1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
29 #include <sys/syscall.h>
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
38 #include "inf-ptrace.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 /* Note on this file's use of signals:
55 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead
56 of another signal is not entirely significant; we just need for a
57 signal to be delivered, so that we can intercept it. SIGSTOP's
58 advantage is that it can not be blocked. A disadvantage is that it
59 is not a real-time signal, so it can only be queued once; we do not
60 keep track of other sources of SIGSTOP.
62 Two other signals that can't be blocked are SIGCONT and SIGKILL.
63 But we can't use them, because they have special behavior when the
64 signal is generated - not when it is delivered. SIGCONT resumes
65 the entire thread group and SIGKILL kills the entire thread group.
67 A delivered SIGSTOP would stop the entire thread group, not just the
68 thread we tkill'd. But we never let the SIGSTOP deliver; we always
69 intercept and cancel it (by PTRACE_CONT without passing SIGSTOP).
71 We could use a real-time signal instead. This would solve those
72 problems; we could use PTRACE_GETSIGINFO to locate the specific
73 stop signals sent by GDB. But we would still have to have some
74 support for SIGSTOP, since PTRACE_ATTACH generates it, and there
75 are races with trying to find a signal that is not blocked. */
81 /* If the system headers did not provide the constants, hard-code the normal
83 #ifndef PTRACE_EVENT_FORK
85 #define PTRACE_SETOPTIONS 0x4200
86 #define PTRACE_GETEVENTMSG 0x4201
88 /* options set using PTRACE_SETOPTIONS */
89 #define PTRACE_O_TRACESYSGOOD 0x00000001
90 #define PTRACE_O_TRACEFORK 0x00000002
91 #define PTRACE_O_TRACEVFORK 0x00000004
92 #define PTRACE_O_TRACECLONE 0x00000008
93 #define PTRACE_O_TRACEEXEC 0x00000010
94 #define PTRACE_O_TRACEVFORKDONE 0x00000020
95 #define PTRACE_O_TRACEEXIT 0x00000040
97 /* Wait extended result codes for the above trace options. */
98 #define PTRACE_EVENT_FORK 1
99 #define PTRACE_EVENT_VFORK 2
100 #define PTRACE_EVENT_CLONE 3
101 #define PTRACE_EVENT_EXEC 4
102 #define PTRACE_EVENT_VFORK_DONE 5
103 #define PTRACE_EVENT_EXIT 6
105 #endif /* PTRACE_EVENT_FORK */
107 /* We can't always assume that this flag is available, but all systems
108 with the ptrace event handlers also have __WALL, so it's safe to use
111 #define __WALL 0x40000000 /* Wait for any child. */
114 #ifndef PTRACE_GETSIGINFO
115 #define PTRACE_GETSIGINFO 0x4202
118 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
119 the use of the multi-threaded target. */
120 static struct target_ops *linux_ops;
121 static struct target_ops linux_ops_saved;
123 /* The method to call, if any, when a new thread is attached. */
124 static void (*linux_nat_new_thread) (ptid_t);
126 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
127 Called by our to_xfer_partial. */
128 static LONGEST (*super_xfer_partial) (struct target_ops *,
130 const char *, gdb_byte *,
134 static int debug_linux_nat;
136 show_debug_linux_nat (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
139 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
143 static int debug_linux_nat_async = 0;
145 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
148 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
152 static int linux_parent_pid;
154 struct simple_pid_list
158 struct simple_pid_list *next;
160 struct simple_pid_list *stopped_pids;
162 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
163 can not be used, 1 if it can. */
165 static int linux_supports_tracefork_flag = -1;
167 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
168 PTRACE_O_TRACEVFORKDONE. */
170 static int linux_supports_tracevforkdone_flag = -1;
172 /* Async mode support */
174 /* To listen to target events asynchronously, we install a SIGCHLD
175 handler whose duty is to call waitpid (-1, ..., WNOHANG) to get all
176 the pending events into a pipe. Whenever we're ready to handle
177 events asynchronously, this pipe is registered as the waitable file
178 handle in the event loop. When we get to entry target points
179 coming out of the common code (target_wait, target_resume, ...),
180 that are going to call waitpid, we block SIGCHLD signals, and
181 remove all the events placed in the pipe into a local queue. All
182 the subsequent calls to my_waitpid (a waitpid wrapper) check this
183 local queue first. */
185 /* True if async mode is currently on. */
186 static int linux_nat_async_enabled;
188 /* Zero if the async mode, although enabled, is masked, which means
189 linux_nat_wait should behave as if async mode was off. */
190 static int linux_nat_async_mask_value = 1;
192 /* The read/write ends of the pipe registered as waitable file in the
194 static int linux_nat_event_pipe[2] = { -1, -1 };
196 /* Number of queued events in the pipe. */
197 static volatile int linux_nat_num_queued_events;
199 /* If async mode is on, true if we're listening for events; false if
200 target events are blocked. */
201 static int linux_nat_async_events_enabled;
203 static int linux_nat_async_events (int enable);
204 static void pipe_to_local_event_queue (void);
205 static void local_event_queue_to_pipe (void);
206 static void linux_nat_event_pipe_push (int pid, int status, int options);
207 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
208 static void linux_nat_set_async_mode (int on);
209 static void linux_nat_async (void (*callback)
210 (enum inferior_event_type event_type, void *context),
212 static int linux_nat_async_mask (int mask);
213 static int kill_lwp (int lwpid, int signo);
215 /* Captures the result of a successful waitpid call, along with the
216 options used in that call. */
217 struct waitpid_result
222 struct waitpid_result *next;
225 /* A singly-linked list of the results of the waitpid calls performed
226 in the async SIGCHLD handler. */
227 static struct waitpid_result *waitpid_queue = NULL;
230 queued_waitpid (int pid, int *status, int flags)
232 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
234 if (debug_linux_nat_async)
235 fprintf_unfiltered (gdb_stdlog,
237 QWPID: linux_nat_async_events_enabled(%d), linux_nat_num_queued_events(%d)\n",
238 linux_nat_async_events_enabled,
239 linux_nat_num_queued_events);
243 for (; msg; prev = msg, msg = msg->next)
244 if (pid == -1 || pid == msg->pid)
247 else if (flags & __WCLONE)
249 for (; msg; prev = msg, msg = msg->next)
250 if (msg->options & __WCLONE
251 && (pid == -1 || pid == msg->pid))
256 for (; msg; prev = msg, msg = msg->next)
257 if ((msg->options & __WCLONE) == 0
258 && (pid == -1 || pid == msg->pid))
267 prev->next = msg->next;
269 waitpid_queue = msg->next;
273 *status = msg->status;
276 if (debug_linux_nat_async)
277 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
284 if (debug_linux_nat_async)
285 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
293 push_waitpid (int pid, int status, int options)
295 struct waitpid_result *event, *new_event;
297 new_event = xmalloc (sizeof (*new_event));
298 new_event->pid = pid;
299 new_event->status = status;
300 new_event->options = options;
301 new_event->next = NULL;
305 for (event = waitpid_queue;
306 event && event->next;
310 event->next = new_event;
313 waitpid_queue = new_event;
316 /* Drain all queued events of PID. If PID is -1, the effect is of
317 draining all events. */
319 drain_queued_events (int pid)
321 while (queued_waitpid (pid, NULL, __WALL) != -1)
326 /* Trivial list manipulation functions to keep track of a list of
327 new stopped processes. */
329 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
331 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
333 new_pid->status = status;
334 new_pid->next = *listp;
339 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
341 struct simple_pid_list **p;
343 for (p = listp; *p != NULL; p = &(*p)->next)
344 if ((*p)->pid == pid)
346 struct simple_pid_list *next = (*p)->next;
347 *status = (*p)->status;
356 linux_record_stopped_pid (int pid, int status)
358 add_to_pid_list (&stopped_pids, pid, status);
362 /* A helper function for linux_test_for_tracefork, called after fork (). */
365 linux_tracefork_child (void)
369 ptrace (PTRACE_TRACEME, 0, 0, 0);
370 kill (getpid (), SIGSTOP);
375 /* Wrapper function for waitpid which handles EINTR, and checks for
376 locally queued events. */
379 my_waitpid (int pid, int *status, int flags)
383 /* There should be no concurrent calls to waitpid. */
384 gdb_assert (!linux_nat_async_events_enabled);
386 ret = queued_waitpid (pid, status, flags);
392 ret = waitpid (pid, status, flags);
394 while (ret == -1 && errno == EINTR);
399 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
401 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
402 we know that the feature is not available. This may change the tracing
403 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
405 However, if it succeeds, we don't know for sure that the feature is
406 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
407 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
408 fork tracing, and let it fork. If the process exits, we assume that we
409 can't use TRACEFORK; if we get the fork notification, and we can extract
410 the new child's PID, then we assume that we can. */
413 linux_test_for_tracefork (int original_pid)
415 int child_pid, ret, status;
418 linux_supports_tracefork_flag = 0;
419 linux_supports_tracevforkdone_flag = 0;
421 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
427 perror_with_name (("fork"));
430 linux_tracefork_child ();
432 ret = my_waitpid (child_pid, &status, 0);
434 perror_with_name (("waitpid"));
435 else if (ret != child_pid)
436 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
437 if (! WIFSTOPPED (status))
438 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
440 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
443 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
446 warning (_("linux_test_for_tracefork: failed to kill child"));
450 ret = my_waitpid (child_pid, &status, 0);
451 if (ret != child_pid)
452 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
453 else if (!WIFSIGNALED (status))
454 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
455 "killed child"), status);
460 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
461 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
462 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
463 linux_supports_tracevforkdone_flag = (ret == 0);
465 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
467 warning (_("linux_test_for_tracefork: failed to resume child"));
469 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == child_pid && WIFSTOPPED (status)
472 && status >> 16 == PTRACE_EVENT_FORK)
475 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
476 if (ret == 0 && second_pid != 0)
480 linux_supports_tracefork_flag = 1;
481 my_waitpid (second_pid, &second_status, 0);
482 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
484 warning (_("linux_test_for_tracefork: failed to kill second child"));
485 my_waitpid (second_pid, &status, 0);
489 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
490 "(%d, status 0x%x)"), ret, status);
492 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
494 warning (_("linux_test_for_tracefork: failed to kill child"));
495 my_waitpid (child_pid, &status, 0);
498 /* Return non-zero iff we have tracefork functionality available.
499 This function also sets linux_supports_tracefork_flag. */
502 linux_supports_tracefork (int pid)
504 if (linux_supports_tracefork_flag == -1)
505 linux_test_for_tracefork (pid);
506 return linux_supports_tracefork_flag;
510 linux_supports_tracevforkdone (int pid)
512 if (linux_supports_tracefork_flag == -1)
513 linux_test_for_tracefork (pid);
514 return linux_supports_tracevforkdone_flag;
519 linux_enable_event_reporting (ptid_t ptid)
521 int pid = ptid_get_lwp (ptid);
525 pid = ptid_get_pid (ptid);
527 if (! linux_supports_tracefork (pid))
530 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
531 | PTRACE_O_TRACECLONE;
532 if (linux_supports_tracevforkdone (pid))
533 options |= PTRACE_O_TRACEVFORKDONE;
535 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
536 read-only process state. */
538 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
542 linux_child_post_attach (int pid)
544 linux_enable_event_reporting (pid_to_ptid (pid));
545 check_for_thread_db ();
549 linux_child_post_startup_inferior (ptid_t ptid)
551 linux_enable_event_reporting (ptid);
552 check_for_thread_db ();
556 linux_child_follow_fork (struct target_ops *ops, int follow_child)
559 struct target_waitstatus last_status;
561 int parent_pid, child_pid;
563 if (target_can_async_p ())
564 target_async (NULL, 0);
566 get_last_target_status (&last_ptid, &last_status);
567 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
568 parent_pid = ptid_get_lwp (last_ptid);
570 parent_pid = ptid_get_pid (last_ptid);
571 child_pid = last_status.value.related_pid;
575 /* We're already attached to the parent, by default. */
577 /* Before detaching from the child, remove all breakpoints from
578 it. (This won't actually modify the breakpoint list, but will
579 physically remove the breakpoints from the child.) */
580 /* If we vforked this will remove the breakpoints from the parent
581 also, but they'll be reinserted below. */
582 detach_breakpoints (child_pid);
584 /* Detach new forked process? */
587 if (info_verbose || debug_linux_nat)
589 target_terminal_ours ();
590 fprintf_filtered (gdb_stdlog,
591 "Detaching after fork from child process %d.\n",
595 ptrace (PTRACE_DETACH, child_pid, 0, 0);
599 struct fork_info *fp;
600 /* Retain child fork in ptrace (stopped) state. */
601 fp = find_fork_pid (child_pid);
603 fp = add_fork (child_pid);
604 fork_save_infrun_state (fp, 0);
609 gdb_assert (linux_supports_tracefork_flag >= 0);
610 if (linux_supports_tracevforkdone (0))
614 ptrace (PTRACE_CONT, parent_pid, 0, 0);
615 my_waitpid (parent_pid, &status, __WALL);
616 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
617 warning (_("Unexpected waitpid result %06x when waiting for "
618 "vfork-done"), status);
622 /* We can't insert breakpoints until the child has
623 finished with the shared memory region. We need to
624 wait until that happens. Ideal would be to just
626 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
627 - waitpid (parent_pid, &status, __WALL);
628 However, most architectures can't handle a syscall
629 being traced on the way out if it wasn't traced on
632 We might also think to loop, continuing the child
633 until it exits or gets a SIGTRAP. One problem is
634 that the child might call ptrace with PTRACE_TRACEME.
636 There's no simple and reliable way to figure out when
637 the vforked child will be done with its copy of the
638 shared memory. We could step it out of the syscall,
639 two instructions, let it go, and then single-step the
640 parent once. When we have hardware single-step, this
641 would work; with software single-step it could still
642 be made to work but we'd have to be able to insert
643 single-step breakpoints in the child, and we'd have
644 to insert -just- the single-step breakpoint in the
645 parent. Very awkward.
647 In the end, the best we can do is to make sure it
648 runs for a little while. Hopefully it will be out of
649 range of any breakpoints we reinsert. Usually this
650 is only the single-step breakpoint at vfork's return
656 /* Since we vforked, breakpoints were removed in the parent
657 too. Put them back. */
658 reattach_breakpoints (parent_pid);
663 char child_pid_spelling[40];
665 /* Needed to keep the breakpoint lists in sync. */
667 detach_breakpoints (child_pid);
669 /* Before detaching from the parent, remove all breakpoints from it. */
670 remove_breakpoints ();
672 if (info_verbose || debug_linux_nat)
674 target_terminal_ours ();
675 fprintf_filtered (gdb_stdlog,
676 "Attaching after fork to child process %d.\n",
680 /* If we're vforking, we may want to hold on to the parent until
681 the child exits or execs. At exec time we can remove the old
682 breakpoints from the parent and detach it; at exit time we
683 could do the same (or even, sneakily, resume debugging it - the
684 child's exec has failed, or something similar).
686 This doesn't clean up "properly", because we can't call
687 target_detach, but that's OK; if the current target is "child",
688 then it doesn't need any further cleanups, and lin_lwp will
689 generally not encounter vfork (vfork is defined to fork
692 The holding part is very easy if we have VFORKDONE events;
693 but keeping track of both processes is beyond GDB at the
694 moment. So we don't expose the parent to the rest of GDB.
695 Instead we quietly hold onto it until such time as we can
699 linux_parent_pid = parent_pid;
700 else if (!detach_fork)
702 struct fork_info *fp;
703 /* Retain parent fork in ptrace (stopped) state. */
704 fp = find_fork_pid (parent_pid);
706 fp = add_fork (parent_pid);
707 fork_save_infrun_state (fp, 0);
710 target_detach (NULL, 0);
712 inferior_ptid = ptid_build (child_pid, child_pid, 0);
714 /* Reinstall ourselves, since we might have been removed in
715 target_detach (which does other necessary cleanup). */
718 linux_nat_switch_fork (inferior_ptid);
719 check_for_thread_db ();
721 /* Reset breakpoints in the child as appropriate. */
722 follow_inferior_reset_breakpoints ();
725 if (target_can_async_p ())
726 target_async (inferior_event_handler, 0);
733 linux_child_insert_fork_catchpoint (int pid)
735 if (! linux_supports_tracefork (pid))
736 error (_("Your system does not support fork catchpoints."));
740 linux_child_insert_vfork_catchpoint (int pid)
742 if (!linux_supports_tracefork (pid))
743 error (_("Your system does not support vfork catchpoints."));
747 linux_child_insert_exec_catchpoint (int pid)
749 if (!linux_supports_tracefork (pid))
750 error (_("Your system does not support exec catchpoints."));
753 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
754 are processes sharing the same VM space. A multi-threaded process
755 is basically a group of such processes. However, such a grouping
756 is almost entirely a user-space issue; the kernel doesn't enforce
757 such a grouping at all (this might change in the future). In
758 general, we'll rely on the threads library (i.e. the GNU/Linux
759 Threads library) to provide such a grouping.
761 It is perfectly well possible to write a multi-threaded application
762 without the assistance of a threads library, by using the clone
763 system call directly. This module should be able to give some
764 rudimentary support for debugging such applications if developers
765 specify the CLONE_PTRACE flag in the clone system call, and are
766 using the Linux kernel 2.4 or above.
768 Note that there are some peculiarities in GNU/Linux that affect
771 - In general one should specify the __WCLONE flag to waitpid in
772 order to make it report events for any of the cloned processes
773 (and leave it out for the initial process). However, if a cloned
774 process has exited the exit status is only reported if the
775 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
776 we cannot use it since GDB must work on older systems too.
778 - When a traced, cloned process exits and is waited for by the
779 debugger, the kernel reassigns it to the original parent and
780 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
781 library doesn't notice this, which leads to the "zombie problem":
782 When debugged a multi-threaded process that spawns a lot of
783 threads will run out of processes, even if the threads exit,
784 because the "zombies" stay around. */
786 /* List of known LWPs. */
787 struct lwp_info *lwp_list;
789 /* Number of LWPs in the list. */
793 /* If the last reported event was a SIGTRAP, this variable is set to
794 the process id of the LWP/thread that got it. */
798 /* Since we cannot wait (in linux_nat_wait) for the initial process and
799 any cloned processes with a single call to waitpid, we have to use
800 the WNOHANG flag and call waitpid in a loop. To optimize
801 things a bit we use `sigsuspend' to wake us up when a process has
802 something to report (it will send us a SIGCHLD if it has). To make
803 this work we have to juggle with the signal mask. We save the
804 original signal mask such that we can restore it before creating a
805 new process in order to avoid blocking certain signals in the
806 inferior. We then block SIGCHLD during the waitpid/sigsuspend
809 /* Original signal mask. */
810 static sigset_t normal_mask;
812 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
813 _initialize_linux_nat. */
814 static sigset_t suspend_mask;
816 /* SIGCHLD action for synchronous mode. */
817 struct sigaction sync_sigchld_action;
819 /* SIGCHLD action for asynchronous mode. */
820 static struct sigaction async_sigchld_action;
823 /* Prototypes for local functions. */
824 static int stop_wait_callback (struct lwp_info *lp, void *data);
825 static int linux_nat_thread_alive (ptid_t ptid);
826 static char *linux_child_pid_to_exec_file (int pid);
827 static int cancel_breakpoint (struct lwp_info *lp);
830 /* Convert wait status STATUS to a string. Used for printing debug
834 status_to_str (int status)
838 if (WIFSTOPPED (status))
839 snprintf (buf, sizeof (buf), "%s (stopped)",
840 strsignal (WSTOPSIG (status)));
841 else if (WIFSIGNALED (status))
842 snprintf (buf, sizeof (buf), "%s (terminated)",
843 strsignal (WSTOPSIG (status)));
845 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
850 /* Initialize the list of LWPs. Note that this module, contrary to
851 what GDB's generic threads layer does for its thread list,
852 re-initializes the LWP lists whenever we mourn or detach (which
853 doesn't involve mourning) the inferior. */
858 struct lwp_info *lp, *lpnext;
860 for (lp = lwp_list; lp; lp = lpnext)
870 /* Add the LWP specified by PID to the list. Return a pointer to the
871 structure describing the new LWP. The LWP should already be stopped
872 (with an exception for the very first LWP). */
874 static struct lwp_info *
875 add_lwp (ptid_t ptid)
879 gdb_assert (is_lwp (ptid));
881 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
883 memset (lp, 0, sizeof (struct lwp_info));
885 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
893 if (num_lwps > 1 && linux_nat_new_thread != NULL)
894 linux_nat_new_thread (ptid);
899 /* Remove the LWP specified by PID from the list. */
902 delete_lwp (ptid_t ptid)
904 struct lwp_info *lp, *lpprev;
908 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
909 if (ptid_equal (lp->ptid, ptid))
918 lpprev->next = lp->next;
925 /* Return a pointer to the structure describing the LWP corresponding
926 to PID. If no corresponding LWP could be found, return NULL. */
928 static struct lwp_info *
929 find_lwp_pid (ptid_t ptid)
935 lwp = GET_LWP (ptid);
937 lwp = GET_PID (ptid);
939 for (lp = lwp_list; lp; lp = lp->next)
940 if (lwp == GET_LWP (lp->ptid))
946 /* Call CALLBACK with its second argument set to DATA for every LWP in
947 the list. If CALLBACK returns 1 for a particular LWP, return a
948 pointer to the structure describing that LWP immediately.
949 Otherwise return NULL. */
952 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
954 struct lwp_info *lp, *lpnext;
956 for (lp = lwp_list; lp; lp = lpnext)
959 if ((*callback) (lp, data))
966 /* Update our internal state when changing from one fork (checkpoint,
967 et cetera) to another indicated by NEW_PTID. We can only switch
968 single-threaded applications, so we only create one new LWP, and
969 the previous list is discarded. */
972 linux_nat_switch_fork (ptid_t new_ptid)
978 lp = add_lwp (new_ptid);
979 add_thread_silent (new_ptid);
983 /* Record a PTID for later deletion. */
988 struct saved_ptids *next;
990 static struct saved_ptids *threads_to_delete;
993 record_dead_thread (ptid_t ptid)
995 struct saved_ptids *p = xmalloc (sizeof (struct saved_ptids));
997 p->next = threads_to_delete;
998 threads_to_delete = p;
1001 /* Delete any dead threads which are not the current thread. */
1006 struct saved_ptids **p = &threads_to_delete;
1009 if (! ptid_equal ((*p)->ptid, inferior_ptid))
1011 struct saved_ptids *tmp = *p;
1012 delete_thread (tmp->ptid);
1020 /* Handle the exit of a single thread LP. */
1023 exit_lwp (struct lwp_info *lp)
1025 if (in_thread_list (lp->ptid))
1027 if (print_thread_events)
1028 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1030 /* Core GDB cannot deal with us deleting the current thread. */
1031 if (!ptid_equal (lp->ptid, inferior_ptid))
1032 delete_thread (lp->ptid);
1034 record_dead_thread (lp->ptid);
1037 delete_lwp (lp->ptid);
1040 /* Detect `T (stopped)' in `/proc/PID/status'.
1041 Other states including `T (tracing stop)' are reported as false. */
1044 pid_is_stopped (pid_t pid)
1050 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1051 status_file = fopen (buf, "r");
1052 if (status_file != NULL)
1056 while (fgets (buf, sizeof (buf), status_file))
1058 if (strncmp (buf, "State:", 6) == 0)
1064 if (have_state && strstr (buf, "T (stopped)") != NULL)
1066 fclose (status_file);
1071 /* Wait for the LWP specified by LP, which we have just attached to.
1072 Returns a wait status for that LWP, to cache. */
1075 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1078 pid_t new_pid, pid = GET_LWP (ptid);
1081 if (pid_is_stopped (pid))
1083 if (debug_linux_nat)
1084 fprintf_unfiltered (gdb_stdlog,
1085 "LNPAW: Attaching to a stopped process\n");
1087 /* The process is definitely stopped. It is in a job control
1088 stop, unless the kernel predates the TASK_STOPPED /
1089 TASK_TRACED distinction, in which case it might be in a
1090 ptrace stop. Make sure it is in a ptrace stop; from there we
1091 can kill it, signal it, et cetera.
1093 First make sure there is a pending SIGSTOP. Since we are
1094 already attached, the process can not transition from stopped
1095 to running without a PTRACE_CONT; so we know this signal will
1096 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1097 probably already in the queue (unless this kernel is old
1098 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1099 is not an RT signal, it can only be queued once. */
1100 kill_lwp (pid, SIGSTOP);
1102 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1103 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1104 ptrace (PTRACE_CONT, pid, 0, 0);
1107 /* Make sure the initial process is stopped. The user-level threads
1108 layer might want to poke around in the inferior, and that won't
1109 work if things haven't stabilized yet. */
1110 new_pid = my_waitpid (pid, &status, 0);
1111 if (new_pid == -1 && errno == ECHILD)
1114 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1116 /* Try again with __WCLONE to check cloned processes. */
1117 new_pid = my_waitpid (pid, &status, __WCLONE);
1121 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1123 if (WSTOPSIG (status) != SIGSTOP)
1126 if (debug_linux_nat)
1127 fprintf_unfiltered (gdb_stdlog,
1128 "LNPAW: Received %s after attaching\n",
1129 status_to_str (status));
1135 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1136 if the new LWP could not be attached. */
1139 lin_lwp_attach_lwp (ptid_t ptid)
1141 struct lwp_info *lp;
1142 int async_events_were_enabled = 0;
1144 gdb_assert (is_lwp (ptid));
1146 if (target_can_async_p ())
1147 async_events_were_enabled = linux_nat_async_events (0);
1149 lp = find_lwp_pid (ptid);
1151 /* We assume that we're already attached to any LWP that has an id
1152 equal to the overall process id, and to any LWP that is already
1153 in our list of LWPs. If we're not seeing exit events from threads
1154 and we've had PID wraparound since we last tried to stop all threads,
1155 this assumption might be wrong; fortunately, this is very unlikely
1157 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1159 int status, cloned = 0, signalled = 0;
1161 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1163 /* If we fail to attach to the thread, issue a warning,
1164 but continue. One way this can happen is if thread
1165 creation is interrupted; as of Linux kernel 2.6.19, a
1166 bug may place threads in the thread list and then fail
1168 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1169 safe_strerror (errno));
1173 if (debug_linux_nat)
1174 fprintf_unfiltered (gdb_stdlog,
1175 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1176 target_pid_to_str (ptid));
1178 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1179 lp = add_lwp (ptid);
1181 lp->cloned = cloned;
1182 lp->signalled = signalled;
1183 if (WSTOPSIG (status) != SIGSTOP)
1186 lp->status = status;
1189 target_post_attach (GET_LWP (lp->ptid));
1191 if (debug_linux_nat)
1193 fprintf_unfiltered (gdb_stdlog,
1194 "LLAL: waitpid %s received %s\n",
1195 target_pid_to_str (ptid),
1196 status_to_str (status));
1201 /* We assume that the LWP representing the original process is
1202 already stopped. Mark it as stopped in the data structure
1203 that the GNU/linux ptrace layer uses to keep track of
1204 threads. Note that this won't have already been done since
1205 the main thread will have, we assume, been stopped by an
1206 attach from a different layer. */
1208 lp = add_lwp (ptid);
1212 if (async_events_were_enabled)
1213 linux_nat_async_events (1);
1219 linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
1222 int saved_async = 0;
1224 /* The fork_child mechanism is synchronous and calls target_wait, so
1225 we have to mask the async mode. */
1227 if (target_can_async_p ())
1228 saved_async = linux_nat_async_mask (0);
1231 /* Restore the original signal mask. */
1232 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1233 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1234 suspend_mask = normal_mask;
1235 sigdelset (&suspend_mask, SIGCHLD);
1238 linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);
1241 linux_nat_async_mask (saved_async);
1245 linux_nat_attach (char *args, int from_tty)
1247 struct lwp_info *lp;
1250 /* FIXME: We should probably accept a list of process id's, and
1251 attach all of them. */
1252 linux_ops->to_attach (args, from_tty);
1254 if (!target_can_async_p ())
1256 /* Restore the original signal mask. */
1257 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1258 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1259 suspend_mask = normal_mask;
1260 sigdelset (&suspend_mask, SIGCHLD);
1263 /* Add the initial process as the first LWP to the list. */
1264 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1265 lp = add_lwp (inferior_ptid);
1267 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1271 /* If this process is not using thread_db, then we still don't
1272 detect any other threads, but add at least this one. */
1273 add_thread_silent (lp->ptid);
1275 /* Save the wait status to report later. */
1277 if (debug_linux_nat)
1278 fprintf_unfiltered (gdb_stdlog,
1279 "LNA: waitpid %ld, saving status %s\n",
1280 (long) GET_PID (lp->ptid), status_to_str (status));
1282 if (!target_can_async_p ())
1283 lp->status = status;
1286 /* We already waited for this LWP, so put the wait result on the
1287 pipe. The event loop will wake up and gets us to handling
1289 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1290 lp->cloned ? __WCLONE : 0);
1291 /* Register in the event loop. */
1292 target_async (inferior_event_handler, 0);
1296 /* Get pending status of LP. */
1298 get_pending_status (struct lwp_info *lp, int *status)
1300 struct target_waitstatus last;
1303 get_last_target_status (&last_ptid, &last);
1305 /* If this lwp is the ptid that GDB is processing an event from, the
1306 signal will be in stop_signal. Otherwise, in all-stop + sync
1307 mode, we may cache pending events in lp->status while trying to
1308 stop all threads (see stop_wait_callback). In async mode, the
1309 events are always cached in waitpid_queue. */
1312 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1314 if (stop_signal != TARGET_SIGNAL_0
1315 && signal_pass_state (stop_signal))
1316 *status = W_STOPCODE (target_signal_to_host (stop_signal));
1318 else if (target_can_async_p ())
1319 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1321 *status = lp->status;
1327 detach_callback (struct lwp_info *lp, void *data)
1329 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1331 if (debug_linux_nat && lp->status)
1332 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1333 strsignal (WSTOPSIG (lp->status)),
1334 target_pid_to_str (lp->ptid));
1336 /* If there is a pending SIGSTOP, get rid of it. */
1339 if (debug_linux_nat)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "DC: Sending SIGCONT to %s\n",
1342 target_pid_to_str (lp->ptid));
1344 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1348 /* We don't actually detach from the LWP that has an id equal to the
1349 overall process id just yet. */
1350 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1354 /* Pass on any pending signal for this LWP. */
1355 get_pending_status (lp, &status);
1358 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1359 WSTOPSIG (status)) < 0)
1360 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1361 safe_strerror (errno));
1363 if (debug_linux_nat)
1364 fprintf_unfiltered (gdb_stdlog,
1365 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1366 target_pid_to_str (lp->ptid),
1367 strsignal (WSTOPSIG (lp->status)));
1369 delete_lwp (lp->ptid);
1376 linux_nat_detach (char *args, int from_tty)
1380 enum target_signal sig;
1382 if (target_can_async_p ())
1383 linux_nat_async (NULL, 0);
1385 iterate_over_lwps (detach_callback, NULL);
1387 /* Only the initial process should be left right now. */
1388 gdb_assert (num_lwps == 1);
1390 /* Pass on any pending signal for the last LWP. */
1391 if ((args == NULL || *args == '\0')
1392 && get_pending_status (lwp_list, &status) != -1
1393 && WIFSTOPPED (status))
1395 /* Put the signal number in ARGS so that inf_ptrace_detach will
1396 pass it along with PTRACE_DETACH. */
1398 sprintf (args, "%d", (int) WSTOPSIG (status));
1399 fprintf_unfiltered (gdb_stdlog,
1400 "LND: Sending signal %s to %s\n",
1402 target_pid_to_str (lwp_list->ptid));
1405 trap_ptid = null_ptid;
1407 /* Destroy LWP info; it's no longer valid. */
1410 pid = GET_PID (inferior_ptid);
1411 inferior_ptid = pid_to_ptid (pid);
1412 linux_ops->to_detach (args, from_tty);
1414 if (target_can_async_p ())
1415 drain_queued_events (pid);
1421 resume_callback (struct lwp_info *lp, void *data)
1423 if (lp->stopped && lp->status == 0)
1425 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1426 0, TARGET_SIGNAL_0);
1427 if (debug_linux_nat)
1428 fprintf_unfiltered (gdb_stdlog,
1429 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1430 target_pid_to_str (lp->ptid));
1433 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1440 resume_clear_callback (struct lwp_info *lp, void *data)
1447 resume_set_callback (struct lwp_info *lp, void *data)
1454 linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1456 struct lwp_info *lp;
1459 if (debug_linux_nat)
1460 fprintf_unfiltered (gdb_stdlog,
1461 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1462 step ? "step" : "resume",
1463 target_pid_to_str (ptid),
1464 signo ? strsignal (signo) : "0",
1465 target_pid_to_str (inferior_ptid));
1469 if (target_can_async_p ())
1470 /* Block events while we're here. */
1471 linux_nat_async_events (0);
1473 /* A specific PTID means `step only this process id'. */
1474 resume_all = (PIDGET (ptid) == -1);
1477 iterate_over_lwps (resume_set_callback, NULL);
1479 iterate_over_lwps (resume_clear_callback, NULL);
1481 /* If PID is -1, it's the current inferior that should be
1482 handled specially. */
1483 if (PIDGET (ptid) == -1)
1484 ptid = inferior_ptid;
1486 lp = find_lwp_pid (ptid);
1487 gdb_assert (lp != NULL);
1489 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1491 /* Remember if we're stepping. */
1494 /* Mark this LWP as resumed. */
1497 /* If we have a pending wait status for this thread, there is no
1498 point in resuming the process. But first make sure that
1499 linux_nat_wait won't preemptively handle the event - we
1500 should never take this short-circuit if we are going to
1501 leave LP running, since we have skipped resuming all the
1502 other threads. This bit of code needs to be synchronized
1503 with linux_nat_wait. */
1505 /* In async mode, we never have pending wait status. */
1506 if (target_can_async_p () && lp->status)
1507 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1509 if (lp->status && WIFSTOPPED (lp->status))
1511 int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1513 if (signal_stop_state (saved_signo) == 0
1514 && signal_print_state (saved_signo) == 0
1515 && signal_pass_state (saved_signo) == 1)
1517 if (debug_linux_nat)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "LLR: Not short circuiting for ignored "
1520 "status 0x%x\n", lp->status);
1522 /* FIXME: What should we do if we are supposed to continue
1523 this thread with a signal? */
1524 gdb_assert (signo == TARGET_SIGNAL_0);
1525 signo = saved_signo;
1532 /* FIXME: What should we do if we are supposed to continue
1533 this thread with a signal? */
1534 gdb_assert (signo == TARGET_SIGNAL_0);
1536 if (debug_linux_nat)
1537 fprintf_unfiltered (gdb_stdlog,
1538 "LLR: Short circuiting for status 0x%x\n",
1544 /* Mark LWP as not stopped to prevent it from being continued by
1549 iterate_over_lwps (resume_callback, NULL);
1551 linux_ops->to_resume (ptid, step, signo);
1552 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1554 if (debug_linux_nat)
1555 fprintf_unfiltered (gdb_stdlog,
1556 "LLR: %s %s, %s (resume event thread)\n",
1557 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1558 target_pid_to_str (ptid),
1559 signo ? strsignal (signo) : "0");
1561 if (target_can_async_p ())
1563 target_executing = 1;
1564 target_async (inferior_event_handler, 0);
1568 /* Issue kill to specified lwp. */
1570 static int tkill_failed;
1573 kill_lwp (int lwpid, int signo)
1577 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1578 fails, then we are not using nptl threads and we should be using kill. */
1580 #ifdef HAVE_TKILL_SYSCALL
1583 int ret = syscall (__NR_tkill, lwpid, signo);
1584 if (errno != ENOSYS)
1591 return kill (lwpid, signo);
1594 /* Handle a GNU/Linux extended wait response. If we see a clone
1595 event, we need to add the new LWP to our list (and not report the
1596 trap to higher layers). This function returns non-zero if the
1597 event should be ignored and we should wait again. If STOPPING is
1598 true, the new LWP remains stopped, otherwise it is continued. */
1601 linux_handle_extended_wait (struct lwp_info *lp, int status,
1604 int pid = GET_LWP (lp->ptid);
1605 struct target_waitstatus *ourstatus = &lp->waitstatus;
1606 struct lwp_info *new_lp = NULL;
1607 int event = status >> 16;
1609 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1610 || event == PTRACE_EVENT_CLONE)
1612 unsigned long new_pid;
1615 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1617 /* If we haven't already seen the new PID stop, wait for it now. */
1618 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1620 /* The new child has a pending SIGSTOP. We can't affect it until it
1621 hits the SIGSTOP, but we're already attached. */
1622 ret = my_waitpid (new_pid, &status,
1623 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1625 perror_with_name (_("waiting for new child"));
1626 else if (ret != new_pid)
1627 internal_error (__FILE__, __LINE__,
1628 _("wait returned unexpected PID %d"), ret);
1629 else if (!WIFSTOPPED (status))
1630 internal_error (__FILE__, __LINE__,
1631 _("wait returned unexpected status 0x%x"), status);
1634 ourstatus->value.related_pid = new_pid;
1636 if (event == PTRACE_EVENT_FORK)
1637 ourstatus->kind = TARGET_WAITKIND_FORKED;
1638 else if (event == PTRACE_EVENT_VFORK)
1639 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1642 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1643 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1646 if (WSTOPSIG (status) != SIGSTOP)
1648 /* This can happen if someone starts sending signals to
1649 the new thread before it gets a chance to run, which
1650 have a lower number than SIGSTOP (e.g. SIGUSR1).
1651 This is an unlikely case, and harder to handle for
1652 fork / vfork than for clone, so we do not try - but
1653 we handle it for clone events here. We'll send
1654 the other signal on to the thread below. */
1656 new_lp->signalled = 1;
1662 new_lp->stopped = 1;
1665 new_lp->resumed = 1;
1666 ptrace (PTRACE_CONT, lp->waitstatus.value.related_pid, 0,
1667 status ? WSTOPSIG (status) : 0);
1670 if (debug_linux_nat)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "LHEW: Got clone event from LWP %ld, resuming\n",
1673 GET_LWP (lp->ptid));
1674 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1682 if (event == PTRACE_EVENT_EXEC)
1684 ourstatus->kind = TARGET_WAITKIND_EXECD;
1685 ourstatus->value.execd_pathname
1686 = xstrdup (linux_child_pid_to_exec_file (pid));
1688 if (linux_parent_pid)
1690 detach_breakpoints (linux_parent_pid);
1691 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1693 linux_parent_pid = 0;
1699 internal_error (__FILE__, __LINE__,
1700 _("unknown ptrace event %d"), event);
1703 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1707 wait_lwp (struct lwp_info *lp)
1711 int thread_dead = 0;
1713 gdb_assert (!lp->stopped);
1714 gdb_assert (lp->status == 0);
1716 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
1717 if (pid == -1 && errno == ECHILD)
1719 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
1720 if (pid == -1 && errno == ECHILD)
1722 /* The thread has previously exited. We need to delete it
1723 now because, for some vendor 2.4 kernels with NPTL
1724 support backported, there won't be an exit event unless
1725 it is the main thread. 2.6 kernels will report an exit
1726 event for each thread that exits, as expected. */
1728 if (debug_linux_nat)
1729 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1730 target_pid_to_str (lp->ptid));
1736 gdb_assert (pid == GET_LWP (lp->ptid));
1738 if (debug_linux_nat)
1740 fprintf_unfiltered (gdb_stdlog,
1741 "WL: waitpid %s received %s\n",
1742 target_pid_to_str (lp->ptid),
1743 status_to_str (status));
1747 /* Check if the thread has exited. */
1748 if (WIFEXITED (status) || WIFSIGNALED (status))
1751 if (debug_linux_nat)
1752 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1753 target_pid_to_str (lp->ptid));
1762 gdb_assert (WIFSTOPPED (status));
1764 /* Handle GNU/Linux's extended waitstatus for trace events. */
1765 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1767 if (debug_linux_nat)
1768 fprintf_unfiltered (gdb_stdlog,
1769 "WL: Handling extended status 0x%06x\n",
1771 if (linux_handle_extended_wait (lp, status, 1))
1772 return wait_lwp (lp);
1778 /* Save the most recent siginfo for LP. This is currently only called
1779 for SIGTRAP; some ports use the si_addr field for
1780 target_stopped_data_address. In the future, it may also be used to
1781 restore the siginfo of requeued signals. */
1784 save_siginfo (struct lwp_info *lp)
1787 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
1788 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
1791 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1794 /* Send a SIGSTOP to LP. */
1797 stop_callback (struct lwp_info *lp, void *data)
1799 if (!lp->stopped && !lp->signalled)
1803 if (debug_linux_nat)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "SC: kill %s **<SIGSTOP>**\n",
1807 target_pid_to_str (lp->ptid));
1810 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
1811 if (debug_linux_nat)
1813 fprintf_unfiltered (gdb_stdlog,
1814 "SC: lwp kill %d %s\n",
1816 errno ? safe_strerror (errno) : "ERRNO-OK");
1820 gdb_assert (lp->status == 0);
1826 /* Wait until LP is stopped. If DATA is non-null it is interpreted as
1827 a pointer to a set of signals to be flushed immediately. */
1830 stop_wait_callback (struct lwp_info *lp, void *data)
1832 sigset_t *flush_mask = data;
1838 status = wait_lwp (lp);
1842 /* Ignore any signals in FLUSH_MASK. */
1843 if (flush_mask && sigismember (flush_mask, WSTOPSIG (status)))
1852 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1853 if (debug_linux_nat)
1854 fprintf_unfiltered (gdb_stdlog,
1855 "PTRACE_CONT %s, 0, 0 (%s)\n",
1856 target_pid_to_str (lp->ptid),
1857 errno ? safe_strerror (errno) : "OK");
1859 return stop_wait_callback (lp, flush_mask);
1862 if (WSTOPSIG (status) != SIGSTOP)
1864 if (WSTOPSIG (status) == SIGTRAP)
1866 /* If a LWP other than the LWP that we're reporting an
1867 event for has hit a GDB breakpoint (as opposed to
1868 some random trap signal), then just arrange for it to
1869 hit it again later. We don't keep the SIGTRAP status
1870 and don't forward the SIGTRAP signal to the LWP. We
1871 will handle the current event, eventually we will
1872 resume all LWPs, and this one will get its breakpoint
1875 If we do not do this, then we run the risk that the
1876 user will delete or disable the breakpoint, but the
1877 thread will have already tripped on it. */
1879 /* Save the trap's siginfo in case we need it later. */
1882 /* Now resume this LWP and get the SIGSTOP event. */
1884 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1885 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "PTRACE_CONT %s, 0, 0 (%s)\n",
1889 target_pid_to_str (lp->ptid),
1890 errno ? safe_strerror (errno) : "OK");
1892 fprintf_unfiltered (gdb_stdlog,
1893 "SWC: Candidate SIGTRAP event in %s\n",
1894 target_pid_to_str (lp->ptid));
1896 /* Hold this event/waitstatus while we check to see if
1897 there are any more (we still want to get that SIGSTOP). */
1898 stop_wait_callback (lp, data);
1900 if (target_can_async_p ())
1902 /* Don't leave a pending wait status in async mode.
1903 Retrigger the breakpoint. */
1904 if (!cancel_breakpoint (lp))
1906 /* There was no gdb breakpoint set at pc. Put
1907 the event back in the queue. */
1908 if (debug_linux_nat)
1909 fprintf_unfiltered (gdb_stdlog,
1910 "SWC: kill %s, %s\n",
1911 target_pid_to_str (lp->ptid),
1912 status_to_str ((int) status));
1913 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
1918 /* Hold the SIGTRAP for handling by
1920 /* If there's another event, throw it back into the
1924 if (debug_linux_nat)
1925 fprintf_unfiltered (gdb_stdlog,
1926 "SWC: kill %s, %s\n",
1927 target_pid_to_str (lp->ptid),
1928 status_to_str ((int) status));
1929 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
1931 /* Save the sigtrap event. */
1932 lp->status = status;
1938 /* The thread was stopped with a signal other than
1939 SIGSTOP, and didn't accidentally trip a breakpoint. */
1941 if (debug_linux_nat)
1943 fprintf_unfiltered (gdb_stdlog,
1944 "SWC: Pending event %s in %s\n",
1945 status_to_str ((int) status),
1946 target_pid_to_str (lp->ptid));
1948 /* Now resume this LWP and get the SIGSTOP event. */
1950 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1951 if (debug_linux_nat)
1952 fprintf_unfiltered (gdb_stdlog,
1953 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
1954 target_pid_to_str (lp->ptid),
1955 errno ? safe_strerror (errno) : "OK");
1957 /* Hold this event/waitstatus while we check to see if
1958 there are any more (we still want to get that SIGSTOP). */
1959 stop_wait_callback (lp, data);
1961 /* If the lp->status field is still empty, use it to
1962 hold this event. If not, then this event must be
1963 returned to the event queue of the LWP. */
1964 if (lp->status || target_can_async_p ())
1966 if (debug_linux_nat)
1968 fprintf_unfiltered (gdb_stdlog,
1969 "SWC: kill %s, %s\n",
1970 target_pid_to_str (lp->ptid),
1971 status_to_str ((int) status));
1973 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
1976 lp->status = status;
1982 /* We caught the SIGSTOP that we intended to catch, so
1983 there's no SIGSTOP pending. */
1992 /* Check whether PID has any pending signals in FLUSH_MASK. If so set
1993 the appropriate bits in PENDING, and return 1 - otherwise return 0. */
1996 linux_nat_has_pending (int pid, sigset_t *pending, sigset_t *flush_mask)
1998 sigset_t blocked, ignored;
2001 linux_proc_pending_signals (pid, pending, &blocked, &ignored);
2006 for (i = 1; i < NSIG; i++)
2007 if (sigismember (pending, i))
2008 if (!sigismember (flush_mask, i)
2009 || sigismember (&blocked, i)
2010 || sigismember (&ignored, i))
2011 sigdelset (pending, i);
2013 if (sigisemptyset (pending))
2019 /* DATA is interpreted as a mask of signals to flush. If LP has
2020 signals pending, and they are all in the flush mask, then arrange
2021 to flush them. LP should be stopped, as should all other threads
2022 it might share a signal queue with. */
2025 flush_callback (struct lwp_info *lp, void *data)
2027 sigset_t *flush_mask = data;
2028 sigset_t pending, intersection, blocked, ignored;
2031 /* Normally, when an LWP exits, it is removed from the LWP list. The
2032 last LWP isn't removed till later, however. So if there is only
2033 one LWP on the list, make sure it's alive. */
2034 if (lwp_list == lp && lp->next == NULL)
2035 if (!linux_nat_thread_alive (lp->ptid))
2038 /* Just because the LWP is stopped doesn't mean that new signals
2039 can't arrive from outside, so this function must be careful of
2040 race conditions. However, because all threads are stopped, we
2041 can assume that the pending mask will not shrink unless we resume
2042 the LWP, and that it will then get another signal. We can't
2043 control which one, however. */
2047 if (debug_linux_nat)
2048 printf_unfiltered (_("FC: LP has pending status %06x\n"), lp->status);
2049 if (WIFSTOPPED (lp->status) && sigismember (flush_mask, WSTOPSIG (lp->status)))
2053 /* While there is a pending signal we would like to flush, continue
2054 the inferior and collect another signal. But if there's already
2055 a saved status that we don't want to flush, we can't resume the
2056 inferior - if it stopped for some other reason we wouldn't have
2057 anywhere to save the new status. In that case, we must leave the
2058 signal unflushed (and possibly generate an extra SIGINT stop).
2059 That's much less bad than losing a signal. */
2060 while (lp->status == 0
2061 && linux_nat_has_pending (GET_LWP (lp->ptid), &pending, flush_mask))
2066 ret = ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2067 if (debug_linux_nat)
2068 fprintf_unfiltered (gdb_stderr,
2069 "FC: Sent PTRACE_CONT, ret %d %d\n", ret, errno);
2072 stop_wait_callback (lp, flush_mask);
2073 if (debug_linux_nat)
2074 fprintf_unfiltered (gdb_stderr,
2075 "FC: Wait finished; saved status is %d\n",
2082 /* Return non-zero if LP has a wait status pending. */
2085 status_callback (struct lwp_info *lp, void *data)
2087 /* Only report a pending wait status if we pretend that this has
2088 indeed been resumed. */
2089 return (lp->status != 0 && lp->resumed);
2092 /* Return non-zero if LP isn't stopped. */
2095 running_callback (struct lwp_info *lp, void *data)
2097 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2100 /* Count the LWP's that have had events. */
2103 count_events_callback (struct lwp_info *lp, void *data)
2107 gdb_assert (count != NULL);
2109 /* Count only LWPs that have a SIGTRAP event pending. */
2111 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2117 /* Select the LWP (if any) that is currently being single-stepped. */
2120 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2122 if (lp->step && lp->status != 0)
2128 /* Select the Nth LWP that has had a SIGTRAP event. */
2131 select_event_lwp_callback (struct lwp_info *lp, void *data)
2133 int *selector = data;
2135 gdb_assert (selector != NULL);
2137 /* Select only LWPs that have a SIGTRAP event pending. */
2139 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2140 if ((*selector)-- == 0)
2147 cancel_breakpoint (struct lwp_info *lp)
2149 /* Arrange for a breakpoint to be hit again later. We don't keep
2150 the SIGTRAP status and don't forward the SIGTRAP signal to the
2151 LWP. We will handle the current event, eventually we will resume
2152 this LWP, and this breakpoint will trap again.
2154 If we do not do this, then we run the risk that the user will
2155 delete or disable the breakpoint, but the LWP will have already
2158 if (breakpoint_inserted_here_p (read_pc_pid (lp->ptid) -
2159 gdbarch_decr_pc_after_break
2162 if (debug_linux_nat)
2163 fprintf_unfiltered (gdb_stdlog,
2164 "CB: Push back breakpoint for %s\n",
2165 target_pid_to_str (lp->ptid));
2167 /* Back up the PC if necessary. */
2168 if (gdbarch_decr_pc_after_break (current_gdbarch))
2169 write_pc_pid (read_pc_pid (lp->ptid) - gdbarch_decr_pc_after_break
2178 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2180 struct lwp_info *event_lp = data;
2182 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2186 /* If a LWP other than the LWP that we're reporting an event for has
2187 hit a GDB breakpoint (as opposed to some random trap signal),
2188 then just arrange for it to hit it again later. We don't keep
2189 the SIGTRAP status and don't forward the SIGTRAP signal to the
2190 LWP. We will handle the current event, eventually we will resume
2191 all LWPs, and this one will get its breakpoint trap again.
2193 If we do not do this, then we run the risk that the user will
2194 delete or disable the breakpoint, but the LWP will have already
2198 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2199 && cancel_breakpoint (lp))
2200 /* Throw away the SIGTRAP. */
2206 /* Select one LWP out of those that have events pending. */
2209 select_event_lwp (struct lwp_info **orig_lp, int *status)
2212 int random_selector;
2213 struct lwp_info *event_lp;
2215 /* Record the wait status for the original LWP. */
2216 (*orig_lp)->status = *status;
2218 /* Give preference to any LWP that is being single-stepped. */
2219 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2220 if (event_lp != NULL)
2222 if (debug_linux_nat)
2223 fprintf_unfiltered (gdb_stdlog,
2224 "SEL: Select single-step %s\n",
2225 target_pid_to_str (event_lp->ptid));
2229 /* No single-stepping LWP. Select one at random, out of those
2230 which have had SIGTRAP events. */
2232 /* First see how many SIGTRAP events we have. */
2233 iterate_over_lwps (count_events_callback, &num_events);
2235 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2236 random_selector = (int)
2237 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2239 if (debug_linux_nat && num_events > 1)
2240 fprintf_unfiltered (gdb_stdlog,
2241 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2242 num_events, random_selector);
2244 event_lp = iterate_over_lwps (select_event_lwp_callback,
2248 if (event_lp != NULL)
2250 /* Switch the event LWP. */
2251 *orig_lp = event_lp;
2252 *status = event_lp->status;
2255 /* Flush the wait status for the event LWP. */
2256 (*orig_lp)->status = 0;
2259 /* Return non-zero if LP has been resumed. */
2262 resumed_callback (struct lwp_info *lp, void *data)
2267 /* Stop an active thread, verify it still exists, then resume it. */
2270 stop_and_resume_callback (struct lwp_info *lp, void *data)
2272 struct lwp_info *ptr;
2274 if (!lp->stopped && !lp->signalled)
2276 stop_callback (lp, NULL);
2277 stop_wait_callback (lp, NULL);
2278 /* Resume if the lwp still exists. */
2279 for (ptr = lwp_list; ptr; ptr = ptr->next)
2282 resume_callback (lp, NULL);
2283 resume_set_callback (lp, NULL);
2289 /* Check if we should go on and pass this event to common code.
2290 Return the affected lwp if we are, or NULL otherwise. */
2291 static struct lwp_info *
2292 linux_nat_filter_event (int lwpid, int status, int options)
2294 struct lwp_info *lp;
2296 lp = find_lwp_pid (pid_to_ptid (lwpid));
2298 /* Check for stop events reported by a process we didn't already
2299 know about - anything not already in our LWP list.
2301 If we're expecting to receive stopped processes after
2302 fork, vfork, and clone events, then we'll just add the
2303 new one to our list and go back to waiting for the event
2304 to be reported - the stopped process might be returned
2305 from waitpid before or after the event is. */
2306 if (WIFSTOPPED (status) && !lp)
2308 linux_record_stopped_pid (lwpid, status);
2312 /* Make sure we don't report an event for the exit of an LWP not in
2313 our list, i.e. not part of the current process. This can happen
2314 if we detach from a program we original forked and then it
2316 if (!WIFSTOPPED (status) && !lp)
2319 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2320 CLONE_PTRACE processes which do not use the thread library -
2321 otherwise we wouldn't find the new LWP this way. That doesn't
2322 currently work, and the following code is currently unreachable
2323 due to the two blocks above. If it's fixed some day, this code
2324 should be broken out into a function so that we can also pick up
2325 LWPs from the new interface. */
2328 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2329 if (options & __WCLONE)
2332 gdb_assert (WIFSTOPPED (status)
2333 && WSTOPSIG (status) == SIGSTOP);
2336 if (!in_thread_list (inferior_ptid))
2338 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2339 GET_PID (inferior_ptid));
2340 add_thread (inferior_ptid);
2343 add_thread (lp->ptid);
2346 /* Save the trap's siginfo in case we need it later. */
2347 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2350 /* Handle GNU/Linux's extended waitstatus for trace events. */
2351 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2353 if (debug_linux_nat)
2354 fprintf_unfiltered (gdb_stdlog,
2355 "LLW: Handling extended status 0x%06x\n",
2357 if (linux_handle_extended_wait (lp, status, 0))
2361 /* Check if the thread has exited. */
2362 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2364 /* If this is the main thread, we must stop all threads and
2365 verify if they are still alive. This is because in the nptl
2366 thread model, there is no signal issued for exiting LWPs
2367 other than the main thread. We only get the main thread exit
2368 signal once all child threads have already exited. If we
2369 stop all the threads and use the stop_wait_callback to check
2370 if they have exited we can determine whether this signal
2371 should be ignored or whether it means the end of the debugged
2372 application, regardless of which threading model is being
2374 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2377 iterate_over_lwps (stop_and_resume_callback, NULL);
2380 if (debug_linux_nat)
2381 fprintf_unfiltered (gdb_stdlog,
2382 "LLW: %s exited.\n",
2383 target_pid_to_str (lp->ptid));
2387 /* If there is at least one more LWP, then the exit signal was
2388 not the end of the debugged application and should be
2392 /* Make sure there is at least one thread running. */
2393 gdb_assert (iterate_over_lwps (running_callback, NULL));
2395 /* Discard the event. */
2400 /* Check if the current LWP has previously exited. In the nptl
2401 thread model, LWPs other than the main thread do not issue
2402 signals when they exit so we must check whenever the thread has
2403 stopped. A similar check is made in stop_wait_callback(). */
2404 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2406 if (debug_linux_nat)
2407 fprintf_unfiltered (gdb_stdlog,
2408 "LLW: %s exited.\n",
2409 target_pid_to_str (lp->ptid));
2413 /* Make sure there is at least one thread running. */
2414 gdb_assert (iterate_over_lwps (running_callback, NULL));
2416 /* Discard the event. */
2420 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2421 an attempt to stop an LWP. */
2423 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2425 if (debug_linux_nat)
2426 fprintf_unfiltered (gdb_stdlog,
2427 "LLW: Delayed SIGSTOP caught for %s.\n",
2428 target_pid_to_str (lp->ptid));
2430 /* This is a delayed SIGSTOP. */
2433 registers_changed ();
2435 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2436 lp->step, TARGET_SIGNAL_0);
2437 if (debug_linux_nat)
2438 fprintf_unfiltered (gdb_stdlog,
2439 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2441 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2442 target_pid_to_str (lp->ptid));
2445 gdb_assert (lp->resumed);
2447 /* Discard the event. */
2451 /* An interesting event. */
2456 /* Get the events stored in the pipe into the local queue, so they are
2457 accessible to queued_waitpid. We need to do this, since it is not
2458 always the case that the event at the head of the pipe is the event
2462 pipe_to_local_event_queue (void)
2464 if (debug_linux_nat_async)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2467 linux_nat_num_queued_events);
2468 while (linux_nat_num_queued_events)
2470 int lwpid, status, options;
2471 lwpid = linux_nat_event_pipe_pop (&status, &options);
2472 gdb_assert (lwpid > 0);
2473 push_waitpid (lwpid, status, options);
2477 /* Get the unprocessed events stored in the local queue back into the
2478 pipe, so the event loop realizes there's something else to
2482 local_event_queue_to_pipe (void)
2484 struct waitpid_result *w = waitpid_queue;
2487 struct waitpid_result *next = w->next;
2488 linux_nat_event_pipe_push (w->pid,
2494 waitpid_queue = NULL;
2496 if (debug_linux_nat_async)
2497 fprintf_unfiltered (gdb_stdlog,
2498 "LEQTP: linux_nat_num_queued_events(%d)\n",
2499 linux_nat_num_queued_events);
2503 linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
2505 struct lwp_info *lp = NULL;
2508 pid_t pid = PIDGET (ptid);
2509 sigset_t flush_mask;
2511 if (debug_linux_nat_async)
2512 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2514 /* The first time we get here after starting a new inferior, we may
2515 not have added it to the LWP list yet - this is the earliest
2516 moment at which we know its PID. */
2519 gdb_assert (!is_lwp (inferior_ptid));
2521 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2522 GET_PID (inferior_ptid));
2523 lp = add_lwp (inferior_ptid);
2525 /* Add the main thread to GDB's thread list. */
2526 add_thread_silent (lp->ptid);
2529 sigemptyset (&flush_mask);
2531 if (target_can_async_p ())
2532 /* Block events while we're here. */
2533 target_async (NULL, 0);
2537 /* Make sure there is at least one LWP that has been resumed. */
2538 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2540 /* First check if there is a LWP with a wait status pending. */
2543 /* Any LWP that's been resumed will do. */
2544 lp = iterate_over_lwps (status_callback, NULL);
2547 if (target_can_async_p ())
2548 internal_error (__FILE__, __LINE__,
2549 "Found an LWP with a pending status in async mode.");
2551 status = lp->status;
2554 if (debug_linux_nat && status)
2555 fprintf_unfiltered (gdb_stdlog,
2556 "LLW: Using pending wait status %s for %s.\n",
2557 status_to_str (status),
2558 target_pid_to_str (lp->ptid));
2561 /* But if we don't find one, we'll have to wait, and check both
2562 cloned and uncloned processes. We start with the cloned
2564 options = __WCLONE | WNOHANG;
2566 else if (is_lwp (ptid))
2568 if (debug_linux_nat)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "LLW: Waiting for specific LWP %s.\n",
2571 target_pid_to_str (ptid));
2573 /* We have a specific LWP to check. */
2574 lp = find_lwp_pid (ptid);
2576 status = lp->status;
2579 if (debug_linux_nat && status)
2580 fprintf_unfiltered (gdb_stdlog,
2581 "LLW: Using pending wait status %s for %s.\n",
2582 status_to_str (status),
2583 target_pid_to_str (lp->ptid));
2585 /* If we have to wait, take into account whether PID is a cloned
2586 process or not. And we have to convert it to something that
2587 the layer beneath us can understand. */
2588 options = lp->cloned ? __WCLONE : 0;
2589 pid = GET_LWP (ptid);
2592 if (status && lp->signalled)
2594 /* A pending SIGSTOP may interfere with the normal stream of
2595 events. In a typical case where interference is a problem,
2596 we have a SIGSTOP signal pending for LWP A while
2597 single-stepping it, encounter an event in LWP B, and take the
2598 pending SIGSTOP while trying to stop LWP A. After processing
2599 the event in LWP B, LWP A is continued, and we'll never see
2600 the SIGTRAP associated with the last time we were
2601 single-stepping LWP A. */
2603 /* Resume the thread. It should halt immediately returning the
2605 registers_changed ();
2606 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2607 lp->step, TARGET_SIGNAL_0);
2608 if (debug_linux_nat)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2611 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2612 target_pid_to_str (lp->ptid));
2614 gdb_assert (lp->resumed);
2616 /* This should catch the pending SIGSTOP. */
2617 stop_wait_callback (lp, NULL);
2620 if (!target_can_async_p ())
2622 /* Causes SIGINT to be passed on to the attached process. */
2631 if (target_can_async_p ())
2632 /* In async mode, don't ever block. Only look at the locally
2634 lwpid = queued_waitpid (pid, &status, options);
2636 lwpid = my_waitpid (pid, &status, options);
2640 gdb_assert (pid == -1 || lwpid == pid);
2642 if (debug_linux_nat)
2644 fprintf_unfiltered (gdb_stdlog,
2645 "LLW: waitpid %ld received %s\n",
2646 (long) lwpid, status_to_str (status));
2649 lp = linux_nat_filter_event (lwpid, status, options);
2652 /* A discarded event. */
2662 /* Alternate between checking cloned and uncloned processes. */
2663 options ^= __WCLONE;
2665 /* And every time we have checked both:
2666 In async mode, return to event loop;
2667 In sync mode, suspend waiting for a SIGCHLD signal. */
2668 if (options & __WCLONE)
2670 if (target_can_async_p ())
2672 /* No interesting event. */
2673 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2675 /* Get ready for the next event. */
2676 target_async (inferior_event_handler, 0);
2678 if (debug_linux_nat_async)
2679 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2681 return minus_one_ptid;
2684 sigsuspend (&suspend_mask);
2688 /* We shouldn't end up here unless we want to try again. */
2689 gdb_assert (status == 0);
2692 if (!target_can_async_p ())
2694 clear_sigio_trap ();
2695 clear_sigint_trap ();
2700 /* Don't report signals that GDB isn't interested in, such as
2701 signals that are neither printed nor stopped upon. Stopping all
2702 threads can be a bit time-consuming so if we want decent
2703 performance with heavily multi-threaded programs, especially when
2704 they're using a high frequency timer, we'd better avoid it if we
2707 if (WIFSTOPPED (status))
2709 int signo = target_signal_from_host (WSTOPSIG (status));
2711 /* If we get a signal while single-stepping, we may need special
2712 care, e.g. to skip the signal handler. Defer to common code. */
2714 && signal_stop_state (signo) == 0
2715 && signal_print_state (signo) == 0
2716 && signal_pass_state (signo) == 1)
2718 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2719 here? It is not clear we should. GDB may not expect
2720 other threads to run. On the other hand, not resuming
2721 newly attached threads may cause an unwanted delay in
2722 getting them running. */
2723 registers_changed ();
2724 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2726 if (debug_linux_nat)
2727 fprintf_unfiltered (gdb_stdlog,
2728 "LLW: %s %s, %s (preempt 'handle')\n",
2730 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2731 target_pid_to_str (lp->ptid),
2732 signo ? strsignal (signo) : "0");
2738 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2740 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2741 forwarded to the entire process group, that is, all LWP's
2742 will receive it. Since we only want to report it once,
2743 we try to flush it from all LWPs except this one. */
2744 sigaddset (&flush_mask, SIGINT);
2748 /* This LWP is stopped now. */
2751 if (debug_linux_nat)
2752 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2753 status_to_str (status), target_pid_to_str (lp->ptid));
2755 /* Now stop all other LWP's ... */
2756 iterate_over_lwps (stop_callback, NULL);
2758 /* ... and wait until all of them have reported back that they're no
2760 iterate_over_lwps (stop_wait_callback, &flush_mask);
2761 iterate_over_lwps (flush_callback, &flush_mask);
2763 /* If we're not waiting for a specific LWP, choose an event LWP from
2764 among those that have had events. Giving equal priority to all
2765 LWPs that have had events helps prevent starvation. */
2767 select_event_lwp (&lp, &status);
2769 /* Now that we've selected our final event LWP, cancel any
2770 breakpoints in other LWPs that have hit a GDB breakpoint. See
2771 the comment in cancel_breakpoints_callback to find out why. */
2772 iterate_over_lwps (cancel_breakpoints_callback, lp);
2774 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2776 trap_ptid = lp->ptid;
2777 if (debug_linux_nat)
2778 fprintf_unfiltered (gdb_stdlog,
2779 "LLW: trap_ptid is %s.\n",
2780 target_pid_to_str (trap_ptid));
2783 trap_ptid = null_ptid;
2785 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2787 *ourstatus = lp->waitstatus;
2788 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
2791 store_waitstatus (ourstatus, status);
2793 /* Get ready for the next event. */
2794 if (target_can_async_p ())
2795 target_async (inferior_event_handler, 0);
2797 if (debug_linux_nat_async)
2798 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
2804 kill_callback (struct lwp_info *lp, void *data)
2807 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
2808 if (debug_linux_nat)
2809 fprintf_unfiltered (gdb_stdlog,
2810 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
2811 target_pid_to_str (lp->ptid),
2812 errno ? safe_strerror (errno) : "OK");
2818 kill_wait_callback (struct lwp_info *lp, void *data)
2822 /* We must make sure that there are no pending events (delayed
2823 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
2824 program doesn't interfere with any following debugging session. */
2826 /* For cloned processes we must check both with __WCLONE and
2827 without, since the exit status of a cloned process isn't reported
2833 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
2834 if (pid != (pid_t) -1)
2836 if (debug_linux_nat)
2837 fprintf_unfiltered (gdb_stdlog,
2838 "KWC: wait %s received unknown.\n",
2839 target_pid_to_str (lp->ptid));
2840 /* The Linux kernel sometimes fails to kill a thread
2841 completely after PTRACE_KILL; that goes from the stop
2842 point in do_fork out to the one in
2843 get_signal_to_deliever and waits again. So kill it
2845 kill_callback (lp, NULL);
2848 while (pid == GET_LWP (lp->ptid));
2850 gdb_assert (pid == -1 && errno == ECHILD);
2855 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
2856 if (pid != (pid_t) -1)
2858 if (debug_linux_nat)
2859 fprintf_unfiltered (gdb_stdlog,
2860 "KWC: wait %s received unk.\n",
2861 target_pid_to_str (lp->ptid));
2862 /* See the call to kill_callback above. */
2863 kill_callback (lp, NULL);
2866 while (pid == GET_LWP (lp->ptid));
2868 gdb_assert (pid == -1 && errno == ECHILD);
2873 linux_nat_kill (void)
2875 struct target_waitstatus last;
2879 if (target_can_async_p ())
2880 target_async (NULL, 0);
2882 /* If we're stopped while forking and we haven't followed yet,
2883 kill the other task. We need to do this first because the
2884 parent will be sleeping if this is a vfork. */
2886 get_last_target_status (&last_ptid, &last);
2888 if (last.kind == TARGET_WAITKIND_FORKED
2889 || last.kind == TARGET_WAITKIND_VFORKED)
2891 ptrace (PT_KILL, last.value.related_pid, 0, 0);
2895 if (forks_exist_p ())
2897 linux_fork_killall ();
2898 drain_queued_events (-1);
2902 /* Kill all LWP's ... */
2903 iterate_over_lwps (kill_callback, NULL);
2905 /* ... and wait until we've flushed all events. */
2906 iterate_over_lwps (kill_wait_callback, NULL);
2909 target_mourn_inferior ();
2913 linux_nat_mourn_inferior (void)
2915 trap_ptid = null_ptid;
2917 /* Destroy LWP info; it's no longer valid. */
2920 if (! forks_exist_p ())
2922 /* Normal case, no other forks available. */
2923 if (target_can_async_p ())
2924 linux_nat_async (NULL, 0);
2925 linux_ops->to_mourn_inferior ();
2928 /* Multi-fork case. The current inferior_ptid has exited, but
2929 there are other viable forks to debug. Delete the exiting
2930 one and context-switch to the first available. */
2931 linux_fork_mourn_inferior ();
2935 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
2936 const char *annex, gdb_byte *readbuf,
2937 const gdb_byte *writebuf,
2938 ULONGEST offset, LONGEST len)
2940 struct cleanup *old_chain = save_inferior_ptid ();
2943 if (is_lwp (inferior_ptid))
2944 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
2946 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
2949 do_cleanups (old_chain);
2954 linux_nat_thread_alive (ptid_t ptid)
2956 gdb_assert (is_lwp (ptid));
2959 ptrace (PTRACE_PEEKUSER, GET_LWP (ptid), 0, 0);
2960 if (debug_linux_nat)
2961 fprintf_unfiltered (gdb_stdlog,
2962 "LLTA: PTRACE_PEEKUSER %s, 0, 0 (%s)\n",
2963 target_pid_to_str (ptid),
2964 errno ? safe_strerror (errno) : "OK");
2966 /* Not every Linux kernel implements PTRACE_PEEKUSER. But we can
2967 handle that case gracefully since ptrace will first do a lookup
2968 for the process based upon the passed-in pid. If that fails we
2969 will get either -ESRCH or -EPERM, otherwise the child exists and
2971 if (errno == ESRCH || errno == EPERM)
2978 linux_nat_pid_to_str (ptid_t ptid)
2980 static char buf[64];
2983 && ((lwp_list && lwp_list->next)
2984 || GET_PID (ptid) != GET_LWP (ptid)))
2986 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
2990 return normal_pid_to_str (ptid);
2994 sigchld_handler (int signo)
2996 if (linux_nat_async_enabled
2997 && linux_nat_async_events_enabled
2998 && signo == SIGCHLD)
2999 /* It is *always* a bug to hit this. */
3000 internal_error (__FILE__, __LINE__,
3001 "sigchld_handler called when async events are enabled");
3003 /* Do nothing. The only reason for this handler is that it allows
3004 us to use sigsuspend in linux_nat_wait above to wait for the
3005 arrival of a SIGCHLD. */
3008 /* Accepts an integer PID; Returns a string representing a file that
3009 can be opened to get the symbols for the child process. */
3012 linux_child_pid_to_exec_file (int pid)
3014 char *name1, *name2;
3016 name1 = xmalloc (MAXPATHLEN);
3017 name2 = xmalloc (MAXPATHLEN);
3018 make_cleanup (xfree, name1);
3019 make_cleanup (xfree, name2);
3020 memset (name2, 0, MAXPATHLEN);
3022 sprintf (name1, "/proc/%d/exe", pid);
3023 if (readlink (name1, name2, MAXPATHLEN) > 0)
3029 /* Service function for corefiles and info proc. */
3032 read_mapping (FILE *mapfile,
3037 char *device, long long *inode, char *filename)
3039 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3040 addr, endaddr, permissions, offset, device, inode);
3043 if (ret > 0 && ret != EOF)
3045 /* Eat everything up to EOL for the filename. This will prevent
3046 weird filenames (such as one with embedded whitespace) from
3047 confusing this code. It also makes this code more robust in
3048 respect to annotations the kernel may add after the filename.
3050 Note the filename is used for informational purposes
3052 ret += fscanf (mapfile, "%[^\n]\n", filename);
3055 return (ret != 0 && ret != EOF);
3058 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3059 regions in the inferior for a corefile. */
3062 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3064 int, int, int, void *), void *obfd)
3066 long long pid = PIDGET (inferior_ptid);
3067 char mapsfilename[MAXPATHLEN];
3069 long long addr, endaddr, size, offset, inode;
3070 char permissions[8], device[8], filename[MAXPATHLEN];
3071 int read, write, exec;
3074 /* Compose the filename for the /proc memory map, and open it. */
3075 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3076 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3077 error (_("Could not open %s."), mapsfilename);
3080 fprintf_filtered (gdb_stdout,
3081 "Reading memory regions from %s\n", mapsfilename);
3083 /* Now iterate until end-of-file. */
3084 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3085 &offset, &device[0], &inode, &filename[0]))
3087 size = endaddr - addr;
3089 /* Get the segment's permissions. */
3090 read = (strchr (permissions, 'r') != 0);
3091 write = (strchr (permissions, 'w') != 0);
3092 exec = (strchr (permissions, 'x') != 0);
3096 fprintf_filtered (gdb_stdout,
3097 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3098 size, paddr_nz (addr),
3100 write ? 'w' : ' ', exec ? 'x' : ' ');
3102 fprintf_filtered (gdb_stdout, " for %s", filename);
3103 fprintf_filtered (gdb_stdout, "\n");
3106 /* Invoke the callback function to create the corefile
3108 func (addr, size, read, write, exec, obfd);
3114 /* Records the thread's register state for the corefile note
3118 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3119 char *note_data, int *note_size)
3121 gdb_gregset_t gregs;
3122 gdb_fpregset_t fpregs;
3123 #ifdef FILL_FPXREGSET
3124 gdb_fpxregset_t fpxregs;
3126 unsigned long lwp = ptid_get_lwp (ptid);
3127 struct regcache *regcache = get_thread_regcache (ptid);
3128 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3129 const struct regset *regset;
3131 struct cleanup *old_chain;
3133 old_chain = save_inferior_ptid ();
3134 inferior_ptid = ptid;
3135 target_fetch_registers (regcache, -1);
3136 do_cleanups (old_chain);
3138 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3140 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3141 sizeof (gregs))) != NULL
3142 && regset->collect_regset != NULL)
3143 regset->collect_regset (regset, regcache, -1,
3144 &gregs, sizeof (gregs));
3146 fill_gregset (regcache, &gregs, -1);
3148 note_data = (char *) elfcore_write_prstatus (obfd,
3152 stop_signal, &gregs);
3155 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3156 sizeof (fpregs))) != NULL
3157 && regset->collect_regset != NULL)
3158 regset->collect_regset (regset, regcache, -1,
3159 &fpregs, sizeof (fpregs));
3161 fill_fpregset (regcache, &fpregs, -1);
3163 note_data = (char *) elfcore_write_prfpreg (obfd,
3166 &fpregs, sizeof (fpregs));
3168 #ifdef FILL_FPXREGSET
3170 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg-xfp",
3171 sizeof (fpxregs))) != NULL
3172 && regset->collect_regset != NULL)
3173 regset->collect_regset (regset, regcache, -1,
3174 &fpxregs, sizeof (fpxregs));
3176 fill_fpxregset (regcache, &fpxregs, -1);
3178 note_data = (char *) elfcore_write_prxfpreg (obfd,
3181 &fpxregs, sizeof (fpxregs));
3186 struct linux_nat_corefile_thread_data
3194 /* Called by gdbthread.c once per thread. Records the thread's
3195 register state for the corefile note section. */
3198 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3200 struct linux_nat_corefile_thread_data *args = data;
3202 args->note_data = linux_nat_do_thread_registers (args->obfd,
3211 /* Records the register state for the corefile note section. */
3214 linux_nat_do_registers (bfd *obfd, ptid_t ptid,
3215 char *note_data, int *note_size)
3217 return linux_nat_do_thread_registers (obfd,
3218 ptid_build (ptid_get_pid (inferior_ptid),
3219 ptid_get_pid (inferior_ptid),
3221 note_data, note_size);
3224 /* Fills the "to_make_corefile_note" target vector. Builds the note
3225 section for a corefile, and returns it in a malloc buffer. */
3228 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3230 struct linux_nat_corefile_thread_data thread_args;
3231 struct cleanup *old_chain;
3232 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3233 char fname[16] = { '\0' };
3234 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3235 char psargs[80] = { '\0' };
3236 char *note_data = NULL;
3237 ptid_t current_ptid = inferior_ptid;
3241 if (get_exec_file (0))
3243 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3244 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3245 if (get_inferior_args ())
3248 char *psargs_end = psargs + sizeof (psargs);
3250 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3252 string_end = memchr (psargs, 0, sizeof (psargs));
3253 if (string_end != NULL)
3255 *string_end++ = ' ';
3256 strncpy (string_end, get_inferior_args (),
3257 psargs_end - string_end);
3260 note_data = (char *) elfcore_write_prpsinfo (obfd,
3262 note_size, fname, psargs);
3265 /* Dump information for threads. */
3266 thread_args.obfd = obfd;
3267 thread_args.note_data = note_data;
3268 thread_args.note_size = note_size;
3269 thread_args.num_notes = 0;
3270 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3271 if (thread_args.num_notes == 0)
3273 /* iterate_over_threads didn't come up with any threads; just
3274 use inferior_ptid. */
3275 note_data = linux_nat_do_registers (obfd, inferior_ptid,
3276 note_data, note_size);
3280 note_data = thread_args.note_data;
3283 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
3287 note_data = elfcore_write_note (obfd, note_data, note_size,
3288 "CORE", NT_AUXV, auxv, auxv_len);
3292 make_cleanup (xfree, note_data);
3296 /* Implement the "info proc" command. */
3299 linux_nat_info_proc_cmd (char *args, int from_tty)
3301 long long pid = PIDGET (inferior_ptid);
3304 char buffer[MAXPATHLEN];
3305 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3318 /* Break up 'args' into an argv array. */
3319 if ((argv = buildargv (args)) == NULL)
3322 make_cleanup_freeargv (argv);
3324 while (argv != NULL && *argv != NULL)
3326 if (isdigit (argv[0][0]))
3328 pid = strtoul (argv[0], NULL, 10);
3330 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3334 else if (strcmp (argv[0], "status") == 0)
3338 else if (strcmp (argv[0], "stat") == 0)
3342 else if (strcmp (argv[0], "cmd") == 0)
3346 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3350 else if (strcmp (argv[0], "cwd") == 0)
3354 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3360 /* [...] (future options here) */
3365 error (_("No current process: you must name one."));
3367 sprintf (fname1, "/proc/%lld", pid);
3368 if (stat (fname1, &dummy) != 0)
3369 error (_("No /proc directory: '%s'"), fname1);
3371 printf_filtered (_("process %lld\n"), pid);
3372 if (cmdline_f || all)
3374 sprintf (fname1, "/proc/%lld/cmdline", pid);
3375 if ((procfile = fopen (fname1, "r")) != NULL)
3377 fgets (buffer, sizeof (buffer), procfile);
3378 printf_filtered ("cmdline = '%s'\n", buffer);
3382 warning (_("unable to open /proc file '%s'"), fname1);
3386 sprintf (fname1, "/proc/%lld/cwd", pid);
3387 memset (fname2, 0, sizeof (fname2));
3388 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3389 printf_filtered ("cwd = '%s'\n", fname2);
3391 warning (_("unable to read link '%s'"), fname1);
3395 sprintf (fname1, "/proc/%lld/exe", pid);
3396 memset (fname2, 0, sizeof (fname2));
3397 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3398 printf_filtered ("exe = '%s'\n", fname2);
3400 warning (_("unable to read link '%s'"), fname1);
3402 if (mappings_f || all)
3404 sprintf (fname1, "/proc/%lld/maps", pid);
3405 if ((procfile = fopen (fname1, "r")) != NULL)
3407 long long addr, endaddr, size, offset, inode;
3408 char permissions[8], device[8], filename[MAXPATHLEN];
3410 printf_filtered (_("Mapped address spaces:\n\n"));
3411 if (gdbarch_addr_bit (current_gdbarch) == 32)
3413 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3416 " Size", " Offset", "objfile");
3420 printf_filtered (" %18s %18s %10s %10s %7s\n",
3423 " Size", " Offset", "objfile");
3426 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3427 &offset, &device[0], &inode, &filename[0]))
3429 size = endaddr - addr;
3431 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3432 calls here (and possibly above) should be abstracted
3433 out into their own functions? Andrew suggests using
3434 a generic local_address_string instead to print out
3435 the addresses; that makes sense to me, too. */
3437 if (gdbarch_addr_bit (current_gdbarch) == 32)
3439 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3440 (unsigned long) addr, /* FIXME: pr_addr */
3441 (unsigned long) endaddr,
3443 (unsigned int) offset,
3444 filename[0] ? filename : "");
3448 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3449 (unsigned long) addr, /* FIXME: pr_addr */
3450 (unsigned long) endaddr,
3452 (unsigned int) offset,
3453 filename[0] ? filename : "");
3460 warning (_("unable to open /proc file '%s'"), fname1);
3462 if (status_f || all)
3464 sprintf (fname1, "/proc/%lld/status", pid);
3465 if ((procfile = fopen (fname1, "r")) != NULL)
3467 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3468 puts_filtered (buffer);
3472 warning (_("unable to open /proc file '%s'"), fname1);
3476 sprintf (fname1, "/proc/%lld/stat", pid);
3477 if ((procfile = fopen (fname1, "r")) != NULL)
3483 if (fscanf (procfile, "%d ", &itmp) > 0)
3484 printf_filtered (_("Process: %d\n"), itmp);
3485 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3486 printf_filtered (_("Exec file: %s\n"), buffer);
3487 if (fscanf (procfile, "%c ", &ctmp) > 0)
3488 printf_filtered (_("State: %c\n"), ctmp);
3489 if (fscanf (procfile, "%d ", &itmp) > 0)
3490 printf_filtered (_("Parent process: %d\n"), itmp);
3491 if (fscanf (procfile, "%d ", &itmp) > 0)
3492 printf_filtered (_("Process group: %d\n"), itmp);
3493 if (fscanf (procfile, "%d ", &itmp) > 0)
3494 printf_filtered (_("Session id: %d\n"), itmp);
3495 if (fscanf (procfile, "%d ", &itmp) > 0)
3496 printf_filtered (_("TTY: %d\n"), itmp);
3497 if (fscanf (procfile, "%d ", &itmp) > 0)
3498 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3499 if (fscanf (procfile, "%lu ", <mp) > 0)
3500 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3501 if (fscanf (procfile, "%lu ", <mp) > 0)
3502 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3503 (unsigned long) ltmp);
3504 if (fscanf (procfile, "%lu ", <mp) > 0)
3505 printf_filtered (_("Minor faults, children: %lu\n"),
3506 (unsigned long) ltmp);
3507 if (fscanf (procfile, "%lu ", <mp) > 0)
3508 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3509 (unsigned long) ltmp);
3510 if (fscanf (procfile, "%lu ", <mp) > 0)
3511 printf_filtered (_("Major faults, children: %lu\n"),
3512 (unsigned long) ltmp);
3513 if (fscanf (procfile, "%ld ", <mp) > 0)
3514 printf_filtered (_("utime: %ld\n"), ltmp);
3515 if (fscanf (procfile, "%ld ", <mp) > 0)
3516 printf_filtered (_("stime: %ld\n"), ltmp);
3517 if (fscanf (procfile, "%ld ", <mp) > 0)
3518 printf_filtered (_("utime, children: %ld\n"), ltmp);
3519 if (fscanf (procfile, "%ld ", <mp) > 0)
3520 printf_filtered (_("stime, children: %ld\n"), ltmp);
3521 if (fscanf (procfile, "%ld ", <mp) > 0)
3522 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3524 if (fscanf (procfile, "%ld ", <mp) > 0)
3525 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3526 if (fscanf (procfile, "%lu ", <mp) > 0)
3527 printf_filtered (_("jiffies until next timeout: %lu\n"),
3528 (unsigned long) ltmp);
3529 if (fscanf (procfile, "%lu ", <mp) > 0)
3530 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3531 (unsigned long) ltmp);
3532 if (fscanf (procfile, "%ld ", <mp) > 0)
3533 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3535 if (fscanf (procfile, "%lu ", <mp) > 0)
3536 printf_filtered (_("Virtual memory size: %lu\n"),
3537 (unsigned long) ltmp);
3538 if (fscanf (procfile, "%lu ", <mp) > 0)
3539 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3540 if (fscanf (procfile, "%lu ", <mp) > 0)
3541 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3542 if (fscanf (procfile, "%lu ", <mp) > 0)
3543 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3544 if (fscanf (procfile, "%lu ", <mp) > 0)
3545 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3546 if (fscanf (procfile, "%lu ", <mp) > 0)
3547 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3548 #if 0 /* Don't know how architecture-dependent the rest is...
3549 Anyway the signal bitmap info is available from "status". */
3550 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
3551 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3552 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
3553 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3554 if (fscanf (procfile, "%ld ", <mp) > 0)
3555 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3556 if (fscanf (procfile, "%ld ", <mp) > 0)
3557 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3558 if (fscanf (procfile, "%ld ", <mp) > 0)
3559 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3560 if (fscanf (procfile, "%ld ", <mp) > 0)
3561 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3562 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
3563 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3568 warning (_("unable to open /proc file '%s'"), fname1);
3572 /* Implement the to_xfer_partial interface for memory reads using the /proc
3573 filesystem. Because we can use a single read() call for /proc, this
3574 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3575 but it doesn't support writes. */
3578 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3579 const char *annex, gdb_byte *readbuf,
3580 const gdb_byte *writebuf,
3581 ULONGEST offset, LONGEST len)
3587 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3590 /* Don't bother for one word. */
3591 if (len < 3 * sizeof (long))
3594 /* We could keep this file open and cache it - possibly one per
3595 thread. That requires some juggling, but is even faster. */
3596 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3597 fd = open (filename, O_RDONLY | O_LARGEFILE);
3601 /* If pread64 is available, use it. It's faster if the kernel
3602 supports it (only one syscall), and it's 64-bit safe even on
3603 32-bit platforms (for instance, SPARC debugging a SPARC64
3606 if (pread64 (fd, readbuf, len, offset) != len)
3608 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3618 /* Parse LINE as a signal set and add its set bits to SIGS. */
3621 add_line_to_sigset (const char *line, sigset_t *sigs)
3623 int len = strlen (line) - 1;
3627 if (line[len] != '\n')
3628 error (_("Could not parse signal set: %s"), line);
3636 if (*p >= '0' && *p <= '9')
3638 else if (*p >= 'a' && *p <= 'f')
3639 digit = *p - 'a' + 10;
3641 error (_("Could not parse signal set: %s"), line);
3646 sigaddset (sigs, signum + 1);
3648 sigaddset (sigs, signum + 2);
3650 sigaddset (sigs, signum + 3);
3652 sigaddset (sigs, signum + 4);
3658 /* Find process PID's pending signals from /proc/pid/status and set
3662 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
3665 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
3668 sigemptyset (pending);
3669 sigemptyset (blocked);
3670 sigemptyset (ignored);
3671 sprintf (fname, "/proc/%d/status", pid);
3672 procfile = fopen (fname, "r");
3673 if (procfile == NULL)
3674 error (_("Could not open %s"), fname);
3676 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
3678 /* Normal queued signals are on the SigPnd line in the status
3679 file. However, 2.6 kernels also have a "shared" pending
3680 queue for delivering signals to a thread group, so check for
3683 Unfortunately some Red Hat kernels include the shared pending
3684 queue but not the ShdPnd status field. */
3686 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
3687 add_line_to_sigset (buffer + 8, pending);
3688 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
3689 add_line_to_sigset (buffer + 8, pending);
3690 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
3691 add_line_to_sigset (buffer + 8, blocked);
3692 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
3693 add_line_to_sigset (buffer + 8, ignored);
3700 linux_xfer_partial (struct target_ops *ops, enum target_object object,
3701 const char *annex, gdb_byte *readbuf,
3702 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3706 if (object == TARGET_OBJECT_AUXV)
3707 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
3710 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
3715 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
3719 /* Create a prototype generic GNU/Linux target. The client can override
3720 it with local methods. */
3723 linux_target_install_ops (struct target_ops *t)
3725 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
3726 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
3727 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
3728 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
3729 t->to_post_startup_inferior = linux_child_post_startup_inferior;
3730 t->to_post_attach = linux_child_post_attach;
3731 t->to_follow_fork = linux_child_follow_fork;
3732 t->to_find_memory_regions = linux_nat_find_memory_regions;
3733 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
3735 super_xfer_partial = t->to_xfer_partial;
3736 t->to_xfer_partial = linux_xfer_partial;
3742 struct target_ops *t;
3744 t = inf_ptrace_target ();
3745 linux_target_install_ops (t);
3751 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
3753 struct target_ops *t;
3755 t = inf_ptrace_trad_target (register_u_offset);
3756 linux_target_install_ops (t);
3761 /* Controls if async mode is permitted. */
3762 static int linux_async_permitted = 0;
3764 /* The set command writes to this variable. If the inferior is
3765 executing, linux_nat_async_permitted is *not* updated. */
3766 static int linux_async_permitted_1 = 0;
3769 set_maintenance_linux_async_permitted (char *args, int from_tty,
3770 struct cmd_list_element *c)
3772 if (target_has_execution)
3774 linux_async_permitted_1 = linux_async_permitted;
3775 error (_("Cannot change this setting while the inferior is running."));
3778 linux_async_permitted = linux_async_permitted_1;
3779 linux_nat_set_async_mode (linux_async_permitted);
3783 show_maintenance_linux_async_permitted (struct ui_file *file, int from_tty,
3784 struct cmd_list_element *c, const char *value)
3786 fprintf_filtered (file, _("\
3787 Controlling the GNU/Linux inferior in asynchronous mode is %s.\n"),
3791 /* target_is_async_p implementation. */
3794 linux_nat_is_async_p (void)
3796 /* NOTE: palves 2008-03-21: We're only async when the user requests
3797 it explicitly with the "maintenance set linux-async" command.
3798 Someday, linux will always be async. */
3799 if (!linux_async_permitted)
3805 /* target_can_async_p implementation. */
3808 linux_nat_can_async_p (void)
3810 /* NOTE: palves 2008-03-21: We're only async when the user requests
3811 it explicitly with the "maintenance set linux-async" command.
3812 Someday, linux will always be async. */
3813 if (!linux_async_permitted)
3816 /* See target.h/target_async_mask. */
3817 return linux_nat_async_mask_value;
3820 /* target_async_mask implementation. */
3823 linux_nat_async_mask (int mask)
3826 current_state = linux_nat_async_mask_value;
3828 if (current_state != mask)
3832 linux_nat_async (NULL, 0);
3833 linux_nat_async_mask_value = mask;
3834 /* We're in sync mode. Make sure SIGCHLD isn't handled by
3835 async_sigchld_handler when we come out of sigsuspend in
3837 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
3841 /* Restore the async handler. */
3842 sigaction (SIGCHLD, &async_sigchld_action, NULL);
3843 linux_nat_async_mask_value = mask;
3844 linux_nat_async (inferior_event_handler, 0);
3848 return current_state;
3851 /* Pop an event from the event pipe. */
3854 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
3856 struct waitpid_result event = {0};
3861 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
3863 while (ret == -1 && errno == EINTR);
3865 gdb_assert (ret == sizeof (event));
3867 *ptr_status = event.status;
3868 *ptr_options = event.options;
3870 linux_nat_num_queued_events--;
3875 /* Push an event into the event pipe. */
3878 linux_nat_event_pipe_push (int pid, int status, int options)
3881 struct waitpid_result event = {0};
3883 event.status = status;
3884 event.options = options;
3888 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
3889 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
3890 } while (ret == -1 && errno == EINTR);
3892 linux_nat_num_queued_events++;
3896 get_pending_events (void)
3898 int status, options, pid;
3900 if (!linux_nat_async_enabled || !linux_nat_async_events_enabled)
3901 internal_error (__FILE__, __LINE__,
3902 "get_pending_events called with async masked");
3907 options = __WCLONE | WNOHANG;
3911 pid = waitpid (-1, &status, options);
3913 while (pid == -1 && errno == EINTR);
3920 pid = waitpid (-1, &status, options);
3922 while (pid == -1 && errno == EINTR);
3926 /* No more children reporting events. */
3929 if (debug_linux_nat_async)
3930 fprintf_unfiltered (gdb_stdlog, "\
3931 get_pending_events: pid(%d), status(%x), options (%x)\n",
3932 pid, status, options);
3934 linux_nat_event_pipe_push (pid, status, options);
3937 if (debug_linux_nat_async)
3938 fprintf_unfiltered (gdb_stdlog, "\
3939 get_pending_events: linux_nat_num_queued_events(%d)\n",
3940 linux_nat_num_queued_events);
3943 /* SIGCHLD handler for async mode. */
3946 async_sigchld_handler (int signo)
3948 if (debug_linux_nat_async)
3949 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
3951 get_pending_events ();
3954 /* Enable or disable async SIGCHLD handling. */
3957 linux_nat_async_events (int enable)
3959 int current_state = linux_nat_async_events_enabled;
3961 if (debug_linux_nat_async)
3962 fprintf_unfiltered (gdb_stdlog,
3963 "LNAE: enable(%d): linux_nat_async_events_enabled(%d), "
3964 "linux_nat_num_queued_events(%d)\n",
3965 enable, linux_nat_async_events_enabled,
3966 linux_nat_num_queued_events);
3968 if (current_state != enable)
3971 sigemptyset (&mask);
3972 sigaddset (&mask, SIGCHLD);
3975 /* Unblock target events. */
3976 linux_nat_async_events_enabled = 1;
3978 local_event_queue_to_pipe ();
3979 /* While in masked async, we may have not collected all the
3980 pending events. Get them out now. */
3981 get_pending_events ();
3982 sigprocmask (SIG_UNBLOCK, &mask, NULL);
3986 /* Block target events. */
3987 sigprocmask (SIG_BLOCK, &mask, NULL);
3988 linux_nat_async_events_enabled = 0;
3989 /* Get events out of queue, and make them available to
3990 queued_waitpid / my_waitpid. */
3991 pipe_to_local_event_queue ();
3995 return current_state;
3998 static int async_terminal_is_ours = 1;
4000 /* target_terminal_inferior implementation. */
4003 linux_nat_terminal_inferior (void)
4005 if (!target_is_async_p ())
4007 /* Async mode is disabled. */
4008 terminal_inferior ();
4012 /* GDB should never give the terminal to the inferior, if the
4013 inferior is running in the background (run&, continue&, etc.).
4014 This check can be removed when the common code is fixed. */
4015 if (!sync_execution)
4018 terminal_inferior ();
4020 if (!async_terminal_is_ours)
4023 delete_file_handler (input_fd);
4024 async_terminal_is_ours = 0;
4028 /* target_terminal_ours implementation. */
4031 linux_nat_terminal_ours (void)
4033 if (!target_is_async_p ())
4035 /* Async mode is disabled. */
4040 /* GDB should never give the terminal to the inferior if the
4041 inferior is running in the background (run&, continue&, etc.),
4042 but claiming it sure should. */
4045 if (!sync_execution)
4048 if (async_terminal_is_ours)
4051 clear_sigint_trap ();
4052 add_file_handler (input_fd, stdin_event_handler, 0);
4053 async_terminal_is_ours = 1;
4056 static void (*async_client_callback) (enum inferior_event_type event_type,
4058 static void *async_client_context;
4061 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4063 async_client_callback (INF_REG_EVENT, async_client_context);
4066 /* target_async implementation. */
4069 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4070 void *context), void *context)
4072 if (linux_nat_async_mask_value == 0 || !linux_nat_async_enabled)
4073 internal_error (__FILE__, __LINE__,
4074 "Calling target_async when async is masked");
4076 if (callback != NULL)
4078 async_client_callback = callback;
4079 async_client_context = context;
4080 add_file_handler (linux_nat_event_pipe[0],
4081 linux_nat_async_file_handler, NULL);
4083 linux_nat_async_events (1);
4087 async_client_callback = callback;
4088 async_client_context = context;
4090 linux_nat_async_events (0);
4091 delete_file_handler (linux_nat_event_pipe[0]);
4096 /* Enable/Disable async mode. */
4099 linux_nat_set_async_mode (int on)
4101 if (linux_nat_async_enabled != on)
4105 gdb_assert (waitpid_queue == NULL);
4106 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4108 if (pipe (linux_nat_event_pipe) == -1)
4109 internal_error (__FILE__, __LINE__,
4110 "creating event pipe failed.");
4112 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4113 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4117 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4119 drain_queued_events (-1);
4121 linux_nat_num_queued_events = 0;
4122 close (linux_nat_event_pipe[0]);
4123 close (linux_nat_event_pipe[1]);
4124 linux_nat_event_pipe[0] = linux_nat_event_pipe[1] = -1;
4128 linux_nat_async_enabled = on;
4132 linux_nat_add_target (struct target_ops *t)
4134 /* Save the provided single-threaded target. We save this in a separate
4135 variable because another target we've inherited from (e.g. inf-ptrace)
4136 may have saved a pointer to T; we want to use it for the final
4137 process stratum target. */
4138 linux_ops_saved = *t;
4139 linux_ops = &linux_ops_saved;
4141 /* Override some methods for multithreading. */
4142 t->to_create_inferior = linux_nat_create_inferior;
4143 t->to_attach = linux_nat_attach;
4144 t->to_detach = linux_nat_detach;
4145 t->to_resume = linux_nat_resume;
4146 t->to_wait = linux_nat_wait;
4147 t->to_xfer_partial = linux_nat_xfer_partial;
4148 t->to_kill = linux_nat_kill;
4149 t->to_mourn_inferior = linux_nat_mourn_inferior;
4150 t->to_thread_alive = linux_nat_thread_alive;
4151 t->to_pid_to_str = linux_nat_pid_to_str;
4152 t->to_has_thread_control = tc_schedlock;
4154 t->to_can_async_p = linux_nat_can_async_p;
4155 t->to_is_async_p = linux_nat_is_async_p;
4156 t->to_async = linux_nat_async;
4157 t->to_async_mask = linux_nat_async_mask;
4158 t->to_terminal_inferior = linux_nat_terminal_inferior;
4159 t->to_terminal_ours = linux_nat_terminal_ours;
4161 /* We don't change the stratum; this target will sit at
4162 process_stratum and thread_db will set at thread_stratum. This
4163 is a little strange, since this is a multi-threaded-capable
4164 target, but we want to be on the stack below thread_db, and we
4165 also want to be used for single-threaded processes. */
4169 /* TODO: Eliminate this and have libthread_db use
4170 find_target_beneath. */
4174 /* Register a method to call whenever a new thread is attached. */
4176 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4178 /* Save the pointer. We only support a single registered instance
4179 of the GNU/Linux native target, so we do not need to map this to
4181 linux_nat_new_thread = new_thread;
4184 /* Return the saved siginfo associated with PTID. */
4186 linux_nat_get_siginfo (ptid_t ptid)
4188 struct lwp_info *lp = find_lwp_pid (ptid);
4190 gdb_assert (lp != NULL);
4192 return &lp->siginfo;
4196 _initialize_linux_nat (void)
4200 add_info ("proc", linux_nat_info_proc_cmd, _("\
4201 Show /proc process information about any running process.\n\
4202 Specify any process id, or use the program being debugged by default.\n\
4203 Specify any of the following keywords for detailed info:\n\
4204 mappings -- list of mapped memory regions.\n\
4205 stat -- list a bunch of random process info.\n\
4206 status -- list a different bunch of random process info.\n\
4207 all -- list all available /proc info."));
4209 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4210 &debug_linux_nat, _("\
4211 Set debugging of GNU/Linux lwp module."), _("\
4212 Show debugging of GNU/Linux lwp module."), _("\
4213 Enables printf debugging output."),
4215 show_debug_linux_nat,
4216 &setdebuglist, &showdebuglist);
4218 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4219 &debug_linux_nat_async, _("\
4220 Set debugging of GNU/Linux async lwp module."), _("\
4221 Show debugging of GNU/Linux async lwp module."), _("\
4222 Enables printf debugging output."),
4224 show_debug_linux_nat_async,
4225 &setdebuglist, &showdebuglist);
4227 add_setshow_boolean_cmd ("linux-async", class_maintenance,
4228 &linux_async_permitted_1, _("\
4229 Set whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4230 Show whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4231 Tells gdb whether to control the GNU/Linux inferior in asynchronous mode."),
4232 set_maintenance_linux_async_permitted,
4233 show_maintenance_linux_async_permitted,
4234 &maintenance_set_cmdlist,
4235 &maintenance_show_cmdlist);
4237 /* Block SIGCHLD by default. Doing this early prevents it getting
4238 unblocked if an exception is thrown due to an error while the
4239 inferior is starting (sigsetjmp/siglongjmp). */
4240 sigemptyset (&mask);
4241 sigaddset (&mask, SIGCHLD);
4242 sigprocmask (SIG_BLOCK, &mask, NULL);
4244 /* Save this mask as the default. */
4245 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4247 /* The synchronous SIGCHLD handler. */
4248 sync_sigchld_action.sa_handler = sigchld_handler;
4249 sigemptyset (&sync_sigchld_action.sa_mask);
4250 sync_sigchld_action.sa_flags = SA_RESTART;
4252 /* Make it the default. */
4253 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4255 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4256 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4257 sigdelset (&suspend_mask, SIGCHLD);
4259 /* SIGCHLD handler for async mode. */
4260 async_sigchld_action.sa_handler = async_sigchld_handler;
4261 sigemptyset (&async_sigchld_action.sa_mask);
4262 async_sigchld_action.sa_flags = SA_RESTART;
4264 /* Install the default mode. */
4265 linux_nat_set_async_mode (linux_async_permitted);
4269 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4270 the GNU/Linux Threads library and therefore doesn't really belong
4273 /* Read variable NAME in the target and return its value if found.
4274 Otherwise return zero. It is assumed that the type of the variable
4278 get_signo (const char *name)
4280 struct minimal_symbol *ms;
4283 ms = lookup_minimal_symbol (name, NULL, NULL);
4287 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4288 sizeof (signo)) != 0)
4294 /* Return the set of signals used by the threads library in *SET. */
4297 lin_thread_get_thread_signals (sigset_t *set)
4299 struct sigaction action;
4300 int restart, cancel;
4301 sigset_t blocked_mask;
4303 sigemptyset (&blocked_mask);
4306 restart = get_signo ("__pthread_sig_restart");
4307 cancel = get_signo ("__pthread_sig_cancel");
4309 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4310 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4311 not provide any way for the debugger to query the signal numbers -
4312 fortunately they don't change! */
4315 restart = __SIGRTMIN;
4318 cancel = __SIGRTMIN + 1;
4320 sigaddset (set, restart);
4321 sigaddset (set, cancel);
4323 /* The GNU/Linux Threads library makes terminating threads send a
4324 special "cancel" signal instead of SIGCHLD. Make sure we catch
4325 those (to prevent them from terminating GDB itself, which is
4326 likely to be their default action) and treat them the same way as
4329 action.sa_handler = sigchld_handler;
4330 sigemptyset (&action.sa_mask);
4331 action.sa_flags = SA_RESTART;
4332 sigaction (cancel, &action, NULL);
4334 /* We block the "cancel" signal throughout this code ... */
4335 sigaddset (&blocked_mask, cancel);
4336 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4338 /* ... except during a sigsuspend. */
4339 sigdelset (&suspend_mask, cancel);