1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
27 #ifdef HAVE_TKILL_SYSCALL
29 #include <sys/syscall.h>
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
52 #include "event-loop.h"
53 #include "event-top.h"
55 #include <sys/types.h>
57 #include "xml-support.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
64 #include "tracepoint.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
71 #define SPUFS_MAGIC 0x23c9b64e
74 /* This comment documents high-level logic of this file.
76 Waiting for events in sync mode
77 ===============================
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
100 Waiting for events in async mode
101 ================================
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
163 #define O_LARGEFILE 0
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
177 /* The method to call, if any, when a process is no longer
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
199 static unsigned int debug_linux_nat;
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
208 struct simple_pid_list
212 struct simple_pid_list *next;
214 struct simple_pid_list *stopped_pids;
216 /* Async mode support. */
218 /* The read/write ends of the pipe registered as waitable file in the
220 static int linux_nat_event_pipe[2] = { -1, -1 };
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
225 /* Flush the event pipe. */
228 async_file_flush (void)
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
245 async_file_mark (void)
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
256 ret = write (linux_nat_event_pipe[1], "+", 1);
258 while (ret == -1 && errno == EINTR);
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
264 static int kill_lwp (int lwpid, int signo);
266 static int stop_callback (struct lwp_info *lp, void *data);
267 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
269 static void block_child_signals (sigset_t *prev_mask);
270 static void restore_child_signals_mask (sigset_t *prev_mask);
273 static struct lwp_info *add_lwp (ptid_t ptid);
274 static void purge_lwp_list (int pid);
275 static void delete_lwp (ptid_t ptid);
276 static struct lwp_info *find_lwp_pid (ptid_t ptid);
278 static int lwp_status_pending_p (struct lwp_info *lp);
280 static int check_stopped_by_breakpoint (struct lwp_info *lp);
281 static int sigtrap_is_event (int status);
282 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
287 /* See nat/linux-nat.h. */
290 ptid_of_lwp (struct lwp_info *lwp)
295 /* See nat/linux-nat.h. */
298 lwp_set_arch_private_info (struct lwp_info *lwp,
299 struct arch_lwp_info *info)
301 lwp->arch_private = info;
304 /* See nat/linux-nat.h. */
306 struct arch_lwp_info *
307 lwp_arch_private_info (struct lwp_info *lwp)
309 return lwp->arch_private;
312 /* See nat/linux-nat.h. */
315 lwp_is_stopped (struct lwp_info *lwp)
320 /* See nat/linux-nat.h. */
322 enum target_stop_reason
323 lwp_stop_reason (struct lwp_info *lwp)
325 return lwp->stop_reason;
329 /* Trivial list manipulation functions to keep track of a list of
330 new stopped processes. */
332 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
334 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
337 new_pid->status = status;
338 new_pid->next = *listp;
343 in_pid_list_p (struct simple_pid_list *list, int pid)
345 struct simple_pid_list *p;
347 for (p = list; p != NULL; p = p->next)
354 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
356 struct simple_pid_list **p;
358 for (p = listp; *p != NULL; p = &(*p)->next)
359 if ((*p)->pid == pid)
361 struct simple_pid_list *next = (*p)->next;
363 *statusp = (*p)->status;
371 /* Initialize ptrace warnings and check for supported ptrace
374 ATTACHED should be nonzero iff we attached to the inferior. */
377 linux_init_ptrace (pid_t pid, int attached)
379 linux_enable_event_reporting (pid, attached);
380 linux_ptrace_init_warnings ();
384 linux_child_post_attach (struct target_ops *self, int pid)
386 linux_init_ptrace (pid, 1);
390 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
392 linux_init_ptrace (ptid_get_pid (ptid), 0);
395 /* Return the number of known LWPs in the tgid given by PID. */
403 for (lp = lwp_list; lp; lp = lp->next)
404 if (ptid_get_pid (lp->ptid) == pid)
410 /* Call delete_lwp with prototype compatible for make_cleanup. */
413 delete_lwp_cleanup (void *lp_voidp)
415 struct lwp_info *lp = lp_voidp;
417 delete_lwp (lp->ptid);
420 /* Target hook for follow_fork. On entry inferior_ptid must be the
421 ptid of the followed inferior. At return, inferior_ptid will be
425 linux_child_follow_fork (struct target_ops *ops, int follow_child,
430 struct lwp_info *child_lp = NULL;
431 int status = W_STOPCODE (0);
432 struct cleanup *old_chain;
434 ptid_t parent_ptid, child_ptid;
435 int parent_pid, child_pid;
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441 parent_pid = ptid_get_lwp (parent_ptid);
442 child_pid = ptid_get_lwp (child_ptid);
444 /* We're already attached to the parent, by default. */
445 old_chain = save_inferior_ptid ();
446 inferior_ptid = child_ptid;
447 child_lp = add_lwp (inferior_ptid);
448 child_lp->stopped = 1;
449 child_lp->last_resume_kind = resume_stop;
451 /* Detach new forked process? */
454 make_cleanup (delete_lwp_cleanup, child_lp);
456 if (linux_nat_prepare_to_resume != NULL)
457 linux_nat_prepare_to_resume (child_lp);
459 /* When debugging an inferior in an architecture that supports
460 hardware single stepping on a kernel without commit
461 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
462 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
463 set if the parent process had them set.
464 To work around this, single step the child process
465 once before detaching to clear the flags. */
467 if (!gdbarch_software_single_step_p (target_thread_architecture
470 linux_disable_event_reporting (child_pid);
471 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
472 perror_with_name (_("Couldn't do single step"));
473 if (my_waitpid (child_pid, &status, 0) < 0)
474 perror_with_name (_("Couldn't wait vfork process"));
477 if (WIFSTOPPED (status))
481 signo = WSTOPSIG (status);
483 && !signal_pass_state (gdb_signal_from_host (signo)))
485 ptrace (PTRACE_DETACH, child_pid, 0, signo);
488 /* Resets value of inferior_ptid to parent ptid. */
489 do_cleanups (old_chain);
493 /* Let the thread_db layer learn about this new process. */
494 check_for_thread_db ();
497 do_cleanups (old_chain);
501 struct lwp_info *parent_lp;
503 parent_lp = find_lwp_pid (parent_ptid);
504 gdb_assert (linux_supports_tracefork () >= 0);
506 if (linux_supports_tracevforkdone ())
509 fprintf_unfiltered (gdb_stdlog,
510 "LCFF: waiting for VFORK_DONE on %d\n",
512 parent_lp->stopped = 1;
514 /* We'll handle the VFORK_DONE event like any other
515 event, in target_wait. */
519 /* We can't insert breakpoints until the child has
520 finished with the shared memory region. We need to
521 wait until that happens. Ideal would be to just
523 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
524 - waitpid (parent_pid, &status, __WALL);
525 However, most architectures can't handle a syscall
526 being traced on the way out if it wasn't traced on
529 We might also think to loop, continuing the child
530 until it exits or gets a SIGTRAP. One problem is
531 that the child might call ptrace with PTRACE_TRACEME.
533 There's no simple and reliable way to figure out when
534 the vforked child will be done with its copy of the
535 shared memory. We could step it out of the syscall,
536 two instructions, let it go, and then single-step the
537 parent once. When we have hardware single-step, this
538 would work; with software single-step it could still
539 be made to work but we'd have to be able to insert
540 single-step breakpoints in the child, and we'd have
541 to insert -just- the single-step breakpoint in the
542 parent. Very awkward.
544 In the end, the best we can do is to make sure it
545 runs for a little while. Hopefully it will be out of
546 range of any breakpoints we reinsert. Usually this
547 is only the single-step breakpoint at vfork's return
551 fprintf_unfiltered (gdb_stdlog,
552 "LCFF: no VFORK_DONE "
553 "support, sleeping a bit\n");
557 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
558 and leave it pending. The next linux_nat_resume call
559 will notice a pending event, and bypasses actually
560 resuming the inferior. */
561 parent_lp->status = 0;
562 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
563 parent_lp->stopped = 1;
565 /* If we're in async mode, need to tell the event loop
566 there's something here to process. */
567 if (target_is_async_p ())
574 struct lwp_info *child_lp;
576 child_lp = add_lwp (inferior_ptid);
577 child_lp->stopped = 1;
578 child_lp->last_resume_kind = resume_stop;
580 /* Let the thread_db layer learn about this new process. */
581 check_for_thread_db ();
589 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
591 return !linux_supports_tracefork ();
595 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
601 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
603 return !linux_supports_tracefork ();
607 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
613 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
615 return !linux_supports_tracefork ();
619 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
625 linux_child_set_syscall_catchpoint (struct target_ops *self,
626 int pid, int needed, int any_count,
627 int table_size, int *table)
629 if (!linux_supports_tracesysgood ())
632 /* On GNU/Linux, we ignore the arguments. It means that we only
633 enable the syscall catchpoints, but do not disable them.
635 Also, we do not use the `table' information because we do not
636 filter system calls here. We let GDB do the logic for us. */
640 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
641 are processes sharing the same VM space. A multi-threaded process
642 is basically a group of such processes. However, such a grouping
643 is almost entirely a user-space issue; the kernel doesn't enforce
644 such a grouping at all (this might change in the future). In
645 general, we'll rely on the threads library (i.e. the GNU/Linux
646 Threads library) to provide such a grouping.
648 It is perfectly well possible to write a multi-threaded application
649 without the assistance of a threads library, by using the clone
650 system call directly. This module should be able to give some
651 rudimentary support for debugging such applications if developers
652 specify the CLONE_PTRACE flag in the clone system call, and are
653 using the Linux kernel 2.4 or above.
655 Note that there are some peculiarities in GNU/Linux that affect
658 - In general one should specify the __WCLONE flag to waitpid in
659 order to make it report events for any of the cloned processes
660 (and leave it out for the initial process). However, if a cloned
661 process has exited the exit status is only reported if the
662 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
663 we cannot use it since GDB must work on older systems too.
665 - When a traced, cloned process exits and is waited for by the
666 debugger, the kernel reassigns it to the original parent and
667 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
668 library doesn't notice this, which leads to the "zombie problem":
669 When debugged a multi-threaded process that spawns a lot of
670 threads will run out of processes, even if the threads exit,
671 because the "zombies" stay around. */
673 /* List of known LWPs. */
674 struct lwp_info *lwp_list;
677 /* Original signal mask. */
678 static sigset_t normal_mask;
680 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
681 _initialize_linux_nat. */
682 static sigset_t suspend_mask;
684 /* Signals to block to make that sigsuspend work. */
685 static sigset_t blocked_mask;
687 /* SIGCHLD action. */
688 struct sigaction sigchld_action;
690 /* Block child signals (SIGCHLD and linux threads signals), and store
691 the previous mask in PREV_MASK. */
694 block_child_signals (sigset_t *prev_mask)
696 /* Make sure SIGCHLD is blocked. */
697 if (!sigismember (&blocked_mask, SIGCHLD))
698 sigaddset (&blocked_mask, SIGCHLD);
700 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
703 /* Restore child signals mask, previously returned by
704 block_child_signals. */
707 restore_child_signals_mask (sigset_t *prev_mask)
709 sigprocmask (SIG_SETMASK, prev_mask, NULL);
712 /* Mask of signals to pass directly to the inferior. */
713 static sigset_t pass_mask;
715 /* Update signals to pass to the inferior. */
717 linux_nat_pass_signals (struct target_ops *self,
718 int numsigs, unsigned char *pass_signals)
722 sigemptyset (&pass_mask);
724 for (signo = 1; signo < NSIG; signo++)
726 int target_signo = gdb_signal_from_host (signo);
727 if (target_signo < numsigs && pass_signals[target_signo])
728 sigaddset (&pass_mask, signo);
734 /* Prototypes for local functions. */
735 static int stop_wait_callback (struct lwp_info *lp, void *data);
736 static int linux_thread_alive (ptid_t ptid);
737 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
738 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
742 /* Destroy and free LP. */
745 lwp_free (struct lwp_info *lp)
747 xfree (lp->arch_private);
751 /* Remove all LWPs belong to PID from the lwp list. */
754 purge_lwp_list (int pid)
756 struct lwp_info *lp, *lpprev, *lpnext;
760 for (lp = lwp_list; lp; lp = lpnext)
764 if (ptid_get_pid (lp->ptid) == pid)
769 lpprev->next = lp->next;
778 /* Add the LWP specified by PTID to the list. PTID is the first LWP
779 in the process. Return a pointer to the structure describing the
782 This differs from add_lwp in that we don't let the arch specific
783 bits know about this new thread. Current clients of this callback
784 take the opportunity to install watchpoints in the new thread, and
785 we shouldn't do that for the first thread. If we're spawning a
786 child ("run"), the thread executes the shell wrapper first, and we
787 shouldn't touch it until it execs the program we want to debug.
788 For "attach", it'd be okay to call the callback, but it's not
789 necessary, because watchpoints can't yet have been inserted into
792 static struct lwp_info *
793 add_initial_lwp (ptid_t ptid)
797 gdb_assert (ptid_lwp_p (ptid));
799 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
801 memset (lp, 0, sizeof (struct lwp_info));
803 lp->last_resume_kind = resume_continue;
804 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
815 /* Add the LWP specified by PID to the list. Return a pointer to the
816 structure describing the new LWP. The LWP should already be
819 static struct lwp_info *
820 add_lwp (ptid_t ptid)
824 lp = add_initial_lwp (ptid);
826 /* Let the arch specific bits know about this new thread. Current
827 clients of this callback take the opportunity to install
828 watchpoints in the new thread. We don't do this for the first
829 thread though. See add_initial_lwp. */
830 if (linux_nat_new_thread != NULL)
831 linux_nat_new_thread (lp);
836 /* Remove the LWP specified by PID from the list. */
839 delete_lwp (ptid_t ptid)
841 struct lwp_info *lp, *lpprev;
845 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
846 if (ptid_equal (lp->ptid, ptid))
853 lpprev->next = lp->next;
860 /* Return a pointer to the structure describing the LWP corresponding
861 to PID. If no corresponding LWP could be found, return NULL. */
863 static struct lwp_info *
864 find_lwp_pid (ptid_t ptid)
869 if (ptid_lwp_p (ptid))
870 lwp = ptid_get_lwp (ptid);
872 lwp = ptid_get_pid (ptid);
874 for (lp = lwp_list; lp; lp = lp->next)
875 if (lwp == ptid_get_lwp (lp->ptid))
881 /* See nat/linux-nat.h. */
884 iterate_over_lwps (ptid_t filter,
885 iterate_over_lwps_ftype callback,
888 struct lwp_info *lp, *lpnext;
890 for (lp = lwp_list; lp; lp = lpnext)
894 if (ptid_match (lp->ptid, filter))
896 if ((*callback) (lp, data) != 0)
904 /* Update our internal state when changing from one checkpoint to
905 another indicated by NEW_PTID. We can only switch single-threaded
906 applications, so we only create one new LWP, and the previous list
910 linux_nat_switch_fork (ptid_t new_ptid)
914 purge_lwp_list (ptid_get_pid (inferior_ptid));
916 lp = add_lwp (new_ptid);
919 /* This changes the thread's ptid while preserving the gdb thread
920 num. Also changes the inferior pid, while preserving the
922 thread_change_ptid (inferior_ptid, new_ptid);
924 /* We've just told GDB core that the thread changed target id, but,
925 in fact, it really is a different thread, with different register
927 registers_changed ();
930 /* Handle the exit of a single thread LP. */
933 exit_lwp (struct lwp_info *lp)
935 struct thread_info *th = find_thread_ptid (lp->ptid);
939 if (print_thread_events)
940 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
942 delete_thread (lp->ptid);
945 delete_lwp (lp->ptid);
948 /* Wait for the LWP specified by LP, which we have just attached to.
949 Returns a wait status for that LWP, to cache. */
952 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
955 pid_t new_pid, pid = ptid_get_lwp (ptid);
958 if (linux_proc_pid_is_stopped (pid))
961 fprintf_unfiltered (gdb_stdlog,
962 "LNPAW: Attaching to a stopped process\n");
964 /* The process is definitely stopped. It is in a job control
965 stop, unless the kernel predates the TASK_STOPPED /
966 TASK_TRACED distinction, in which case it might be in a
967 ptrace stop. Make sure it is in a ptrace stop; from there we
968 can kill it, signal it, et cetera.
970 First make sure there is a pending SIGSTOP. Since we are
971 already attached, the process can not transition from stopped
972 to running without a PTRACE_CONT; so we know this signal will
973 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
974 probably already in the queue (unless this kernel is old
975 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
976 is not an RT signal, it can only be queued once. */
977 kill_lwp (pid, SIGSTOP);
979 /* Finally, resume the stopped process. This will deliver the SIGSTOP
980 (or a higher priority signal, just like normal PTRACE_ATTACH). */
981 ptrace (PTRACE_CONT, pid, 0, 0);
984 /* Make sure the initial process is stopped. The user-level threads
985 layer might want to poke around in the inferior, and that won't
986 work if things haven't stabilized yet. */
987 new_pid = my_waitpid (pid, &status, 0);
988 if (new_pid == -1 && errno == ECHILD)
991 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
993 /* Try again with __WCLONE to check cloned processes. */
994 new_pid = my_waitpid (pid, &status, __WCLONE);
998 gdb_assert (pid == new_pid);
1000 if (!WIFSTOPPED (status))
1002 /* The pid we tried to attach has apparently just exited. */
1003 if (debug_linux_nat)
1004 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1005 pid, status_to_str (status));
1009 if (WSTOPSIG (status) != SIGSTOP)
1012 if (debug_linux_nat)
1013 fprintf_unfiltered (gdb_stdlog,
1014 "LNPAW: Received %s after attaching\n",
1015 status_to_str (status));
1021 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1022 the new LWP could not be attached, or 1 if we're already auto
1023 attached to this thread, but haven't processed the
1024 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1025 its existance, without considering it an error. */
1028 lin_lwp_attach_lwp (ptid_t ptid)
1030 struct lwp_info *lp;
1033 gdb_assert (ptid_lwp_p (ptid));
1035 lp = find_lwp_pid (ptid);
1036 lwpid = ptid_get_lwp (ptid);
1038 /* We assume that we're already attached to any LWP that is already
1039 in our list of LWPs. If we're not seeing exit events from threads
1040 and we've had PID wraparound since we last tried to stop all threads,
1041 this assumption might be wrong; fortunately, this is very unlikely
1045 int status, cloned = 0, signalled = 0;
1047 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1049 if (linux_supports_tracefork ())
1051 /* If we haven't stopped all threads when we get here,
1052 we may have seen a thread listed in thread_db's list,
1053 but not processed the PTRACE_EVENT_CLONE yet. If
1054 that's the case, ignore this new thread, and let
1055 normal event handling discover it later. */
1056 if (in_pid_list_p (stopped_pids, lwpid))
1058 /* We've already seen this thread stop, but we
1059 haven't seen the PTRACE_EVENT_CLONE extended
1061 if (debug_linux_nat)
1062 fprintf_unfiltered (gdb_stdlog,
1063 "LLAL: attach failed, but already seen "
1064 "this thread %s stop\n",
1065 target_pid_to_str (ptid));
1073 if (debug_linux_nat)
1074 fprintf_unfiltered (gdb_stdlog,
1075 "LLAL: attach failed, and haven't seen "
1076 "this thread %s stop yet\n",
1077 target_pid_to_str (ptid));
1079 /* We may or may not be attached to the LWP already.
1080 Try waitpid on it. If that errors, we're not
1081 attached to the LWP yet. Otherwise, we're
1082 already attached. */
1083 gdb_assert (lwpid > 0);
1084 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1085 if (new_pid == -1 && errno == ECHILD)
1086 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1091 /* The child hasn't stopped for its initial
1092 SIGSTOP stop yet. */
1093 if (debug_linux_nat)
1094 fprintf_unfiltered (gdb_stdlog,
1095 "LLAL: child hasn't "
1098 else if (WIFSTOPPED (status))
1100 if (debug_linux_nat)
1101 fprintf_unfiltered (gdb_stdlog,
1102 "LLAL: adding to stopped_pids\n");
1103 add_to_pid_list (&stopped_pids, lwpid, status);
1110 /* If we fail to attach to the thread, issue a warning,
1111 but continue. One way this can happen is if thread
1112 creation is interrupted; as of Linux kernel 2.6.19, a
1113 bug may place threads in the thread list and then fail
1115 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1116 safe_strerror (errno));
1120 if (debug_linux_nat)
1121 fprintf_unfiltered (gdb_stdlog,
1122 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1123 target_pid_to_str (ptid));
1125 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1126 if (!WIFSTOPPED (status))
1129 lp = add_lwp (ptid);
1131 lp->last_resume_kind = resume_stop;
1132 lp->cloned = cloned;
1133 lp->signalled = signalled;
1134 if (WSTOPSIG (status) != SIGSTOP)
1137 lp->status = status;
1140 target_post_attach (ptid_get_lwp (lp->ptid));
1142 if (debug_linux_nat)
1144 fprintf_unfiltered (gdb_stdlog,
1145 "LLAL: waitpid %s received %s\n",
1146 target_pid_to_str (ptid),
1147 status_to_str (status));
1155 linux_nat_create_inferior (struct target_ops *ops,
1156 char *exec_file, char *allargs, char **env,
1159 struct cleanup *restore_personality
1160 = maybe_disable_address_space_randomization (disable_randomization);
1162 /* The fork_child mechanism is synchronous and calls target_wait, so
1163 we have to mask the async mode. */
1165 /* Make sure we report all signals during startup. */
1166 linux_nat_pass_signals (ops, 0, NULL);
1168 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1170 do_cleanups (restore_personality);
1173 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1174 already attached. Returns true if a new LWP is found, false
1178 attach_proc_task_lwp_callback (ptid_t ptid)
1180 struct lwp_info *lp;
1182 /* Ignore LWPs we're already attached to. */
1183 lp = find_lwp_pid (ptid);
1186 int lwpid = ptid_get_lwp (ptid);
1188 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1192 /* Be quiet if we simply raced with the thread exiting.
1193 EPERM is returned if the thread's task still exists, and
1194 is marked as exited or zombie, as well as other
1195 conditions, so in that case, confirm the status in
1196 /proc/PID/status. */
1198 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1200 if (debug_linux_nat)
1202 fprintf_unfiltered (gdb_stdlog,
1203 "Cannot attach to lwp %d: "
1204 "thread is gone (%d: %s)\n",
1205 lwpid, err, safe_strerror (err));
1210 warning (_("Cannot attach to lwp %d: %s"),
1212 linux_ptrace_attach_fail_reason_string (ptid,
1218 if (debug_linux_nat)
1219 fprintf_unfiltered (gdb_stdlog,
1220 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1221 target_pid_to_str (ptid));
1223 lp = add_lwp (ptid);
1226 /* The next time we wait for this LWP we'll see a SIGSTOP as
1227 PTRACE_ATTACH brings it to a halt. */
1230 /* We need to wait for a stop before being able to make the
1231 next ptrace call on this LWP. */
1232 lp->must_set_ptrace_flags = 1;
1241 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1243 struct lwp_info *lp;
1247 /* Make sure we report all signals during attach. */
1248 linux_nat_pass_signals (ops, 0, NULL);
1252 linux_ops->to_attach (ops, args, from_tty);
1254 CATCH (ex, RETURN_MASK_ERROR)
1256 pid_t pid = parse_pid_to_attach (args);
1257 struct buffer buffer;
1258 char *message, *buffer_s;
1260 message = xstrdup (ex.message);
1261 make_cleanup (xfree, message);
1263 buffer_init (&buffer);
1264 linux_ptrace_attach_fail_reason (pid, &buffer);
1266 buffer_grow_str0 (&buffer, "");
1267 buffer_s = buffer_finish (&buffer);
1268 make_cleanup (xfree, buffer_s);
1270 if (*buffer_s != '\0')
1271 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1273 throw_error (ex.error, "%s", message);
1277 /* The ptrace base target adds the main thread with (pid,0,0)
1278 format. Decorate it with lwp info. */
1279 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1280 ptid_get_pid (inferior_ptid),
1282 thread_change_ptid (inferior_ptid, ptid);
1284 /* Add the initial process as the first LWP to the list. */
1285 lp = add_initial_lwp (ptid);
1287 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1289 if (!WIFSTOPPED (status))
1291 if (WIFEXITED (status))
1293 int exit_code = WEXITSTATUS (status);
1295 target_terminal_ours ();
1296 target_mourn_inferior ();
1298 error (_("Unable to attach: program exited normally."));
1300 error (_("Unable to attach: program exited with code %d."),
1303 else if (WIFSIGNALED (status))
1305 enum gdb_signal signo;
1307 target_terminal_ours ();
1308 target_mourn_inferior ();
1310 signo = gdb_signal_from_host (WTERMSIG (status));
1311 error (_("Unable to attach: program terminated with signal "
1313 gdb_signal_to_name (signo),
1314 gdb_signal_to_string (signo));
1317 internal_error (__FILE__, __LINE__,
1318 _("unexpected status %d for PID %ld"),
1319 status, (long) ptid_get_lwp (ptid));
1324 /* Save the wait status to report later. */
1326 if (debug_linux_nat)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "LNA: waitpid %ld, saving status %s\n",
1329 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1331 lp->status = status;
1333 /* We must attach to every LWP. If /proc is mounted, use that to
1334 find them now. The inferior may be using raw clone instead of
1335 using pthreads. But even if it is using pthreads, thread_db
1336 walks structures in the inferior's address space to find the list
1337 of threads/LWPs, and those structures may well be corrupted.
1338 Note that once thread_db is loaded, we'll still use it to list
1339 threads and associate pthread info with each LWP. */
1340 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1341 attach_proc_task_lwp_callback);
1343 if (target_can_async_p ())
1344 target_async (inferior_event_handler, 0);
1347 /* Get pending status of LP. */
1349 get_pending_status (struct lwp_info *lp, int *status)
1351 enum gdb_signal signo = GDB_SIGNAL_0;
1353 /* If we paused threads momentarily, we may have stored pending
1354 events in lp->status or lp->waitstatus (see stop_wait_callback),
1355 and GDB core hasn't seen any signal for those threads.
1356 Otherwise, the last signal reported to the core is found in the
1357 thread object's stop_signal.
1359 There's a corner case that isn't handled here at present. Only
1360 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1361 stop_signal make sense as a real signal to pass to the inferior.
1362 Some catchpoint related events, like
1363 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1364 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1365 those traps are debug API (ptrace in our case) related and
1366 induced; the inferior wouldn't see them if it wasn't being
1367 traced. Hence, we should never pass them to the inferior, even
1368 when set to pass state. Since this corner case isn't handled by
1369 infrun.c when proceeding with a signal, for consistency, neither
1370 do we handle it here (or elsewhere in the file we check for
1371 signal pass state). Normally SIGTRAP isn't set to pass state, so
1372 this is really a corner case. */
1374 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1375 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1376 else if (lp->status)
1377 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1378 else if (non_stop && !is_executing (lp->ptid))
1380 struct thread_info *tp = find_thread_ptid (lp->ptid);
1382 signo = tp->suspend.stop_signal;
1386 struct target_waitstatus last;
1389 get_last_target_status (&last_ptid, &last);
1391 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1393 struct thread_info *tp = find_thread_ptid (lp->ptid);
1395 signo = tp->suspend.stop_signal;
1401 if (signo == GDB_SIGNAL_0)
1403 if (debug_linux_nat)
1404 fprintf_unfiltered (gdb_stdlog,
1405 "GPT: lwp %s has no pending signal\n",
1406 target_pid_to_str (lp->ptid));
1408 else if (!signal_pass_state (signo))
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "GPT: lwp %s had signal %s, "
1413 "but it is in no pass state\n",
1414 target_pid_to_str (lp->ptid),
1415 gdb_signal_to_string (signo));
1419 *status = W_STOPCODE (gdb_signal_to_host (signo));
1421 if (debug_linux_nat)
1422 fprintf_unfiltered (gdb_stdlog,
1423 "GPT: lwp %s has pending signal %s\n",
1424 target_pid_to_str (lp->ptid),
1425 gdb_signal_to_string (signo));
1432 detach_callback (struct lwp_info *lp, void *data)
1434 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1436 if (debug_linux_nat && lp->status)
1437 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1438 strsignal (WSTOPSIG (lp->status)),
1439 target_pid_to_str (lp->ptid));
1441 /* If there is a pending SIGSTOP, get rid of it. */
1444 if (debug_linux_nat)
1445 fprintf_unfiltered (gdb_stdlog,
1446 "DC: Sending SIGCONT to %s\n",
1447 target_pid_to_str (lp->ptid));
1449 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1453 /* We don't actually detach from the LWP that has an id equal to the
1454 overall process id just yet. */
1455 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1459 /* Pass on any pending signal for this LWP. */
1460 get_pending_status (lp, &status);
1462 if (linux_nat_prepare_to_resume != NULL)
1463 linux_nat_prepare_to_resume (lp);
1465 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1466 WSTOPSIG (status)) < 0)
1467 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1468 safe_strerror (errno));
1470 if (debug_linux_nat)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1473 target_pid_to_str (lp->ptid),
1474 strsignal (WSTOPSIG (status)));
1476 delete_lwp (lp->ptid);
1483 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1487 struct lwp_info *main_lwp;
1489 pid = ptid_get_pid (inferior_ptid);
1491 /* Don't unregister from the event loop, as there may be other
1492 inferiors running. */
1494 /* Stop all threads before detaching. ptrace requires that the
1495 thread is stopped to sucessfully detach. */
1496 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1497 /* ... and wait until all of them have reported back that
1498 they're no longer running. */
1499 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1501 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1503 /* Only the initial process should be left right now. */
1504 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1506 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1508 /* Pass on any pending signal for the last LWP. */
1509 if ((args == NULL || *args == '\0')
1510 && get_pending_status (main_lwp, &status) != -1
1511 && WIFSTOPPED (status))
1515 /* Put the signal number in ARGS so that inf_ptrace_detach will
1516 pass it along with PTRACE_DETACH. */
1518 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1520 if (debug_linux_nat)
1521 fprintf_unfiltered (gdb_stdlog,
1522 "LND: Sending signal %s to %s\n",
1524 target_pid_to_str (main_lwp->ptid));
1527 if (linux_nat_prepare_to_resume != NULL)
1528 linux_nat_prepare_to_resume (main_lwp);
1529 delete_lwp (main_lwp->ptid);
1531 if (forks_exist_p ())
1533 /* Multi-fork case. The current inferior_ptid is being detached
1534 from, but there are other viable forks to debug. Detach from
1535 the current fork, and context-switch to the first
1537 linux_fork_detach (args, from_tty);
1540 linux_ops->to_detach (ops, args, from_tty);
1543 /* Resume execution of the inferior process. If STEP is nonzero,
1544 single-step it. If SIGNAL is nonzero, give it that signal. */
1547 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1548 enum gdb_signal signo)
1552 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1553 We only presently need that if the LWP is stepped though (to
1554 handle the case of stepping a breakpoint instruction). */
1557 struct regcache *regcache = get_thread_regcache (lp->ptid);
1559 lp->stop_pc = regcache_read_pc (regcache);
1564 if (linux_nat_prepare_to_resume != NULL)
1565 linux_nat_prepare_to_resume (lp);
1566 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1568 /* Successfully resumed. Clear state that no longer makes sense,
1569 and mark the LWP as running. Must not do this before resuming
1570 otherwise if that fails other code will be confused. E.g., we'd
1571 later try to stop the LWP and hang forever waiting for a stop
1572 status. Note that we must not throw after this is cleared,
1573 otherwise handle_zombie_lwp_error would get confused. */
1575 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1576 registers_changed_ptid (lp->ptid);
1579 /* Called when we try to resume a stopped LWP and that errors out. If
1580 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1581 or about to become), discard the error, clear any pending status
1582 the LWP may have, and return true (we'll collect the exit status
1583 soon enough). Otherwise, return false. */
1586 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1588 /* If we get an error after resuming the LWP successfully, we'd
1589 confuse !T state for the LWP being gone. */
1590 gdb_assert (lp->stopped);
1592 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1593 because even if ptrace failed with ESRCH, the tracee may be "not
1594 yet fully dead", but already refusing ptrace requests. In that
1595 case the tracee has 'R (Running)' state for a little bit
1596 (observed in Linux 3.18). See also the note on ESRCH in the
1597 ptrace(2) man page. Instead, check whether the LWP has any state
1598 other than ptrace-stopped. */
1600 /* Don't assume anything if /proc/PID/status can't be read. */
1601 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1603 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1605 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1611 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1612 disappears while we try to resume it. */
1615 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1619 linux_resume_one_lwp_throw (lp, step, signo);
1621 CATCH (ex, RETURN_MASK_ERROR)
1623 if (!check_ptrace_stopped_lwp_gone (lp))
1624 throw_exception (ex);
1632 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1636 struct inferior *inf = find_inferior_ptid (lp->ptid);
1638 if (inf->vfork_child != NULL)
1640 if (debug_linux_nat)
1641 fprintf_unfiltered (gdb_stdlog,
1642 "RC: Not resuming %s (vfork parent)\n",
1643 target_pid_to_str (lp->ptid));
1645 else if (!lwp_status_pending_p (lp))
1647 if (debug_linux_nat)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "RC: Resuming sibling %s, %s, %s\n",
1650 target_pid_to_str (lp->ptid),
1651 (signo != GDB_SIGNAL_0
1652 ? strsignal (gdb_signal_to_host (signo))
1654 step ? "step" : "resume");
1656 linux_resume_one_lwp (lp, step, signo);
1660 if (debug_linux_nat)
1661 fprintf_unfiltered (gdb_stdlog,
1662 "RC: Not resuming sibling %s (has pending)\n",
1663 target_pid_to_str (lp->ptid));
1668 if (debug_linux_nat)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "RC: Not resuming sibling %s (not stopped)\n",
1671 target_pid_to_str (lp->ptid));
1675 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1676 Resume LWP with the last stop signal, if it is in pass state. */
1679 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1681 enum gdb_signal signo = GDB_SIGNAL_0;
1688 struct thread_info *thread;
1690 thread = find_thread_ptid (lp->ptid);
1693 signo = thread->suspend.stop_signal;
1694 thread->suspend.stop_signal = GDB_SIGNAL_0;
1698 resume_lwp (lp, 0, signo);
1703 resume_clear_callback (struct lwp_info *lp, void *data)
1706 lp->last_resume_kind = resume_stop;
1711 resume_set_callback (struct lwp_info *lp, void *data)
1714 lp->last_resume_kind = resume_continue;
1719 linux_nat_resume (struct target_ops *ops,
1720 ptid_t ptid, int step, enum gdb_signal signo)
1722 struct lwp_info *lp;
1725 if (debug_linux_nat)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1728 step ? "step" : "resume",
1729 target_pid_to_str (ptid),
1730 (signo != GDB_SIGNAL_0
1731 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1732 target_pid_to_str (inferior_ptid));
1734 /* A specific PTID means `step only this process id'. */
1735 resume_many = (ptid_equal (minus_one_ptid, ptid)
1736 || ptid_is_pid (ptid));
1738 /* Mark the lwps we're resuming as resumed. */
1739 iterate_over_lwps (ptid, resume_set_callback, NULL);
1741 /* See if it's the current inferior that should be handled
1744 lp = find_lwp_pid (inferior_ptid);
1746 lp = find_lwp_pid (ptid);
1747 gdb_assert (lp != NULL);
1749 /* Remember if we're stepping. */
1750 lp->last_resume_kind = step ? resume_step : resume_continue;
1752 /* If we have a pending wait status for this thread, there is no
1753 point in resuming the process. But first make sure that
1754 linux_nat_wait won't preemptively handle the event - we
1755 should never take this short-circuit if we are going to
1756 leave LP running, since we have skipped resuming all the
1757 other threads. This bit of code needs to be synchronized
1758 with linux_nat_wait. */
1760 if (lp->status && WIFSTOPPED (lp->status))
1763 && WSTOPSIG (lp->status)
1764 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1766 if (debug_linux_nat)
1767 fprintf_unfiltered (gdb_stdlog,
1768 "LLR: Not short circuiting for ignored "
1769 "status 0x%x\n", lp->status);
1771 /* FIXME: What should we do if we are supposed to continue
1772 this thread with a signal? */
1773 gdb_assert (signo == GDB_SIGNAL_0);
1774 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1779 if (lwp_status_pending_p (lp))
1781 /* FIXME: What should we do if we are supposed to continue
1782 this thread with a signal? */
1783 gdb_assert (signo == GDB_SIGNAL_0);
1785 if (debug_linux_nat)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "LLR: Short circuiting for status 0x%x\n",
1790 if (target_can_async_p ())
1792 target_async (inferior_event_handler, 0);
1793 /* Tell the event loop we have something to process. */
1800 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1802 linux_resume_one_lwp (lp, step, signo);
1804 if (debug_linux_nat)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "LLR: %s %s, %s (resume event thread)\n",
1807 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1808 target_pid_to_str (ptid),
1809 (signo != GDB_SIGNAL_0
1810 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1812 if (target_can_async_p ())
1813 target_async (inferior_event_handler, 0);
1816 /* Send a signal to an LWP. */
1819 kill_lwp (int lwpid, int signo)
1821 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1822 fails, then we are not using nptl threads and we should be using kill. */
1824 #ifdef HAVE_TKILL_SYSCALL
1826 static int tkill_failed;
1833 ret = syscall (__NR_tkill, lwpid, signo);
1834 if (errno != ENOSYS)
1841 return kill (lwpid, signo);
1844 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1845 event, check if the core is interested in it: if not, ignore the
1846 event, and keep waiting; otherwise, we need to toggle the LWP's
1847 syscall entry/exit status, since the ptrace event itself doesn't
1848 indicate it, and report the trap to higher layers. */
1851 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1853 struct target_waitstatus *ourstatus = &lp->waitstatus;
1854 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1855 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1859 /* If we're stopping threads, there's a SIGSTOP pending, which
1860 makes it so that the LWP reports an immediate syscall return,
1861 followed by the SIGSTOP. Skip seeing that "return" using
1862 PTRACE_CONT directly, and let stop_wait_callback collect the
1863 SIGSTOP. Later when the thread is resumed, a new syscall
1864 entry event. If we didn't do this (and returned 0), we'd
1865 leave a syscall entry pending, and our caller, by using
1866 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1867 itself. Later, when the user re-resumes this LWP, we'd see
1868 another syscall entry event and we'd mistake it for a return.
1870 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1871 (leaving immediately with LWP->signalled set, without issuing
1872 a PTRACE_CONT), it would still be problematic to leave this
1873 syscall enter pending, as later when the thread is resumed,
1874 it would then see the same syscall exit mentioned above,
1875 followed by the delayed SIGSTOP, while the syscall didn't
1876 actually get to execute. It seems it would be even more
1877 confusing to the user. */
1879 if (debug_linux_nat)
1880 fprintf_unfiltered (gdb_stdlog,
1881 "LHST: ignoring syscall %d "
1882 "for LWP %ld (stopping threads), "
1883 "resuming with PTRACE_CONT for SIGSTOP\n",
1885 ptid_get_lwp (lp->ptid));
1887 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1888 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1893 if (catch_syscall_enabled ())
1895 /* Always update the entry/return state, even if this particular
1896 syscall isn't interesting to the core now. In async mode,
1897 the user could install a new catchpoint for this syscall
1898 between syscall enter/return, and we'll need to know to
1899 report a syscall return if that happens. */
1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1901 ? TARGET_WAITKIND_SYSCALL_RETURN
1902 : TARGET_WAITKIND_SYSCALL_ENTRY);
1904 if (catching_syscall_number (syscall_number))
1906 /* Alright, an event to report. */
1907 ourstatus->kind = lp->syscall_state;
1908 ourstatus->value.syscall_number = syscall_number;
1910 if (debug_linux_nat)
1911 fprintf_unfiltered (gdb_stdlog,
1912 "LHST: stopping for %s of syscall %d"
1915 == TARGET_WAITKIND_SYSCALL_ENTRY
1916 ? "entry" : "return",
1918 ptid_get_lwp (lp->ptid));
1922 if (debug_linux_nat)
1923 fprintf_unfiltered (gdb_stdlog,
1924 "LHST: ignoring %s of syscall %d "
1926 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? "entry" : "return",
1929 ptid_get_lwp (lp->ptid));
1933 /* If we had been syscall tracing, and hence used PT_SYSCALL
1934 before on this LWP, it could happen that the user removes all
1935 syscall catchpoints before we get to process this event.
1936 There are two noteworthy issues here:
1938 - When stopped at a syscall entry event, resuming with
1939 PT_STEP still resumes executing the syscall and reports a
1942 - Only PT_SYSCALL catches syscall enters. If we last
1943 single-stepped this thread, then this event can't be a
1944 syscall enter. If we last single-stepped this thread, this
1945 has to be a syscall exit.
1947 The points above mean that the next resume, be it PT_STEP or
1948 PT_CONTINUE, can not trigger a syscall trace event. */
1949 if (debug_linux_nat)
1950 fprintf_unfiltered (gdb_stdlog,
1951 "LHST: caught syscall event "
1952 "with no syscall catchpoints."
1953 " %d for LWP %ld, ignoring\n",
1955 ptid_get_lwp (lp->ptid));
1956 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1966 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1970 /* Handle a GNU/Linux extended wait response. If we see a clone
1971 event, we need to add the new LWP to our list (and not report the
1972 trap to higher layers). This function returns non-zero if the
1973 event should be ignored and we should wait again. If STOPPING is
1974 true, the new LWP remains stopped, otherwise it is continued. */
1977 linux_handle_extended_wait (struct lwp_info *lp, int status,
1980 int pid = ptid_get_lwp (lp->ptid);
1981 struct target_waitstatus *ourstatus = &lp->waitstatus;
1982 int event = linux_ptrace_get_extended_event (status);
1984 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1985 || event == PTRACE_EVENT_CLONE)
1987 unsigned long new_pid;
1990 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1992 /* If we haven't already seen the new PID stop, wait for it now. */
1993 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1995 /* The new child has a pending SIGSTOP. We can't affect it until it
1996 hits the SIGSTOP, but we're already attached. */
1997 ret = my_waitpid (new_pid, &status,
1998 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2000 perror_with_name (_("waiting for new child"));
2001 else if (ret != new_pid)
2002 internal_error (__FILE__, __LINE__,
2003 _("wait returned unexpected PID %d"), ret);
2004 else if (!WIFSTOPPED (status))
2005 internal_error (__FILE__, __LINE__,
2006 _("wait returned unexpected status 0x%x"), status);
2009 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2011 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2013 /* The arch-specific native code may need to know about new
2014 forks even if those end up never mapped to an
2016 if (linux_nat_new_fork != NULL)
2017 linux_nat_new_fork (lp, new_pid);
2020 if (event == PTRACE_EVENT_FORK
2021 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2023 /* Handle checkpointing by linux-fork.c here as a special
2024 case. We don't want the follow-fork-mode or 'catch fork'
2025 to interfere with this. */
2027 /* This won't actually modify the breakpoint list, but will
2028 physically remove the breakpoints from the child. */
2029 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2031 /* Retain child fork in ptrace (stopped) state. */
2032 if (!find_fork_pid (new_pid))
2035 /* Report as spurious, so that infrun doesn't want to follow
2036 this fork. We're actually doing an infcall in
2038 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2040 /* Report the stop to the core. */
2044 if (event == PTRACE_EVENT_FORK)
2045 ourstatus->kind = TARGET_WAITKIND_FORKED;
2046 else if (event == PTRACE_EVENT_VFORK)
2047 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2050 struct lwp_info *new_lp;
2052 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2054 if (debug_linux_nat)
2055 fprintf_unfiltered (gdb_stdlog,
2056 "LHEW: Got clone event "
2057 "from LWP %d, new child is LWP %ld\n",
2060 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2062 new_lp->stopped = 1;
2064 if (WSTOPSIG (status) != SIGSTOP)
2066 /* This can happen if someone starts sending signals to
2067 the new thread before it gets a chance to run, which
2068 have a lower number than SIGSTOP (e.g. SIGUSR1).
2069 This is an unlikely case, and harder to handle for
2070 fork / vfork than for clone, so we do not try - but
2071 we handle it for clone events here. We'll send
2072 the other signal on to the thread below. */
2074 new_lp->signalled = 1;
2078 struct thread_info *tp;
2080 /* When we stop for an event in some other thread, and
2081 pull the thread list just as this thread has cloned,
2082 we'll have seen the new thread in the thread_db list
2083 before handling the CLONE event (glibc's
2084 pthread_create adds the new thread to the thread list
2085 before clone'ing, and has the kernel fill in the
2086 thread's tid on the clone call with
2087 CLONE_PARENT_SETTID). If that happened, and the core
2088 had requested the new thread to stop, we'll have
2089 killed it with SIGSTOP. But since SIGSTOP is not an
2090 RT signal, it can only be queued once. We need to be
2091 careful to not resume the LWP if we wanted it to
2092 stop. In that case, we'll leave the SIGSTOP pending.
2093 It will later be reported as GDB_SIGNAL_0. */
2094 tp = find_thread_ptid (new_lp->ptid);
2095 if (tp != NULL && tp->stop_requested)
2096 new_lp->last_resume_kind = resume_stop;
2101 /* If the thread_db layer is active, let it record the user
2102 level thread id and status, and add the thread to GDB's
2104 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2106 /* The process is not using thread_db. Add the LWP to
2108 target_post_attach (ptid_get_lwp (new_lp->ptid));
2109 add_thread (new_lp->ptid);
2114 set_running (new_lp->ptid, 1);
2115 set_executing (new_lp->ptid, 1);
2116 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2118 new_lp->last_resume_kind = resume_continue;
2123 /* We created NEW_LP so it cannot yet contain STATUS. */
2124 gdb_assert (new_lp->status == 0);
2126 /* Save the wait status to report later. */
2127 if (debug_linux_nat)
2128 fprintf_unfiltered (gdb_stdlog,
2129 "LHEW: waitpid of new LWP %ld, "
2130 "saving status %s\n",
2131 (long) ptid_get_lwp (new_lp->ptid),
2132 status_to_str (status));
2133 new_lp->status = status;
2136 new_lp->resumed = !stopping;
2143 if (event == PTRACE_EVENT_EXEC)
2145 if (debug_linux_nat)
2146 fprintf_unfiltered (gdb_stdlog,
2147 "LHEW: Got exec event from LWP %ld\n",
2148 ptid_get_lwp (lp->ptid));
2150 ourstatus->kind = TARGET_WAITKIND_EXECD;
2151 ourstatus->value.execd_pathname
2152 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2154 /* The thread that execed must have been resumed, but, when a
2155 thread execs, it changes its tid to the tgid, and the old
2156 tgid thread might have not been resumed. */
2161 if (event == PTRACE_EVENT_VFORK_DONE)
2163 if (current_inferior ()->waiting_for_vfork_done)
2165 if (debug_linux_nat)
2166 fprintf_unfiltered (gdb_stdlog,
2167 "LHEW: Got expected PTRACE_EVENT_"
2168 "VFORK_DONE from LWP %ld: stopping\n",
2169 ptid_get_lwp (lp->ptid));
2171 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2175 if (debug_linux_nat)
2176 fprintf_unfiltered (gdb_stdlog,
2177 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2178 "from LWP %ld: ignoring\n",
2179 ptid_get_lwp (lp->ptid));
2183 internal_error (__FILE__, __LINE__,
2184 _("unknown ptrace event %d"), event);
2187 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2191 wait_lwp (struct lwp_info *lp)
2195 int thread_dead = 0;
2198 gdb_assert (!lp->stopped);
2199 gdb_assert (lp->status == 0);
2201 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2202 block_child_signals (&prev_mask);
2206 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2207 was right and we should just call sigsuspend. */
2209 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2210 if (pid == -1 && errno == ECHILD)
2211 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2212 if (pid == -1 && errno == ECHILD)
2214 /* The thread has previously exited. We need to delete it
2215 now because, for some vendor 2.4 kernels with NPTL
2216 support backported, there won't be an exit event unless
2217 it is the main thread. 2.6 kernels will report an exit
2218 event for each thread that exits, as expected. */
2220 if (debug_linux_nat)
2221 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2222 target_pid_to_str (lp->ptid));
2227 /* Bugs 10970, 12702.
2228 Thread group leader may have exited in which case we'll lock up in
2229 waitpid if there are other threads, even if they are all zombies too.
2230 Basically, we're not supposed to use waitpid this way.
2231 __WCLONE is not applicable for the leader so we can't use that.
2232 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2233 process; it gets ESRCH both for the zombie and for running processes.
2235 As a workaround, check if we're waiting for the thread group leader and
2236 if it's a zombie, and avoid calling waitpid if it is.
2238 This is racy, what if the tgl becomes a zombie right after we check?
2239 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2240 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2242 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2243 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2246 if (debug_linux_nat)
2247 fprintf_unfiltered (gdb_stdlog,
2248 "WL: Thread group leader %s vanished.\n",
2249 target_pid_to_str (lp->ptid));
2253 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2254 get invoked despite our caller had them intentionally blocked by
2255 block_child_signals. This is sensitive only to the loop of
2256 linux_nat_wait_1 and there if we get called my_waitpid gets called
2257 again before it gets to sigsuspend so we can safely let the handlers
2258 get executed here. */
2260 if (debug_linux_nat)
2261 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2262 sigsuspend (&suspend_mask);
2265 restore_child_signals_mask (&prev_mask);
2269 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2271 if (debug_linux_nat)
2273 fprintf_unfiltered (gdb_stdlog,
2274 "WL: waitpid %s received %s\n",
2275 target_pid_to_str (lp->ptid),
2276 status_to_str (status));
2279 /* Check if the thread has exited. */
2280 if (WIFEXITED (status) || WIFSIGNALED (status))
2283 if (debug_linux_nat)
2284 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2285 target_pid_to_str (lp->ptid));
2295 gdb_assert (WIFSTOPPED (status));
2298 if (lp->must_set_ptrace_flags)
2300 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2302 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2303 lp->must_set_ptrace_flags = 0;
2306 /* Handle GNU/Linux's syscall SIGTRAPs. */
2307 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2309 /* No longer need the sysgood bit. The ptrace event ends up
2310 recorded in lp->waitstatus if we care for it. We can carry
2311 on handling the event like a regular SIGTRAP from here
2313 status = W_STOPCODE (SIGTRAP);
2314 if (linux_handle_syscall_trap (lp, 1))
2315 return wait_lwp (lp);
2318 /* Handle GNU/Linux's extended waitstatus for trace events. */
2319 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2320 && linux_is_extended_waitstatus (status))
2322 if (debug_linux_nat)
2323 fprintf_unfiltered (gdb_stdlog,
2324 "WL: Handling extended status 0x%06x\n",
2326 linux_handle_extended_wait (lp, status, 1);
2333 /* Send a SIGSTOP to LP. */
2336 stop_callback (struct lwp_info *lp, void *data)
2338 if (!lp->stopped && !lp->signalled)
2342 if (debug_linux_nat)
2344 fprintf_unfiltered (gdb_stdlog,
2345 "SC: kill %s **<SIGSTOP>**\n",
2346 target_pid_to_str (lp->ptid));
2349 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2350 if (debug_linux_nat)
2352 fprintf_unfiltered (gdb_stdlog,
2353 "SC: lwp kill %d %s\n",
2355 errno ? safe_strerror (errno) : "ERRNO-OK");
2359 gdb_assert (lp->status == 0);
2365 /* Request a stop on LWP. */
2368 linux_stop_lwp (struct lwp_info *lwp)
2370 stop_callback (lwp, NULL);
2373 /* See linux-nat.h */
2376 linux_stop_and_wait_all_lwps (void)
2378 /* Stop all LWP's ... */
2379 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2381 /* ... and wait until all of them have reported back that
2382 they're no longer running. */
2383 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2386 /* See linux-nat.h */
2389 linux_unstop_all_lwps (void)
2391 iterate_over_lwps (minus_one_ptid,
2392 resume_stopped_resumed_lwps, &minus_one_ptid);
2395 /* Return non-zero if LWP PID has a pending SIGINT. */
2398 linux_nat_has_pending_sigint (int pid)
2400 sigset_t pending, blocked, ignored;
2402 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2404 if (sigismember (&pending, SIGINT)
2405 && !sigismember (&ignored, SIGINT))
2411 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2414 set_ignore_sigint (struct lwp_info *lp, void *data)
2416 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2417 flag to consume the next one. */
2418 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2419 && WSTOPSIG (lp->status) == SIGINT)
2422 lp->ignore_sigint = 1;
2427 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2428 This function is called after we know the LWP has stopped; if the LWP
2429 stopped before the expected SIGINT was delivered, then it will never have
2430 arrived. Also, if the signal was delivered to a shared queue and consumed
2431 by a different thread, it will never be delivered to this LWP. */
2434 maybe_clear_ignore_sigint (struct lwp_info *lp)
2436 if (!lp->ignore_sigint)
2439 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2441 if (debug_linux_nat)
2442 fprintf_unfiltered (gdb_stdlog,
2443 "MCIS: Clearing bogus flag for %s\n",
2444 target_pid_to_str (lp->ptid));
2445 lp->ignore_sigint = 0;
2449 /* Fetch the possible triggered data watchpoint info and store it in
2452 On some archs, like x86, that use debug registers to set
2453 watchpoints, it's possible that the way to know which watched
2454 address trapped, is to check the register that is used to select
2455 which address to watch. Problem is, between setting the watchpoint
2456 and reading back which data address trapped, the user may change
2457 the set of watchpoints, and, as a consequence, GDB changes the
2458 debug registers in the inferior. To avoid reading back a stale
2459 stopped-data-address when that happens, we cache in LP the fact
2460 that a watchpoint trapped, and the corresponding data address, as
2461 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2462 registers meanwhile, we have the cached data we can rely on. */
2465 check_stopped_by_watchpoint (struct lwp_info *lp)
2467 struct cleanup *old_chain;
2469 if (linux_ops->to_stopped_by_watchpoint == NULL)
2472 old_chain = save_inferior_ptid ();
2473 inferior_ptid = lp->ptid;
2475 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2477 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2479 if (linux_ops->to_stopped_data_address != NULL)
2480 lp->stopped_data_address_p =
2481 linux_ops->to_stopped_data_address (¤t_target,
2482 &lp->stopped_data_address);
2484 lp->stopped_data_address_p = 0;
2487 do_cleanups (old_chain);
2489 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2492 /* Called when the LWP stopped for a trap that could be explained by a
2493 watchpoint or a breakpoint. */
2496 save_sigtrap (struct lwp_info *lp)
2498 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2499 gdb_assert (lp->status != 0);
2501 /* Check first if this was a SW/HW breakpoint before checking
2502 watchpoints, because at least s390 can't tell the data address of
2503 hardware watchpoint hits, and the kernel returns
2504 stopped-by-watchpoint as long as there's a watchpoint set. */
2505 if (linux_nat_status_is_event (lp->status))
2506 check_stopped_by_breakpoint (lp);
2508 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2509 or hardware watchpoint. Check which is which if we got
2510 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2511 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2512 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2513 check_stopped_by_watchpoint (lp);
2516 /* Returns true if the LWP had stopped for a watchpoint. */
2519 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2521 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2523 gdb_assert (lp != NULL);
2525 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2529 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2531 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2533 gdb_assert (lp != NULL);
2535 *addr_p = lp->stopped_data_address;
2537 return lp->stopped_data_address_p;
2540 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2543 sigtrap_is_event (int status)
2545 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2548 /* Set alternative SIGTRAP-like events recognizer. If
2549 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2553 linux_nat_set_status_is_event (struct target_ops *t,
2554 int (*status_is_event) (int status))
2556 linux_nat_status_is_event = status_is_event;
2559 /* Wait until LP is stopped. */
2562 stop_wait_callback (struct lwp_info *lp, void *data)
2564 struct inferior *inf = find_inferior_ptid (lp->ptid);
2566 /* If this is a vfork parent, bail out, it is not going to report
2567 any SIGSTOP until the vfork is done with. */
2568 if (inf->vfork_child != NULL)
2575 status = wait_lwp (lp);
2579 if (lp->ignore_sigint && WIFSTOPPED (status)
2580 && WSTOPSIG (status) == SIGINT)
2582 lp->ignore_sigint = 0;
2585 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2587 if (debug_linux_nat)
2588 fprintf_unfiltered (gdb_stdlog,
2589 "PTRACE_CONT %s, 0, 0 (%s) "
2590 "(discarding SIGINT)\n",
2591 target_pid_to_str (lp->ptid),
2592 errno ? safe_strerror (errno) : "OK");
2594 return stop_wait_callback (lp, NULL);
2597 maybe_clear_ignore_sigint (lp);
2599 if (WSTOPSIG (status) != SIGSTOP)
2601 /* The thread was stopped with a signal other than SIGSTOP. */
2603 if (debug_linux_nat)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "SWC: Pending event %s in %s\n",
2606 status_to_str ((int) status),
2607 target_pid_to_str (lp->ptid));
2609 /* Save the sigtrap event. */
2610 lp->status = status;
2611 gdb_assert (lp->signalled);
2616 /* We caught the SIGSTOP that we intended to catch, so
2617 there's no SIGSTOP pending. */
2619 if (debug_linux_nat)
2620 fprintf_unfiltered (gdb_stdlog,
2621 "SWC: Delayed SIGSTOP caught for %s.\n",
2622 target_pid_to_str (lp->ptid));
2624 /* Reset SIGNALLED only after the stop_wait_callback call
2625 above as it does gdb_assert on SIGNALLED. */
2633 /* Return non-zero if LP has a wait status pending. Discard the
2634 pending event and resume the LWP if the event that originally
2635 caused the stop became uninteresting. */
2638 status_callback (struct lwp_info *lp, void *data)
2640 /* Only report a pending wait status if we pretend that this has
2641 indeed been resumed. */
2645 if (!lwp_status_pending_p (lp))
2648 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2649 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2651 struct regcache *regcache = get_thread_regcache (lp->ptid);
2652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2656 pc = regcache_read_pc (regcache);
2658 if (pc != lp->stop_pc)
2660 if (debug_linux_nat)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "SC: PC of %s changed. was=%s, now=%s\n",
2663 target_pid_to_str (lp->ptid),
2664 paddress (target_gdbarch (), lp->stop_pc),
2665 paddress (target_gdbarch (), pc));
2669 #if !USE_SIGTRAP_SIGINFO
2670 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2672 if (debug_linux_nat)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "SC: previous breakpoint of %s, at %s gone\n",
2675 target_pid_to_str (lp->ptid),
2676 paddress (target_gdbarch (), lp->stop_pc));
2684 if (debug_linux_nat)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "SC: pending event of %s cancelled.\n",
2687 target_pid_to_str (lp->ptid));
2690 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2698 /* Return non-zero if LP isn't stopped. */
2701 running_callback (struct lwp_info *lp, void *data)
2703 return (!lp->stopped
2704 || (lwp_status_pending_p (lp) && lp->resumed));
2707 /* Count the LWP's that have had events. */
2710 count_events_callback (struct lwp_info *lp, void *data)
2714 gdb_assert (count != NULL);
2716 /* Select only resumed LWPs that have an event pending. */
2717 if (lp->resumed && lwp_status_pending_p (lp))
2723 /* Select the LWP (if any) that is currently being single-stepped. */
2726 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2728 if (lp->last_resume_kind == resume_step
2735 /* Returns true if LP has a status pending. */
2738 lwp_status_pending_p (struct lwp_info *lp)
2740 /* We check for lp->waitstatus in addition to lp->status, because we
2741 can have pending process exits recorded in lp->status and
2742 W_EXITCODE(0,0) happens to be 0. */
2743 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2746 /* Select the Nth LWP that has had an event. */
2749 select_event_lwp_callback (struct lwp_info *lp, void *data)
2751 int *selector = data;
2753 gdb_assert (selector != NULL);
2755 /* Select only resumed LWPs that have an event pending. */
2756 if (lp->resumed && lwp_status_pending_p (lp))
2757 if ((*selector)-- == 0)
2763 /* Called when the LWP got a signal/trap that could be explained by a
2764 software or hardware breakpoint. */
2767 check_stopped_by_breakpoint (struct lwp_info *lp)
2769 /* Arrange for a breakpoint to be hit again later. We don't keep
2770 the SIGTRAP status and don't forward the SIGTRAP signal to the
2771 LWP. We will handle the current event, eventually we will resume
2772 this LWP, and this breakpoint will trap again.
2774 If we do not do this, then we run the risk that the user will
2775 delete or disable the breakpoint, but the LWP will have already
2778 struct regcache *regcache = get_thread_regcache (lp->ptid);
2779 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2782 #if USE_SIGTRAP_SIGINFO
2786 pc = regcache_read_pc (regcache);
2787 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2789 #if USE_SIGTRAP_SIGINFO
2790 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2792 if (siginfo.si_signo == SIGTRAP)
2794 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2796 if (debug_linux_nat)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "CSBB: Push back software "
2799 "breakpoint for %s\n",
2800 target_pid_to_str (lp->ptid));
2802 /* Back up the PC if necessary. */
2804 regcache_write_pc (regcache, sw_bp_pc);
2806 lp->stop_pc = sw_bp_pc;
2807 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2810 else if (siginfo.si_code == TRAP_HWBKPT)
2812 if (debug_linux_nat)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "CSBB: Push back hardware "
2815 "breakpoint/watchpoint for %s\n",
2816 target_pid_to_str (lp->ptid));
2819 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2825 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2826 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2829 /* The LWP was either continued, or stepped a software
2830 breakpoint instruction. */
2831 if (debug_linux_nat)
2832 fprintf_unfiltered (gdb_stdlog,
2833 "CB: Push back software breakpoint for %s\n",
2834 target_pid_to_str (lp->ptid));
2836 /* Back up the PC if necessary. */
2838 regcache_write_pc (regcache, sw_bp_pc);
2840 lp->stop_pc = sw_bp_pc;
2841 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2845 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2847 if (debug_linux_nat)
2848 fprintf_unfiltered (gdb_stdlog,
2849 "CB: Push back hardware breakpoint for %s\n",
2850 target_pid_to_str (lp->ptid));
2853 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2862 /* Returns true if the LWP had stopped for a software breakpoint. */
2865 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2867 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2869 gdb_assert (lp != NULL);
2871 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2874 /* Implement the supports_stopped_by_sw_breakpoint method. */
2877 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2879 return USE_SIGTRAP_SIGINFO;
2882 /* Returns true if the LWP had stopped for a hardware
2883 breakpoint/watchpoint. */
2886 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2888 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2890 gdb_assert (lp != NULL);
2892 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2895 /* Implement the supports_stopped_by_hw_breakpoint method. */
2898 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2900 return USE_SIGTRAP_SIGINFO;
2903 /* Select one LWP out of those that have events pending. */
2906 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2909 int random_selector;
2910 struct lwp_info *event_lp = NULL;
2912 /* Record the wait status for the original LWP. */
2913 (*orig_lp)->status = *status;
2915 /* In all-stop, give preference to the LWP that is being
2916 single-stepped. There will be at most one, and it will be the
2917 LWP that the core is most interested in. If we didn't do this,
2918 then we'd have to handle pending step SIGTRAPs somehow in case
2919 the core later continues the previously-stepped thread, as
2920 otherwise we'd report the pending SIGTRAP then, and the core, not
2921 having stepped the thread, wouldn't understand what the trap was
2922 for, and therefore would report it to the user as a random
2926 event_lp = iterate_over_lwps (filter,
2927 select_singlestep_lwp_callback, NULL);
2928 if (event_lp != NULL)
2930 if (debug_linux_nat)
2931 fprintf_unfiltered (gdb_stdlog,
2932 "SEL: Select single-step %s\n",
2933 target_pid_to_str (event_lp->ptid));
2937 if (event_lp == NULL)
2939 /* Pick one at random, out of those which have had events. */
2941 /* First see how many events we have. */
2942 iterate_over_lwps (filter, count_events_callback, &num_events);
2943 gdb_assert (num_events > 0);
2945 /* Now randomly pick a LWP out of those that have had
2947 random_selector = (int)
2948 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2950 if (debug_linux_nat && num_events > 1)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "SEL: Found %d events, selecting #%d\n",
2953 num_events, random_selector);
2955 event_lp = iterate_over_lwps (filter,
2956 select_event_lwp_callback,
2960 if (event_lp != NULL)
2962 /* Switch the event LWP. */
2963 *orig_lp = event_lp;
2964 *status = event_lp->status;
2967 /* Flush the wait status for the event LWP. */
2968 (*orig_lp)->status = 0;
2971 /* Return non-zero if LP has been resumed. */
2974 resumed_callback (struct lwp_info *lp, void *data)
2979 /* Stop an active thread, verify it still exists, then resume it. If
2980 the thread ends up with a pending status, then it is not resumed,
2981 and *DATA (really a pointer to int), is set. */
2984 stop_and_resume_callback (struct lwp_info *lp, void *data)
2988 ptid_t ptid = lp->ptid;
2990 stop_callback (lp, NULL);
2991 stop_wait_callback (lp, NULL);
2993 /* Resume if the lwp still exists, and the core wanted it
2995 lp = find_lwp_pid (ptid);
2998 if (lp->last_resume_kind == resume_stop
2999 && !lwp_status_pending_p (lp))
3001 /* The core wanted the LWP to stop. Even if it stopped
3002 cleanly (with SIGSTOP), leave the event pending. */
3003 if (debug_linux_nat)
3004 fprintf_unfiltered (gdb_stdlog,
3005 "SARC: core wanted LWP %ld stopped "
3006 "(leaving SIGSTOP pending)\n",
3007 ptid_get_lwp (lp->ptid));
3008 lp->status = W_STOPCODE (SIGSTOP);
3011 if (!lwp_status_pending_p (lp))
3013 if (debug_linux_nat)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "SARC: re-resuming LWP %ld\n",
3016 ptid_get_lwp (lp->ptid));
3017 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3021 if (debug_linux_nat)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "SARC: not re-resuming LWP %ld "
3025 ptid_get_lwp (lp->ptid));
3032 /* Check if we should go on and pass this event to common code.
3033 Return the affected lwp if we are, or NULL otherwise. */
3035 static struct lwp_info *
3036 linux_nat_filter_event (int lwpid, int status)
3038 struct lwp_info *lp;
3039 int event = linux_ptrace_get_extended_event (status);
3041 lp = find_lwp_pid (pid_to_ptid (lwpid));
3043 /* Check for stop events reported by a process we didn't already
3044 know about - anything not already in our LWP list.
3046 If we're expecting to receive stopped processes after
3047 fork, vfork, and clone events, then we'll just add the
3048 new one to our list and go back to waiting for the event
3049 to be reported - the stopped process might be returned
3050 from waitpid before or after the event is.
3052 But note the case of a non-leader thread exec'ing after the
3053 leader having exited, and gone from our lists. The non-leader
3054 thread changes its tid to the tgid. */
3056 if (WIFSTOPPED (status) && lp == NULL
3057 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3059 /* A multi-thread exec after we had seen the leader exiting. */
3060 if (debug_linux_nat)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "LLW: Re-adding thread group leader LWP %d.\n",
3065 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3068 add_thread (lp->ptid);
3071 if (WIFSTOPPED (status) && !lp)
3073 if (debug_linux_nat)
3074 fprintf_unfiltered (gdb_stdlog,
3075 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3076 (long) lwpid, status_to_str (status));
3077 add_to_pid_list (&stopped_pids, lwpid, status);
3081 /* Make sure we don't report an event for the exit of an LWP not in
3082 our list, i.e. not part of the current process. This can happen
3083 if we detach from a program we originally forked and then it
3085 if (!WIFSTOPPED (status) && !lp)
3088 /* This LWP is stopped now. (And if dead, this prevents it from
3089 ever being continued.) */
3092 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3094 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3096 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
3097 lp->must_set_ptrace_flags = 0;
3100 /* Handle GNU/Linux's syscall SIGTRAPs. */
3101 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3103 /* No longer need the sysgood bit. The ptrace event ends up
3104 recorded in lp->waitstatus if we care for it. We can carry
3105 on handling the event like a regular SIGTRAP from here
3107 status = W_STOPCODE (SIGTRAP);
3108 if (linux_handle_syscall_trap (lp, 0))
3112 /* Handle GNU/Linux's extended waitstatus for trace events. */
3113 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3114 && linux_is_extended_waitstatus (status))
3116 if (debug_linux_nat)
3117 fprintf_unfiltered (gdb_stdlog,
3118 "LLW: Handling extended status 0x%06x\n",
3120 if (linux_handle_extended_wait (lp, status, 0))
3124 /* Check if the thread has exited. */
3125 if (WIFEXITED (status) || WIFSIGNALED (status))
3127 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3129 /* If this is the main thread, we must stop all threads and
3130 verify if they are still alive. This is because in the
3131 nptl thread model on Linux 2.4, there is no signal issued
3132 for exiting LWPs other than the main thread. We only get
3133 the main thread exit signal once all child threads have
3134 already exited. If we stop all the threads and use the
3135 stop_wait_callback to check if they have exited we can
3136 determine whether this signal should be ignored or
3137 whether it means the end of the debugged application,
3138 regardless of which threading model is being used. */
3139 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3141 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3142 stop_and_resume_callback, NULL);
3145 if (debug_linux_nat)
3146 fprintf_unfiltered (gdb_stdlog,
3147 "LLW: %s exited.\n",
3148 target_pid_to_str (lp->ptid));
3150 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3152 /* If there is at least one more LWP, then the exit signal
3153 was not the end of the debugged application and should be
3160 gdb_assert (lp->resumed);
3162 if (debug_linux_nat)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "Process %ld exited\n",
3165 ptid_get_lwp (lp->ptid));
3167 /* This was the last lwp in the process. Since events are
3168 serialized to GDB core, we may not be able report this one
3169 right now, but GDB core and the other target layers will want
3170 to be notified about the exit code/signal, leave the status
3171 pending for the next time we're able to report it. */
3173 /* Dead LWP's aren't expected to reported a pending sigstop. */
3176 /* Store the pending event in the waitstatus, because
3177 W_EXITCODE(0,0) == 0. */
3178 store_waitstatus (&lp->waitstatus, status);
3182 /* Check if the current LWP has previously exited. In the nptl
3183 thread model, LWPs other than the main thread do not issue
3184 signals when they exit so we must check whenever the thread has
3185 stopped. A similar check is made in stop_wait_callback(). */
3186 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3188 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3190 if (debug_linux_nat)
3191 fprintf_unfiltered (gdb_stdlog,
3192 "LLW: %s exited.\n",
3193 target_pid_to_str (lp->ptid));
3197 /* Make sure there is at least one thread running. */
3198 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3200 /* Discard the event. */
3204 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3205 an attempt to stop an LWP. */
3207 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3209 if (debug_linux_nat)
3210 fprintf_unfiltered (gdb_stdlog,
3211 "LLW: Delayed SIGSTOP caught for %s.\n",
3212 target_pid_to_str (lp->ptid));
3216 if (lp->last_resume_kind != resume_stop)
3218 /* This is a delayed SIGSTOP. */
3220 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3221 if (debug_linux_nat)
3222 fprintf_unfiltered (gdb_stdlog,
3223 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3225 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3226 target_pid_to_str (lp->ptid));
3228 gdb_assert (lp->resumed);
3230 /* Discard the event. */
3235 /* Make sure we don't report a SIGINT that we have already displayed
3236 for another thread. */
3237 if (lp->ignore_sigint
3238 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3240 if (debug_linux_nat)
3241 fprintf_unfiltered (gdb_stdlog,
3242 "LLW: Delayed SIGINT caught for %s.\n",
3243 target_pid_to_str (lp->ptid));
3245 /* This is a delayed SIGINT. */
3246 lp->ignore_sigint = 0;
3248 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3249 if (debug_linux_nat)
3250 fprintf_unfiltered (gdb_stdlog,
3251 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3253 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3254 target_pid_to_str (lp->ptid));
3255 gdb_assert (lp->resumed);
3257 /* Discard the event. */
3261 /* Don't report signals that GDB isn't interested in, such as
3262 signals that are neither printed nor stopped upon. Stopping all
3263 threads can be a bit time-consuming so if we want decent
3264 performance with heavily multi-threaded programs, especially when
3265 they're using a high frequency timer, we'd better avoid it if we
3267 if (WIFSTOPPED (status))
3269 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3273 /* Only do the below in all-stop, as we currently use SIGSTOP
3274 to implement target_stop (see linux_nat_stop) in
3276 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3278 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3279 forwarded to the entire process group, that is, all LWPs
3280 will receive it - unless they're using CLONE_THREAD to
3281 share signals. Since we only want to report it once, we
3282 mark it as ignored for all LWPs except this one. */
3283 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3284 set_ignore_sigint, NULL);
3285 lp->ignore_sigint = 0;
3288 maybe_clear_ignore_sigint (lp);
3291 /* When using hardware single-step, we need to report every signal.
3292 Otherwise, signals in pass_mask may be short-circuited
3293 except signals that might be caused by a breakpoint. */
3295 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3296 && !linux_wstatus_maybe_breakpoint (status))
3298 linux_resume_one_lwp (lp, lp->step, signo);
3299 if (debug_linux_nat)
3300 fprintf_unfiltered (gdb_stdlog,
3301 "LLW: %s %s, %s (preempt 'handle')\n",
3303 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3304 target_pid_to_str (lp->ptid),
3305 (signo != GDB_SIGNAL_0
3306 ? strsignal (gdb_signal_to_host (signo))
3312 /* An interesting event. */
3314 lp->status = status;
3319 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3320 their exits until all other threads in the group have exited. */
3323 check_zombie_leaders (void)
3325 struct inferior *inf;
3329 struct lwp_info *leader_lp;
3334 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3335 if (leader_lp != NULL
3336 /* Check if there are other threads in the group, as we may
3337 have raced with the inferior simply exiting. */
3338 && num_lwps (inf->pid) > 1
3339 && linux_proc_pid_is_zombie (inf->pid))
3341 if (debug_linux_nat)
3342 fprintf_unfiltered (gdb_stdlog,
3343 "CZL: Thread group leader %d zombie "
3344 "(it exited, or another thread execd).\n",
3347 /* A leader zombie can mean one of two things:
3349 - It exited, and there's an exit status pending
3350 available, or only the leader exited (not the whole
3351 program). In the latter case, we can't waitpid the
3352 leader's exit status until all other threads are gone.
3354 - There are 3 or more threads in the group, and a thread
3355 other than the leader exec'd. On an exec, the Linux
3356 kernel destroys all other threads (except the execing
3357 one) in the thread group, and resets the execing thread's
3358 tid to the tgid. No exit notification is sent for the
3359 execing thread -- from the ptracer's perspective, it
3360 appears as though the execing thread just vanishes.
3361 Until we reap all other threads except the leader and the
3362 execing thread, the leader will be zombie, and the
3363 execing thread will be in `D (disc sleep)'. As soon as
3364 all other threads are reaped, the execing thread changes
3365 it's tid to the tgid, and the previous (zombie) leader
3366 vanishes, giving place to the "new" leader. We could try
3367 distinguishing the exit and exec cases, by waiting once
3368 more, and seeing if something comes out, but it doesn't
3369 sound useful. The previous leader _does_ go away, and
3370 we'll re-add the new one once we see the exec event
3371 (which is just the same as what would happen if the
3372 previous leader did exit voluntarily before some other
3375 if (debug_linux_nat)
3376 fprintf_unfiltered (gdb_stdlog,
3377 "CZL: Thread group leader %d vanished.\n",
3379 exit_lwp (leader_lp);
3385 linux_nat_wait_1 (struct target_ops *ops,
3386 ptid_t ptid, struct target_waitstatus *ourstatus,
3390 enum resume_kind last_resume_kind;
3391 struct lwp_info *lp;
3394 if (debug_linux_nat)
3395 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3397 /* The first time we get here after starting a new inferior, we may
3398 not have added it to the LWP list yet - this is the earliest
3399 moment at which we know its PID. */
3400 if (ptid_is_pid (inferior_ptid))
3402 /* Upgrade the main thread's ptid. */
3403 thread_change_ptid (inferior_ptid,
3404 ptid_build (ptid_get_pid (inferior_ptid),
3405 ptid_get_pid (inferior_ptid), 0));
3407 lp = add_initial_lwp (inferior_ptid);
3411 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3412 block_child_signals (&prev_mask);
3414 /* First check if there is a LWP with a wait status pending. */
3415 lp = iterate_over_lwps (ptid, status_callback, NULL);
3418 if (debug_linux_nat)
3419 fprintf_unfiltered (gdb_stdlog,
3420 "LLW: Using pending wait status %s for %s.\n",
3421 status_to_str (lp->status),
3422 target_pid_to_str (lp->ptid));
3425 if (!target_is_async_p ())
3427 /* Causes SIGINT to be passed on to the attached process. */
3431 /* But if we don't find a pending event, we'll have to wait. Always
3432 pull all events out of the kernel. We'll randomly select an
3433 event LWP out of all that have events, to prevent starvation. */
3439 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3442 - If the thread group leader exits while other threads in the
3443 thread group still exist, waitpid(TGID, ...) hangs. That
3444 waitpid won't return an exit status until the other threads
3445 in the group are reapped.
3447 - When a non-leader thread execs, that thread just vanishes
3448 without reporting an exit (so we'd hang if we waited for it
3449 explicitly in that case). The exec event is reported to
3453 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3454 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3455 lwpid = my_waitpid (-1, &status, WNOHANG);
3457 if (debug_linux_nat)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "LNW: waitpid(-1, ...) returned %d, %s\n",
3460 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3464 if (debug_linux_nat)
3466 fprintf_unfiltered (gdb_stdlog,
3467 "LLW: waitpid %ld received %s\n",
3468 (long) lwpid, status_to_str (status));
3471 linux_nat_filter_event (lwpid, status);
3472 /* Retry until nothing comes out of waitpid. A single
3473 SIGCHLD can indicate more than one child stopped. */
3477 /* Now that we've pulled all events out of the kernel, resume
3478 LWPs that don't have an interesting event to report. */
3479 iterate_over_lwps (minus_one_ptid,
3480 resume_stopped_resumed_lwps, &minus_one_ptid);
3482 /* ... and find an LWP with a status to report to the core, if
3484 lp = iterate_over_lwps (ptid, status_callback, NULL);
3488 /* Check for zombie thread group leaders. Those can't be reaped
3489 until all other threads in the thread group are. */
3490 check_zombie_leaders ();
3492 /* If there are no resumed children left, bail. We'd be stuck
3493 forever in the sigsuspend call below otherwise. */
3494 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3496 if (debug_linux_nat)
3497 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3499 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3501 if (!target_is_async_p ())
3502 clear_sigint_trap ();
3504 restore_child_signals_mask (&prev_mask);
3505 return minus_one_ptid;
3508 /* No interesting event to report to the core. */
3510 if (target_options & TARGET_WNOHANG)
3512 if (debug_linux_nat)
3513 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3515 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3516 restore_child_signals_mask (&prev_mask);
3517 return minus_one_ptid;
3520 /* We shouldn't end up here unless we want to try again. */
3521 gdb_assert (lp == NULL);
3523 /* Block until we get an event reported with SIGCHLD. */
3524 if (debug_linux_nat)
3525 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3526 sigsuspend (&suspend_mask);
3529 if (!target_is_async_p ())
3530 clear_sigint_trap ();
3534 status = lp->status;
3539 /* Now stop all other LWP's ... */
3540 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3542 /* ... and wait until all of them have reported back that
3543 they're no longer running. */
3544 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3547 /* If we're not waiting for a specific LWP, choose an event LWP from
3548 among those that have had events. Giving equal priority to all
3549 LWPs that have had events helps prevent starvation. */
3550 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3551 select_event_lwp (ptid, &lp, &status);
3553 gdb_assert (lp != NULL);
3555 /* Now that we've selected our final event LWP, un-adjust its PC if
3556 it was a software breakpoint, and we can't reliably support the
3557 "stopped by software breakpoint" stop reason. */
3558 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3559 && !USE_SIGTRAP_SIGINFO)
3561 struct regcache *regcache = get_thread_regcache (lp->ptid);
3562 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3563 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3569 pc = regcache_read_pc (regcache);
3570 regcache_write_pc (regcache, pc + decr_pc);
3574 /* We'll need this to determine whether to report a SIGSTOP as
3575 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3577 last_resume_kind = lp->last_resume_kind;
3581 /* In all-stop, from the core's perspective, all LWPs are now
3582 stopped until a new resume action is sent over. */
3583 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3587 resume_clear_callback (lp, NULL);
3590 if (linux_nat_status_is_event (status))
3592 if (debug_linux_nat)
3593 fprintf_unfiltered (gdb_stdlog,
3594 "LLW: trap ptid is %s.\n",
3595 target_pid_to_str (lp->ptid));
3598 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3600 *ourstatus = lp->waitstatus;
3601 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3604 store_waitstatus (ourstatus, status);
3606 if (debug_linux_nat)
3607 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3609 restore_child_signals_mask (&prev_mask);
3611 if (last_resume_kind == resume_stop
3612 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3613 && WSTOPSIG (status) == SIGSTOP)
3615 /* A thread that has been requested to stop by GDB with
3616 target_stop, and it stopped cleanly, so report as SIG0. The
3617 use of SIGSTOP is an implementation detail. */
3618 ourstatus->value.sig = GDB_SIGNAL_0;
3621 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3622 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3625 lp->core = linux_common_core_of_thread (lp->ptid);
3630 /* Resume LWPs that are currently stopped without any pending status
3631 to report, but are resumed from the core's perspective. */
3634 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3636 ptid_t *wait_ptid_p = data;
3640 && !lwp_status_pending_p (lp))
3642 struct regcache *regcache = get_thread_regcache (lp->ptid);
3643 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3647 CORE_ADDR pc = regcache_read_pc (regcache);
3648 int leave_stopped = 0;
3650 /* Don't bother if there's a breakpoint at PC that we'd hit
3651 immediately, and we're not waiting for this LWP. */
3652 if (!ptid_match (lp->ptid, *wait_ptid_p))
3654 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3660 if (debug_linux_nat)
3661 fprintf_unfiltered (gdb_stdlog,
3662 "RSRL: resuming stopped-resumed LWP %s at "
3664 target_pid_to_str (lp->ptid),
3665 paddress (gdbarch, pc),
3668 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3671 CATCH (ex, RETURN_MASK_ERROR)
3673 if (!check_ptrace_stopped_lwp_gone (lp))
3674 throw_exception (ex);
3683 linux_nat_wait (struct target_ops *ops,
3684 ptid_t ptid, struct target_waitstatus *ourstatus,
3689 if (debug_linux_nat)
3691 char *options_string;
3693 options_string = target_options_to_string (target_options);
3694 fprintf_unfiltered (gdb_stdlog,
3695 "linux_nat_wait: [%s], [%s]\n",
3696 target_pid_to_str (ptid),
3698 xfree (options_string);
3701 /* Flush the async file first. */
3702 if (target_is_async_p ())
3703 async_file_flush ();
3705 /* Resume LWPs that are currently stopped without any pending status
3706 to report, but are resumed from the core's perspective. LWPs get
3707 in this state if we find them stopping at a time we're not
3708 interested in reporting the event (target_wait on a
3709 specific_process, for example, see linux_nat_wait_1), and
3710 meanwhile the event became uninteresting. Don't bother resuming
3711 LWPs we're not going to wait for if they'd stop immediately. */
3713 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3715 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3717 /* If we requested any event, and something came out, assume there
3718 may be more. If we requested a specific lwp or process, also
3719 assume there may be more. */
3720 if (target_is_async_p ()
3721 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3722 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3723 || !ptid_equal (ptid, minus_one_ptid)))
3730 kill_callback (struct lwp_info *lp, void *data)
3732 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3735 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3736 if (debug_linux_nat)
3738 int save_errno = errno;
3740 fprintf_unfiltered (gdb_stdlog,
3741 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3742 target_pid_to_str (lp->ptid),
3743 save_errno ? safe_strerror (save_errno) : "OK");
3746 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3749 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3750 if (debug_linux_nat)
3752 int save_errno = errno;
3754 fprintf_unfiltered (gdb_stdlog,
3755 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3756 target_pid_to_str (lp->ptid),
3757 save_errno ? safe_strerror (save_errno) : "OK");
3764 kill_wait_callback (struct lwp_info *lp, void *data)
3768 /* We must make sure that there are no pending events (delayed
3769 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3770 program doesn't interfere with any following debugging session. */
3772 /* For cloned processes we must check both with __WCLONE and
3773 without, since the exit status of a cloned process isn't reported
3779 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3780 if (pid != (pid_t) -1)
3782 if (debug_linux_nat)
3783 fprintf_unfiltered (gdb_stdlog,
3784 "KWC: wait %s received unknown.\n",
3785 target_pid_to_str (lp->ptid));
3786 /* The Linux kernel sometimes fails to kill a thread
3787 completely after PTRACE_KILL; that goes from the stop
3788 point in do_fork out to the one in
3789 get_signal_to_deliever and waits again. So kill it
3791 kill_callback (lp, NULL);
3794 while (pid == ptid_get_lwp (lp->ptid));
3796 gdb_assert (pid == -1 && errno == ECHILD);
3801 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3802 if (pid != (pid_t) -1)
3804 if (debug_linux_nat)
3805 fprintf_unfiltered (gdb_stdlog,
3806 "KWC: wait %s received unk.\n",
3807 target_pid_to_str (lp->ptid));
3808 /* See the call to kill_callback above. */
3809 kill_callback (lp, NULL);
3812 while (pid == ptid_get_lwp (lp->ptid));
3814 gdb_assert (pid == -1 && errno == ECHILD);
3819 linux_nat_kill (struct target_ops *ops)
3821 struct target_waitstatus last;
3825 /* If we're stopped while forking and we haven't followed yet,
3826 kill the other task. We need to do this first because the
3827 parent will be sleeping if this is a vfork. */
3829 get_last_target_status (&last_ptid, &last);
3831 if (last.kind == TARGET_WAITKIND_FORKED
3832 || last.kind == TARGET_WAITKIND_VFORKED)
3834 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3837 /* Let the arch-specific native code know this process is
3839 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3842 if (forks_exist_p ())
3843 linux_fork_killall ();
3846 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3848 /* Stop all threads before killing them, since ptrace requires
3849 that the thread is stopped to sucessfully PTRACE_KILL. */
3850 iterate_over_lwps (ptid, stop_callback, NULL);
3851 /* ... and wait until all of them have reported back that
3852 they're no longer running. */
3853 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3855 /* Kill all LWP's ... */
3856 iterate_over_lwps (ptid, kill_callback, NULL);
3858 /* ... and wait until we've flushed all events. */
3859 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3862 target_mourn_inferior ();
3866 linux_nat_mourn_inferior (struct target_ops *ops)
3868 int pid = ptid_get_pid (inferior_ptid);
3870 purge_lwp_list (pid);
3872 if (! forks_exist_p ())
3873 /* Normal case, no other forks available. */
3874 linux_ops->to_mourn_inferior (ops);
3876 /* Multi-fork case. The current inferior_ptid has exited, but
3877 there are other viable forks to debug. Delete the exiting
3878 one and context-switch to the first available. */
3879 linux_fork_mourn_inferior ();
3881 /* Let the arch-specific native code know this process is gone. */
3882 linux_nat_forget_process (pid);
3885 /* Convert a native/host siginfo object, into/from the siginfo in the
3886 layout of the inferiors' architecture. */
3889 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3893 if (linux_nat_siginfo_fixup != NULL)
3894 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3896 /* If there was no callback, or the callback didn't do anything,
3897 then just do a straight memcpy. */
3901 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3903 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3907 static enum target_xfer_status
3908 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3909 const char *annex, gdb_byte *readbuf,
3910 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3911 ULONGEST *xfered_len)
3915 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3917 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3918 gdb_assert (readbuf || writebuf);
3920 pid = ptid_get_lwp (inferior_ptid);
3922 pid = ptid_get_pid (inferior_ptid);
3924 if (offset > sizeof (siginfo))
3925 return TARGET_XFER_E_IO;
3928 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3930 return TARGET_XFER_E_IO;
3932 /* When GDB is built as a 64-bit application, ptrace writes into
3933 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3934 inferior with a 64-bit GDB should look the same as debugging it
3935 with a 32-bit GDB, we need to convert it. GDB core always sees
3936 the converted layout, so any read/write will have to be done
3938 siginfo_fixup (&siginfo, inf_siginfo, 0);
3940 if (offset + len > sizeof (siginfo))
3941 len = sizeof (siginfo) - offset;
3943 if (readbuf != NULL)
3944 memcpy (readbuf, inf_siginfo + offset, len);
3947 memcpy (inf_siginfo + offset, writebuf, len);
3949 /* Convert back to ptrace layout before flushing it out. */
3950 siginfo_fixup (&siginfo, inf_siginfo, 1);
3953 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3955 return TARGET_XFER_E_IO;
3959 return TARGET_XFER_OK;
3962 static enum target_xfer_status
3963 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3964 const char *annex, gdb_byte *readbuf,
3965 const gdb_byte *writebuf,
3966 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3968 struct cleanup *old_chain;
3969 enum target_xfer_status xfer;
3971 if (object == TARGET_OBJECT_SIGNAL_INFO)
3972 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3973 offset, len, xfered_len);
3975 /* The target is connected but no live inferior is selected. Pass
3976 this request down to a lower stratum (e.g., the executable
3978 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3979 return TARGET_XFER_EOF;
3981 old_chain = save_inferior_ptid ();
3983 if (ptid_lwp_p (inferior_ptid))
3984 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3986 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3987 offset, len, xfered_len);
3989 do_cleanups (old_chain);
3994 linux_thread_alive (ptid_t ptid)
3998 gdb_assert (ptid_lwp_p (ptid));
4000 /* Send signal 0 instead of anything ptrace, because ptracing a
4001 running thread errors out claiming that the thread doesn't
4003 err = kill_lwp (ptid_get_lwp (ptid), 0);
4005 if (debug_linux_nat)
4006 fprintf_unfiltered (gdb_stdlog,
4007 "LLTA: KILL(SIG0) %s (%s)\n",
4008 target_pid_to_str (ptid),
4009 err ? safe_strerror (tmp_errno) : "OK");
4018 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4020 return linux_thread_alive (ptid);
4024 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4026 static char buf[64];
4028 if (ptid_lwp_p (ptid)
4029 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4030 || num_lwps (ptid_get_pid (ptid)) > 1))
4032 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4036 return normal_pid_to_str (ptid);
4040 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4042 int pid = ptid_get_pid (thr->ptid);
4043 long lwp = ptid_get_lwp (thr->ptid);
4044 #define FORMAT "/proc/%d/task/%ld/comm"
4045 char buf[sizeof (FORMAT) + 30];
4047 char *result = NULL;
4049 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4050 comm_file = gdb_fopen_cloexec (buf, "r");
4053 /* Not exported by the kernel, so we define it here. */
4055 static char line[COMM_LEN + 1];
4057 if (fgets (line, sizeof (line), comm_file))
4059 char *nl = strchr (line, '\n');
4076 /* Accepts an integer PID; Returns a string representing a file that
4077 can be opened to get the symbols for the child process. */
4080 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4082 static char buf[PATH_MAX];
4083 char name[PATH_MAX];
4085 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
4086 memset (buf, 0, PATH_MAX);
4087 if (readlink (name, buf, PATH_MAX - 1) <= 0)
4093 /* Implement the to_xfer_partial interface for memory reads using the /proc
4094 filesystem. Because we can use a single read() call for /proc, this
4095 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4096 but it doesn't support writes. */
4098 static enum target_xfer_status
4099 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4100 const char *annex, gdb_byte *readbuf,
4101 const gdb_byte *writebuf,
4102 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4108 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4111 /* Don't bother for one word. */
4112 if (len < 3 * sizeof (long))
4113 return TARGET_XFER_EOF;
4115 /* We could keep this file open and cache it - possibly one per
4116 thread. That requires some juggling, but is even faster. */
4117 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4118 ptid_get_pid (inferior_ptid));
4119 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4121 return TARGET_XFER_EOF;
4123 /* If pread64 is available, use it. It's faster if the kernel
4124 supports it (only one syscall), and it's 64-bit safe even on
4125 32-bit platforms (for instance, SPARC debugging a SPARC64
4128 if (pread64 (fd, readbuf, len, offset) != len)
4130 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4139 return TARGET_XFER_EOF;
4143 return TARGET_XFER_OK;
4148 /* Enumerate spufs IDs for process PID. */
4150 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4152 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4154 LONGEST written = 0;
4157 struct dirent *entry;
4159 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4160 dir = opendir (path);
4165 while ((entry = readdir (dir)) != NULL)
4171 fd = atoi (entry->d_name);
4175 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4176 if (stat (path, &st) != 0)
4178 if (!S_ISDIR (st.st_mode))
4181 if (statfs (path, &stfs) != 0)
4183 if (stfs.f_type != SPUFS_MAGIC)
4186 if (pos >= offset && pos + 4 <= offset + len)
4188 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4198 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4199 object type, using the /proc file system. */
4201 static enum target_xfer_status
4202 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4203 const char *annex, gdb_byte *readbuf,
4204 const gdb_byte *writebuf,
4205 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4210 int pid = ptid_get_pid (inferior_ptid);
4215 return TARGET_XFER_E_IO;
4218 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4221 return TARGET_XFER_E_IO;
4223 return TARGET_XFER_EOF;
4226 *xfered_len = (ULONGEST) l;
4227 return TARGET_XFER_OK;
4232 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4233 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4235 return TARGET_XFER_E_IO;
4238 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4241 return TARGET_XFER_EOF;
4245 ret = write (fd, writebuf, (size_t) len);
4247 ret = read (fd, readbuf, (size_t) len);
4252 return TARGET_XFER_E_IO;
4254 return TARGET_XFER_EOF;
4257 *xfered_len = (ULONGEST) ret;
4258 return TARGET_XFER_OK;
4263 /* Parse LINE as a signal set and add its set bits to SIGS. */
4266 add_line_to_sigset (const char *line, sigset_t *sigs)
4268 int len = strlen (line) - 1;
4272 if (line[len] != '\n')
4273 error (_("Could not parse signal set: %s"), line);
4281 if (*p >= '0' && *p <= '9')
4283 else if (*p >= 'a' && *p <= 'f')
4284 digit = *p - 'a' + 10;
4286 error (_("Could not parse signal set: %s"), line);
4291 sigaddset (sigs, signum + 1);
4293 sigaddset (sigs, signum + 2);
4295 sigaddset (sigs, signum + 3);
4297 sigaddset (sigs, signum + 4);
4303 /* Find process PID's pending signals from /proc/pid/status and set
4307 linux_proc_pending_signals (int pid, sigset_t *pending,
4308 sigset_t *blocked, sigset_t *ignored)
4311 char buffer[PATH_MAX], fname[PATH_MAX];
4312 struct cleanup *cleanup;
4314 sigemptyset (pending);
4315 sigemptyset (blocked);
4316 sigemptyset (ignored);
4317 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4318 procfile = gdb_fopen_cloexec (fname, "r");
4319 if (procfile == NULL)
4320 error (_("Could not open %s"), fname);
4321 cleanup = make_cleanup_fclose (procfile);
4323 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4325 /* Normal queued signals are on the SigPnd line in the status
4326 file. However, 2.6 kernels also have a "shared" pending
4327 queue for delivering signals to a thread group, so check for
4330 Unfortunately some Red Hat kernels include the shared pending
4331 queue but not the ShdPnd status field. */
4333 if (startswith (buffer, "SigPnd:\t"))
4334 add_line_to_sigset (buffer + 8, pending);
4335 else if (startswith (buffer, "ShdPnd:\t"))
4336 add_line_to_sigset (buffer + 8, pending);
4337 else if (startswith (buffer, "SigBlk:\t"))
4338 add_line_to_sigset (buffer + 8, blocked);
4339 else if (startswith (buffer, "SigIgn:\t"))
4340 add_line_to_sigset (buffer + 8, ignored);
4343 do_cleanups (cleanup);
4346 static enum target_xfer_status
4347 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4348 const char *annex, gdb_byte *readbuf,
4349 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4350 ULONGEST *xfered_len)
4352 gdb_assert (object == TARGET_OBJECT_OSDATA);
4354 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4355 if (*xfered_len == 0)
4356 return TARGET_XFER_EOF;
4358 return TARGET_XFER_OK;
4361 static enum target_xfer_status
4362 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4363 const char *annex, gdb_byte *readbuf,
4364 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4365 ULONGEST *xfered_len)
4367 enum target_xfer_status xfer;
4369 if (object == TARGET_OBJECT_AUXV)
4370 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4371 offset, len, xfered_len);
4373 if (object == TARGET_OBJECT_OSDATA)
4374 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4375 offset, len, xfered_len);
4377 if (object == TARGET_OBJECT_SPU)
4378 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4379 offset, len, xfered_len);
4381 /* GDB calculates all the addresses in possibly larget width of the address.
4382 Address width needs to be masked before its final use - either by
4383 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4385 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4387 if (object == TARGET_OBJECT_MEMORY)
4389 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4391 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4392 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4395 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4396 offset, len, xfered_len);
4397 if (xfer != TARGET_XFER_EOF)
4400 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4401 offset, len, xfered_len);
4405 cleanup_target_stop (void *arg)
4407 ptid_t *ptid = (ptid_t *) arg;
4409 gdb_assert (arg != NULL);
4412 target_resume (*ptid, 0, GDB_SIGNAL_0);
4415 static VEC(static_tracepoint_marker_p) *
4416 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4419 char s[IPA_CMD_BUF_SIZE];
4420 struct cleanup *old_chain;
4421 int pid = ptid_get_pid (inferior_ptid);
4422 VEC(static_tracepoint_marker_p) *markers = NULL;
4423 struct static_tracepoint_marker *marker = NULL;
4425 ptid_t ptid = ptid_build (pid, 0, 0);
4430 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4431 s[sizeof ("qTfSTM")] = 0;
4433 agent_run_command (pid, s, strlen (s) + 1);
4435 old_chain = make_cleanup (free_current_marker, &marker);
4436 make_cleanup (cleanup_target_stop, &ptid);
4441 marker = XCNEW (struct static_tracepoint_marker);
4445 parse_static_tracepoint_marker_definition (p, &p, marker);
4447 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4449 VEC_safe_push (static_tracepoint_marker_p,
4455 release_static_tracepoint_marker (marker);
4456 memset (marker, 0, sizeof (*marker));
4459 while (*p++ == ','); /* comma-separated list */
4461 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4462 s[sizeof ("qTsSTM")] = 0;
4463 agent_run_command (pid, s, strlen (s) + 1);
4467 do_cleanups (old_chain);
4472 /* Create a prototype generic GNU/Linux target. The client can override
4473 it with local methods. */
4476 linux_target_install_ops (struct target_ops *t)
4478 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4479 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4480 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4481 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4482 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4483 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4484 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4485 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4486 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4487 t->to_post_attach = linux_child_post_attach;
4488 t->to_follow_fork = linux_child_follow_fork;
4490 super_xfer_partial = t->to_xfer_partial;
4491 t->to_xfer_partial = linux_xfer_partial;
4493 t->to_static_tracepoint_markers_by_strid
4494 = linux_child_static_tracepoint_markers_by_strid;
4500 struct target_ops *t;
4502 t = inf_ptrace_target ();
4503 linux_target_install_ops (t);
4509 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4511 struct target_ops *t;
4513 t = inf_ptrace_trad_target (register_u_offset);
4514 linux_target_install_ops (t);
4519 /* target_is_async_p implementation. */
4522 linux_nat_is_async_p (struct target_ops *ops)
4524 return linux_is_async_p ();
4527 /* target_can_async_p implementation. */
4530 linux_nat_can_async_p (struct target_ops *ops)
4532 /* NOTE: palves 2008-03-21: We're only async when the user requests
4533 it explicitly with the "set target-async" command.
4534 Someday, linux will always be async. */
4535 return target_async_permitted;
4539 linux_nat_supports_non_stop (struct target_ops *self)
4544 /* True if we want to support multi-process. To be removed when GDB
4545 supports multi-exec. */
4547 int linux_multi_process = 1;
4550 linux_nat_supports_multi_process (struct target_ops *self)
4552 return linux_multi_process;
4556 linux_nat_supports_disable_randomization (struct target_ops *self)
4558 #ifdef HAVE_PERSONALITY
4565 static int async_terminal_is_ours = 1;
4567 /* target_terminal_inferior implementation.
4569 This is a wrapper around child_terminal_inferior to add async support. */
4572 linux_nat_terminal_inferior (struct target_ops *self)
4574 /* Like target_terminal_inferior, use target_can_async_p, not
4575 target_is_async_p, since at this point the target is not async
4576 yet. If it can async, then we know it will become async prior to
4578 if (!target_can_async_p ())
4580 /* Async mode is disabled. */
4581 child_terminal_inferior (self);
4585 child_terminal_inferior (self);
4587 /* Calls to target_terminal_*() are meant to be idempotent. */
4588 if (!async_terminal_is_ours)
4591 delete_file_handler (input_fd);
4592 async_terminal_is_ours = 0;
4596 /* target_terminal_ours implementation.
4598 This is a wrapper around child_terminal_ours to add async support (and
4599 implement the target_terminal_ours vs target_terminal_ours_for_output
4600 distinction). child_terminal_ours is currently no different than
4601 child_terminal_ours_for_output.
4602 We leave target_terminal_ours_for_output alone, leaving it to
4603 child_terminal_ours_for_output. */
4606 linux_nat_terminal_ours (struct target_ops *self)
4608 /* GDB should never give the terminal to the inferior if the
4609 inferior is running in the background (run&, continue&, etc.),
4610 but claiming it sure should. */
4611 child_terminal_ours (self);
4613 if (async_terminal_is_ours)
4616 clear_sigint_trap ();
4617 add_file_handler (input_fd, stdin_event_handler, 0);
4618 async_terminal_is_ours = 1;
4621 static void (*async_client_callback) (enum inferior_event_type event_type,
4623 static void *async_client_context;
4625 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4626 so we notice when any child changes state, and notify the
4627 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4628 above to wait for the arrival of a SIGCHLD. */
4631 sigchld_handler (int signo)
4633 int old_errno = errno;
4635 if (debug_linux_nat)
4636 ui_file_write_async_safe (gdb_stdlog,
4637 "sigchld\n", sizeof ("sigchld\n") - 1);
4639 if (signo == SIGCHLD
4640 && linux_nat_event_pipe[0] != -1)
4641 async_file_mark (); /* Let the event loop know that there are
4642 events to handle. */
4647 /* Callback registered with the target events file descriptor. */
4650 handle_target_event (int error, gdb_client_data client_data)
4652 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4655 /* Create/destroy the target events pipe. Returns previous state. */
4658 linux_async_pipe (int enable)
4660 int previous = linux_is_async_p ();
4662 if (previous != enable)
4666 /* Block child signals while we create/destroy the pipe, as
4667 their handler writes to it. */
4668 block_child_signals (&prev_mask);
4672 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4673 internal_error (__FILE__, __LINE__,
4674 "creating event pipe failed.");
4676 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4677 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4681 close (linux_nat_event_pipe[0]);
4682 close (linux_nat_event_pipe[1]);
4683 linux_nat_event_pipe[0] = -1;
4684 linux_nat_event_pipe[1] = -1;
4687 restore_child_signals_mask (&prev_mask);
4693 /* target_async implementation. */
4696 linux_nat_async (struct target_ops *ops,
4697 void (*callback) (enum inferior_event_type event_type,
4701 if (callback != NULL)
4703 async_client_callback = callback;
4704 async_client_context = context;
4705 if (!linux_async_pipe (1))
4707 add_file_handler (linux_nat_event_pipe[0],
4708 handle_target_event, NULL);
4709 /* There may be pending events to handle. Tell the event loop
4716 async_client_callback = callback;
4717 async_client_context = context;
4718 delete_file_handler (linux_nat_event_pipe[0]);
4719 linux_async_pipe (0);
4724 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4728 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4732 if (debug_linux_nat)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "LNSL: running -> suspending %s\n",
4735 target_pid_to_str (lwp->ptid));
4738 if (lwp->last_resume_kind == resume_stop)
4740 if (debug_linux_nat)
4741 fprintf_unfiltered (gdb_stdlog,
4742 "linux-nat: already stopping LWP %ld at "
4744 ptid_get_lwp (lwp->ptid));
4748 stop_callback (lwp, NULL);
4749 lwp->last_resume_kind = resume_stop;
4753 /* Already known to be stopped; do nothing. */
4755 if (debug_linux_nat)
4757 if (find_thread_ptid (lwp->ptid)->stop_requested)
4758 fprintf_unfiltered (gdb_stdlog,
4759 "LNSL: already stopped/stop_requested %s\n",
4760 target_pid_to_str (lwp->ptid));
4762 fprintf_unfiltered (gdb_stdlog,
4763 "LNSL: already stopped/no "
4764 "stop_requested yet %s\n",
4765 target_pid_to_str (lwp->ptid));
4772 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4775 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4777 linux_ops->to_stop (linux_ops, ptid);
4781 linux_nat_close (struct target_ops *self)
4783 /* Unregister from the event loop. */
4784 if (linux_nat_is_async_p (self))
4785 linux_nat_async (self, NULL, NULL);
4787 if (linux_ops->to_close)
4788 linux_ops->to_close (linux_ops);
4793 /* When requests are passed down from the linux-nat layer to the
4794 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4795 used. The address space pointer is stored in the inferior object,
4796 but the common code that is passed such ptid can't tell whether
4797 lwpid is a "main" process id or not (it assumes so). We reverse
4798 look up the "main" process id from the lwp here. */
4800 static struct address_space *
4801 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4803 struct lwp_info *lwp;
4804 struct inferior *inf;
4807 if (ptid_get_lwp (ptid) == 0)
4809 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4811 lwp = find_lwp_pid (ptid);
4812 pid = ptid_get_pid (lwp->ptid);
4816 /* A (pid,lwpid,0) ptid. */
4817 pid = ptid_get_pid (ptid);
4820 inf = find_inferior_pid (pid);
4821 gdb_assert (inf != NULL);
4825 /* Return the cached value of the processor core for thread PTID. */
4828 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4830 struct lwp_info *info = find_lwp_pid (ptid);
4838 linux_nat_add_target (struct target_ops *t)
4840 /* Save the provided single-threaded target. We save this in a separate
4841 variable because another target we've inherited from (e.g. inf-ptrace)
4842 may have saved a pointer to T; we want to use it for the final
4843 process stratum target. */
4844 linux_ops_saved = *t;
4845 linux_ops = &linux_ops_saved;
4847 /* Override some methods for multithreading. */
4848 t->to_create_inferior = linux_nat_create_inferior;
4849 t->to_attach = linux_nat_attach;
4850 t->to_detach = linux_nat_detach;
4851 t->to_resume = linux_nat_resume;
4852 t->to_wait = linux_nat_wait;
4853 t->to_pass_signals = linux_nat_pass_signals;
4854 t->to_xfer_partial = linux_nat_xfer_partial;
4855 t->to_kill = linux_nat_kill;
4856 t->to_mourn_inferior = linux_nat_mourn_inferior;
4857 t->to_thread_alive = linux_nat_thread_alive;
4858 t->to_pid_to_str = linux_nat_pid_to_str;
4859 t->to_thread_name = linux_nat_thread_name;
4860 t->to_has_thread_control = tc_schedlock;
4861 t->to_thread_address_space = linux_nat_thread_address_space;
4862 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4863 t->to_stopped_data_address = linux_nat_stopped_data_address;
4864 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4865 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4866 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4867 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4869 t->to_can_async_p = linux_nat_can_async_p;
4870 t->to_is_async_p = linux_nat_is_async_p;
4871 t->to_supports_non_stop = linux_nat_supports_non_stop;
4872 t->to_async = linux_nat_async;
4873 t->to_terminal_inferior = linux_nat_terminal_inferior;
4874 t->to_terminal_ours = linux_nat_terminal_ours;
4876 super_close = t->to_close;
4877 t->to_close = linux_nat_close;
4879 /* Methods for non-stop support. */
4880 t->to_stop = linux_nat_stop;
4882 t->to_supports_multi_process = linux_nat_supports_multi_process;
4884 t->to_supports_disable_randomization
4885 = linux_nat_supports_disable_randomization;
4887 t->to_core_of_thread = linux_nat_core_of_thread;
4889 /* We don't change the stratum; this target will sit at
4890 process_stratum and thread_db will set at thread_stratum. This
4891 is a little strange, since this is a multi-threaded-capable
4892 target, but we want to be on the stack below thread_db, and we
4893 also want to be used for single-threaded processes. */
4898 /* Register a method to call whenever a new thread is attached. */
4900 linux_nat_set_new_thread (struct target_ops *t,
4901 void (*new_thread) (struct lwp_info *))
4903 /* Save the pointer. We only support a single registered instance
4904 of the GNU/Linux native target, so we do not need to map this to
4906 linux_nat_new_thread = new_thread;
4909 /* See declaration in linux-nat.h. */
4912 linux_nat_set_new_fork (struct target_ops *t,
4913 linux_nat_new_fork_ftype *new_fork)
4915 /* Save the pointer. */
4916 linux_nat_new_fork = new_fork;
4919 /* See declaration in linux-nat.h. */
4922 linux_nat_set_forget_process (struct target_ops *t,
4923 linux_nat_forget_process_ftype *fn)
4925 /* Save the pointer. */
4926 linux_nat_forget_process_hook = fn;
4929 /* See declaration in linux-nat.h. */
4932 linux_nat_forget_process (pid_t pid)
4934 if (linux_nat_forget_process_hook != NULL)
4935 linux_nat_forget_process_hook (pid);
4938 /* Register a method that converts a siginfo object between the layout
4939 that ptrace returns, and the layout in the architecture of the
4942 linux_nat_set_siginfo_fixup (struct target_ops *t,
4943 int (*siginfo_fixup) (siginfo_t *,
4947 /* Save the pointer. */
4948 linux_nat_siginfo_fixup = siginfo_fixup;
4951 /* Register a method to call prior to resuming a thread. */
4954 linux_nat_set_prepare_to_resume (struct target_ops *t,
4955 void (*prepare_to_resume) (struct lwp_info *))
4957 /* Save the pointer. */
4958 linux_nat_prepare_to_resume = prepare_to_resume;
4961 /* See linux-nat.h. */
4964 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4968 pid = ptid_get_lwp (ptid);
4970 pid = ptid_get_pid (ptid);
4973 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4976 memset (siginfo, 0, sizeof (*siginfo));
4982 /* See nat/linux-nat.h. */
4985 current_lwp_ptid (void)
4987 gdb_assert (ptid_lwp_p (inferior_ptid));
4988 return inferior_ptid;
4991 /* Provide a prototype to silence -Wmissing-prototypes. */
4992 extern initialize_file_ftype _initialize_linux_nat;
4995 _initialize_linux_nat (void)
4997 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4998 &debug_linux_nat, _("\
4999 Set debugging of GNU/Linux lwp module."), _("\
5000 Show debugging of GNU/Linux lwp module."), _("\
5001 Enables printf debugging output."),
5003 show_debug_linux_nat,
5004 &setdebuglist, &showdebuglist);
5006 /* Save this mask as the default. */
5007 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5009 /* Install a SIGCHLD handler. */
5010 sigchld_action.sa_handler = sigchld_handler;
5011 sigemptyset (&sigchld_action.sa_mask);
5012 sigchld_action.sa_flags = SA_RESTART;
5014 /* Make it the default. */
5015 sigaction (SIGCHLD, &sigchld_action, NULL);
5017 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5018 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5019 sigdelset (&suspend_mask, SIGCHLD);
5021 sigemptyset (&blocked_mask);
5023 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
5024 support read-only process state. */
5025 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
5026 | PTRACE_O_TRACEVFORKDONE
5027 | PTRACE_O_TRACEVFORK
5028 | PTRACE_O_TRACEFORK
5029 | PTRACE_O_TRACEEXEC);
5033 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5034 the GNU/Linux Threads library and therefore doesn't really belong
5037 /* Read variable NAME in the target and return its value if found.
5038 Otherwise return zero. It is assumed that the type of the variable
5042 get_signo (const char *name)
5044 struct bound_minimal_symbol ms;
5047 ms = lookup_minimal_symbol (name, NULL, NULL);
5048 if (ms.minsym == NULL)
5051 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5052 sizeof (signo)) != 0)
5058 /* Return the set of signals used by the threads library in *SET. */
5061 lin_thread_get_thread_signals (sigset_t *set)
5063 struct sigaction action;
5064 int restart, cancel;
5066 sigemptyset (&blocked_mask);
5069 restart = get_signo ("__pthread_sig_restart");
5070 cancel = get_signo ("__pthread_sig_cancel");
5072 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5073 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5074 not provide any way for the debugger to query the signal numbers -
5075 fortunately they don't change! */
5078 restart = __SIGRTMIN;
5081 cancel = __SIGRTMIN + 1;
5083 sigaddset (set, restart);
5084 sigaddset (set, cancel);
5086 /* The GNU/Linux Threads library makes terminating threads send a
5087 special "cancel" signal instead of SIGCHLD. Make sure we catch
5088 those (to prevent them from terminating GDB itself, which is
5089 likely to be their default action) and treat them the same way as
5092 action.sa_handler = sigchld_handler;
5093 sigemptyset (&action.sa_mask);
5094 action.sa_flags = SA_RESTART;
5095 sigaction (cancel, &action, NULL);
5097 /* We block the "cancel" signal throughout this code ... */
5098 sigaddset (&blocked_mask, cancel);
5099 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5101 /* ... except during a sigsuspend. */
5102 sigdelset (&suspend_mask, cancel);