malformed note - too short for supplied file count"));
1074 printf_filtered (_("Mapped address spaces:\n\n"));
1075 if (gdbarch_addr_bit (gdbarch) == 32)
1077 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1080 " Size", " Offset", "objfile");
1084 printf_filtered (" %18s %18s %10s %10s %s\n",
1087 " Size", " Offset", "objfile");
1090 filenames = descdata + count * 3 * addr_size;
1093 ULONGEST start, end, file_ofs;
1095 if (filenames == descend)
1096 error (_("malformed note - filenames end too early"));
1098 start = bfd_get (addr_size_bits, core_bfd, descdata);
1099 descdata += addr_size;
1100 end = bfd_get (addr_size_bits, core_bfd, descdata);
1101 descdata += addr_size;
1102 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1103 descdata += addr_size;
1105 file_ofs *= page_size;
1107 if (gdbarch_addr_bit (gdbarch) == 32)
1108 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1109 paddress (gdbarch, start),
1110 paddress (gdbarch, end),
1111 hex_string (end - start),
1112 hex_string (file_ofs),
1115 printf_filtered (" %18s %18s %10s %10s %s\n",
1116 paddress (gdbarch, start),
1117 paddress (gdbarch, end),
1118 hex_string (end - start),
1119 hex_string (file_ofs),
1122 filenames += 1 + strlen ((char *) filenames);
1126 /* Implement "info proc" for a corefile. */
1129 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1130 enum info_proc_what what)
1132 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1133 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1139 exe = bfd_core_file_failing_command (core_bfd);
1141 printf_filtered ("exe = '%s'\n", exe);
1143 warning (_("unable to find command name in core file"));
1147 linux_core_info_proc_mappings (gdbarch, args);
1149 if (!exe_f && !mappings_f)
1150 error (_("unable to handle request"));
1153 /* Read siginfo data from the core, if possible. Returns -1 on
1154 failure. Otherwise, returns the number of bytes read. READBUF,
1155 OFFSET, and LEN are all as specified by the to_xfer_partial
1159 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1160 ULONGEST offset, ULONGEST len)
1162 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1163 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1164 if (section == NULL)
1167 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1173 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1174 ULONGEST offset, ULONGEST inode,
1175 int read, int write,
1176 int exec, int modified,
1177 const char *filename,
1180 /* List memory regions in the inferior for a corefile. */
1183 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1184 linux_find_memory_region_ftype *func,
1187 char mapsfilename[100];
1188 char coredumpfilter_name[100];
1190 /* Default dump behavior of coredump_filter (0x33), according to
1191 Documentation/filesystems/proc.txt from the Linux kernel
1193 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1194 | COREFILTER_ANON_SHARED
1195 | COREFILTER_ELF_HEADERS
1196 | COREFILTER_HUGETLB_PRIVATE);
1198 /* We need to know the real target PID to access /proc. */
1199 if (current_inferior ()->fake_pid_p)
1202 pid = current_inferior ()->pid;
1204 if (use_coredump_filter)
1206 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1207 "/proc/%d/coredump_filter", pid);
1208 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1209 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1210 if (coredumpfilterdata != NULL)
1214 sscanf (coredumpfilterdata.get (), "%x", &flags);
1215 filterflags = (enum filter_flag) flags;
1219 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1220 gdb::unique_xmalloc_ptr<char> data
1221 = target_fileio_read_stralloc (NULL, mapsfilename);
1224 /* Older Linux kernels did not support /proc/PID/smaps. */
1225 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1226 data = target_fileio_read_stralloc (NULL, mapsfilename);
1233 line = strtok_r (data.get (), "\n", &t);
1234 while (line != NULL)
1236 ULONGEST addr, endaddr, offset, inode;
1237 const char *permissions, *device, *filename;
1238 struct smaps_vmflags v;
1239 size_t permissions_len, device_len;
1240 int read, write, exec, priv;
1241 int has_anonymous = 0;
1242 int should_dump_p = 0;
1246 memset (&v, 0, sizeof (v));
1247 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1248 &offset, &device, &device_len, &inode, &filename);
1249 mapping_anon_p = mapping_is_anonymous_p (filename);
1250 /* If the mapping is not anonymous, then we can consider it
1251 to be file-backed. These two states (anonymous or
1252 file-backed) seem to be exclusive, but they can actually
1253 coexist. For example, if a file-backed mapping has
1254 "Anonymous:" pages (see more below), then the Linux
1255 kernel will dump this mapping when the user specified
1256 that she only wants anonymous mappings in the corefile
1257 (*even* when she explicitly disabled the dumping of
1258 file-backed mappings). */
1259 mapping_file_p = !mapping_anon_p;
1261 /* Decode permissions. */
1262 read = (memchr (permissions, 'r', permissions_len) != 0);
1263 write = (memchr (permissions, 'w', permissions_len) != 0);
1264 exec = (memchr (permissions, 'x', permissions_len) != 0);
1265 /* 'private' here actually means VM_MAYSHARE, and not
1266 VM_SHARED. In order to know if a mapping is really
1267 private or not, we must check the flag "sh" in the
1268 VmFlags field. This is done by decode_vmflags. However,
1269 if we are using a Linux kernel released before the commit
1270 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1271 not have the VmFlags there. In this case, there is
1272 really no way to know if we are dealing with VM_SHARED,
1273 so we just assume that VM_MAYSHARE is enough. */
1274 priv = memchr (permissions, 'p', permissions_len) != 0;
1276 /* Try to detect if region should be dumped by parsing smaps
1278 for (line = strtok_r (NULL, "\n", &t);
1279 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1280 line = strtok_r (NULL, "\n", &t))
1282 char keyword[64 + 1];
1284 if (sscanf (line, "%64s", keyword) != 1)
1286 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1290 if (strcmp (keyword, "Anonymous:") == 0)
1292 /* Older Linux kernels did not support the
1293 "Anonymous:" counter. Check it here. */
1296 else if (strcmp (keyword, "VmFlags:") == 0)
1297 decode_vmflags (line, &v);
1299 if (strcmp (keyword, "AnonHugePages:") == 0
1300 || strcmp (keyword, "Anonymous:") == 0)
1302 unsigned long number;
1304 if (sscanf (line, "%*s%lu", &number) != 1)
1306 warning (_("Error parsing {s,}maps file '%s' number"),
1312 /* Even if we are dealing with a file-backed
1313 mapping, if it contains anonymous pages we
1314 consider it to be *also* an anonymous
1315 mapping, because this is what the Linux
1318 // Dump segments that have been written to.
1319 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1322 Note that if the mapping is already marked as
1323 file-backed (i.e., mapping_file_p is
1324 non-zero), then this is a special case, and
1325 this mapping will be dumped either when the
1326 user wants to dump file-backed *or* anonymous
1334 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1335 mapping_anon_p, mapping_file_p,
1336 filename, addr, offset);
1339 /* Older Linux kernels did not support the "Anonymous:" counter.
1340 If it is missing, we can't be sure - dump all the pages. */
1344 /* Invoke the callback function to create the corefile segment. */
1346 func (addr, endaddr - addr, offset, inode,
1347 read, write, exec, 1, /* MODIFIED is true because we
1348 want to dump the mapping. */
1358 /* A structure for passing information through
1359 linux_find_memory_regions_full. */
1361 struct linux_find_memory_regions_data
1363 /* The original callback. */
1365 find_memory_region_ftype func;
1367 /* The original datum. */
1372 /* A callback for linux_find_memory_regions that converts between the
1373 "full"-style callback and find_memory_region_ftype. */
1376 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1377 ULONGEST offset, ULONGEST inode,
1378 int read, int write, int exec, int modified,
1379 const char *filename, void *arg)
1381 struct linux_find_memory_regions_data *data
1382 = (struct linux_find_memory_regions_data *) arg;
1384 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1387 /* A variant of linux_find_memory_regions_full that is suitable as the
1388 gdbarch find_memory_regions method. */
1391 linux_find_memory_regions (struct gdbarch *gdbarch,
1392 find_memory_region_ftype func, void *obfd)
1394 struct linux_find_memory_regions_data data;
1399 return linux_find_memory_regions_full (gdbarch,
1400 linux_find_memory_regions_thunk,
1404 /* Determine which signal stopped execution. */
1407 find_signalled_thread (struct thread_info *info, void *data)
1409 if (info->suspend.stop_signal != GDB_SIGNAL_0
1410 && info->ptid.pid () == inferior_ptid.pid ())
1416 /* Generate corefile notes for SPU contexts. */
1419 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1421 static const char *spu_files[] =
1443 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1445 /* Determine list of SPU ids. */
1446 gdb::optional<gdb::byte_vector>
1447 spu_ids = target_read_alloc (current_top_target (),
1448 TARGET_OBJECT_SPU, NULL);
1453 /* Generate corefile notes for each SPU file. */
1454 for (size_t i = 0; i < spu_ids->size (); i += 4)
1456 int fd = extract_unsigned_integer (spu_ids->data () + i, 4, byte_order);
1458 for (size_t j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1460 char annex[32], note_name[32];
1462 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1463 gdb::optional<gdb::byte_vector> spu_data
1464 = target_read_alloc (current_top_target (), TARGET_OBJECT_SPU, annex);
1466 if (spu_data && !spu_data->empty ())
1468 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1469 note_data = elfcore_write_note (obfd, note_data, note_size,
1483 /* This is used to pass information from
1484 linux_make_mappings_corefile_notes through
1485 linux_find_memory_regions_full. */
1487 struct linux_make_mappings_data
1489 /* Number of files mapped. */
1490 ULONGEST file_count;
1492 /* The obstack for the main part of the data. */
1493 struct obstack *data_obstack;
1495 /* The filename obstack. */
1496 struct obstack *filename_obstack;
1498 /* The architecture's "long" type. */
1499 struct type *long_type;
1502 static linux_find_memory_region_ftype linux_make_mappings_callback;
1504 /* A callback for linux_find_memory_regions_full that updates the
1505 mappings data for linux_make_mappings_corefile_notes. */
1508 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1509 ULONGEST offset, ULONGEST inode,
1510 int read, int write, int exec, int modified,
1511 const char *filename, void *data)
1513 struct linux_make_mappings_data *map_data
1514 = (struct linux_make_mappings_data *) data;
1515 gdb_byte buf[sizeof (ULONGEST)];
1517 if (*filename == '\0' || inode == 0)
1520 ++map_data->file_count;
1522 pack_long (buf, map_data->long_type, vaddr);
1523 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1524 pack_long (buf, map_data->long_type, vaddr + size);
1525 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1526 pack_long (buf, map_data->long_type, offset);
1527 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1529 obstack_grow_str0 (map_data->filename_obstack, filename);
1534 /* Write the file mapping data to the core file, if possible. OBFD is
1535 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1536 is a pointer to the note size. Returns the new NOTE_DATA and
1537 updates NOTE_SIZE. */
1540 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1541 char *note_data, int *note_size)
1543 struct linux_make_mappings_data mapping_data;
1544 struct type *long_type
1545 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1546 gdb_byte buf[sizeof (ULONGEST)];
1548 auto_obstack data_obstack, filename_obstack;
1550 mapping_data.file_count = 0;
1551 mapping_data.data_obstack = &data_obstack;
1552 mapping_data.filename_obstack = &filename_obstack;
1553 mapping_data.long_type = long_type;
1555 /* Reserve space for the count. */
1556 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1557 /* We always write the page size as 1 since we have no good way to
1558 determine the correct value. */
1559 pack_long (buf, long_type, 1);
1560 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1562 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1565 if (mapping_data.file_count != 0)
1567 /* Write the count to the obstack. */
1568 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1569 long_type, mapping_data.file_count);
1571 /* Copy the filenames to the data obstack. */
1572 int size = obstack_object_size (&filename_obstack);
1573 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1576 note_data = elfcore_write_note (obfd, note_data, note_size,
1578 obstack_base (&data_obstack),
1579 obstack_object_size (&data_obstack));
1585 /* Structure for passing information from
1586 linux_collect_thread_registers via an iterator to
1587 linux_collect_regset_section_cb. */
1589 struct linux_collect_regset_section_cb_data
1591 struct gdbarch *gdbarch;
1592 const struct regcache *regcache;
1597 enum gdb_signal stop_signal;
1598 int abort_iteration;
1601 /* Callback for iterate_over_regset_sections that records a single
1602 regset in the corefile note section. */
1605 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1606 int collect_size, const struct regset *regset,
1607 const char *human_name, void *cb_data)
1609 struct linux_collect_regset_section_cb_data *data
1610 = (struct linux_collect_regset_section_cb_data *) cb_data;
1611 bool variable_size_section = (regset != NULL
1612 && regset->flags & REGSET_VARIABLE_SIZE);
1614 if (!variable_size_section)
1615 gdb_assert (supply_size == collect_size);
1617 if (data->abort_iteration)
1620 gdb_assert (regset && regset->collect_regset);
1622 /* This is intentionally zero-initialized by using std::vector, so
1623 that any padding bytes in the core file will show as 0. */
1624 std::vector<gdb_byte> buf (collect_size);
1626 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1629 /* PRSTATUS still needs to be treated specially. */
1630 if (strcmp (sect_name, ".reg") == 0)
1631 data->note_data = (char *) elfcore_write_prstatus
1632 (data->obfd, data->note_data, data->note_size, data->lwp,
1633 gdb_signal_to_host (data->stop_signal), buf.data ());
1635 data->note_data = (char *) elfcore_write_register_note
1636 (data->obfd, data->note_data, data->note_size,
1637 sect_name, buf.data (), collect_size);
1639 if (data->note_data == NULL)
1640 data->abort_iteration = 1;
1643 /* Records the thread's register state for the corefile note
1647 linux_collect_thread_registers (const struct regcache *regcache,
1648 ptid_t ptid, bfd *obfd,
1649 char *note_data, int *note_size,
1650 enum gdb_signal stop_signal)
1652 struct gdbarch *gdbarch = regcache->arch ();
1653 struct linux_collect_regset_section_cb_data data;
1655 data.gdbarch = gdbarch;
1656 data.regcache = regcache;
1658 data.note_data = note_data;
1659 data.note_size = note_size;
1660 data.stop_signal = stop_signal;
1661 data.abort_iteration = 0;
1663 /* For remote targets the LWP may not be available, so use the TID. */
1664 data.lwp = ptid.lwp ();
1666 data.lwp = ptid.tid ();
1668 gdbarch_iterate_over_regset_sections (gdbarch,
1669 linux_collect_regset_section_cb,
1671 return data.note_data;
1674 /* Fetch the siginfo data for the specified thread, if it exists. If
1675 there is no data, or we could not read it, return an empty
1678 static gdb::byte_vector
1679 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1681 struct type *siginfo_type;
1684 if (!gdbarch_get_siginfo_type_p (gdbarch))
1685 return gdb::byte_vector ();
1687 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1688 inferior_ptid = thread->ptid;
1690 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1692 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1694 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1695 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1696 if (bytes_read != TYPE_LENGTH (siginfo_type))
1702 struct linux_corefile_thread_data
1704 struct gdbarch *gdbarch;
1708 enum gdb_signal stop_signal;
1711 /* Records the thread's register state for the corefile note
1715 linux_corefile_thread (struct thread_info *info,
1716 struct linux_corefile_thread_data *args)
1718 struct regcache *regcache;
1720 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1722 target_fetch_registers (regcache, -1);
1723 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1725 args->note_data = linux_collect_thread_registers
1726 (regcache, info->ptid, args->obfd, args->note_data,
1727 args->note_size, args->stop_signal);
1729 /* Don't return anything if we got no register information above,
1730 such a core file is useless. */
1731 if (args->note_data != NULL)
1732 if (!siginfo_data.empty ())
1733 args->note_data = elfcore_write_note (args->obfd,
1737 siginfo_data.data (),
1738 siginfo_data.size ());
1741 /* Fill the PRPSINFO structure with information about the process being
1742 debugged. Returns 1 in case of success, 0 for failures. Please note that
1743 even if the structure cannot be entirely filled (e.g., GDB was unable to
1744 gather information about the process UID/GID), this function will still
1745 return 1 since some information was already recorded. It will only return
1746 0 iff nothing can be gathered. */
1749 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1751 /* The filename which we will use to obtain some info about the process.
1752 We will basically use this to store the `/proc/PID/FILENAME' file. */
1754 /* The basename of the executable. */
1755 const char *basename;
1756 const char *infargs;
1757 /* Temporary buffer. */
1759 /* The valid states of a process, according to the Linux kernel. */
1760 const char valid_states[] = "RSDTZW";
1761 /* The program state. */
1762 const char *prog_state;
1763 /* The state of the process. */
1765 /* The PID of the program which generated the corefile. */
1767 /* Process flags. */
1768 unsigned int pr_flag;
1769 /* Process nice value. */
1771 /* The number of fields read by `sscanf'. */
1774 gdb_assert (p != NULL);
1776 /* Obtaining PID and filename. */
1777 pid = inferior_ptid.pid ();
1778 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1779 /* The full name of the program which generated the corefile. */
1780 gdb::unique_xmalloc_ptr<char> fname
1781 = target_fileio_read_stralloc (NULL, filename);
1783 if (fname == NULL || fname.get ()[0] == '\0')
1785 /* No program name was read, so we won't be able to retrieve more
1786 information about the process. */
1790 memset (p, 0, sizeof (*p));
1792 /* Defining the PID. */
1795 /* Copying the program name. Only the basename matters. */
1796 basename = lbasename (fname.get ());
1797 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1798 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1800 infargs = get_inferior_args ();
1802 /* The arguments of the program. */
1803 std::string psargs = fname.get ();
1804 if (infargs != NULL)
1805 psargs = psargs + " " + infargs;
1807 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1808 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1810 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1811 /* The contents of `/proc/PID/stat'. */
1812 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1813 = target_fileio_read_stralloc (NULL, filename);
1814 char *proc_stat = proc_stat_contents.get ();
1816 if (proc_stat == NULL || *proc_stat == '\0')
1818 /* Despite being unable to read more information about the
1819 process, we return 1 here because at least we have its
1820 command line, PID and arguments. */
1824 /* Ok, we have the stats. It's time to do a little parsing of the
1825 contents of the buffer, so that we end up reading what we want.
1827 The following parsing mechanism is strongly based on the
1828 information generated by the `fs/proc/array.c' file, present in
1829 the Linux kernel tree. More details about how the information is
1830 displayed can be obtained by seeing the manpage of proc(5),
1831 specifically under the entry of `/proc/[pid]/stat'. */
1833 /* Getting rid of the PID, since we already have it. */
1834 while (isdigit (*proc_stat))
1837 proc_stat = skip_spaces (proc_stat);
1839 /* ps command also relies on no trailing fields ever contain ')'. */
1840 proc_stat = strrchr (proc_stat, ')');
1841 if (proc_stat == NULL)
1845 proc_stat = skip_spaces (proc_stat);
1847 n_fields = sscanf (proc_stat,
1848 "%c" /* Process state. */
1849 "%d%d%d" /* Parent PID, group ID, session ID. */
1850 "%*d%*d" /* tty_nr, tpgid (not used). */
1852 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1853 cmajflt (not used). */
1854 "%*s%*s%*s%*s" /* utime, stime, cutime,
1855 cstime (not used). */
1856 "%*s" /* Priority (not used). */
1859 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1865 /* Again, we couldn't read the complementary information about
1866 the process state. However, we already have minimal
1867 information, so we just return 1 here. */
1871 /* Filling the structure fields. */
1872 prog_state = strchr (valid_states, pr_sname);
1873 if (prog_state != NULL)
1874 p->pr_state = prog_state - valid_states;
1877 /* Zero means "Running". */
1881 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1882 p->pr_zomb = p->pr_sname == 'Z';
1883 p->pr_nice = pr_nice;
1884 p->pr_flag = pr_flag;
1886 /* Finally, obtaining the UID and GID. For that, we read and parse the
1887 contents of the `/proc/PID/status' file. */
1888 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1889 /* The contents of `/proc/PID/status'. */
1890 gdb::unique_xmalloc_ptr<char> proc_status_contents
1891 = target_fileio_read_stralloc (NULL, filename);
1892 char *proc_status = proc_status_contents.get ();
1894 if (proc_status == NULL || *proc_status == '\0')
1896 /* Returning 1 since we already have a bunch of information. */
1900 /* Extracting the UID. */
1901 tmpstr = strstr (proc_status, "Uid:");
1904 /* Advancing the pointer to the beginning of the UID. */
1905 tmpstr += sizeof ("Uid:");
1906 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1909 if (isdigit (*tmpstr))
1910 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1913 /* Extracting the GID. */
1914 tmpstr = strstr (proc_status, "Gid:");
1917 /* Advancing the pointer to the beginning of the GID. */
1918 tmpstr += sizeof ("Gid:");
1919 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1922 if (isdigit (*tmpstr))
1923 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1929 /* Build the note section for a corefile, and return it in a malloc
1933 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1935 struct linux_corefile_thread_data thread_args;
1936 struct elf_internal_linux_prpsinfo prpsinfo;
1937 char *note_data = NULL;
1938 struct thread_info *curr_thr, *signalled_thr;
1940 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1943 if (linux_fill_prpsinfo (&prpsinfo))
1945 if (gdbarch_ptr_bit (gdbarch) == 64)
1946 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1947 note_data, note_size,
1950 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1951 note_data, note_size,
1955 /* Thread register information. */
1958 update_thread_list ();
1960 catch (const gdb_exception_error &e)
1962 exception_print (gdb_stderr, e);
1965 /* Like the kernel, prefer dumping the signalled thread first.
1966 "First thread" is what tools use to infer the signalled thread.
1967 In case there's more than one signalled thread, prefer the
1968 current thread, if it is signalled. */
1969 curr_thr = inferior_thread ();
1970 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1971 signalled_thr = curr_thr;
1974 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1975 if (signalled_thr == NULL)
1976 signalled_thr = curr_thr;
1979 thread_args.gdbarch = gdbarch;
1980 thread_args.obfd = obfd;
1981 thread_args.note_data = note_data;
1982 thread_args.note_size = note_size;
1983 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1985 linux_corefile_thread (signalled_thr, &thread_args);
1986 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1988 if (thr == signalled_thr)
1991 linux_corefile_thread (thr, &thread_args);
1994 note_data = thread_args.note_data;
1998 /* Auxillary vector. */
1999 gdb::optional<gdb::byte_vector> auxv =
2000 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
2001 if (auxv && !auxv->empty ())
2003 note_data = elfcore_write_note (obfd, note_data, note_size,
2004 "CORE", NT_AUXV, auxv->data (),
2011 /* SPU information. */
2012 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2016 /* File mappings. */
2017 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2018 note_data, note_size);
2023 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2024 gdbarch.h. This function is not static because it is exported to
2025 other -tdep files. */
2028 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2033 return GDB_SIGNAL_0;
2036 return GDB_SIGNAL_HUP;
2039 return GDB_SIGNAL_INT;
2042 return GDB_SIGNAL_QUIT;
2045 return GDB_SIGNAL_ILL;
2048 return GDB_SIGNAL_TRAP;
2051 return GDB_SIGNAL_ABRT;
2054 return GDB_SIGNAL_BUS;
2057 return GDB_SIGNAL_FPE;
2060 return GDB_SIGNAL_KILL;
2063 return GDB_SIGNAL_USR1;
2066 return GDB_SIGNAL_SEGV;
2069 return GDB_SIGNAL_USR2;
2072 return GDB_SIGNAL_PIPE;
2075 return GDB_SIGNAL_ALRM;
2078 return GDB_SIGNAL_TERM;
2081 return GDB_SIGNAL_CHLD;
2084 return GDB_SIGNAL_CONT;
2087 return GDB_SIGNAL_STOP;
2090 return GDB_SIGNAL_TSTP;
2093 return GDB_SIGNAL_TTIN;
2096 return GDB_SIGNAL_TTOU;
2099 return GDB_SIGNAL_URG;
2102 return GDB_SIGNAL_XCPU;
2105 return GDB_SIGNAL_XFSZ;
2107 case LINUX_SIGVTALRM:
2108 return GDB_SIGNAL_VTALRM;
2111 return GDB_SIGNAL_PROF;
2113 case LINUX_SIGWINCH:
2114 return GDB_SIGNAL_WINCH;
2116 /* No way to differentiate between SIGIO and SIGPOLL.
2117 Therefore, we just handle the first one. */
2119 return GDB_SIGNAL_IO;
2122 return GDB_SIGNAL_PWR;
2125 return GDB_SIGNAL_SYS;
2127 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2128 therefore we have to handle them here. */
2129 case LINUX_SIGRTMIN:
2130 return GDB_SIGNAL_REALTIME_32;
2132 case LINUX_SIGRTMAX:
2133 return GDB_SIGNAL_REALTIME_64;
2136 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2138 int offset = signal - LINUX_SIGRTMIN + 1;
2140 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2143 return GDB_SIGNAL_UNKNOWN;
2146 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2147 gdbarch.h. This function is not static because it is exported to
2148 other -tdep files. */
2151 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2152 enum gdb_signal signal)
2159 case GDB_SIGNAL_HUP:
2160 return LINUX_SIGHUP;
2162 case GDB_SIGNAL_INT:
2163 return LINUX_SIGINT;
2165 case GDB_SIGNAL_QUIT:
2166 return LINUX_SIGQUIT;
2168 case GDB_SIGNAL_ILL:
2169 return LINUX_SIGILL;
2171 case GDB_SIGNAL_TRAP:
2172 return LINUX_SIGTRAP;
2174 case GDB_SIGNAL_ABRT:
2175 return LINUX_SIGABRT;
2177 case GDB_SIGNAL_FPE:
2178 return LINUX_SIGFPE;
2180 case GDB_SIGNAL_KILL:
2181 return LINUX_SIGKILL;
2183 case GDB_SIGNAL_BUS:
2184 return LINUX_SIGBUS;
2186 case GDB_SIGNAL_SEGV:
2187 return LINUX_SIGSEGV;
2189 case GDB_SIGNAL_SYS:
2190 return LINUX_SIGSYS;
2192 case GDB_SIGNAL_PIPE:
2193 return LINUX_SIGPIPE;
2195 case GDB_SIGNAL_ALRM:
2196 return LINUX_SIGALRM;
2198 case GDB_SIGNAL_TERM:
2199 return LINUX_SIGTERM;
2201 case GDB_SIGNAL_URG:
2202 return LINUX_SIGURG;
2204 case GDB_SIGNAL_STOP:
2205 return LINUX_SIGSTOP;
2207 case GDB_SIGNAL_TSTP:
2208 return LINUX_SIGTSTP;
2210 case GDB_SIGNAL_CONT:
2211 return LINUX_SIGCONT;
2213 case GDB_SIGNAL_CHLD:
2214 return LINUX_SIGCHLD;
2216 case GDB_SIGNAL_TTIN:
2217 return LINUX_SIGTTIN;
2219 case GDB_SIGNAL_TTOU:
2220 return LINUX_SIGTTOU;
2225 case GDB_SIGNAL_XCPU:
2226 return LINUX_SIGXCPU;
2228 case GDB_SIGNAL_XFSZ:
2229 return LINUX_SIGXFSZ;
2231 case GDB_SIGNAL_VTALRM:
2232 return LINUX_SIGVTALRM;
2234 case GDB_SIGNAL_PROF:
2235 return LINUX_SIGPROF;
2237 case GDB_SIGNAL_WINCH:
2238 return LINUX_SIGWINCH;
2240 case GDB_SIGNAL_USR1:
2241 return LINUX_SIGUSR1;
2243 case GDB_SIGNAL_USR2:
2244 return LINUX_SIGUSR2;
2246 case GDB_SIGNAL_PWR:
2247 return LINUX_SIGPWR;
2249 case GDB_SIGNAL_POLL:
2250 return LINUX_SIGPOLL;
2252 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2253 therefore we have to handle it here. */
2254 case GDB_SIGNAL_REALTIME_32:
2255 return LINUX_SIGRTMIN;
2257 /* Same comment applies to _64. */
2258 case GDB_SIGNAL_REALTIME_64:
2259 return LINUX_SIGRTMAX;
2262 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2263 if (signal >= GDB_SIGNAL_REALTIME_33
2264 && signal <= GDB_SIGNAL_REALTIME_63)
2266 int offset = signal - GDB_SIGNAL_REALTIME_33;
2268 return LINUX_SIGRTMIN + 1 + offset;
2274 /* Helper for linux_vsyscall_range that does the real work of finding
2275 the vsyscall's address range. */
2278 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2283 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2286 /* It doesn't make sense to access the host's /proc when debugging a
2287 core file. Instead, look for the PT_LOAD segment that matches
2289 if (!target_has_execution)
2294 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2295 if (phdrs_size == -1)
2298 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2299 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2300 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2301 if (num_phdrs == -1)
2304 for (i = 0; i < num_phdrs; i++)
2305 if (phdrs.get ()[i].p_type == PT_LOAD
2306 && phdrs.get ()[i].p_vaddr == range->start)
2308 range->length = phdrs.get ()[i].p_memsz;
2315 /* We need to know the real target PID to access /proc. */
2316 if (current_inferior ()->fake_pid_p)
2319 pid = current_inferior ()->pid;
2321 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2322 reading /proc/PID/maps (2). The later identifies thread stacks
2323 in the output, which requires scanning every thread in the thread
2324 group to check whether a VMA is actually a thread's stack. With
2325 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2326 a few thousand threads, (1) takes a few miliseconds, while (2)
2327 takes several seconds. Also note that "smaps", what we read for
2328 determining core dump mappings, is even slower than "maps". */
2329 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2330 gdb::unique_xmalloc_ptr<char> data
2331 = target_fileio_read_stralloc (NULL, filename);
2335 char *saveptr = NULL;
2337 for (line = strtok_r (data.get (), "\n", &saveptr);
2339 line = strtok_r (NULL, "\n", &saveptr))
2341 ULONGEST addr, endaddr;
2342 const char *p = line;
2344 addr = strtoulst (p, &p, 16);
2345 if (addr == range->start)
2349 endaddr = strtoulst (p, &p, 16);
2350 range->length = endaddr - addr;
2356 warning (_("unable to open /proc file '%s'"), filename);
2361 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2362 caching, and defers the real work to linux_vsyscall_range_raw. */
2365 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2367 struct linux_info *info = get_linux_inferior_data ();
2369 if (info->vsyscall_range_p == 0)
2371 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2372 info->vsyscall_range_p = 1;
2374 info->vsyscall_range_p = -1;
2377 if (info->vsyscall_range_p < 0)
2380 *range = info->vsyscall_range;
2384 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2385 definitions would be dependent on compilation host. */
2386 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2387 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2389 /* See gdbarch.sh 'infcall_mmap'. */
2392 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2394 struct objfile *objf;
2395 /* Do there still exist any Linux systems without "mmap64"?
2396 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2397 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2398 struct value *addr_val;
2399 struct gdbarch *gdbarch = get_objfile_arch (objf);
2403 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2405 struct value *arg[ARG_LAST];
2407 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2409 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2410 arg[ARG_LENGTH] = value_from_ulongest
2411 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2412 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2413 | GDB_MMAP_PROT_EXEC))
2415 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2416 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2417 GDB_MMAP_MAP_PRIVATE
2418 | GDB_MMAP_MAP_ANONYMOUS);
2419 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2420 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2422 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2423 retval = value_as_address (addr_val);
2424 if (retval == (CORE_ADDR) -1)
2425 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2430 /* See gdbarch.sh 'infcall_munmap'. */
2433 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2435 struct objfile *objf;
2436 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2437 struct value *retval_val;
2438 struct gdbarch *gdbarch = get_objfile_arch (objf);
2442 ARG_ADDR, ARG_LENGTH, ARG_LAST
2444 struct value *arg[ARG_LAST];
2446 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2448 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2449 arg[ARG_LENGTH] = value_from_ulongest
2450 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2451 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2452 retval = value_as_long (retval_val);
2454 warning (_("Failed inferior munmap call at %s for %s bytes, "
2455 "errno is changed."),
2456 hex_string (addr), pulongest (size));
2459 /* See linux-tdep.h. */
2462 linux_displaced_step_location (struct gdbarch *gdbarch)
2467 /* Determine entry point from target auxiliary vector. This avoids
2468 the need for symbols. Also, when debugging a stand-alone SPU
2469 executable, entry_point_address () will point to an SPU
2470 local-store address and is thus not usable as displaced stepping
2471 location. The auxiliary vector gets us the PowerPC-side entry
2472 point address instead. */
2473 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2474 throw_error (NOT_SUPPORTED_ERROR,
2475 _("Cannot find AT_ENTRY auxiliary vector entry."));
2477 /* Make certain that the address points at real code, and not a
2478 function descriptor. */
2479 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2480 current_top_target ());
2482 /* Inferior calls also use the entry point as a breakpoint location.
2483 We don't want displaced stepping to interfere with those
2484 breakpoints, so leave space. */
2485 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2491 /* See linux-tdep.h. */
2494 linux_get_hwcap (struct target_ops *target)
2497 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2502 /* See linux-tdep.h. */
2505 linux_get_hwcap2 (struct target_ops *target)
2508 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2513 /* Display whether the gcore command is using the
2514 /proc/PID/coredump_filter file. */
2517 show_use_coredump_filter (struct ui_file *file, int from_tty,
2518 struct cmd_list_element *c, const char *value)
2520 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2521 " corefiles is %s.\n"), value);
2524 /* Display whether the gcore command is dumping mappings marked with
2525 the VM_DONTDUMP flag. */
2528 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2529 struct cmd_list_element *c, const char *value)
2531 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2532 " flag is %s.\n"), value);
2535 /* To be called from the various GDB_OSABI_LINUX handlers for the
2536 various GNU/Linux architectures and machine types. */
2539 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2541 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2542 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2543 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2544 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2545 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2546 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2547 set_gdbarch_has_shared_address_space (gdbarch,
2548 linux_has_shared_address_space);
2549 set_gdbarch_gdb_signal_from_target (gdbarch,
2550 linux_gdb_signal_from_target);
2551 set_gdbarch_gdb_signal_to_target (gdbarch,
2552 linux_gdb_signal_to_target);
2553 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2554 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2555 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2556 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2560 _initialize_linux_tdep (void)
2562 linux_gdbarch_data_handle =
2563 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2565 /* Observers used to invalidate the cache when needed. */
2566 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2567 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2569 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2570 &use_coredump_filter, _("\
2571 Set whether gcore should consider /proc/PID/coredump_filter."),
2573 Show whether gcore should consider /proc/PID/coredump_filter."),
2575 Use this command to set whether gcore should consider the contents\n\
2576 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2577 about this file, refer to the manpage of core(5)."),
2578 NULL, show_use_coredump_filter,
2579 &setlist, &showlist);
2581 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2582 &dump_excluded_mappings, _("\
2583 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2585 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2587 Use this command to set whether gcore should dump mappings marked with the\n\
2588 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2589 more information about this file, refer to the manpage of proc(5) and core(5)."),
2590 NULL, show_dump_excluded_mappings,
2591 &setlist, &showlist);