1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
29 #include <sys/syscall.h>
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
38 #include "inf-ptrace.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #ifdef HAVE_PERSONALITY
54 # include <sys/personality.h>
55 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
56 # define ADDR_NO_RANDOMIZE 0x0040000
58 #endif /* HAVE_PERSONALITY */
60 /* This comment documents high-level logic of this file.
62 Waiting for events in sync mode
63 ===============================
65 When waiting for an event in a specific thread, we just use waitpid, passing
66 the specific pid, and not passing WNOHANG.
68 When waiting for an event in all threads, waitpid is not quite good. Prior to
69 version 2.4, Linux can either wait for event in main thread, or in secondary
70 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
71 miss an event. The solution is to use non-blocking waitpid, together with
72 sigsuspend. First, we use non-blocking waitpid to get an event in the main
73 process, if any. Second, we use non-blocking waitpid with the __WCLONED
74 flag to check for events in cloned processes. If nothing is found, we use
75 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
76 happened to a child process -- and SIGCHLD will be delivered both for events
77 in main debugged process and in cloned processes. As soon as we know there's
78 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
80 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
81 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
82 blocked, the signal becomes pending and sigsuspend immediately
83 notices it and returns.
85 Waiting for events in async mode
86 ================================
88 In async mode, GDB should always be ready to handle both user input and target
89 events, so neither blocking waitpid nor sigsuspend are viable
90 options. Instead, we should notify the GDB main event loop whenever there's
91 unprocessed event from the target. The only way to notify this event loop is
92 to make it wait on input from a pipe, and write something to the pipe whenever
93 there's event. Obviously, if we fail to notify the event loop if there's
94 target event, it's bad. If we notify the event loop when there's no event
95 from target, linux-nat.c will detect that there's no event, actually, and
96 report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
99 The main design point is that every time GDB is outside linux-nat.c, we have a
100 SIGCHLD handler installed that is called when something happens to the target
101 and notifies the GDB event loop. Also, the event is extracted from the target
102 using waitpid and stored for future use. Whenever GDB core decides to handle
103 the event, and calls into linux-nat.c, we disable SIGCHLD and process things
104 as in sync mode, except that before waitpid call we check if there are any
105 previously read events.
107 It could happen that during event processing, we'll try to get more events
108 than there are events in the local queue, which will result to waitpid call.
109 Those waitpid calls, while blocking, are guarantied to always have
110 something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
111 waiting for the lwp to stop.
113 The event loop is notified about new events using a pipe. SIGCHLD handler does
114 waitpid and writes the results in to a pipe. GDB event loop has the other end
115 of the pipe among the sources. When event loop starts to process the event
116 and calls a function in linux-nat.c, all events from the pipe are transferred
117 into a local queue and SIGCHLD is blocked. Further processing goes as in sync
118 mode. Before we return from linux_nat_wait, we transfer all unprocessed events
119 from local queue back to the pipe, so that when we get back to event loop,
120 event loop will notice there's something more to do.
122 SIGCHLD is blocked when we're inside target_wait, so that should we actually
123 want to wait for some more events, SIGCHLD handler does not steal them from
124 us. Technically, it would be possible to add new events to the local queue but
125 it's about the same amount of work as blocking SIGCHLD.
127 This moving of events from pipe into local queue and back into pipe when we
128 enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
129 home-grown and incapable to wait on any queue.
134 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
135 signal is not entirely significant; we just need for a signal to be delivered,
136 so that we can intercept it. SIGSTOP's advantage is that it can not be
137 blocked. A disadvantage is that it is not a real-time signal, so it can only
138 be queued once; we do not keep track of other sources of SIGSTOP.
140 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
141 use them, because they have special behavior when the signal is generated -
142 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
143 kills the entire thread group.
145 A delivered SIGSTOP would stop the entire thread group, not just the thread we
146 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
147 cancel it (by PTRACE_CONT without passing SIGSTOP).
149 We could use a real-time signal instead. This would solve those problems; we
150 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
151 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
152 generates it, and there are races with trying to find a signal that is not
156 #define O_LARGEFILE 0
159 /* If the system headers did not provide the constants, hard-code the normal
161 #ifndef PTRACE_EVENT_FORK
163 #define PTRACE_SETOPTIONS 0x4200
164 #define PTRACE_GETEVENTMSG 0x4201
166 /* options set using PTRACE_SETOPTIONS */
167 #define PTRACE_O_TRACESYSGOOD 0x00000001
168 #define PTRACE_O_TRACEFORK 0x00000002
169 #define PTRACE_O_TRACEVFORK 0x00000004
170 #define PTRACE_O_TRACECLONE 0x00000008
171 #define PTRACE_O_TRACEEXEC 0x00000010
172 #define PTRACE_O_TRACEVFORKDONE 0x00000020
173 #define PTRACE_O_TRACEEXIT 0x00000040
175 /* Wait extended result codes for the above trace options. */
176 #define PTRACE_EVENT_FORK 1
177 #define PTRACE_EVENT_VFORK 2
178 #define PTRACE_EVENT_CLONE 3
179 #define PTRACE_EVENT_EXEC 4
180 #define PTRACE_EVENT_VFORK_DONE 5
181 #define PTRACE_EVENT_EXIT 6
183 #endif /* PTRACE_EVENT_FORK */
185 /* We can't always assume that this flag is available, but all systems
186 with the ptrace event handlers also have __WALL, so it's safe to use
189 #define __WALL 0x40000000 /* Wait for any child. */
192 #ifndef PTRACE_GETSIGINFO
193 #define PTRACE_GETSIGINFO 0x4202
196 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
197 the use of the multi-threaded target. */
198 static struct target_ops *linux_ops;
199 static struct target_ops linux_ops_saved;
201 /* The method to call, if any, when a new thread is attached. */
202 static void (*linux_nat_new_thread) (ptid_t);
204 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
205 Called by our to_xfer_partial. */
206 static LONGEST (*super_xfer_partial) (struct target_ops *,
208 const char *, gdb_byte *,
212 static int debug_linux_nat;
214 show_debug_linux_nat (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
217 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
221 static int debug_linux_nat_async = 0;
223 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
226 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
230 static int disable_randomization = 1;
233 show_disable_randomization (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
236 #ifdef HAVE_PERSONALITY
237 fprintf_filtered (file, _("\
238 Disabling randomization of debuggee's virtual address space is %s.\n"),
240 #else /* !HAVE_PERSONALITY */
242 Disabling randomization of debuggee's virtual address space is unsupported on\n\
243 this platform.\n"), file);
244 #endif /* !HAVE_PERSONALITY */
248 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
250 #ifndef HAVE_PERSONALITY
252 Disabling randomization of debuggee's virtual address space is unsupported on\n\
254 #endif /* !HAVE_PERSONALITY */
257 static int linux_parent_pid;
259 struct simple_pid_list
263 struct simple_pid_list *next;
265 struct simple_pid_list *stopped_pids;
267 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
268 can not be used, 1 if it can. */
270 static int linux_supports_tracefork_flag = -1;
272 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
273 PTRACE_O_TRACEVFORKDONE. */
275 static int linux_supports_tracevforkdone_flag = -1;
277 /* Async mode support */
279 /* Zero if the async mode, although enabled, is masked, which means
280 linux_nat_wait should behave as if async mode was off. */
281 static int linux_nat_async_mask_value = 1;
283 /* The read/write ends of the pipe registered as waitable file in the
285 static int linux_nat_event_pipe[2] = { -1, -1 };
287 /* Number of queued events in the pipe. */
288 static volatile int linux_nat_num_queued_events;
290 /* The possible SIGCHLD handling states. */
294 /* SIGCHLD disabled, with action set to sigchld_handler, for the
295 sigsuspend in linux_nat_wait. */
297 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
299 /* Set SIGCHLD to default action. Used while creating an
304 /* The current SIGCHLD handling state. */
305 static enum sigchld_state linux_nat_async_events_state;
307 static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
308 static void pipe_to_local_event_queue (void);
309 static void local_event_queue_to_pipe (void);
310 static void linux_nat_event_pipe_push (int pid, int status, int options);
311 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
312 static void linux_nat_set_async_mode (int on);
313 static void linux_nat_async (void (*callback)
314 (enum inferior_event_type event_type, void *context),
316 static int linux_nat_async_mask (int mask);
317 static int kill_lwp (int lwpid, int signo);
319 static int send_sigint_callback (struct lwp_info *lp, void *data);
320 static int stop_callback (struct lwp_info *lp, void *data);
322 /* Captures the result of a successful waitpid call, along with the
323 options used in that call. */
324 struct waitpid_result
329 struct waitpid_result *next;
332 /* A singly-linked list of the results of the waitpid calls performed
333 in the async SIGCHLD handler. */
334 static struct waitpid_result *waitpid_queue = NULL;
337 queued_waitpid (int pid, int *status, int flags)
339 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
341 if (debug_linux_nat_async)
342 fprintf_unfiltered (gdb_stdlog,
344 QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
345 linux_nat_async_events_state,
346 linux_nat_num_queued_events);
350 for (; msg; prev = msg, msg = msg->next)
351 if (pid == -1 || pid == msg->pid)
354 else if (flags & __WCLONE)
356 for (; msg; prev = msg, msg = msg->next)
357 if (msg->options & __WCLONE
358 && (pid == -1 || pid == msg->pid))
363 for (; msg; prev = msg, msg = msg->next)
364 if ((msg->options & __WCLONE) == 0
365 && (pid == -1 || pid == msg->pid))
374 prev->next = msg->next;
376 waitpid_queue = msg->next;
380 *status = msg->status;
383 if (debug_linux_nat_async)
384 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
391 if (debug_linux_nat_async)
392 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
400 push_waitpid (int pid, int status, int options)
402 struct waitpid_result *event, *new_event;
404 new_event = xmalloc (sizeof (*new_event));
405 new_event->pid = pid;
406 new_event->status = status;
407 new_event->options = options;
408 new_event->next = NULL;
412 for (event = waitpid_queue;
413 event && event->next;
417 event->next = new_event;
420 waitpid_queue = new_event;
423 /* Drain all queued events of PID. If PID is -1, the effect is of
424 draining all events. */
426 drain_queued_events (int pid)
428 while (queued_waitpid (pid, NULL, __WALL) != -1)
433 /* Trivial list manipulation functions to keep track of a list of
434 new stopped processes. */
436 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
438 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
440 new_pid->status = status;
441 new_pid->next = *listp;
446 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
448 struct simple_pid_list **p;
450 for (p = listp; *p != NULL; p = &(*p)->next)
451 if ((*p)->pid == pid)
453 struct simple_pid_list *next = (*p)->next;
454 *status = (*p)->status;
463 linux_record_stopped_pid (int pid, int status)
465 add_to_pid_list (&stopped_pids, pid, status);
469 /* A helper function for linux_test_for_tracefork, called after fork (). */
472 linux_tracefork_child (void)
476 ptrace (PTRACE_TRACEME, 0, 0, 0);
477 kill (getpid (), SIGSTOP);
482 /* Wrapper function for waitpid which handles EINTR, and checks for
483 locally queued events. */
486 my_waitpid (int pid, int *status, int flags)
490 /* There should be no concurrent calls to waitpid. */
491 gdb_assert (linux_nat_async_events_state == sigchld_sync);
493 ret = queued_waitpid (pid, status, flags);
499 ret = waitpid (pid, status, flags);
501 while (ret == -1 && errno == EINTR);
506 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
508 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
509 we know that the feature is not available. This may change the tracing
510 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
512 However, if it succeeds, we don't know for sure that the feature is
513 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
514 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
515 fork tracing, and let it fork. If the process exits, we assume that we
516 can't use TRACEFORK; if we get the fork notification, and we can extract
517 the new child's PID, then we assume that we can. */
520 linux_test_for_tracefork (int original_pid)
522 int child_pid, ret, status;
524 enum sigchld_state async_events_original_state;
526 async_events_original_state = linux_nat_async_events (sigchld_sync);
528 linux_supports_tracefork_flag = 0;
529 linux_supports_tracevforkdone_flag = 0;
531 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
537 perror_with_name (("fork"));
540 linux_tracefork_child ();
542 ret = my_waitpid (child_pid, &status, 0);
544 perror_with_name (("waitpid"));
545 else if (ret != child_pid)
546 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
547 if (! WIFSTOPPED (status))
548 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
550 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
553 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
556 warning (_("linux_test_for_tracefork: failed to kill child"));
557 linux_nat_async_events (async_events_original_state);
561 ret = my_waitpid (child_pid, &status, 0);
562 if (ret != child_pid)
563 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
564 else if (!WIFSIGNALED (status))
565 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
566 "killed child"), status);
568 linux_nat_async_events (async_events_original_state);
572 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
573 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
574 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
575 linux_supports_tracevforkdone_flag = (ret == 0);
577 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
579 warning (_("linux_test_for_tracefork: failed to resume child"));
581 ret = my_waitpid (child_pid, &status, 0);
583 if (ret == child_pid && WIFSTOPPED (status)
584 && status >> 16 == PTRACE_EVENT_FORK)
587 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
588 if (ret == 0 && second_pid != 0)
592 linux_supports_tracefork_flag = 1;
593 my_waitpid (second_pid, &second_status, 0);
594 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
596 warning (_("linux_test_for_tracefork: failed to kill second child"));
597 my_waitpid (second_pid, &status, 0);
601 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
602 "(%d, status 0x%x)"), ret, status);
604 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
606 warning (_("linux_test_for_tracefork: failed to kill child"));
607 my_waitpid (child_pid, &status, 0);
609 linux_nat_async_events (async_events_original_state);
612 /* Return non-zero iff we have tracefork functionality available.
613 This function also sets linux_supports_tracefork_flag. */
616 linux_supports_tracefork (int pid)
618 if (linux_supports_tracefork_flag == -1)
619 linux_test_for_tracefork (pid);
620 return linux_supports_tracefork_flag;
624 linux_supports_tracevforkdone (int pid)
626 if (linux_supports_tracefork_flag == -1)
627 linux_test_for_tracefork (pid);
628 return linux_supports_tracevforkdone_flag;
633 linux_enable_event_reporting (ptid_t ptid)
635 int pid = ptid_get_lwp (ptid);
639 pid = ptid_get_pid (ptid);
641 if (! linux_supports_tracefork (pid))
644 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
645 | PTRACE_O_TRACECLONE;
646 if (linux_supports_tracevforkdone (pid))
647 options |= PTRACE_O_TRACEVFORKDONE;
649 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
650 read-only process state. */
652 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
656 linux_child_post_attach (int pid)
658 linux_enable_event_reporting (pid_to_ptid (pid));
659 check_for_thread_db ();
663 linux_child_post_startup_inferior (ptid_t ptid)
665 linux_enable_event_reporting (ptid);
666 check_for_thread_db ();
670 linux_child_follow_fork (struct target_ops *ops, int follow_child)
673 struct target_waitstatus last_status;
675 int parent_pid, child_pid;
677 if (target_can_async_p ())
678 target_async (NULL, 0);
680 get_last_target_status (&last_ptid, &last_status);
681 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
682 parent_pid = ptid_get_lwp (last_ptid);
684 parent_pid = ptid_get_pid (last_ptid);
685 child_pid = PIDGET (last_status.value.related_pid);
689 /* We're already attached to the parent, by default. */
691 /* Before detaching from the child, remove all breakpoints from
692 it. (This won't actually modify the breakpoint list, but will
693 physically remove the breakpoints from the child.) */
694 /* If we vforked this will remove the breakpoints from the parent
695 also, but they'll be reinserted below. */
696 detach_breakpoints (child_pid);
698 /* Detach new forked process? */
701 if (info_verbose || debug_linux_nat)
703 target_terminal_ours ();
704 fprintf_filtered (gdb_stdlog,
705 "Detaching after fork from child process %d.\n",
709 ptrace (PTRACE_DETACH, child_pid, 0, 0);
713 struct fork_info *fp;
714 /* Retain child fork in ptrace (stopped) state. */
715 fp = find_fork_pid (child_pid);
717 fp = add_fork (child_pid);
718 fork_save_infrun_state (fp, 0);
723 gdb_assert (linux_supports_tracefork_flag >= 0);
724 if (linux_supports_tracevforkdone (0))
728 ptrace (PTRACE_CONT, parent_pid, 0, 0);
729 my_waitpid (parent_pid, &status, __WALL);
730 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
731 warning (_("Unexpected waitpid result %06x when waiting for "
732 "vfork-done"), status);
736 /* We can't insert breakpoints until the child has
737 finished with the shared memory region. We need to
738 wait until that happens. Ideal would be to just
740 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
741 - waitpid (parent_pid, &status, __WALL);
742 However, most architectures can't handle a syscall
743 being traced on the way out if it wasn't traced on
746 We might also think to loop, continuing the child
747 until it exits or gets a SIGTRAP. One problem is
748 that the child might call ptrace with PTRACE_TRACEME.
750 There's no simple and reliable way to figure out when
751 the vforked child will be done with its copy of the
752 shared memory. We could step it out of the syscall,
753 two instructions, let it go, and then single-step the
754 parent once. When we have hardware single-step, this
755 would work; with software single-step it could still
756 be made to work but we'd have to be able to insert
757 single-step breakpoints in the child, and we'd have
758 to insert -just- the single-step breakpoint in the
759 parent. Very awkward.
761 In the end, the best we can do is to make sure it
762 runs for a little while. Hopefully it will be out of
763 range of any breakpoints we reinsert. Usually this
764 is only the single-step breakpoint at vfork's return
770 /* Since we vforked, breakpoints were removed in the parent
771 too. Put them back. */
772 reattach_breakpoints (parent_pid);
777 struct thread_info *last_tp = find_thread_pid (last_ptid);
778 struct thread_info *tp;
779 char child_pid_spelling[40];
781 /* Copy user stepping state to the new inferior thread. */
782 struct breakpoint *step_resume_breakpoint = last_tp->step_resume_breakpoint;
783 CORE_ADDR step_range_start = last_tp->step_range_start;
784 CORE_ADDR step_range_end = last_tp->step_range_end;
785 struct frame_id step_frame_id = last_tp->step_frame_id;
787 /* Otherwise, deleting the parent would get rid of this
789 last_tp->step_resume_breakpoint = NULL;
791 /* Needed to keep the breakpoint lists in sync. */
793 detach_breakpoints (child_pid);
795 /* Before detaching from the parent, remove all breakpoints from it. */
796 remove_breakpoints ();
798 if (info_verbose || debug_linux_nat)
800 target_terminal_ours ();
801 fprintf_filtered (gdb_stdlog,
802 "Attaching after fork to child process %d.\n",
806 /* If we're vforking, we may want to hold on to the parent until
807 the child exits or execs. At exec time we can remove the old
808 breakpoints from the parent and detach it; at exit time we
809 could do the same (or even, sneakily, resume debugging it - the
810 child's exec has failed, or something similar).
812 This doesn't clean up "properly", because we can't call
813 target_detach, but that's OK; if the current target is "child",
814 then it doesn't need any further cleanups, and lin_lwp will
815 generally not encounter vfork (vfork is defined to fork
818 The holding part is very easy if we have VFORKDONE events;
819 but keeping track of both processes is beyond GDB at the
820 moment. So we don't expose the parent to the rest of GDB.
821 Instead we quietly hold onto it until such time as we can
825 linux_parent_pid = parent_pid;
826 else if (!detach_fork)
828 struct fork_info *fp;
829 /* Retain parent fork in ptrace (stopped) state. */
830 fp = find_fork_pid (parent_pid);
832 fp = add_fork (parent_pid);
833 fork_save_infrun_state (fp, 0);
836 target_detach (NULL, 0);
838 inferior_ptid = ptid_build (child_pid, child_pid, 0);
840 /* Reinstall ourselves, since we might have been removed in
841 target_detach (which does other necessary cleanup). */
844 linux_nat_switch_fork (inferior_ptid);
845 check_for_thread_db ();
847 tp = inferior_thread ();
848 tp->step_resume_breakpoint = step_resume_breakpoint;
849 tp->step_range_start = step_range_start;
850 tp->step_range_end = step_range_end;
851 tp->step_frame_id = step_frame_id;
853 /* Reset breakpoints in the child as appropriate. */
854 follow_inferior_reset_breakpoints ();
857 if (target_can_async_p ())
858 target_async (inferior_event_handler, 0);
865 linux_child_insert_fork_catchpoint (int pid)
867 if (! linux_supports_tracefork (pid))
868 error (_("Your system does not support fork catchpoints."));
872 linux_child_insert_vfork_catchpoint (int pid)
874 if (!linux_supports_tracefork (pid))
875 error (_("Your system does not support vfork catchpoints."));
879 linux_child_insert_exec_catchpoint (int pid)
881 if (!linux_supports_tracefork (pid))
882 error (_("Your system does not support exec catchpoints."));
885 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
886 are processes sharing the same VM space. A multi-threaded process
887 is basically a group of such processes. However, such a grouping
888 is almost entirely a user-space issue; the kernel doesn't enforce
889 such a grouping at all (this might change in the future). In
890 general, we'll rely on the threads library (i.e. the GNU/Linux
891 Threads library) to provide such a grouping.
893 It is perfectly well possible to write a multi-threaded application
894 without the assistance of a threads library, by using the clone
895 system call directly. This module should be able to give some
896 rudimentary support for debugging such applications if developers
897 specify the CLONE_PTRACE flag in the clone system call, and are
898 using the Linux kernel 2.4 or above.
900 Note that there are some peculiarities in GNU/Linux that affect
903 - In general one should specify the __WCLONE flag to waitpid in
904 order to make it report events for any of the cloned processes
905 (and leave it out for the initial process). However, if a cloned
906 process has exited the exit status is only reported if the
907 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
908 we cannot use it since GDB must work on older systems too.
910 - When a traced, cloned process exits and is waited for by the
911 debugger, the kernel reassigns it to the original parent and
912 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
913 library doesn't notice this, which leads to the "zombie problem":
914 When debugged a multi-threaded process that spawns a lot of
915 threads will run out of processes, even if the threads exit,
916 because the "zombies" stay around. */
918 /* List of known LWPs. */
919 struct lwp_info *lwp_list;
921 /* Number of LWPs in the list. */
925 /* Original signal mask. */
926 static sigset_t normal_mask;
928 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
929 _initialize_linux_nat. */
930 static sigset_t suspend_mask;
932 /* SIGCHLD action for synchronous mode. */
933 struct sigaction sync_sigchld_action;
935 /* SIGCHLD action for asynchronous mode. */
936 static struct sigaction async_sigchld_action;
938 /* SIGCHLD default action, to pass to new inferiors. */
939 static struct sigaction sigchld_default_action;
942 /* Prototypes for local functions. */
943 static int stop_wait_callback (struct lwp_info *lp, void *data);
944 static int linux_nat_thread_alive (ptid_t ptid);
945 static char *linux_child_pid_to_exec_file (int pid);
946 static int cancel_breakpoint (struct lwp_info *lp);
949 /* Convert wait status STATUS to a string. Used for printing debug
953 status_to_str (int status)
957 if (WIFSTOPPED (status))
958 snprintf (buf, sizeof (buf), "%s (stopped)",
959 strsignal (WSTOPSIG (status)));
960 else if (WIFSIGNALED (status))
961 snprintf (buf, sizeof (buf), "%s (terminated)",
962 strsignal (WSTOPSIG (status)));
964 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
969 /* Initialize the list of LWPs. Note that this module, contrary to
970 what GDB's generic threads layer does for its thread list,
971 re-initializes the LWP lists whenever we mourn or detach (which
972 doesn't involve mourning) the inferior. */
977 struct lwp_info *lp, *lpnext;
979 for (lp = lwp_list; lp; lp = lpnext)
989 /* Add the LWP specified by PID to the list. Return a pointer to the
990 structure describing the new LWP. The LWP should already be stopped
991 (with an exception for the very first LWP). */
993 static struct lwp_info *
994 add_lwp (ptid_t ptid)
998 gdb_assert (is_lwp (ptid));
1000 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1002 memset (lp, 0, sizeof (struct lwp_info));
1004 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1008 lp->next = lwp_list;
1012 if (num_lwps > 1 && linux_nat_new_thread != NULL)
1013 linux_nat_new_thread (ptid);
1018 /* Remove the LWP specified by PID from the list. */
1021 delete_lwp (ptid_t ptid)
1023 struct lwp_info *lp, *lpprev;
1027 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1028 if (ptid_equal (lp->ptid, ptid))
1037 lpprev->next = lp->next;
1039 lwp_list = lp->next;
1044 /* Return a pointer to the structure describing the LWP corresponding
1045 to PID. If no corresponding LWP could be found, return NULL. */
1047 static struct lwp_info *
1048 find_lwp_pid (ptid_t ptid)
1050 struct lwp_info *lp;
1054 lwp = GET_LWP (ptid);
1056 lwp = GET_PID (ptid);
1058 for (lp = lwp_list; lp; lp = lp->next)
1059 if (lwp == GET_LWP (lp->ptid))
1065 /* Call CALLBACK with its second argument set to DATA for every LWP in
1066 the list. If CALLBACK returns 1 for a particular LWP, return a
1067 pointer to the structure describing that LWP immediately.
1068 Otherwise return NULL. */
1071 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1073 struct lwp_info *lp, *lpnext;
1075 for (lp = lwp_list; lp; lp = lpnext)
1078 if ((*callback) (lp, data))
1085 /* Update our internal state when changing from one fork (checkpoint,
1086 et cetera) to another indicated by NEW_PTID. We can only switch
1087 single-threaded applications, so we only create one new LWP, and
1088 the previous list is discarded. */
1091 linux_nat_switch_fork (ptid_t new_ptid)
1093 struct lwp_info *lp;
1096 lp = add_lwp (new_ptid);
1099 init_thread_list ();
1100 add_thread_silent (new_ptid);
1103 /* Handle the exit of a single thread LP. */
1106 exit_lwp (struct lwp_info *lp)
1108 struct thread_info *th = find_thread_pid (lp->ptid);
1112 if (print_thread_events)
1113 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1115 delete_thread (lp->ptid);
1118 delete_lwp (lp->ptid);
1121 /* Detect `T (stopped)' in `/proc/PID/status'.
1122 Other states including `T (tracing stop)' are reported as false. */
1125 pid_is_stopped (pid_t pid)
1131 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1132 status_file = fopen (buf, "r");
1133 if (status_file != NULL)
1137 while (fgets (buf, sizeof (buf), status_file))
1139 if (strncmp (buf, "State:", 6) == 0)
1145 if (have_state && strstr (buf, "T (stopped)") != NULL)
1147 fclose (status_file);
1152 /* Wait for the LWP specified by LP, which we have just attached to.
1153 Returns a wait status for that LWP, to cache. */
1156 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1159 pid_t new_pid, pid = GET_LWP (ptid);
1162 if (pid_is_stopped (pid))
1164 if (debug_linux_nat)
1165 fprintf_unfiltered (gdb_stdlog,
1166 "LNPAW: Attaching to a stopped process\n");
1168 /* The process is definitely stopped. It is in a job control
1169 stop, unless the kernel predates the TASK_STOPPED /
1170 TASK_TRACED distinction, in which case it might be in a
1171 ptrace stop. Make sure it is in a ptrace stop; from there we
1172 can kill it, signal it, et cetera.
1174 First make sure there is a pending SIGSTOP. Since we are
1175 already attached, the process can not transition from stopped
1176 to running without a PTRACE_CONT; so we know this signal will
1177 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1178 probably already in the queue (unless this kernel is old
1179 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1180 is not an RT signal, it can only be queued once. */
1181 kill_lwp (pid, SIGSTOP);
1183 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1184 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1185 ptrace (PTRACE_CONT, pid, 0, 0);
1188 /* Make sure the initial process is stopped. The user-level threads
1189 layer might want to poke around in the inferior, and that won't
1190 work if things haven't stabilized yet. */
1191 new_pid = my_waitpid (pid, &status, 0);
1192 if (new_pid == -1 && errno == ECHILD)
1195 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1197 /* Try again with __WCLONE to check cloned processes. */
1198 new_pid = my_waitpid (pid, &status, __WCLONE);
1202 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1204 if (WSTOPSIG (status) != SIGSTOP)
1207 if (debug_linux_nat)
1208 fprintf_unfiltered (gdb_stdlog,
1209 "LNPAW: Received %s after attaching\n",
1210 status_to_str (status));
1216 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1217 if the new LWP could not be attached. */
1220 lin_lwp_attach_lwp (ptid_t ptid)
1222 struct lwp_info *lp;
1223 enum sigchld_state async_events_original_state;
1225 gdb_assert (is_lwp (ptid));
1227 async_events_original_state = linux_nat_async_events (sigchld_sync);
1229 lp = find_lwp_pid (ptid);
1231 /* We assume that we're already attached to any LWP that has an id
1232 equal to the overall process id, and to any LWP that is already
1233 in our list of LWPs. If we're not seeing exit events from threads
1234 and we've had PID wraparound since we last tried to stop all threads,
1235 this assumption might be wrong; fortunately, this is very unlikely
1237 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1239 int status, cloned = 0, signalled = 0;
1241 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1243 /* If we fail to attach to the thread, issue a warning,
1244 but continue. One way this can happen is if thread
1245 creation is interrupted; as of Linux kernel 2.6.19, a
1246 bug may place threads in the thread list and then fail
1248 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1249 safe_strerror (errno));
1253 if (debug_linux_nat)
1254 fprintf_unfiltered (gdb_stdlog,
1255 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1256 target_pid_to_str (ptid));
1258 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1259 lp = add_lwp (ptid);
1261 lp->cloned = cloned;
1262 lp->signalled = signalled;
1263 if (WSTOPSIG (status) != SIGSTOP)
1266 lp->status = status;
1269 target_post_attach (GET_LWP (lp->ptid));
1271 if (debug_linux_nat)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "LLAL: waitpid %s received %s\n",
1275 target_pid_to_str (ptid),
1276 status_to_str (status));
1281 /* We assume that the LWP representing the original process is
1282 already stopped. Mark it as stopped in the data structure
1283 that the GNU/linux ptrace layer uses to keep track of
1284 threads. Note that this won't have already been done since
1285 the main thread will have, we assume, been stopped by an
1286 attach from a different layer. */
1288 lp = add_lwp (ptid);
1292 linux_nat_async_events (async_events_original_state);
1297 linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
1300 int saved_async = 0;
1301 #ifdef HAVE_PERSONALITY
1302 int personality_orig = 0, personality_set = 0;
1303 #endif /* HAVE_PERSONALITY */
1305 /* The fork_child mechanism is synchronous and calls target_wait, so
1306 we have to mask the async mode. */
1308 if (target_can_async_p ())
1309 /* Mask async mode. Creating a child requires a loop calling
1310 wait_for_inferior currently. */
1311 saved_async = linux_nat_async_mask (0);
1314 /* Restore the original signal mask. */
1315 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1316 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1317 suspend_mask = normal_mask;
1318 sigdelset (&suspend_mask, SIGCHLD);
1321 /* Set SIGCHLD to the default action, until after execing the child,
1322 since the inferior inherits the superior's signal mask. It will
1323 be blocked again in linux_nat_wait, which is only reached after
1324 the inferior execing. */
1325 linux_nat_async_events (sigchld_default);
1327 #ifdef HAVE_PERSONALITY
1328 if (disable_randomization)
1331 personality_orig = personality (0xffffffff);
1332 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1334 personality_set = 1;
1335 personality (personality_orig | ADDR_NO_RANDOMIZE);
1337 if (errno != 0 || (personality_set
1338 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1339 warning (_("Error disabling address space randomization: %s"),
1340 safe_strerror (errno));
1342 #endif /* HAVE_PERSONALITY */
1344 linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);
1346 #ifdef HAVE_PERSONALITY
1347 if (personality_set)
1350 personality (personality_orig);
1352 warning (_("Error restoring address space randomization: %s"),
1353 safe_strerror (errno));
1355 #endif /* HAVE_PERSONALITY */
1358 linux_nat_async_mask (saved_async);
1362 linux_nat_attach (char *args, int from_tty)
1364 struct lwp_info *lp;
1368 /* FIXME: We should probably accept a list of process id's, and
1369 attach all of them. */
1370 linux_ops->to_attach (args, from_tty);
1372 if (!target_can_async_p ())
1374 /* Restore the original signal mask. */
1375 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1376 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1377 suspend_mask = normal_mask;
1378 sigdelset (&suspend_mask, SIGCHLD);
1381 /* The ptrace base target adds the main thread with (pid,0,0)
1382 format. Decorate it with lwp info. */
1383 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1384 thread_change_ptid (inferior_ptid, ptid);
1386 /* Add the initial process as the first LWP to the list. */
1387 lp = add_lwp (ptid);
1389 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1393 /* Save the wait status to report later. */
1395 if (debug_linux_nat)
1396 fprintf_unfiltered (gdb_stdlog,
1397 "LNA: waitpid %ld, saving status %s\n",
1398 (long) GET_PID (lp->ptid), status_to_str (status));
1400 if (!target_can_async_p ())
1401 lp->status = status;
1404 /* We already waited for this LWP, so put the wait result on the
1405 pipe. The event loop will wake up and gets us to handling
1407 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1408 lp->cloned ? __WCLONE : 0);
1409 /* Register in the event loop. */
1410 target_async (inferior_event_handler, 0);
1414 /* Get pending status of LP. */
1416 get_pending_status (struct lwp_info *lp, int *status)
1418 struct target_waitstatus last;
1421 get_last_target_status (&last_ptid, &last);
1423 /* If this lwp is the ptid that GDB is processing an event from, the
1424 signal will be in stop_signal. Otherwise, in all-stop + sync
1425 mode, we may cache pending events in lp->status while trying to
1426 stop all threads (see stop_wait_callback). In async mode, the
1427 events are always cached in waitpid_queue. */
1433 enum target_signal signo = TARGET_SIGNAL_0;
1435 if (is_executing (lp->ptid))
1437 /* If the core thought this lwp was executing --- e.g., the
1438 executing property hasn't been updated yet, but the
1439 thread has been stopped with a stop_callback /
1440 stop_wait_callback sequence (see linux_nat_detach for
1441 example) --- we can only have pending events in the local
1443 if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1)
1445 if (WIFSTOPPED (status))
1446 signo = target_signal_from_host (WSTOPSIG (status));
1448 /* If not stopped, then the lwp is gone, no use in
1449 resending a signal. */
1454 /* If the core knows the thread is not executing, then we
1455 have the last signal recorded in
1456 thread_info->stop_signal, unless this is inferior_ptid,
1457 in which case, it's in the global stop_signal, due to
1458 context switching. */
1460 if (ptid_equal (lp->ptid, inferior_ptid))
1461 signo = stop_signal;
1464 struct thread_info *tp = find_thread_pid (lp->ptid);
1466 signo = tp->stop_signal;
1470 if (signo != TARGET_SIGNAL_0
1471 && !signal_pass_state (signo))
1473 if (debug_linux_nat)
1474 fprintf_unfiltered (gdb_stdlog, "\
1475 GPT: lwp %s had signal %s, but it is in no pass state\n",
1476 target_pid_to_str (lp->ptid),
1477 target_signal_to_string (signo));
1481 if (signo != TARGET_SIGNAL_0)
1482 *status = W_STOPCODE (target_signal_to_host (signo));
1484 if (debug_linux_nat)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "GPT: lwp %s as pending signal %s\n",
1487 target_pid_to_str (lp->ptid),
1488 target_signal_to_string (signo));
1493 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1495 if (stop_signal != TARGET_SIGNAL_0
1496 && signal_pass_state (stop_signal))
1497 *status = W_STOPCODE (target_signal_to_host (stop_signal));
1499 else if (target_can_async_p ())
1500 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1502 *status = lp->status;
1509 detach_callback (struct lwp_info *lp, void *data)
1511 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1513 if (debug_linux_nat && lp->status)
1514 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1515 strsignal (WSTOPSIG (lp->status)),
1516 target_pid_to_str (lp->ptid));
1518 /* If there is a pending SIGSTOP, get rid of it. */
1521 if (debug_linux_nat)
1522 fprintf_unfiltered (gdb_stdlog,
1523 "DC: Sending SIGCONT to %s\n",
1524 target_pid_to_str (lp->ptid));
1526 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1530 /* We don't actually detach from the LWP that has an id equal to the
1531 overall process id just yet. */
1532 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1536 /* Pass on any pending signal for this LWP. */
1537 get_pending_status (lp, &status);
1540 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1541 WSTOPSIG (status)) < 0)
1542 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1543 safe_strerror (errno));
1545 if (debug_linux_nat)
1546 fprintf_unfiltered (gdb_stdlog,
1547 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1548 target_pid_to_str (lp->ptid),
1549 strsignal (WSTOPSIG (lp->status)));
1551 delete_lwp (lp->ptid);
1558 linux_nat_detach (char *args, int from_tty)
1562 enum target_signal sig;
1564 if (target_can_async_p ())
1565 linux_nat_async (NULL, 0);
1567 /* Stop all threads before detaching. ptrace requires that the
1568 thread is stopped to sucessfully detach. */
1569 iterate_over_lwps (stop_callback, NULL);
1570 /* ... and wait until all of them have reported back that
1571 they're no longer running. */
1572 iterate_over_lwps (stop_wait_callback, NULL);
1574 iterate_over_lwps (detach_callback, NULL);
1576 /* Only the initial process should be left right now. */
1577 gdb_assert (num_lwps == 1);
1579 /* Pass on any pending signal for the last LWP. */
1580 if ((args == NULL || *args == '\0')
1581 && get_pending_status (lwp_list, &status) != -1
1582 && WIFSTOPPED (status))
1584 /* Put the signal number in ARGS so that inf_ptrace_detach will
1585 pass it along with PTRACE_DETACH. */
1587 sprintf (args, "%d", (int) WSTOPSIG (status));
1588 fprintf_unfiltered (gdb_stdlog,
1589 "LND: Sending signal %s to %s\n",
1591 target_pid_to_str (lwp_list->ptid));
1594 /* Destroy LWP info; it's no longer valid. */
1597 pid = GET_PID (inferior_ptid);
1598 inferior_ptid = pid_to_ptid (pid);
1599 linux_ops->to_detach (args, from_tty);
1601 if (target_can_async_p ())
1602 drain_queued_events (pid);
1608 resume_callback (struct lwp_info *lp, void *data)
1610 if (lp->stopped && lp->status == 0)
1612 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1613 0, TARGET_SIGNAL_0);
1614 if (debug_linux_nat)
1615 fprintf_unfiltered (gdb_stdlog,
1616 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1617 target_pid_to_str (lp->ptid));
1620 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1622 else if (lp->stopped && debug_linux_nat)
1623 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1624 target_pid_to_str (lp->ptid));
1625 else if (debug_linux_nat)
1626 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1627 target_pid_to_str (lp->ptid));
1633 resume_clear_callback (struct lwp_info *lp, void *data)
1640 resume_set_callback (struct lwp_info *lp, void *data)
1647 linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1649 struct lwp_info *lp;
1652 if (debug_linux_nat)
1653 fprintf_unfiltered (gdb_stdlog,
1654 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1655 step ? "step" : "resume",
1656 target_pid_to_str (ptid),
1657 signo ? strsignal (signo) : "0",
1658 target_pid_to_str (inferior_ptid));
1660 if (target_can_async_p ())
1661 /* Block events while we're here. */
1662 linux_nat_async_events (sigchld_sync);
1664 /* A specific PTID means `step only this process id'. */
1665 resume_all = (PIDGET (ptid) == -1);
1667 if (non_stop && resume_all)
1668 internal_error (__FILE__, __LINE__,
1669 "can't resume all in non-stop mode");
1674 iterate_over_lwps (resume_set_callback, NULL);
1676 iterate_over_lwps (resume_clear_callback, NULL);
1679 /* If PID is -1, it's the current inferior that should be
1680 handled specially. */
1681 if (PIDGET (ptid) == -1)
1682 ptid = inferior_ptid;
1684 lp = find_lwp_pid (ptid);
1685 gdb_assert (lp != NULL);
1687 /* Convert to something the lower layer understands. */
1688 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1690 /* Remember if we're stepping. */
1693 /* Mark this LWP as resumed. */
1696 /* If we have a pending wait status for this thread, there is no
1697 point in resuming the process. But first make sure that
1698 linux_nat_wait won't preemptively handle the event - we
1699 should never take this short-circuit if we are going to
1700 leave LP running, since we have skipped resuming all the
1701 other threads. This bit of code needs to be synchronized
1702 with linux_nat_wait. */
1704 /* In async mode, we never have pending wait status. */
1705 if (target_can_async_p () && lp->status)
1706 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1708 if (lp->status && WIFSTOPPED (lp->status))
1710 int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1712 if (signal_stop_state (saved_signo) == 0
1713 && signal_print_state (saved_signo) == 0
1714 && signal_pass_state (saved_signo) == 1)
1716 if (debug_linux_nat)
1717 fprintf_unfiltered (gdb_stdlog,
1718 "LLR: Not short circuiting for ignored "
1719 "status 0x%x\n", lp->status);
1721 /* FIXME: What should we do if we are supposed to continue
1722 this thread with a signal? */
1723 gdb_assert (signo == TARGET_SIGNAL_0);
1724 signo = saved_signo;
1731 /* FIXME: What should we do if we are supposed to continue
1732 this thread with a signal? */
1733 gdb_assert (signo == TARGET_SIGNAL_0);
1735 if (debug_linux_nat)
1736 fprintf_unfiltered (gdb_stdlog,
1737 "LLR: Short circuiting for status 0x%x\n",
1743 /* Mark LWP as not stopped to prevent it from being continued by
1748 iterate_over_lwps (resume_callback, NULL);
1750 linux_ops->to_resume (ptid, step, signo);
1751 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1753 if (debug_linux_nat)
1754 fprintf_unfiltered (gdb_stdlog,
1755 "LLR: %s %s, %s (resume event thread)\n",
1756 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1757 target_pid_to_str (ptid),
1758 signo ? strsignal (signo) : "0");
1760 if (target_can_async_p ())
1761 target_async (inferior_event_handler, 0);
1764 /* Issue kill to specified lwp. */
1766 static int tkill_failed;
1769 kill_lwp (int lwpid, int signo)
1773 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1774 fails, then we are not using nptl threads and we should be using kill. */
1776 #ifdef HAVE_TKILL_SYSCALL
1779 int ret = syscall (__NR_tkill, lwpid, signo);
1780 if (errno != ENOSYS)
1787 return kill (lwpid, signo);
1790 /* Handle a GNU/Linux extended wait response. If we see a clone
1791 event, we need to add the new LWP to our list (and not report the
1792 trap to higher layers). This function returns non-zero if the
1793 event should be ignored and we should wait again. If STOPPING is
1794 true, the new LWP remains stopped, otherwise it is continued. */
1797 linux_handle_extended_wait (struct lwp_info *lp, int status,
1800 int pid = GET_LWP (lp->ptid);
1801 struct target_waitstatus *ourstatus = &lp->waitstatus;
1802 struct lwp_info *new_lp = NULL;
1803 int event = status >> 16;
1805 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1806 || event == PTRACE_EVENT_CLONE)
1808 unsigned long new_pid;
1811 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1813 /* If we haven't already seen the new PID stop, wait for it now. */
1814 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1816 /* The new child has a pending SIGSTOP. We can't affect it until it
1817 hits the SIGSTOP, but we're already attached. */
1818 ret = my_waitpid (new_pid, &status,
1819 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1821 perror_with_name (_("waiting for new child"));
1822 else if (ret != new_pid)
1823 internal_error (__FILE__, __LINE__,
1824 _("wait returned unexpected PID %d"), ret);
1825 else if (!WIFSTOPPED (status))
1826 internal_error (__FILE__, __LINE__,
1827 _("wait returned unexpected status 0x%x"), status);
1830 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1832 if (event == PTRACE_EVENT_FORK)
1833 ourstatus->kind = TARGET_WAITKIND_FORKED;
1834 else if (event == PTRACE_EVENT_VFORK)
1835 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1838 struct cleanup *old_chain;
1840 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1841 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1843 new_lp->stopped = 1;
1845 if (WSTOPSIG (status) != SIGSTOP)
1847 /* This can happen if someone starts sending signals to
1848 the new thread before it gets a chance to run, which
1849 have a lower number than SIGSTOP (e.g. SIGUSR1).
1850 This is an unlikely case, and harder to handle for
1851 fork / vfork than for clone, so we do not try - but
1852 we handle it for clone events here. We'll send
1853 the other signal on to the thread below. */
1855 new_lp->signalled = 1;
1862 /* Add the new thread to GDB's lists as soon as possible
1865 1) the frontend doesn't have to wait for a stop to
1868 2) we tag it with the correct running state. */
1870 /* If the thread_db layer is active, let it know about
1871 this new thread, and add it to GDB's list. */
1872 if (!thread_db_attach_lwp (new_lp->ptid))
1874 /* We're not using thread_db. Add it to GDB's
1876 target_post_attach (GET_LWP (new_lp->ptid));
1877 add_thread (new_lp->ptid);
1882 set_running (new_lp->ptid, 1);
1883 set_executing (new_lp->ptid, 1);
1889 new_lp->stopped = 0;
1890 new_lp->resumed = 1;
1891 ptrace (PTRACE_CONT, new_pid, 0,
1892 status ? WSTOPSIG (status) : 0);
1895 if (debug_linux_nat)
1896 fprintf_unfiltered (gdb_stdlog,
1897 "LHEW: Got clone event from LWP %ld, resuming\n",
1898 GET_LWP (lp->ptid));
1899 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1907 if (event == PTRACE_EVENT_EXEC)
1909 ourstatus->kind = TARGET_WAITKIND_EXECD;
1910 ourstatus->value.execd_pathname
1911 = xstrdup (linux_child_pid_to_exec_file (pid));
1913 if (linux_parent_pid)
1915 detach_breakpoints (linux_parent_pid);
1916 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1918 linux_parent_pid = 0;
1921 /* At this point, all inserted breakpoints are gone. Doing this
1922 as soon as we detect an exec prevents the badness of deleting
1923 a breakpoint writing the current "shadow contents" to lift
1924 the bp. That shadow is NOT valid after an exec.
1926 Note that we have to do this after the detach_breakpoints
1927 call above, otherwise breakpoints wouldn't be lifted from the
1928 parent on a vfork, because detach_breakpoints would think
1929 that breakpoints are not inserted. */
1930 mark_breakpoints_out ();
1934 internal_error (__FILE__, __LINE__,
1935 _("unknown ptrace event %d"), event);
1938 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1942 wait_lwp (struct lwp_info *lp)
1946 int thread_dead = 0;
1948 gdb_assert (!lp->stopped);
1949 gdb_assert (lp->status == 0);
1951 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
1952 if (pid == -1 && errno == ECHILD)
1954 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
1955 if (pid == -1 && errno == ECHILD)
1957 /* The thread has previously exited. We need to delete it
1958 now because, for some vendor 2.4 kernels with NPTL
1959 support backported, there won't be an exit event unless
1960 it is the main thread. 2.6 kernels will report an exit
1961 event for each thread that exits, as expected. */
1963 if (debug_linux_nat)
1964 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1965 target_pid_to_str (lp->ptid));
1971 gdb_assert (pid == GET_LWP (lp->ptid));
1973 if (debug_linux_nat)
1975 fprintf_unfiltered (gdb_stdlog,
1976 "WL: waitpid %s received %s\n",
1977 target_pid_to_str (lp->ptid),
1978 status_to_str (status));
1982 /* Check if the thread has exited. */
1983 if (WIFEXITED (status) || WIFSIGNALED (status))
1986 if (debug_linux_nat)
1987 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1988 target_pid_to_str (lp->ptid));
1997 gdb_assert (WIFSTOPPED (status));
1999 /* Handle GNU/Linux's extended waitstatus for trace events. */
2000 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2002 if (debug_linux_nat)
2003 fprintf_unfiltered (gdb_stdlog,
2004 "WL: Handling extended status 0x%06x\n",
2006 if (linux_handle_extended_wait (lp, status, 1))
2007 return wait_lwp (lp);
2013 /* Save the most recent siginfo for LP. This is currently only called
2014 for SIGTRAP; some ports use the si_addr field for
2015 target_stopped_data_address. In the future, it may also be used to
2016 restore the siginfo of requeued signals. */
2019 save_siginfo (struct lwp_info *lp)
2022 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2023 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2026 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2029 /* Send a SIGSTOP to LP. */
2032 stop_callback (struct lwp_info *lp, void *data)
2034 if (!lp->stopped && !lp->signalled)
2038 if (debug_linux_nat)
2040 fprintf_unfiltered (gdb_stdlog,
2041 "SC: kill %s **<SIGSTOP>**\n",
2042 target_pid_to_str (lp->ptid));
2045 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2046 if (debug_linux_nat)
2048 fprintf_unfiltered (gdb_stdlog,
2049 "SC: lwp kill %d %s\n",
2051 errno ? safe_strerror (errno) : "ERRNO-OK");
2055 gdb_assert (lp->status == 0);
2061 /* Return non-zero if LWP PID has a pending SIGINT. */
2064 linux_nat_has_pending_sigint (int pid)
2066 sigset_t pending, blocked, ignored;
2069 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2071 if (sigismember (&pending, SIGINT)
2072 && !sigismember (&ignored, SIGINT))
2078 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2081 set_ignore_sigint (struct lwp_info *lp, void *data)
2083 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2084 flag to consume the next one. */
2085 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2086 && WSTOPSIG (lp->status) == SIGINT)
2089 lp->ignore_sigint = 1;
2094 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2095 This function is called after we know the LWP has stopped; if the LWP
2096 stopped before the expected SIGINT was delivered, then it will never have
2097 arrived. Also, if the signal was delivered to a shared queue and consumed
2098 by a different thread, it will never be delivered to this LWP. */
2101 maybe_clear_ignore_sigint (struct lwp_info *lp)
2103 if (!lp->ignore_sigint)
2106 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2108 if (debug_linux_nat)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "MCIS: Clearing bogus flag for %s\n",
2111 target_pid_to_str (lp->ptid));
2112 lp->ignore_sigint = 0;
2116 /* Wait until LP is stopped. */
2119 stop_wait_callback (struct lwp_info *lp, void *data)
2125 status = wait_lwp (lp);
2129 if (lp->ignore_sigint && WIFSTOPPED (status)
2130 && WSTOPSIG (status) == SIGINT)
2132 lp->ignore_sigint = 0;
2135 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2136 if (debug_linux_nat)
2137 fprintf_unfiltered (gdb_stdlog,
2138 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2139 target_pid_to_str (lp->ptid),
2140 errno ? safe_strerror (errno) : "OK");
2142 return stop_wait_callback (lp, NULL);
2145 maybe_clear_ignore_sigint (lp);
2147 if (WSTOPSIG (status) != SIGSTOP)
2149 if (WSTOPSIG (status) == SIGTRAP)
2151 /* If a LWP other than the LWP that we're reporting an
2152 event for has hit a GDB breakpoint (as opposed to
2153 some random trap signal), then just arrange for it to
2154 hit it again later. We don't keep the SIGTRAP status
2155 and don't forward the SIGTRAP signal to the LWP. We
2156 will handle the current event, eventually we will
2157 resume all LWPs, and this one will get its breakpoint
2160 If we do not do this, then we run the risk that the
2161 user will delete or disable the breakpoint, but the
2162 thread will have already tripped on it. */
2164 /* Save the trap's siginfo in case we need it later. */
2167 /* Now resume this LWP and get the SIGSTOP event. */
2169 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2170 if (debug_linux_nat)
2172 fprintf_unfiltered (gdb_stdlog,
2173 "PTRACE_CONT %s, 0, 0 (%s)\n",
2174 target_pid_to_str (lp->ptid),
2175 errno ? safe_strerror (errno) : "OK");
2177 fprintf_unfiltered (gdb_stdlog,
2178 "SWC: Candidate SIGTRAP event in %s\n",
2179 target_pid_to_str (lp->ptid));
2181 /* Hold this event/waitstatus while we check to see if
2182 there are any more (we still want to get that SIGSTOP). */
2183 stop_wait_callback (lp, NULL);
2185 if (target_can_async_p ())
2187 /* Don't leave a pending wait status in async mode.
2188 Retrigger the breakpoint. */
2189 if (!cancel_breakpoint (lp))
2191 /* There was no gdb breakpoint set at pc. Put
2192 the event back in the queue. */
2193 if (debug_linux_nat)
2194 fprintf_unfiltered (gdb_stdlog,
2195 "SWC: kill %s, %s\n",
2196 target_pid_to_str (lp->ptid),
2197 status_to_str ((int) status));
2198 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2203 /* Hold the SIGTRAP for handling by
2205 /* If there's another event, throw it back into the
2209 if (debug_linux_nat)
2210 fprintf_unfiltered (gdb_stdlog,
2211 "SWC: kill %s, %s\n",
2212 target_pid_to_str (lp->ptid),
2213 status_to_str ((int) status));
2214 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2216 /* Save the sigtrap event. */
2217 lp->status = status;
2223 /* The thread was stopped with a signal other than
2224 SIGSTOP, and didn't accidentally trip a breakpoint. */
2226 if (debug_linux_nat)
2228 fprintf_unfiltered (gdb_stdlog,
2229 "SWC: Pending event %s in %s\n",
2230 status_to_str ((int) status),
2231 target_pid_to_str (lp->ptid));
2233 /* Now resume this LWP and get the SIGSTOP event. */
2235 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2236 if (debug_linux_nat)
2237 fprintf_unfiltered (gdb_stdlog,
2238 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2239 target_pid_to_str (lp->ptid),
2240 errno ? safe_strerror (errno) : "OK");
2242 /* Hold this event/waitstatus while we check to see if
2243 there are any more (we still want to get that SIGSTOP). */
2244 stop_wait_callback (lp, NULL);
2246 /* If the lp->status field is still empty, use it to
2247 hold this event. If not, then this event must be
2248 returned to the event queue of the LWP. */
2249 if (lp->status || target_can_async_p ())
2251 if (debug_linux_nat)
2253 fprintf_unfiltered (gdb_stdlog,
2254 "SWC: kill %s, %s\n",
2255 target_pid_to_str (lp->ptid),
2256 status_to_str ((int) status));
2258 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2261 lp->status = status;
2267 /* We caught the SIGSTOP that we intended to catch, so
2268 there's no SIGSTOP pending. */
2277 /* Return non-zero if LP has a wait status pending. */
2280 status_callback (struct lwp_info *lp, void *data)
2282 /* Only report a pending wait status if we pretend that this has
2283 indeed been resumed. */
2284 return (lp->status != 0 && lp->resumed);
2287 /* Return non-zero if LP isn't stopped. */
2290 running_callback (struct lwp_info *lp, void *data)
2292 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2295 /* Count the LWP's that have had events. */
2298 count_events_callback (struct lwp_info *lp, void *data)
2302 gdb_assert (count != NULL);
2304 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2305 if (lp->status != 0 && lp->resumed
2306 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2312 /* Select the LWP (if any) that is currently being single-stepped. */
2315 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2317 if (lp->step && lp->status != 0)
2323 /* Select the Nth LWP that has had a SIGTRAP event. */
2326 select_event_lwp_callback (struct lwp_info *lp, void *data)
2328 int *selector = data;
2330 gdb_assert (selector != NULL);
2332 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2333 if (lp->status != 0 && lp->resumed
2334 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2335 if ((*selector)-- == 0)
2342 cancel_breakpoint (struct lwp_info *lp)
2344 /* Arrange for a breakpoint to be hit again later. We don't keep
2345 the SIGTRAP status and don't forward the SIGTRAP signal to the
2346 LWP. We will handle the current event, eventually we will resume
2347 this LWP, and this breakpoint will trap again.
2349 If we do not do this, then we run the risk that the user will
2350 delete or disable the breakpoint, but the LWP will have already
2353 struct regcache *regcache = get_thread_regcache (lp->ptid);
2354 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2357 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2358 if (breakpoint_inserted_here_p (pc))
2360 if (debug_linux_nat)
2361 fprintf_unfiltered (gdb_stdlog,
2362 "CB: Push back breakpoint for %s\n",
2363 target_pid_to_str (lp->ptid));
2365 /* Back up the PC if necessary. */
2366 if (gdbarch_decr_pc_after_break (gdbarch))
2367 regcache_write_pc (regcache, pc);
2375 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2377 struct lwp_info *event_lp = data;
2379 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2383 /* If a LWP other than the LWP that we're reporting an event for has
2384 hit a GDB breakpoint (as opposed to some random trap signal),
2385 then just arrange for it to hit it again later. We don't keep
2386 the SIGTRAP status and don't forward the SIGTRAP signal to the
2387 LWP. We will handle the current event, eventually we will resume
2388 all LWPs, and this one will get its breakpoint trap again.
2390 If we do not do this, then we run the risk that the user will
2391 delete or disable the breakpoint, but the LWP will have already
2395 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2396 && cancel_breakpoint (lp))
2397 /* Throw away the SIGTRAP. */
2403 /* Select one LWP out of those that have events pending. */
2406 select_event_lwp (struct lwp_info **orig_lp, int *status)
2409 int random_selector;
2410 struct lwp_info *event_lp;
2412 /* Record the wait status for the original LWP. */
2413 (*orig_lp)->status = *status;
2415 /* Give preference to any LWP that is being single-stepped. */
2416 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2417 if (event_lp != NULL)
2419 if (debug_linux_nat)
2420 fprintf_unfiltered (gdb_stdlog,
2421 "SEL: Select single-step %s\n",
2422 target_pid_to_str (event_lp->ptid));
2426 /* No single-stepping LWP. Select one at random, out of those
2427 which have had SIGTRAP events. */
2429 /* First see how many SIGTRAP events we have. */
2430 iterate_over_lwps (count_events_callback, &num_events);
2432 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2433 random_selector = (int)
2434 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2436 if (debug_linux_nat && num_events > 1)
2437 fprintf_unfiltered (gdb_stdlog,
2438 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2439 num_events, random_selector);
2441 event_lp = iterate_over_lwps (select_event_lwp_callback,
2445 if (event_lp != NULL)
2447 /* Switch the event LWP. */
2448 *orig_lp = event_lp;
2449 *status = event_lp->status;
2452 /* Flush the wait status for the event LWP. */
2453 (*orig_lp)->status = 0;
2456 /* Return non-zero if LP has been resumed. */
2459 resumed_callback (struct lwp_info *lp, void *data)
2464 /* Stop an active thread, verify it still exists, then resume it. */
2467 stop_and_resume_callback (struct lwp_info *lp, void *data)
2469 struct lwp_info *ptr;
2471 if (!lp->stopped && !lp->signalled)
2473 stop_callback (lp, NULL);
2474 stop_wait_callback (lp, NULL);
2475 /* Resume if the lwp still exists. */
2476 for (ptr = lwp_list; ptr; ptr = ptr->next)
2479 resume_callback (lp, NULL);
2480 resume_set_callback (lp, NULL);
2486 /* Check if we should go on and pass this event to common code.
2487 Return the affected lwp if we are, or NULL otherwise. */
2488 static struct lwp_info *
2489 linux_nat_filter_event (int lwpid, int status, int options)
2491 struct lwp_info *lp;
2493 lp = find_lwp_pid (pid_to_ptid (lwpid));
2495 /* Check for stop events reported by a process we didn't already
2496 know about - anything not already in our LWP list.
2498 If we're expecting to receive stopped processes after
2499 fork, vfork, and clone events, then we'll just add the
2500 new one to our list and go back to waiting for the event
2501 to be reported - the stopped process might be returned
2502 from waitpid before or after the event is. */
2503 if (WIFSTOPPED (status) && !lp)
2505 linux_record_stopped_pid (lwpid, status);
2509 /* Make sure we don't report an event for the exit of an LWP not in
2510 our list, i.e. not part of the current process. This can happen
2511 if we detach from a program we original forked and then it
2513 if (!WIFSTOPPED (status) && !lp)
2516 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2517 CLONE_PTRACE processes which do not use the thread library -
2518 otherwise we wouldn't find the new LWP this way. That doesn't
2519 currently work, and the following code is currently unreachable
2520 due to the two blocks above. If it's fixed some day, this code
2521 should be broken out into a function so that we can also pick up
2522 LWPs from the new interface. */
2525 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2526 if (options & __WCLONE)
2529 gdb_assert (WIFSTOPPED (status)
2530 && WSTOPSIG (status) == SIGSTOP);
2533 if (!in_thread_list (inferior_ptid))
2535 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2536 GET_PID (inferior_ptid));
2537 add_thread (inferior_ptid);
2540 add_thread (lp->ptid);
2543 /* Save the trap's siginfo in case we need it later. */
2544 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2547 /* Handle GNU/Linux's extended waitstatus for trace events. */
2548 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2550 if (debug_linux_nat)
2551 fprintf_unfiltered (gdb_stdlog,
2552 "LLW: Handling extended status 0x%06x\n",
2554 if (linux_handle_extended_wait (lp, status, 0))
2558 /* Check if the thread has exited. */
2559 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2561 /* If this is the main thread, we must stop all threads and
2562 verify if they are still alive. This is because in the nptl
2563 thread model, there is no signal issued for exiting LWPs
2564 other than the main thread. We only get the main thread exit
2565 signal once all child threads have already exited. If we
2566 stop all the threads and use the stop_wait_callback to check
2567 if they have exited we can determine whether this signal
2568 should be ignored or whether it means the end of the debugged
2569 application, regardless of which threading model is being
2571 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2574 iterate_over_lwps (stop_and_resume_callback, NULL);
2577 if (debug_linux_nat)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "LLW: %s exited.\n",
2580 target_pid_to_str (lp->ptid));
2584 /* If there is at least one more LWP, then the exit signal was
2585 not the end of the debugged application and should be
2591 /* Check if the current LWP has previously exited. In the nptl
2592 thread model, LWPs other than the main thread do not issue
2593 signals when they exit so we must check whenever the thread has
2594 stopped. A similar check is made in stop_wait_callback(). */
2595 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2597 if (debug_linux_nat)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "LLW: %s exited.\n",
2600 target_pid_to_str (lp->ptid));
2604 /* Make sure there is at least one thread running. */
2605 gdb_assert (iterate_over_lwps (running_callback, NULL));
2607 /* Discard the event. */
2611 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2612 an attempt to stop an LWP. */
2614 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2616 if (debug_linux_nat)
2617 fprintf_unfiltered (gdb_stdlog,
2618 "LLW: Delayed SIGSTOP caught for %s.\n",
2619 target_pid_to_str (lp->ptid));
2621 /* This is a delayed SIGSTOP. */
2624 registers_changed ();
2626 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2627 lp->step, TARGET_SIGNAL_0);
2628 if (debug_linux_nat)
2629 fprintf_unfiltered (gdb_stdlog,
2630 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2632 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2633 target_pid_to_str (lp->ptid));
2636 gdb_assert (lp->resumed);
2638 /* Discard the event. */
2642 /* Make sure we don't report a SIGINT that we have already displayed
2643 for another thread. */
2644 if (lp->ignore_sigint
2645 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2647 if (debug_linux_nat)
2648 fprintf_unfiltered (gdb_stdlog,
2649 "LLW: Delayed SIGINT caught for %s.\n",
2650 target_pid_to_str (lp->ptid));
2652 /* This is a delayed SIGINT. */
2653 lp->ignore_sigint = 0;
2655 registers_changed ();
2656 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2657 lp->step, TARGET_SIGNAL_0);
2658 if (debug_linux_nat)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2662 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2663 target_pid_to_str (lp->ptid));
2666 gdb_assert (lp->resumed);
2668 /* Discard the event. */
2672 /* An interesting event. */
2677 /* Get the events stored in the pipe into the local queue, so they are
2678 accessible to queued_waitpid. We need to do this, since it is not
2679 always the case that the event at the head of the pipe is the event
2683 pipe_to_local_event_queue (void)
2685 if (debug_linux_nat_async)
2686 fprintf_unfiltered (gdb_stdlog,
2687 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2688 linux_nat_num_queued_events);
2689 while (linux_nat_num_queued_events)
2691 int lwpid, status, options;
2692 lwpid = linux_nat_event_pipe_pop (&status, &options);
2693 gdb_assert (lwpid > 0);
2694 push_waitpid (lwpid, status, options);
2698 /* Get the unprocessed events stored in the local queue back into the
2699 pipe, so the event loop realizes there's something else to
2703 local_event_queue_to_pipe (void)
2705 struct waitpid_result *w = waitpid_queue;
2708 struct waitpid_result *next = w->next;
2709 linux_nat_event_pipe_push (w->pid,
2715 waitpid_queue = NULL;
2717 if (debug_linux_nat_async)
2718 fprintf_unfiltered (gdb_stdlog,
2719 "LEQTP: linux_nat_num_queued_events(%d)\n",
2720 linux_nat_num_queued_events);
2724 linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
2726 struct lwp_info *lp = NULL;
2729 pid_t pid = PIDGET (ptid);
2731 if (debug_linux_nat_async)
2732 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2734 /* The first time we get here after starting a new inferior, we may
2735 not have added it to the LWP list yet - this is the earliest
2736 moment at which we know its PID. */
2739 gdb_assert (!is_lwp (inferior_ptid));
2741 /* Upgrade the main thread's ptid. */
2742 thread_change_ptid (inferior_ptid,
2743 BUILD_LWP (GET_PID (inferior_ptid),
2744 GET_PID (inferior_ptid)));
2746 lp = add_lwp (inferior_ptid);
2750 /* Block events while we're here. */
2751 linux_nat_async_events (sigchld_sync);
2755 /* Make sure there is at least one LWP that has been resumed. */
2756 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2758 /* First check if there is a LWP with a wait status pending. */
2761 /* Any LWP that's been resumed will do. */
2762 lp = iterate_over_lwps (status_callback, NULL);
2765 if (target_can_async_p ())
2766 internal_error (__FILE__, __LINE__,
2767 "Found an LWP with a pending status in async mode.");
2769 status = lp->status;
2772 if (debug_linux_nat && status)
2773 fprintf_unfiltered (gdb_stdlog,
2774 "LLW: Using pending wait status %s for %s.\n",
2775 status_to_str (status),
2776 target_pid_to_str (lp->ptid));
2779 /* But if we don't find one, we'll have to wait, and check both
2780 cloned and uncloned processes. We start with the cloned
2782 options = __WCLONE | WNOHANG;
2784 else if (is_lwp (ptid))
2786 if (debug_linux_nat)
2787 fprintf_unfiltered (gdb_stdlog,
2788 "LLW: Waiting for specific LWP %s.\n",
2789 target_pid_to_str (ptid));
2791 /* We have a specific LWP to check. */
2792 lp = find_lwp_pid (ptid);
2794 status = lp->status;
2797 if (debug_linux_nat && status)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "LLW: Using pending wait status %s for %s.\n",
2800 status_to_str (status),
2801 target_pid_to_str (lp->ptid));
2803 /* If we have to wait, take into account whether PID is a cloned
2804 process or not. And we have to convert it to something that
2805 the layer beneath us can understand. */
2806 options = lp->cloned ? __WCLONE : 0;
2807 pid = GET_LWP (ptid);
2810 if (status && lp->signalled)
2812 /* A pending SIGSTOP may interfere with the normal stream of
2813 events. In a typical case where interference is a problem,
2814 we have a SIGSTOP signal pending for LWP A while
2815 single-stepping it, encounter an event in LWP B, and take the
2816 pending SIGSTOP while trying to stop LWP A. After processing
2817 the event in LWP B, LWP A is continued, and we'll never see
2818 the SIGTRAP associated with the last time we were
2819 single-stepping LWP A. */
2821 /* Resume the thread. It should halt immediately returning the
2823 registers_changed ();
2824 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2825 lp->step, TARGET_SIGNAL_0);
2826 if (debug_linux_nat)
2827 fprintf_unfiltered (gdb_stdlog,
2828 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2829 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2830 target_pid_to_str (lp->ptid));
2832 gdb_assert (lp->resumed);
2834 /* This should catch the pending SIGSTOP. */
2835 stop_wait_callback (lp, NULL);
2838 if (!target_can_async_p ())
2840 /* Causes SIGINT to be passed on to the attached process. */
2849 if (target_can_async_p ())
2850 /* In async mode, don't ever block. Only look at the locally
2852 lwpid = queued_waitpid (pid, &status, options);
2854 lwpid = my_waitpid (pid, &status, options);
2858 gdb_assert (pid == -1 || lwpid == pid);
2860 if (debug_linux_nat)
2862 fprintf_unfiltered (gdb_stdlog,
2863 "LLW: waitpid %ld received %s\n",
2864 (long) lwpid, status_to_str (status));
2867 lp = linux_nat_filter_event (lwpid, status, options);
2870 /* A discarded event. */
2880 /* Alternate between checking cloned and uncloned processes. */
2881 options ^= __WCLONE;
2883 /* And every time we have checked both:
2884 In async mode, return to event loop;
2885 In sync mode, suspend waiting for a SIGCHLD signal. */
2886 if (options & __WCLONE)
2888 if (target_can_async_p ())
2890 /* No interesting event. */
2891 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2893 /* Get ready for the next event. */
2894 target_async (inferior_event_handler, 0);
2896 if (debug_linux_nat_async)
2897 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2899 return minus_one_ptid;
2902 sigsuspend (&suspend_mask);
2906 /* We shouldn't end up here unless we want to try again. */
2907 gdb_assert (status == 0);
2910 if (!target_can_async_p ())
2912 clear_sigio_trap ();
2913 clear_sigint_trap ();
2918 /* Don't report signals that GDB isn't interested in, such as
2919 signals that are neither printed nor stopped upon. Stopping all
2920 threads can be a bit time-consuming so if we want decent
2921 performance with heavily multi-threaded programs, especially when
2922 they're using a high frequency timer, we'd better avoid it if we
2925 if (WIFSTOPPED (status))
2927 int signo = target_signal_from_host (WSTOPSIG (status));
2929 /* If we get a signal while single-stepping, we may need special
2930 care, e.g. to skip the signal handler. Defer to common code. */
2932 && signal_stop_state (signo) == 0
2933 && signal_print_state (signo) == 0
2934 && signal_pass_state (signo) == 1)
2936 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2937 here? It is not clear we should. GDB may not expect
2938 other threads to run. On the other hand, not resuming
2939 newly attached threads may cause an unwanted delay in
2940 getting them running. */
2941 registers_changed ();
2942 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2944 if (debug_linux_nat)
2945 fprintf_unfiltered (gdb_stdlog,
2946 "LLW: %s %s, %s (preempt 'handle')\n",
2948 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2949 target_pid_to_str (lp->ptid),
2950 signo ? strsignal (signo) : "0");
2956 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2958 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2959 forwarded to the entire process group, that is, all LWPs
2960 will receive it - unless they're using CLONE_THREAD to
2961 share signals. Since we only want to report it once, we
2962 mark it as ignored for all LWPs except this one. */
2963 iterate_over_lwps (set_ignore_sigint, NULL);
2964 lp->ignore_sigint = 0;
2967 maybe_clear_ignore_sigint (lp);
2970 /* This LWP is stopped now. */
2973 if (debug_linux_nat)
2974 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2975 status_to_str (status), target_pid_to_str (lp->ptid));
2979 /* Now stop all other LWP's ... */
2980 iterate_over_lwps (stop_callback, NULL);
2982 /* ... and wait until all of them have reported back that
2983 they're no longer running. */
2984 iterate_over_lwps (stop_wait_callback, NULL);
2986 /* If we're not waiting for a specific LWP, choose an event LWP
2987 from among those that have had events. Giving equal priority
2988 to all LWPs that have had events helps prevent
2991 select_event_lwp (&lp, &status);
2994 /* Now that we've selected our final event LWP, cancel any
2995 breakpoints in other LWPs that have hit a GDB breakpoint. See
2996 the comment in cancel_breakpoints_callback to find out why. */
2997 iterate_over_lwps (cancel_breakpoints_callback, lp);
2999 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3001 if (debug_linux_nat)
3002 fprintf_unfiltered (gdb_stdlog,
3003 "LLW: trap ptid is %s.\n",
3004 target_pid_to_str (lp->ptid));
3007 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3009 *ourstatus = lp->waitstatus;
3010 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3013 store_waitstatus (ourstatus, status);
3015 /* Get ready for the next event. */
3016 if (target_can_async_p ())
3017 target_async (inferior_event_handler, 0);
3019 if (debug_linux_nat_async)
3020 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3026 kill_callback (struct lwp_info *lp, void *data)
3029 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3030 if (debug_linux_nat)
3031 fprintf_unfiltered (gdb_stdlog,
3032 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3033 target_pid_to_str (lp->ptid),
3034 errno ? safe_strerror (errno) : "OK");
3040 kill_wait_callback (struct lwp_info *lp, void *data)
3044 /* We must make sure that there are no pending events (delayed
3045 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3046 program doesn't interfere with any following debugging session. */
3048 /* For cloned processes we must check both with __WCLONE and
3049 without, since the exit status of a cloned process isn't reported
3055 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3056 if (pid != (pid_t) -1)
3058 if (debug_linux_nat)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "KWC: wait %s received unknown.\n",
3061 target_pid_to_str (lp->ptid));
3062 /* The Linux kernel sometimes fails to kill a thread
3063 completely after PTRACE_KILL; that goes from the stop
3064 point in do_fork out to the one in
3065 get_signal_to_deliever and waits again. So kill it
3067 kill_callback (lp, NULL);
3070 while (pid == GET_LWP (lp->ptid));
3072 gdb_assert (pid == -1 && errno == ECHILD);
3077 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3078 if (pid != (pid_t) -1)
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "KWC: wait %s received unk.\n",
3083 target_pid_to_str (lp->ptid));
3084 /* See the call to kill_callback above. */
3085 kill_callback (lp, NULL);
3088 while (pid == GET_LWP (lp->ptid));
3090 gdb_assert (pid == -1 && errno == ECHILD);
3095 linux_nat_kill (void)
3097 struct target_waitstatus last;
3101 if (target_can_async_p ())
3102 target_async (NULL, 0);
3104 /* If we're stopped while forking and we haven't followed yet,
3105 kill the other task. We need to do this first because the
3106 parent will be sleeping if this is a vfork. */
3108 get_last_target_status (&last_ptid, &last);
3110 if (last.kind == TARGET_WAITKIND_FORKED
3111 || last.kind == TARGET_WAITKIND_VFORKED)
3113 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3117 if (forks_exist_p ())
3119 linux_fork_killall ();
3120 drain_queued_events (-1);
3124 /* Stop all threads before killing them, since ptrace requires
3125 that the thread is stopped to sucessfully PTRACE_KILL. */
3126 iterate_over_lwps (stop_callback, NULL);
3127 /* ... and wait until all of them have reported back that
3128 they're no longer running. */
3129 iterate_over_lwps (stop_wait_callback, NULL);
3131 /* Kill all LWP's ... */
3132 iterate_over_lwps (kill_callback, NULL);
3134 /* ... and wait until we've flushed all events. */
3135 iterate_over_lwps (kill_wait_callback, NULL);
3138 target_mourn_inferior ();
3142 linux_nat_mourn_inferior (void)
3144 /* Destroy LWP info; it's no longer valid. */
3147 if (! forks_exist_p ())
3149 /* Normal case, no other forks available. */
3150 if (target_can_async_p ())
3151 linux_nat_async (NULL, 0);
3152 linux_ops->to_mourn_inferior ();
3155 /* Multi-fork case. The current inferior_ptid has exited, but
3156 there are other viable forks to debug. Delete the exiting
3157 one and context-switch to the first available. */
3158 linux_fork_mourn_inferior ();
3162 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3163 const char *annex, gdb_byte *readbuf,
3164 const gdb_byte *writebuf,
3165 ULONGEST offset, LONGEST len)
3167 struct cleanup *old_chain = save_inferior_ptid ();
3170 if (is_lwp (inferior_ptid))
3171 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3173 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3176 do_cleanups (old_chain);
3181 linux_nat_thread_alive (ptid_t ptid)
3185 gdb_assert (is_lwp (ptid));
3187 /* Send signal 0 instead of anything ptrace, because ptracing a
3188 running thread errors out claiming that the thread doesn't
3190 err = kill_lwp (GET_LWP (ptid), 0);
3192 if (debug_linux_nat)
3193 fprintf_unfiltered (gdb_stdlog,
3194 "LLTA: KILL(SIG0) %s (%s)\n",
3195 target_pid_to_str (ptid),
3196 err ? safe_strerror (err) : "OK");
3205 linux_nat_pid_to_str (ptid_t ptid)
3207 static char buf[64];
3210 && ((lwp_list && lwp_list->next)
3211 || GET_PID (ptid) != GET_LWP (ptid)))
3213 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3217 return normal_pid_to_str (ptid);
3221 sigchld_handler (int signo)
3223 if (target_async_permitted
3224 && linux_nat_async_events_state != sigchld_sync
3225 && signo == SIGCHLD)
3226 /* It is *always* a bug to hit this. */
3227 internal_error (__FILE__, __LINE__,
3228 "sigchld_handler called when async events are enabled");
3230 /* Do nothing. The only reason for this handler is that it allows
3231 us to use sigsuspend in linux_nat_wait above to wait for the
3232 arrival of a SIGCHLD. */
3235 /* Accepts an integer PID; Returns a string representing a file that
3236 can be opened to get the symbols for the child process. */
3239 linux_child_pid_to_exec_file (int pid)
3241 char *name1, *name2;
3243 name1 = xmalloc (MAXPATHLEN);
3244 name2 = xmalloc (MAXPATHLEN);
3245 make_cleanup (xfree, name1);
3246 make_cleanup (xfree, name2);
3247 memset (name2, 0, MAXPATHLEN);
3249 sprintf (name1, "/proc/%d/exe", pid);
3250 if (readlink (name1, name2, MAXPATHLEN) > 0)
3256 /* Service function for corefiles and info proc. */
3259 read_mapping (FILE *mapfile,
3264 char *device, long long *inode, char *filename)
3266 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3267 addr, endaddr, permissions, offset, device, inode);
3270 if (ret > 0 && ret != EOF)
3272 /* Eat everything up to EOL for the filename. This will prevent
3273 weird filenames (such as one with embedded whitespace) from
3274 confusing this code. It also makes this code more robust in
3275 respect to annotations the kernel may add after the filename.
3277 Note the filename is used for informational purposes
3279 ret += fscanf (mapfile, "%[^\n]\n", filename);
3282 return (ret != 0 && ret != EOF);
3285 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3286 regions in the inferior for a corefile. */
3289 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3291 int, int, int, void *), void *obfd)
3293 long long pid = PIDGET (inferior_ptid);
3294 char mapsfilename[MAXPATHLEN];
3296 long long addr, endaddr, size, offset, inode;
3297 char permissions[8], device[8], filename[MAXPATHLEN];
3298 int read, write, exec;
3301 /* Compose the filename for the /proc memory map, and open it. */
3302 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3303 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3304 error (_("Could not open %s."), mapsfilename);
3307 fprintf_filtered (gdb_stdout,
3308 "Reading memory regions from %s\n", mapsfilename);
3310 /* Now iterate until end-of-file. */
3311 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3312 &offset, &device[0], &inode, &filename[0]))
3314 size = endaddr - addr;
3316 /* Get the segment's permissions. */
3317 read = (strchr (permissions, 'r') != 0);
3318 write = (strchr (permissions, 'w') != 0);
3319 exec = (strchr (permissions, 'x') != 0);
3323 fprintf_filtered (gdb_stdout,
3324 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3325 size, paddr_nz (addr),
3327 write ? 'w' : ' ', exec ? 'x' : ' ');
3329 fprintf_filtered (gdb_stdout, " for %s", filename);
3330 fprintf_filtered (gdb_stdout, "\n");
3333 /* Invoke the callback function to create the corefile
3335 func (addr, size, read, write, exec, obfd);
3341 /* Records the thread's register state for the corefile note
3345 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3346 char *note_data, int *note_size)
3348 gdb_gregset_t gregs;
3349 gdb_fpregset_t fpregs;
3350 unsigned long lwp = ptid_get_lwp (ptid);
3351 struct regcache *regcache = get_thread_regcache (ptid);
3352 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3353 const struct regset *regset;
3355 struct cleanup *old_chain;
3356 struct core_regset_section *sect_list;
3359 old_chain = save_inferior_ptid ();
3360 inferior_ptid = ptid;
3361 target_fetch_registers (regcache, -1);
3362 do_cleanups (old_chain);
3364 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3365 sect_list = gdbarch_core_regset_sections (gdbarch);
3368 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3369 sizeof (gregs))) != NULL
3370 && regset->collect_regset != NULL)
3371 regset->collect_regset (regset, regcache, -1,
3372 &gregs, sizeof (gregs));
3374 fill_gregset (regcache, &gregs, -1);
3376 note_data = (char *) elfcore_write_prstatus (obfd,
3380 stop_signal, &gregs);
3382 /* The loop below uses the new struct core_regset_section, which stores
3383 the supported section names and sizes for the core file. Note that
3384 note PRSTATUS needs to be treated specially. But the other notes are
3385 structurally the same, so they can benefit from the new struct. */
3386 if (core_regset_p && sect_list != NULL)
3387 while (sect_list->sect_name != NULL)
3389 /* .reg was already handled above. */
3390 if (strcmp (sect_list->sect_name, ".reg") == 0)
3395 regset = gdbarch_regset_from_core_section (gdbarch,
3396 sect_list->sect_name,
3398 gdb_assert (regset && regset->collect_regset);
3399 gdb_regset = xmalloc (sect_list->size);
3400 regset->collect_regset (regset, regcache, -1,
3401 gdb_regset, sect_list->size);
3402 note_data = (char *) elfcore_write_register_note (obfd,
3405 sect_list->sect_name,
3412 /* For architectures that does not have the struct core_regset_section
3413 implemented, we use the old method. When all the architectures have
3414 the new support, the code below should be deleted. */
3418 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3419 sizeof (fpregs))) != NULL
3420 && regset->collect_regset != NULL)
3421 regset->collect_regset (regset, regcache, -1,
3422 &fpregs, sizeof (fpregs));
3424 fill_fpregset (regcache, &fpregs, -1);
3426 note_data = (char *) elfcore_write_prfpreg (obfd,
3429 &fpregs, sizeof (fpregs));
3435 struct linux_nat_corefile_thread_data
3443 /* Called by gdbthread.c once per thread. Records the thread's
3444 register state for the corefile note section. */
3447 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3449 struct linux_nat_corefile_thread_data *args = data;
3451 args->note_data = linux_nat_do_thread_registers (args->obfd,
3460 /* Records the register state for the corefile note section. */
3463 linux_nat_do_registers (bfd *obfd, ptid_t ptid,
3464 char *note_data, int *note_size)
3466 return linux_nat_do_thread_registers (obfd,
3467 ptid_build (ptid_get_pid (inferior_ptid),
3468 ptid_get_pid (inferior_ptid),
3470 note_data, note_size);
3473 /* Fills the "to_make_corefile_note" target vector. Builds the note
3474 section for a corefile, and returns it in a malloc buffer. */
3477 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3479 struct linux_nat_corefile_thread_data thread_args;
3480 struct cleanup *old_chain;
3481 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3482 char fname[16] = { '\0' };
3483 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3484 char psargs[80] = { '\0' };
3485 char *note_data = NULL;
3486 ptid_t current_ptid = inferior_ptid;
3490 if (get_exec_file (0))
3492 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3493 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3494 if (get_inferior_args ())
3497 char *psargs_end = psargs + sizeof (psargs);
3499 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3501 string_end = memchr (psargs, 0, sizeof (psargs));
3502 if (string_end != NULL)
3504 *string_end++ = ' ';
3505 strncpy (string_end, get_inferior_args (),
3506 psargs_end - string_end);
3509 note_data = (char *) elfcore_write_prpsinfo (obfd,
3511 note_size, fname, psargs);
3514 /* Dump information for threads. */
3515 thread_args.obfd = obfd;
3516 thread_args.note_data = note_data;
3517 thread_args.note_size = note_size;
3518 thread_args.num_notes = 0;
3519 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3520 if (thread_args.num_notes == 0)
3522 /* iterate_over_threads didn't come up with any threads; just
3523 use inferior_ptid. */
3524 note_data = linux_nat_do_registers (obfd, inferior_ptid,
3525 note_data, note_size);
3529 note_data = thread_args.note_data;
3532 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
3536 note_data = elfcore_write_note (obfd, note_data, note_size,
3537 "CORE", NT_AUXV, auxv, auxv_len);
3541 make_cleanup (xfree, note_data);
3545 /* Implement the "info proc" command. */
3548 linux_nat_info_proc_cmd (char *args, int from_tty)
3550 long long pid = PIDGET (inferior_ptid);
3553 char buffer[MAXPATHLEN];
3554 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3567 /* Break up 'args' into an argv array. */
3568 if ((argv = buildargv (args)) == NULL)
3571 make_cleanup_freeargv (argv);
3573 while (argv != NULL && *argv != NULL)
3575 if (isdigit (argv[0][0]))
3577 pid = strtoul (argv[0], NULL, 10);
3579 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3583 else if (strcmp (argv[0], "status") == 0)
3587 else if (strcmp (argv[0], "stat") == 0)
3591 else if (strcmp (argv[0], "cmd") == 0)
3595 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3599 else if (strcmp (argv[0], "cwd") == 0)
3603 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3609 /* [...] (future options here) */
3614 error (_("No current process: you must name one."));
3616 sprintf (fname1, "/proc/%lld", pid);
3617 if (stat (fname1, &dummy) != 0)
3618 error (_("No /proc directory: '%s'"), fname1);
3620 printf_filtered (_("process %lld\n"), pid);
3621 if (cmdline_f || all)
3623 sprintf (fname1, "/proc/%lld/cmdline", pid);
3624 if ((procfile = fopen (fname1, "r")) != NULL)
3626 fgets (buffer, sizeof (buffer), procfile);
3627 printf_filtered ("cmdline = '%s'\n", buffer);
3631 warning (_("unable to open /proc file '%s'"), fname1);
3635 sprintf (fname1, "/proc/%lld/cwd", pid);
3636 memset (fname2, 0, sizeof (fname2));
3637 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3638 printf_filtered ("cwd = '%s'\n", fname2);
3640 warning (_("unable to read link '%s'"), fname1);
3644 sprintf (fname1, "/proc/%lld/exe", pid);
3645 memset (fname2, 0, sizeof (fname2));
3646 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3647 printf_filtered ("exe = '%s'\n", fname2);
3649 warning (_("unable to read link '%s'"), fname1);
3651 if (mappings_f || all)
3653 sprintf (fname1, "/proc/%lld/maps", pid);
3654 if ((procfile = fopen (fname1, "r")) != NULL)
3656 long long addr, endaddr, size, offset, inode;
3657 char permissions[8], device[8], filename[MAXPATHLEN];
3659 printf_filtered (_("Mapped address spaces:\n\n"));
3660 if (gdbarch_addr_bit (current_gdbarch) == 32)
3662 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3665 " Size", " Offset", "objfile");
3669 printf_filtered (" %18s %18s %10s %10s %7s\n",
3672 " Size", " Offset", "objfile");
3675 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3676 &offset, &device[0], &inode, &filename[0]))
3678 size = endaddr - addr;
3680 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3681 calls here (and possibly above) should be abstracted
3682 out into their own functions? Andrew suggests using
3683 a generic local_address_string instead to print out
3684 the addresses; that makes sense to me, too. */
3686 if (gdbarch_addr_bit (current_gdbarch) == 32)
3688 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3689 (unsigned long) addr, /* FIXME: pr_addr */
3690 (unsigned long) endaddr,
3692 (unsigned int) offset,
3693 filename[0] ? filename : "");
3697 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3698 (unsigned long) addr, /* FIXME: pr_addr */
3699 (unsigned long) endaddr,
3701 (unsigned int) offset,
3702 filename[0] ? filename : "");
3709 warning (_("unable to open /proc file '%s'"), fname1);
3711 if (status_f || all)
3713 sprintf (fname1, "/proc/%lld/status", pid);
3714 if ((procfile = fopen (fname1, "r")) != NULL)
3716 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3717 puts_filtered (buffer);
3721 warning (_("unable to open /proc file '%s'"), fname1);
3725 sprintf (fname1, "/proc/%lld/stat", pid);
3726 if ((procfile = fopen (fname1, "r")) != NULL)
3732 if (fscanf (procfile, "%d ", &itmp) > 0)
3733 printf_filtered (_("Process: %d\n"), itmp);
3734 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3735 printf_filtered (_("Exec file: %s\n"), buffer);
3736 if (fscanf (procfile, "%c ", &ctmp) > 0)
3737 printf_filtered (_("State: %c\n"), ctmp);
3738 if (fscanf (procfile, "%d ", &itmp) > 0)
3739 printf_filtered (_("Parent process: %d\n"), itmp);
3740 if (fscanf (procfile, "%d ", &itmp) > 0)
3741 printf_filtered (_("Process group: %d\n"), itmp);
3742 if (fscanf (procfile, "%d ", &itmp) > 0)
3743 printf_filtered (_("Session id: %d\n"), itmp);
3744 if (fscanf (procfile, "%d ", &itmp) > 0)
3745 printf_filtered (_("TTY: %d\n"), itmp);
3746 if (fscanf (procfile, "%d ", &itmp) > 0)
3747 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3748 if (fscanf (procfile, "%lu ", <mp) > 0)
3749 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3750 if (fscanf (procfile, "%lu ", <mp) > 0)
3751 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3752 (unsigned long) ltmp);
3753 if (fscanf (procfile, "%lu ", <mp) > 0)
3754 printf_filtered (_("Minor faults, children: %lu\n"),
3755 (unsigned long) ltmp);
3756 if (fscanf (procfile, "%lu ", <mp) > 0)
3757 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3758 (unsigned long) ltmp);
3759 if (fscanf (procfile, "%lu ", <mp) > 0)
3760 printf_filtered (_("Major faults, children: %lu\n"),
3761 (unsigned long) ltmp);
3762 if (fscanf (procfile, "%ld ", <mp) > 0)
3763 printf_filtered (_("utime: %ld\n"), ltmp);
3764 if (fscanf (procfile, "%ld ", <mp) > 0)
3765 printf_filtered (_("stime: %ld\n"), ltmp);
3766 if (fscanf (procfile, "%ld ", <mp) > 0)
3767 printf_filtered (_("utime, children: %ld\n"), ltmp);
3768 if (fscanf (procfile, "%ld ", <mp) > 0)
3769 printf_filtered (_("stime, children: %ld\n"), ltmp);
3770 if (fscanf (procfile, "%ld ", <mp) > 0)
3771 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3773 if (fscanf (procfile, "%ld ", <mp) > 0)
3774 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3775 if (fscanf (procfile, "%lu ", <mp) > 0)
3776 printf_filtered (_("jiffies until next timeout: %lu\n"),
3777 (unsigned long) ltmp);
3778 if (fscanf (procfile, "%lu ", <mp) > 0)
3779 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3780 (unsigned long) ltmp);
3781 if (fscanf (procfile, "%ld ", <mp) > 0)
3782 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3784 if (fscanf (procfile, "%lu ", <mp) > 0)
3785 printf_filtered (_("Virtual memory size: %lu\n"),
3786 (unsigned long) ltmp);
3787 if (fscanf (procfile, "%lu ", <mp) > 0)
3788 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3789 if (fscanf (procfile, "%lu ", <mp) > 0)
3790 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3791 if (fscanf (procfile, "%lu ", <mp) > 0)
3792 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3793 if (fscanf (procfile, "%lu ", <mp) > 0)
3794 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3795 if (fscanf (procfile, "%lu ", <mp) > 0)
3796 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3797 #if 0 /* Don't know how architecture-dependent the rest is...
3798 Anyway the signal bitmap info is available from "status". */
3799 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
3800 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3801 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
3802 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3803 if (fscanf (procfile, "%ld ", <mp) > 0)
3804 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3805 if (fscanf (procfile, "%ld ", <mp) > 0)
3806 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3807 if (fscanf (procfile, "%ld ", <mp) > 0)
3808 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3809 if (fscanf (procfile, "%ld ", <mp) > 0)
3810 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3811 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
3812 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3817 warning (_("unable to open /proc file '%s'"), fname1);
3821 /* Implement the to_xfer_partial interface for memory reads using the /proc
3822 filesystem. Because we can use a single read() call for /proc, this
3823 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3824 but it doesn't support writes. */
3827 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3828 const char *annex, gdb_byte *readbuf,
3829 const gdb_byte *writebuf,
3830 ULONGEST offset, LONGEST len)
3836 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3839 /* Don't bother for one word. */
3840 if (len < 3 * sizeof (long))
3843 /* We could keep this file open and cache it - possibly one per
3844 thread. That requires some juggling, but is even faster. */
3845 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3846 fd = open (filename, O_RDONLY | O_LARGEFILE);
3850 /* If pread64 is available, use it. It's faster if the kernel
3851 supports it (only one syscall), and it's 64-bit safe even on
3852 32-bit platforms (for instance, SPARC debugging a SPARC64
3855 if (pread64 (fd, readbuf, len, offset) != len)
3857 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3867 /* Parse LINE as a signal set and add its set bits to SIGS. */
3870 add_line_to_sigset (const char *line, sigset_t *sigs)
3872 int len = strlen (line) - 1;
3876 if (line[len] != '\n')
3877 error (_("Could not parse signal set: %s"), line);
3885 if (*p >= '0' && *p <= '9')
3887 else if (*p >= 'a' && *p <= 'f')
3888 digit = *p - 'a' + 10;
3890 error (_("Could not parse signal set: %s"), line);
3895 sigaddset (sigs, signum + 1);
3897 sigaddset (sigs, signum + 2);
3899 sigaddset (sigs, signum + 3);
3901 sigaddset (sigs, signum + 4);
3907 /* Find process PID's pending signals from /proc/pid/status and set
3911 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
3914 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
3917 sigemptyset (pending);
3918 sigemptyset (blocked);
3919 sigemptyset (ignored);
3920 sprintf (fname, "/proc/%d/status", pid);
3921 procfile = fopen (fname, "r");
3922 if (procfile == NULL)
3923 error (_("Could not open %s"), fname);
3925 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
3927 /* Normal queued signals are on the SigPnd line in the status
3928 file. However, 2.6 kernels also have a "shared" pending
3929 queue for delivering signals to a thread group, so check for
3932 Unfortunately some Red Hat kernels include the shared pending
3933 queue but not the ShdPnd status field. */
3935 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
3936 add_line_to_sigset (buffer + 8, pending);
3937 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
3938 add_line_to_sigset (buffer + 8, pending);
3939 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
3940 add_line_to_sigset (buffer + 8, blocked);
3941 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
3942 add_line_to_sigset (buffer + 8, ignored);
3949 linux_xfer_partial (struct target_ops *ops, enum target_object object,
3950 const char *annex, gdb_byte *readbuf,
3951 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3955 if (object == TARGET_OBJECT_AUXV)
3956 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
3959 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
3964 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
3968 /* Create a prototype generic GNU/Linux target. The client can override
3969 it with local methods. */
3972 linux_target_install_ops (struct target_ops *t)
3974 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
3975 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
3976 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
3977 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
3978 t->to_post_startup_inferior = linux_child_post_startup_inferior;
3979 t->to_post_attach = linux_child_post_attach;
3980 t->to_follow_fork = linux_child_follow_fork;
3981 t->to_find_memory_regions = linux_nat_find_memory_regions;
3982 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
3984 super_xfer_partial = t->to_xfer_partial;
3985 t->to_xfer_partial = linux_xfer_partial;
3991 struct target_ops *t;
3993 t = inf_ptrace_target ();
3994 linux_target_install_ops (t);
4000 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4002 struct target_ops *t;
4004 t = inf_ptrace_trad_target (register_u_offset);
4005 linux_target_install_ops (t);
4010 /* target_is_async_p implementation. */
4013 linux_nat_is_async_p (void)
4015 /* NOTE: palves 2008-03-21: We're only async when the user requests
4016 it explicitly with the "maintenance set target-async" command.
4017 Someday, linux will always be async. */
4018 if (!target_async_permitted)
4024 /* target_can_async_p implementation. */
4027 linux_nat_can_async_p (void)
4029 /* NOTE: palves 2008-03-21: We're only async when the user requests
4030 it explicitly with the "maintenance set target-async" command.
4031 Someday, linux will always be async. */
4032 if (!target_async_permitted)
4035 /* See target.h/target_async_mask. */
4036 return linux_nat_async_mask_value;
4040 linux_nat_supports_non_stop (void)
4045 /* target_async_mask implementation. */
4048 linux_nat_async_mask (int mask)
4051 current_state = linux_nat_async_mask_value;
4053 if (current_state != mask)
4057 linux_nat_async (NULL, 0);
4058 linux_nat_async_mask_value = mask;
4062 linux_nat_async_mask_value = mask;
4063 linux_nat_async (inferior_event_handler, 0);
4067 return current_state;
4070 /* Pop an event from the event pipe. */
4073 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
4075 struct waitpid_result event = {0};
4080 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
4082 while (ret == -1 && errno == EINTR);
4084 gdb_assert (ret == sizeof (event));
4086 *ptr_status = event.status;
4087 *ptr_options = event.options;
4089 linux_nat_num_queued_events--;
4094 /* Push an event into the event pipe. */
4097 linux_nat_event_pipe_push (int pid, int status, int options)
4100 struct waitpid_result event = {0};
4102 event.status = status;
4103 event.options = options;
4107 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
4108 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
4109 } while (ret == -1 && errno == EINTR);
4111 linux_nat_num_queued_events++;
4115 get_pending_events (void)
4117 int status, options, pid;
4119 if (!target_async_permitted
4120 || linux_nat_async_events_state != sigchld_async)
4121 internal_error (__FILE__, __LINE__,
4122 "get_pending_events called with async masked");
4127 options = __WCLONE | WNOHANG;
4131 pid = waitpid (-1, &status, options);
4133 while (pid == -1 && errno == EINTR);
4140 pid = waitpid (-1, &status, options);
4142 while (pid == -1 && errno == EINTR);
4146 /* No more children reporting events. */
4149 if (debug_linux_nat_async)
4150 fprintf_unfiltered (gdb_stdlog, "\
4151 get_pending_events: pid(%d), status(%x), options (%x)\n",
4152 pid, status, options);
4154 linux_nat_event_pipe_push (pid, status, options);
4157 if (debug_linux_nat_async)
4158 fprintf_unfiltered (gdb_stdlog, "\
4159 get_pending_events: linux_nat_num_queued_events(%d)\n",
4160 linux_nat_num_queued_events);
4163 /* SIGCHLD handler for async mode. */
4166 async_sigchld_handler (int signo)
4168 if (debug_linux_nat_async)
4169 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4171 get_pending_events ();
4174 /* Set SIGCHLD handling state to STATE. Returns previous state. */
4176 static enum sigchld_state
4177 linux_nat_async_events (enum sigchld_state state)
4179 enum sigchld_state current_state = linux_nat_async_events_state;
4181 if (debug_linux_nat_async)
4182 fprintf_unfiltered (gdb_stdlog,
4183 "LNAE: state(%d): linux_nat_async_events_state(%d), "
4184 "linux_nat_num_queued_events(%d)\n",
4185 state, linux_nat_async_events_state,
4186 linux_nat_num_queued_events);
4188 if (current_state != state)
4191 sigemptyset (&mask);
4192 sigaddset (&mask, SIGCHLD);
4194 /* Always block before changing state. */
4195 sigprocmask (SIG_BLOCK, &mask, NULL);
4197 /* Set new state. */
4198 linux_nat_async_events_state = state;
4204 /* Block target events. */
4205 sigprocmask (SIG_BLOCK, &mask, NULL);
4206 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4207 /* Get events out of queue, and make them available to
4208 queued_waitpid / my_waitpid. */
4209 pipe_to_local_event_queue ();
4214 /* Unblock target events for async mode. */
4216 sigprocmask (SIG_BLOCK, &mask, NULL);
4218 /* Put events we already waited on, in the pipe first, so
4220 local_event_queue_to_pipe ();
4221 /* While in masked async, we may have not collected all
4222 the pending events. Get them out now. */
4223 get_pending_events ();
4226 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4227 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4230 case sigchld_default:
4232 /* SIGCHLD default mode. */
4233 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4235 /* Get events out of queue, and make them available to
4236 queued_waitpid / my_waitpid. */
4237 pipe_to_local_event_queue ();
4239 /* Unblock SIGCHLD. */
4240 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4246 return current_state;
4249 static int async_terminal_is_ours = 1;
4251 /* target_terminal_inferior implementation. */
4254 linux_nat_terminal_inferior (void)
4256 if (!target_is_async_p ())
4258 /* Async mode is disabled. */
4259 terminal_inferior ();
4263 /* GDB should never give the terminal to the inferior, if the
4264 inferior is running in the background (run&, continue&, etc.).
4265 This check can be removed when the common code is fixed. */
4266 if (!sync_execution)
4269 terminal_inferior ();
4271 if (!async_terminal_is_ours)
4274 delete_file_handler (input_fd);
4275 async_terminal_is_ours = 0;
4279 /* target_terminal_ours implementation. */
4282 linux_nat_terminal_ours (void)
4284 if (!target_is_async_p ())
4286 /* Async mode is disabled. */
4291 /* GDB should never give the terminal to the inferior if the
4292 inferior is running in the background (run&, continue&, etc.),
4293 but claiming it sure should. */
4296 if (!sync_execution)
4299 if (async_terminal_is_ours)
4302 clear_sigint_trap ();
4303 add_file_handler (input_fd, stdin_event_handler, 0);
4304 async_terminal_is_ours = 1;
4307 static void (*async_client_callback) (enum inferior_event_type event_type,
4309 static void *async_client_context;
4312 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4314 async_client_callback (INF_REG_EVENT, async_client_context);
4317 /* target_async implementation. */
4320 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4321 void *context), void *context)
4323 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
4324 internal_error (__FILE__, __LINE__,
4325 "Calling target_async when async is masked");
4327 if (callback != NULL)
4329 async_client_callback = callback;
4330 async_client_context = context;
4331 add_file_handler (linux_nat_event_pipe[0],
4332 linux_nat_async_file_handler, NULL);
4334 linux_nat_async_events (sigchld_async);
4338 async_client_callback = callback;
4339 async_client_context = context;
4341 linux_nat_async_events (sigchld_sync);
4342 delete_file_handler (linux_nat_event_pipe[0]);
4348 send_sigint_callback (struct lwp_info *lp, void *data)
4350 /* Use is_running instead of !lp->stopped, because the lwp may be
4351 stopped due to an internal event, and we want to interrupt it in
4352 that case too. What we want is to check if the thread is stopped
4353 from the point of view of the user. */
4354 if (is_running (lp->ptid))
4355 kill_lwp (GET_LWP (lp->ptid), SIGINT);
4360 linux_nat_stop (ptid_t ptid)
4364 if (ptid_equal (ptid, minus_one_ptid))
4365 iterate_over_lwps (send_sigint_callback, &ptid);
4368 struct lwp_info *lp = find_lwp_pid (ptid);
4369 send_sigint_callback (lp, NULL);
4373 linux_ops->to_stop (ptid);
4377 linux_nat_add_target (struct target_ops *t)
4379 /* Save the provided single-threaded target. We save this in a separate
4380 variable because another target we've inherited from (e.g. inf-ptrace)
4381 may have saved a pointer to T; we want to use it for the final
4382 process stratum target. */
4383 linux_ops_saved = *t;
4384 linux_ops = &linux_ops_saved;
4386 /* Override some methods for multithreading. */
4387 t->to_create_inferior = linux_nat_create_inferior;
4388 t->to_attach = linux_nat_attach;
4389 t->to_detach = linux_nat_detach;
4390 t->to_resume = linux_nat_resume;
4391 t->to_wait = linux_nat_wait;
4392 t->to_xfer_partial = linux_nat_xfer_partial;
4393 t->to_kill = linux_nat_kill;
4394 t->to_mourn_inferior = linux_nat_mourn_inferior;
4395 t->to_thread_alive = linux_nat_thread_alive;
4396 t->to_pid_to_str = linux_nat_pid_to_str;
4397 t->to_has_thread_control = tc_schedlock;
4399 t->to_can_async_p = linux_nat_can_async_p;
4400 t->to_is_async_p = linux_nat_is_async_p;
4401 t->to_supports_non_stop = linux_nat_supports_non_stop;
4402 t->to_async = linux_nat_async;
4403 t->to_async_mask = linux_nat_async_mask;
4404 t->to_terminal_inferior = linux_nat_terminal_inferior;
4405 t->to_terminal_ours = linux_nat_terminal_ours;
4407 /* Methods for non-stop support. */
4408 t->to_stop = linux_nat_stop;
4410 /* We don't change the stratum; this target will sit at
4411 process_stratum and thread_db will set at thread_stratum. This
4412 is a little strange, since this is a multi-threaded-capable
4413 target, but we want to be on the stack below thread_db, and we
4414 also want to be used for single-threaded processes. */
4418 /* TODO: Eliminate this and have libthread_db use
4419 find_target_beneath. */
4423 /* Register a method to call whenever a new thread is attached. */
4425 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4427 /* Save the pointer. We only support a single registered instance
4428 of the GNU/Linux native target, so we do not need to map this to
4430 linux_nat_new_thread = new_thread;
4433 /* Return the saved siginfo associated with PTID. */
4435 linux_nat_get_siginfo (ptid_t ptid)
4437 struct lwp_info *lp = find_lwp_pid (ptid);
4439 gdb_assert (lp != NULL);
4441 return &lp->siginfo;
4444 /* Enable/Disable async mode. */
4447 linux_nat_setup_async (void)
4449 if (pipe (linux_nat_event_pipe) == -1)
4450 internal_error (__FILE__, __LINE__,
4451 "creating event pipe failed.");
4452 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4453 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4457 _initialize_linux_nat (void)
4461 add_info ("proc", linux_nat_info_proc_cmd, _("\
4462 Show /proc process information about any running process.\n\
4463 Specify any process id, or use the program being debugged by default.\n\
4464 Specify any of the following keywords for detailed info:\n\
4465 mappings -- list of mapped memory regions.\n\
4466 stat -- list a bunch of random process info.\n\
4467 status -- list a different bunch of random process info.\n\
4468 all -- list all available /proc info."));
4470 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4471 &debug_linux_nat, _("\
4472 Set debugging of GNU/Linux lwp module."), _("\
4473 Show debugging of GNU/Linux lwp module."), _("\
4474 Enables printf debugging output."),
4476 show_debug_linux_nat,
4477 &setdebuglist, &showdebuglist);
4479 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4480 &debug_linux_nat_async, _("\
4481 Set debugging of GNU/Linux async lwp module."), _("\
4482 Show debugging of GNU/Linux async lwp module."), _("\
4483 Enables printf debugging output."),
4485 show_debug_linux_nat_async,
4486 &setdebuglist, &showdebuglist);
4488 /* Get the default SIGCHLD action. Used while forking an inferior
4489 (see linux_nat_create_inferior/linux_nat_async_events). */
4490 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4492 /* Block SIGCHLD by default. Doing this early prevents it getting
4493 unblocked if an exception is thrown due to an error while the
4494 inferior is starting (sigsetjmp/siglongjmp). */
4495 sigemptyset (&mask);
4496 sigaddset (&mask, SIGCHLD);
4497 sigprocmask (SIG_BLOCK, &mask, NULL);
4499 /* Save this mask as the default. */
4500 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4502 /* The synchronous SIGCHLD handler. */
4503 sync_sigchld_action.sa_handler = sigchld_handler;
4504 sigemptyset (&sync_sigchld_action.sa_mask);
4505 sync_sigchld_action.sa_flags = SA_RESTART;
4507 /* Make it the default. */
4508 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4510 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4511 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4512 sigdelset (&suspend_mask, SIGCHLD);
4514 /* SIGCHLD handler for async mode. */
4515 async_sigchld_action.sa_handler = async_sigchld_handler;
4516 sigemptyset (&async_sigchld_action.sa_mask);
4517 async_sigchld_action.sa_flags = SA_RESTART;
4519 linux_nat_setup_async ();
4521 add_setshow_boolean_cmd ("disable-randomization", class_support,
4522 &disable_randomization, _("\
4523 Set disabling of debuggee's virtual address space randomization."), _("\
4524 Show disabling of debuggee's virtual address space randomization."), _("\
4525 When this mode is on (which is the default), randomization of the virtual\n\
4526 address space is disabled. Standalone programs run with the randomization\n\
4527 enabled by default on some platforms."),
4528 &set_disable_randomization,
4529 &show_disable_randomization,
4530 &setlist, &showlist);
4534 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4535 the GNU/Linux Threads library and therefore doesn't really belong
4538 /* Read variable NAME in the target and return its value if found.
4539 Otherwise return zero. It is assumed that the type of the variable
4543 get_signo (const char *name)
4545 struct minimal_symbol *ms;
4548 ms = lookup_minimal_symbol (name, NULL, NULL);
4552 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4553 sizeof (signo)) != 0)
4559 /* Return the set of signals used by the threads library in *SET. */
4562 lin_thread_get_thread_signals (sigset_t *set)
4564 struct sigaction action;
4565 int restart, cancel;
4566 sigset_t blocked_mask;
4568 sigemptyset (&blocked_mask);
4571 restart = get_signo ("__pthread_sig_restart");
4572 cancel = get_signo ("__pthread_sig_cancel");
4574 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4575 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4576 not provide any way for the debugger to query the signal numbers -
4577 fortunately they don't change! */
4580 restart = __SIGRTMIN;
4583 cancel = __SIGRTMIN + 1;
4585 sigaddset (set, restart);
4586 sigaddset (set, cancel);
4588 /* The GNU/Linux Threads library makes terminating threads send a
4589 special "cancel" signal instead of SIGCHLD. Make sure we catch
4590 those (to prevent them from terminating GDB itself, which is
4591 likely to be their default action) and treat them the same way as
4594 action.sa_handler = sigchld_handler;
4595 sigemptyset (&action.sa_mask);
4596 action.sa_flags = SA_RESTART;
4597 sigaction (cancel, &action, NULL);
4599 /* We block the "cancel" signal throughout this code ... */
4600 sigaddset (&blocked_mask, cancel);
4601 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4603 /* ... except during a sigsuspend. */
4604 sigdelset (&suspend_mask, cancel);