1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
29 #include <sys/syscall.h>
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
38 #include "inf-ptrace.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
61 #define SPUFS_MAGIC 0x23c9b64e
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
69 #endif /* HAVE_PERSONALITY */
71 /* This comment documents high-level logic of this file.
73 Waiting for events in sync mode
74 ===============================
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
96 Waiting for events in async mode
97 ================================
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
159 #define O_LARGEFILE 0
162 /* If the system headers did not provide the constants, hard-code the normal
164 #ifndef PTRACE_EVENT_FORK
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
186 #endif /* PTRACE_EVENT_FORK */
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
197 #define __WALL 0x40000000 /* Wait for any child. */
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
224 const char *, gdb_byte *,
228 static int debug_linux_nat;
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
237 static int debug_linux_nat_async = 0;
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
246 static int disable_randomization = 1;
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
256 #else /* !HAVE_PERSONALITY */
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
266 #ifndef HAVE_PERSONALITY
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
270 #endif /* !HAVE_PERSONALITY */
273 struct simple_pid_list
277 struct simple_pid_list *next;
279 struct simple_pid_list *stopped_pids;
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
284 static int linux_supports_tracefork_flag = -1;
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
289 static int linux_supports_tracesysgood_flag = -1;
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
294 static int linux_supports_tracevforkdone_flag = -1;
296 /* Async mode support */
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
305 /* The read/write ends of the pipe registered as waitable file in the
307 static int linux_nat_event_pipe[2] = { -1, -1 };
309 /* Flush the event pipe. */
312 async_file_flush (void)
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
329 async_file_mark (void)
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
340 ret = write (linux_nat_event_pipe[1], "+", 1);
342 while (ret == -1 && errno == EINTR);
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
354 static int stop_callback (struct lwp_info *lp, void *data);
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->status = status;
374 new_pid->next = *listp;
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 struct simple_pid_list **p;
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
386 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
397 linux_record_stopped_pid (int pid, int status)
399 add_to_pid_list (&stopped_pids, pid, status);
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
406 linux_tracefork_child (void)
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
414 /* Wrapper function for waitpid which handles EINTR. */
417 my_waitpid (int pid, int *status, int flags)
423 ret = waitpid (pid, status, flags);
425 while (ret == -1 && errno == EINTR);
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
444 linux_test_for_tracefork (int original_pid)
446 int child_pid, ret, status;
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 restore_child_signals_mask (&prev_mask);
465 perror_with_name (("fork"));
468 linux_tracefork_child ();
470 ret = my_waitpid (child_pid, &status, 0);
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
496 restore_child_signals_mask (&prev_mask);
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
507 warning (_("linux_test_for_tracefork: failed to resume child"));
509 ret = my_waitpid (child_pid, &status, 0);
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
537 restore_child_signals_mask (&prev_mask);
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547 linux_test_for_tracesysgood (int original_pid)
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
555 linux_supports_tracesysgood_flag = 0;
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
561 linux_supports_tracesysgood_flag = 1;
563 restore_child_signals_mask (&prev_mask);
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
570 linux_supports_tracesysgood (int pid)
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
581 linux_supports_tracefork (int pid)
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
589 linux_supports_tracevforkdone (int pid)
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
597 linux_enable_tracesysgood (ptid_t ptid)
599 int pid = ptid_get_lwp (ptid);
602 pid = ptid_get_pid (ptid);
604 if (linux_supports_tracesysgood (pid) == 0)
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
614 linux_enable_event_reporting (ptid_t ptid)
616 int pid = ptid_get_lwp (ptid);
619 pid = ptid_get_pid (ptid);
621 if (! linux_supports_tracefork (pid))
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
637 linux_child_post_attach (int pid)
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
645 linux_child_post_startup_inferior (ptid_t ptid)
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
657 int parent_pid, child_pid;
659 block_child_signals (&prev_mask);
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
690 struct lwp_info *child_lp = NULL;
692 /* We're already attached to the parent, by default. */
694 /* Detach new forked process? */
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 if (info_verbose || debug_linux_nat)
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
770 solib_create_inferior_hook (0);
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
776 do_cleanups (old_chain);
782 struct inferior *parent_inf;
784 parent_inf = current_inferior ();
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
868 struct inferior *parent_inf, *child_inf;
870 struct program_space *parent_pspace;
872 if (info_verbose || debug_linux_nat)
874 target_terminal_ours ();
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
888 child_inf = add_inferior (child_pid);
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
894 parent_pspace = parent_inf->pspace;
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
916 else if (detach_fork)
917 target_detach (NULL, 0);
919 /* Note that the detach above makes PARENT_INF dangling. */
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
959 restore_child_signals_mask (&prev_mask);
965 linux_child_insert_fork_catchpoint (int pid)
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
972 linux_child_insert_vfork_catchpoint (int pid)
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
979 linux_child_insert_exec_catchpoint (int pid)
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1014 Note that there are some peculiarities in GNU/Linux that affect
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1053 block_child_signals (sigset_t *prev_mask)
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1066 restore_child_signals_mask (sigset_t *prev_mask)
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076 static int cancel_breakpoint (struct lwp_info *lp);
1079 /* Convert wait status STATUS to a string. Used for printing debug
1083 status_to_str (int status)
1085 static char buf[64];
1087 if (WIFSTOPPED (status))
1089 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1090 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1091 strsignal (SIGTRAP));
1093 snprintf (buf, sizeof (buf), "%s (stopped)",
1094 strsignal (WSTOPSIG (status)));
1096 else if (WIFSIGNALED (status))
1097 snprintf (buf, sizeof (buf), "%s (terminated)",
1098 strsignal (WSTOPSIG (status)));
1100 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1105 /* Remove all LWPs belong to PID from the lwp list. */
1108 purge_lwp_list (int pid)
1110 struct lwp_info *lp, *lpprev, *lpnext;
1114 for (lp = lwp_list; lp; lp = lpnext)
1118 if (ptid_get_pid (lp->ptid) == pid)
1121 lwp_list = lp->next;
1123 lpprev->next = lp->next;
1132 /* Return the number of known LWPs in the tgid given by PID. */
1138 struct lwp_info *lp;
1140 for (lp = lwp_list; lp; lp = lp->next)
1141 if (ptid_get_pid (lp->ptid) == pid)
1147 /* Add the LWP specified by PID to the list. Return a pointer to the
1148 structure describing the new LWP. The LWP should already be stopped
1149 (with an exception for the very first LWP). */
1151 static struct lwp_info *
1152 add_lwp (ptid_t ptid)
1154 struct lwp_info *lp;
1156 gdb_assert (is_lwp (ptid));
1158 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1160 memset (lp, 0, sizeof (struct lwp_info));
1162 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1167 lp->next = lwp_list;
1170 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1171 linux_nat_new_thread (ptid);
1176 /* Remove the LWP specified by PID from the list. */
1179 delete_lwp (ptid_t ptid)
1181 struct lwp_info *lp, *lpprev;
1185 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1186 if (ptid_equal (lp->ptid, ptid))
1193 lpprev->next = lp->next;
1195 lwp_list = lp->next;
1200 /* Return a pointer to the structure describing the LWP corresponding
1201 to PID. If no corresponding LWP could be found, return NULL. */
1203 static struct lwp_info *
1204 find_lwp_pid (ptid_t ptid)
1206 struct lwp_info *lp;
1210 lwp = GET_LWP (ptid);
1212 lwp = GET_PID (ptid);
1214 for (lp = lwp_list; lp; lp = lp->next)
1215 if (lwp == GET_LWP (lp->ptid))
1221 /* Call CALLBACK with its second argument set to DATA for every LWP in
1222 the list. If CALLBACK returns 1 for a particular LWP, return a
1223 pointer to the structure describing that LWP immediately.
1224 Otherwise return NULL. */
1227 iterate_over_lwps (ptid_t filter,
1228 int (*callback) (struct lwp_info *, void *),
1231 struct lwp_info *lp, *lpnext;
1233 for (lp = lwp_list; lp; lp = lpnext)
1237 if (ptid_match (lp->ptid, filter))
1239 if ((*callback) (lp, data))
1247 /* Update our internal state when changing from one checkpoint to
1248 another indicated by NEW_PTID. We can only switch single-threaded
1249 applications, so we only create one new LWP, and the previous list
1253 linux_nat_switch_fork (ptid_t new_ptid)
1255 struct lwp_info *lp;
1257 purge_lwp_list (GET_PID (inferior_ptid));
1259 lp = add_lwp (new_ptid);
1262 /* This changes the thread's ptid while preserving the gdb thread
1263 num. Also changes the inferior pid, while preserving the
1265 thread_change_ptid (inferior_ptid, new_ptid);
1267 /* We've just told GDB core that the thread changed target id, but,
1268 in fact, it really is a different thread, with different register
1270 registers_changed ();
1273 /* Handle the exit of a single thread LP. */
1276 exit_lwp (struct lwp_info *lp)
1278 struct thread_info *th = find_thread_ptid (lp->ptid);
1282 if (print_thread_events)
1283 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1285 delete_thread (lp->ptid);
1288 delete_lwp (lp->ptid);
1291 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1294 linux_proc_get_tgid (int lwpid)
1300 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1301 status_file = fopen (buf, "r");
1302 if (status_file != NULL)
1304 while (fgets (buf, sizeof (buf), status_file))
1306 if (strncmp (buf, "Tgid:", 5) == 0)
1308 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1313 fclose (status_file);
1319 /* Detect `T (stopped)' in `/proc/PID/status'.
1320 Other states including `T (tracing stop)' are reported as false. */
1323 pid_is_stopped (pid_t pid)
1329 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1330 status_file = fopen (buf, "r");
1331 if (status_file != NULL)
1335 while (fgets (buf, sizeof (buf), status_file))
1337 if (strncmp (buf, "State:", 6) == 0)
1343 if (have_state && strstr (buf, "T (stopped)") != NULL)
1345 fclose (status_file);
1350 /* Wait for the LWP specified by LP, which we have just attached to.
1351 Returns a wait status for that LWP, to cache. */
1354 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1357 pid_t new_pid, pid = GET_LWP (ptid);
1360 if (pid_is_stopped (pid))
1362 if (debug_linux_nat)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "LNPAW: Attaching to a stopped process\n");
1366 /* The process is definitely stopped. It is in a job control
1367 stop, unless the kernel predates the TASK_STOPPED /
1368 TASK_TRACED distinction, in which case it might be in a
1369 ptrace stop. Make sure it is in a ptrace stop; from there we
1370 can kill it, signal it, et cetera.
1372 First make sure there is a pending SIGSTOP. Since we are
1373 already attached, the process can not transition from stopped
1374 to running without a PTRACE_CONT; so we know this signal will
1375 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1376 probably already in the queue (unless this kernel is old
1377 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1378 is not an RT signal, it can only be queued once. */
1379 kill_lwp (pid, SIGSTOP);
1381 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1382 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1383 ptrace (PTRACE_CONT, pid, 0, 0);
1386 /* Make sure the initial process is stopped. The user-level threads
1387 layer might want to poke around in the inferior, and that won't
1388 work if things haven't stabilized yet. */
1389 new_pid = my_waitpid (pid, &status, 0);
1390 if (new_pid == -1 && errno == ECHILD)
1393 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1395 /* Try again with __WCLONE to check cloned processes. */
1396 new_pid = my_waitpid (pid, &status, __WCLONE);
1400 gdb_assert (pid == new_pid);
1402 if (!WIFSTOPPED (status))
1404 /* The pid we tried to attach has apparently just exited. */
1405 if (debug_linux_nat)
1406 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1407 pid, status_to_str (status));
1411 if (WSTOPSIG (status) != SIGSTOP)
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "LNPAW: Received %s after attaching\n",
1417 status_to_str (status));
1423 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1424 if the new LWP could not be attached. */
1427 lin_lwp_attach_lwp (ptid_t ptid)
1429 struct lwp_info *lp;
1432 gdb_assert (is_lwp (ptid));
1434 block_child_signals (&prev_mask);
1436 lp = find_lwp_pid (ptid);
1438 /* We assume that we're already attached to any LWP that has an id
1439 equal to the overall process id, and to any LWP that is already
1440 in our list of LWPs. If we're not seeing exit events from threads
1441 and we've had PID wraparound since we last tried to stop all threads,
1442 this assumption might be wrong; fortunately, this is very unlikely
1444 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1446 int status, cloned = 0, signalled = 0;
1448 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1450 /* If we fail to attach to the thread, issue a warning,
1451 but continue. One way this can happen is if thread
1452 creation is interrupted; as of Linux kernel 2.6.19, a
1453 bug may place threads in the thread list and then fail
1455 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1456 safe_strerror (errno));
1457 restore_child_signals_mask (&prev_mask);
1461 if (debug_linux_nat)
1462 fprintf_unfiltered (gdb_stdlog,
1463 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1464 target_pid_to_str (ptid));
1466 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1467 if (!WIFSTOPPED (status))
1470 lp = add_lwp (ptid);
1472 lp->cloned = cloned;
1473 lp->signalled = signalled;
1474 if (WSTOPSIG (status) != SIGSTOP)
1477 lp->status = status;
1480 target_post_attach (GET_LWP (lp->ptid));
1482 if (debug_linux_nat)
1484 fprintf_unfiltered (gdb_stdlog,
1485 "LLAL: waitpid %s received %s\n",
1486 target_pid_to_str (ptid),
1487 status_to_str (status));
1492 /* We assume that the LWP representing the original process is
1493 already stopped. Mark it as stopped in the data structure
1494 that the GNU/linux ptrace layer uses to keep track of
1495 threads. Note that this won't have already been done since
1496 the main thread will have, we assume, been stopped by an
1497 attach from a different layer. */
1499 lp = add_lwp (ptid);
1503 restore_child_signals_mask (&prev_mask);
1508 linux_nat_create_inferior (struct target_ops *ops,
1509 char *exec_file, char *allargs, char **env,
1512 #ifdef HAVE_PERSONALITY
1513 int personality_orig = 0, personality_set = 0;
1514 #endif /* HAVE_PERSONALITY */
1516 /* The fork_child mechanism is synchronous and calls target_wait, so
1517 we have to mask the async mode. */
1519 #ifdef HAVE_PERSONALITY
1520 if (disable_randomization)
1523 personality_orig = personality (0xffffffff);
1524 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1526 personality_set = 1;
1527 personality (personality_orig | ADDR_NO_RANDOMIZE);
1529 if (errno != 0 || (personality_set
1530 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1531 warning (_("Error disabling address space randomization: %s"),
1532 safe_strerror (errno));
1534 #endif /* HAVE_PERSONALITY */
1536 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1538 #ifdef HAVE_PERSONALITY
1539 if (personality_set)
1542 personality (personality_orig);
1544 warning (_("Error restoring address space randomization: %s"),
1545 safe_strerror (errno));
1547 #endif /* HAVE_PERSONALITY */
1551 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1553 struct lwp_info *lp;
1557 linux_ops->to_attach (ops, args, from_tty);
1559 /* The ptrace base target adds the main thread with (pid,0,0)
1560 format. Decorate it with lwp info. */
1561 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1562 thread_change_ptid (inferior_ptid, ptid);
1564 /* Add the initial process as the first LWP to the list. */
1565 lp = add_lwp (ptid);
1567 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1569 if (!WIFSTOPPED (status))
1571 if (WIFEXITED (status))
1573 int exit_code = WEXITSTATUS (status);
1575 target_terminal_ours ();
1576 target_mourn_inferior ();
1578 error (_("Unable to attach: program exited normally."));
1580 error (_("Unable to attach: program exited with code %d."),
1583 else if (WIFSIGNALED (status))
1585 enum target_signal signo;
1587 target_terminal_ours ();
1588 target_mourn_inferior ();
1590 signo = target_signal_from_host (WTERMSIG (status));
1591 error (_("Unable to attach: program terminated with signal "
1593 target_signal_to_name (signo),
1594 target_signal_to_string (signo));
1597 internal_error (__FILE__, __LINE__,
1598 _("unexpected status %d for PID %ld"),
1599 status, (long) GET_LWP (ptid));
1604 /* Save the wait status to report later. */
1606 if (debug_linux_nat)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "LNA: waitpid %ld, saving status %s\n",
1609 (long) GET_PID (lp->ptid), status_to_str (status));
1611 lp->status = status;
1613 if (target_can_async_p ())
1614 target_async (inferior_event_handler, 0);
1617 /* Get pending status of LP. */
1619 get_pending_status (struct lwp_info *lp, int *status)
1621 enum target_signal signo = TARGET_SIGNAL_0;
1623 /* If we paused threads momentarily, we may have stored pending
1624 events in lp->status or lp->waitstatus (see stop_wait_callback),
1625 and GDB core hasn't seen any signal for those threads.
1626 Otherwise, the last signal reported to the core is found in the
1627 thread object's stop_signal.
1629 There's a corner case that isn't handled here at present. Only
1630 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1631 stop_signal make sense as a real signal to pass to the inferior.
1632 Some catchpoint related events, like
1633 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1634 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1635 those traps are debug API (ptrace in our case) related and
1636 induced; the inferior wouldn't see them if it wasn't being
1637 traced. Hence, we should never pass them to the inferior, even
1638 when set to pass state. Since this corner case isn't handled by
1639 infrun.c when proceeding with a signal, for consistency, neither
1640 do we handle it here (or elsewhere in the file we check for
1641 signal pass state). Normally SIGTRAP isn't set to pass state, so
1642 this is really a corner case. */
1644 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1645 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1646 else if (lp->status)
1647 signo = target_signal_from_host (WSTOPSIG (lp->status));
1648 else if (non_stop && !is_executing (lp->ptid))
1650 struct thread_info *tp = find_thread_ptid (lp->ptid);
1652 signo = tp->stop_signal;
1656 struct target_waitstatus last;
1659 get_last_target_status (&last_ptid, &last);
1661 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1663 struct thread_info *tp = find_thread_ptid (lp->ptid);
1665 signo = tp->stop_signal;
1671 if (signo == TARGET_SIGNAL_0)
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "GPT: lwp %s has no pending signal\n",
1676 target_pid_to_str (lp->ptid));
1678 else if (!signal_pass_state (signo))
1680 if (debug_linux_nat)
1681 fprintf_unfiltered (gdb_stdlog, "\
1682 GPT: lwp %s had signal %s, but it is in no pass state\n",
1683 target_pid_to_str (lp->ptid),
1684 target_signal_to_string (signo));
1688 *status = W_STOPCODE (target_signal_to_host (signo));
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s has pending signal %s\n",
1693 target_pid_to_str (lp->ptid),
1694 target_signal_to_string (signo));
1701 detach_callback (struct lwp_info *lp, void *data)
1703 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1705 if (debug_linux_nat && lp->status)
1706 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1707 strsignal (WSTOPSIG (lp->status)),
1708 target_pid_to_str (lp->ptid));
1710 /* If there is a pending SIGSTOP, get rid of it. */
1713 if (debug_linux_nat)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "DC: Sending SIGCONT to %s\n",
1716 target_pid_to_str (lp->ptid));
1718 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1722 /* We don't actually detach from the LWP that has an id equal to the
1723 overall process id just yet. */
1724 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1728 /* Pass on any pending signal for this LWP. */
1729 get_pending_status (lp, &status);
1732 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1733 WSTOPSIG (status)) < 0)
1734 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1735 safe_strerror (errno));
1737 if (debug_linux_nat)
1738 fprintf_unfiltered (gdb_stdlog,
1739 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1740 target_pid_to_str (lp->ptid),
1741 strsignal (WSTOPSIG (status)));
1743 delete_lwp (lp->ptid);
1750 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1754 struct lwp_info *main_lwp;
1756 pid = GET_PID (inferior_ptid);
1758 if (target_can_async_p ())
1759 linux_nat_async (NULL, 0);
1761 /* Stop all threads before detaching. ptrace requires that the
1762 thread is stopped to sucessfully detach. */
1763 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1764 /* ... and wait until all of them have reported back that
1765 they're no longer running. */
1766 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1768 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1770 /* Only the initial process should be left right now. */
1771 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1773 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1775 /* Pass on any pending signal for the last LWP. */
1776 if ((args == NULL || *args == '\0')
1777 && get_pending_status (main_lwp, &status) != -1
1778 && WIFSTOPPED (status))
1780 /* Put the signal number in ARGS so that inf_ptrace_detach will
1781 pass it along with PTRACE_DETACH. */
1783 sprintf (args, "%d", (int) WSTOPSIG (status));
1784 if (debug_linux_nat)
1785 fprintf_unfiltered (gdb_stdlog,
1786 "LND: Sending signal %s to %s\n",
1788 target_pid_to_str (main_lwp->ptid));
1791 delete_lwp (main_lwp->ptid);
1793 if (forks_exist_p ())
1795 /* Multi-fork case. The current inferior_ptid is being detached
1796 from, but there are other viable forks to debug. Detach from
1797 the current fork, and context-switch to the first
1799 linux_fork_detach (args, from_tty);
1801 if (non_stop && target_can_async_p ())
1802 target_async (inferior_event_handler, 0);
1805 linux_ops->to_detach (ops, args, from_tty);
1811 resume_callback (struct lwp_info *lp, void *data)
1813 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1815 if (lp->stopped && inf->vfork_child != NULL)
1817 if (debug_linux_nat)
1818 fprintf_unfiltered (gdb_stdlog,
1819 "RC: Not resuming %s (vfork parent)\n",
1820 target_pid_to_str (lp->ptid));
1822 else if (lp->stopped && lp->status == 0)
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1827 target_pid_to_str (lp->ptid));
1829 linux_ops->to_resume (linux_ops,
1830 pid_to_ptid (GET_LWP (lp->ptid)),
1831 0, TARGET_SIGNAL_0);
1832 if (debug_linux_nat)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1835 target_pid_to_str (lp->ptid));
1838 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1839 lp->stopped_by_watchpoint = 0;
1841 else if (lp->stopped && debug_linux_nat)
1842 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1843 target_pid_to_str (lp->ptid));
1844 else if (debug_linux_nat)
1845 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1846 target_pid_to_str (lp->ptid));
1852 resume_clear_callback (struct lwp_info *lp, void *data)
1859 resume_set_callback (struct lwp_info *lp, void *data)
1866 linux_nat_resume (struct target_ops *ops,
1867 ptid_t ptid, int step, enum target_signal signo)
1870 struct lwp_info *lp;
1873 if (debug_linux_nat)
1874 fprintf_unfiltered (gdb_stdlog,
1875 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1876 step ? "step" : "resume",
1877 target_pid_to_str (ptid),
1878 signo ? strsignal (signo) : "0",
1879 target_pid_to_str (inferior_ptid));
1881 block_child_signals (&prev_mask);
1883 /* A specific PTID means `step only this process id'. */
1884 resume_many = (ptid_equal (minus_one_ptid, ptid)
1885 || ptid_is_pid (ptid));
1887 /* Mark the lwps we're resuming as resumed. */
1888 iterate_over_lwps (ptid, resume_set_callback, NULL);
1890 /* See if it's the current inferior that should be handled
1893 lp = find_lwp_pid (inferior_ptid);
1895 lp = find_lwp_pid (ptid);
1896 gdb_assert (lp != NULL);
1898 /* Remember if we're stepping. */
1901 /* If we have a pending wait status for this thread, there is no
1902 point in resuming the process. But first make sure that
1903 linux_nat_wait won't preemptively handle the event - we
1904 should never take this short-circuit if we are going to
1905 leave LP running, since we have skipped resuming all the
1906 other threads. This bit of code needs to be synchronized
1907 with linux_nat_wait. */
1909 if (lp->status && WIFSTOPPED (lp->status))
1912 struct inferior *inf;
1914 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1916 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1918 /* Defer to common code if we're gaining control of the
1920 if (inf->stop_soon == NO_STOP_QUIETLY
1921 && signal_stop_state (saved_signo) == 0
1922 && signal_print_state (saved_signo) == 0
1923 && signal_pass_state (saved_signo) == 1)
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "LLR: Not short circuiting for ignored "
1928 "status 0x%x\n", lp->status);
1930 /* FIXME: What should we do if we are supposed to continue
1931 this thread with a signal? */
1932 gdb_assert (signo == TARGET_SIGNAL_0);
1933 signo = saved_signo;
1938 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1940 /* FIXME: What should we do if we are supposed to continue
1941 this thread with a signal? */
1942 gdb_assert (signo == TARGET_SIGNAL_0);
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "LLR: Short circuiting for status 0x%x\n",
1949 restore_child_signals_mask (&prev_mask);
1950 if (target_can_async_p ())
1952 target_async (inferior_event_handler, 0);
1953 /* Tell the event loop we have something to process. */
1959 /* Mark LWP as not stopped to prevent it from being continued by
1964 iterate_over_lwps (ptid, resume_callback, NULL);
1966 /* Convert to something the lower layer understands. */
1967 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1969 linux_ops->to_resume (linux_ops, ptid, step, signo);
1970 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1971 lp->stopped_by_watchpoint = 0;
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "LLR: %s %s, %s (resume event thread)\n",
1976 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1977 target_pid_to_str (ptid),
1978 signo ? strsignal (signo) : "0");
1980 restore_child_signals_mask (&prev_mask);
1981 if (target_can_async_p ())
1982 target_async (inferior_event_handler, 0);
1985 /* Send a signal to an LWP. */
1988 kill_lwp (int lwpid, int signo)
1990 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1991 fails, then we are not using nptl threads and we should be using kill. */
1993 #ifdef HAVE_TKILL_SYSCALL
1995 static int tkill_failed;
2002 ret = syscall (__NR_tkill, lwpid, signo);
2003 if (errno != ENOSYS)
2010 return kill (lwpid, signo);
2013 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2014 event, check if the core is interested in it: if not, ignore the
2015 event, and keep waiting; otherwise, we need to toggle the LWP's
2016 syscall entry/exit status, since the ptrace event itself doesn't
2017 indicate it, and report the trap to higher layers. */
2020 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2022 struct target_waitstatus *ourstatus = &lp->waitstatus;
2023 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2024 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2028 /* If we're stopping threads, there's a SIGSTOP pending, which
2029 makes it so that the LWP reports an immediate syscall return,
2030 followed by the SIGSTOP. Skip seeing that "return" using
2031 PTRACE_CONT directly, and let stop_wait_callback collect the
2032 SIGSTOP. Later when the thread is resumed, a new syscall
2033 entry event. If we didn't do this (and returned 0), we'd
2034 leave a syscall entry pending, and our caller, by using
2035 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2036 itself. Later, when the user re-resumes this LWP, we'd see
2037 another syscall entry event and we'd mistake it for a return.
2039 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2040 (leaving immediately with LWP->signalled set, without issuing
2041 a PTRACE_CONT), it would still be problematic to leave this
2042 syscall enter pending, as later when the thread is resumed,
2043 it would then see the same syscall exit mentioned above,
2044 followed by the delayed SIGSTOP, while the syscall didn't
2045 actually get to execute. It seems it would be even more
2046 confusing to the user. */
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHST: ignoring syscall %d "
2051 "for LWP %ld (stopping threads), "
2052 "resuming with PTRACE_CONT for SIGSTOP\n",
2054 GET_LWP (lp->ptid));
2056 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2057 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2061 if (catch_syscall_enabled ())
2063 /* Always update the entry/return state, even if this particular
2064 syscall isn't interesting to the core now. In async mode,
2065 the user could install a new catchpoint for this syscall
2066 between syscall enter/return, and we'll need to know to
2067 report a syscall return if that happens. */
2068 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2069 ? TARGET_WAITKIND_SYSCALL_RETURN
2070 : TARGET_WAITKIND_SYSCALL_ENTRY);
2072 if (catching_syscall_number (syscall_number))
2074 /* Alright, an event to report. */
2075 ourstatus->kind = lp->syscall_state;
2076 ourstatus->value.syscall_number = syscall_number;
2078 if (debug_linux_nat)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "LHST: stopping for %s of syscall %d"
2082 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2083 ? "entry" : "return",
2085 GET_LWP (lp->ptid));
2089 if (debug_linux_nat)
2090 fprintf_unfiltered (gdb_stdlog,
2091 "LHST: ignoring %s of syscall %d "
2093 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2094 ? "entry" : "return",
2096 GET_LWP (lp->ptid));
2100 /* If we had been syscall tracing, and hence used PT_SYSCALL
2101 before on this LWP, it could happen that the user removes all
2102 syscall catchpoints before we get to process this event.
2103 There are two noteworthy issues here:
2105 - When stopped at a syscall entry event, resuming with
2106 PT_STEP still resumes executing the syscall and reports a
2109 - Only PT_SYSCALL catches syscall enters. If we last
2110 single-stepped this thread, then this event can't be a
2111 syscall enter. If we last single-stepped this thread, this
2112 has to be a syscall exit.
2114 The points above mean that the next resume, be it PT_STEP or
2115 PT_CONTINUE, can not trigger a syscall trace event. */
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHST: caught syscall event with no syscall catchpoints."
2119 " %d for LWP %ld, ignoring\n",
2121 GET_LWP (lp->ptid));
2122 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2125 /* The core isn't interested in this event. For efficiency, avoid
2126 stopping all threads only to have the core resume them all again.
2127 Since we're not stopping threads, if we're still syscall tracing
2128 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2129 subsequent syscall. Simply resume using the inf-ptrace layer,
2130 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2132 /* Note that gdbarch_get_syscall_number may access registers, hence
2134 registers_changed ();
2135 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2136 lp->step, TARGET_SIGNAL_0);
2140 /* Handle a GNU/Linux extended wait response. If we see a clone
2141 event, we need to add the new LWP to our list (and not report the
2142 trap to higher layers). This function returns non-zero if the
2143 event should be ignored and we should wait again. If STOPPING is
2144 true, the new LWP remains stopped, otherwise it is continued. */
2147 linux_handle_extended_wait (struct lwp_info *lp, int status,
2150 int pid = GET_LWP (lp->ptid);
2151 struct target_waitstatus *ourstatus = &lp->waitstatus;
2152 int event = status >> 16;
2154 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2155 || event == PTRACE_EVENT_CLONE)
2157 unsigned long new_pid;
2160 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2162 /* If we haven't already seen the new PID stop, wait for it now. */
2163 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2165 /* The new child has a pending SIGSTOP. We can't affect it until it
2166 hits the SIGSTOP, but we're already attached. */
2167 ret = my_waitpid (new_pid, &status,
2168 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2170 perror_with_name (_("waiting for new child"));
2171 else if (ret != new_pid)
2172 internal_error (__FILE__, __LINE__,
2173 _("wait returned unexpected PID %d"), ret);
2174 else if (!WIFSTOPPED (status))
2175 internal_error (__FILE__, __LINE__,
2176 _("wait returned unexpected status 0x%x"), status);
2179 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2181 if (event == PTRACE_EVENT_FORK
2182 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2184 struct fork_info *fp;
2186 /* Handle checkpointing by linux-fork.c here as a special
2187 case. We don't want the follow-fork-mode or 'catch fork'
2188 to interfere with this. */
2190 /* This won't actually modify the breakpoint list, but will
2191 physically remove the breakpoints from the child. */
2192 detach_breakpoints (new_pid);
2194 /* Retain child fork in ptrace (stopped) state. */
2195 fp = find_fork_pid (new_pid);
2197 fp = add_fork (new_pid);
2199 /* Report as spurious, so that infrun doesn't want to follow
2200 this fork. We're actually doing an infcall in
2202 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2203 linux_enable_event_reporting (pid_to_ptid (new_pid));
2205 /* Report the stop to the core. */
2209 if (event == PTRACE_EVENT_FORK)
2210 ourstatus->kind = TARGET_WAITKIND_FORKED;
2211 else if (event == PTRACE_EVENT_VFORK)
2212 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2215 struct lwp_info *new_lp;
2217 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2219 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2221 new_lp->stopped = 1;
2223 if (WSTOPSIG (status) != SIGSTOP)
2225 /* This can happen if someone starts sending signals to
2226 the new thread before it gets a chance to run, which
2227 have a lower number than SIGSTOP (e.g. SIGUSR1).
2228 This is an unlikely case, and harder to handle for
2229 fork / vfork than for clone, so we do not try - but
2230 we handle it for clone events here. We'll send
2231 the other signal on to the thread below. */
2233 new_lp->signalled = 1;
2240 /* Add the new thread to GDB's lists as soon as possible
2243 1) the frontend doesn't have to wait for a stop to
2246 2) we tag it with the correct running state. */
2248 /* If the thread_db layer is active, let it know about
2249 this new thread, and add it to GDB's list. */
2250 if (!thread_db_attach_lwp (new_lp->ptid))
2252 /* We're not using thread_db. Add it to GDB's
2254 target_post_attach (GET_LWP (new_lp->ptid));
2255 add_thread (new_lp->ptid);
2260 set_running (new_lp->ptid, 1);
2261 set_executing (new_lp->ptid, 1);
2265 /* Note the need to use the low target ops to resume, to
2266 handle resuming with PT_SYSCALL if we have syscall
2272 new_lp->stopped = 0;
2273 new_lp->resumed = 1;
2276 ? target_signal_from_host (WSTOPSIG (status))
2279 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2283 if (debug_linux_nat)
2284 fprintf_unfiltered (gdb_stdlog,
2285 "LHEW: Got clone event from LWP %ld, resuming\n",
2286 GET_LWP (lp->ptid));
2287 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2288 0, TARGET_SIGNAL_0);
2296 if (event == PTRACE_EVENT_EXEC)
2298 if (debug_linux_nat)
2299 fprintf_unfiltered (gdb_stdlog,
2300 "LHEW: Got exec event from LWP %ld\n",
2301 GET_LWP (lp->ptid));
2303 ourstatus->kind = TARGET_WAITKIND_EXECD;
2304 ourstatus->value.execd_pathname
2305 = xstrdup (linux_child_pid_to_exec_file (pid));
2310 if (event == PTRACE_EVENT_VFORK_DONE)
2312 if (current_inferior ()->waiting_for_vfork_done)
2314 if (debug_linux_nat)
2315 fprintf_unfiltered (gdb_stdlog, "\
2316 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2317 GET_LWP (lp->ptid));
2319 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog, "\
2325 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2326 GET_LWP (lp->ptid));
2327 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2331 internal_error (__FILE__, __LINE__,
2332 _("unknown ptrace event %d"), event);
2335 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2339 wait_lwp (struct lwp_info *lp)
2343 int thread_dead = 0;
2345 gdb_assert (!lp->stopped);
2346 gdb_assert (lp->status == 0);
2348 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2349 if (pid == -1 && errno == ECHILD)
2351 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2352 if (pid == -1 && errno == ECHILD)
2354 /* The thread has previously exited. We need to delete it
2355 now because, for some vendor 2.4 kernels with NPTL
2356 support backported, there won't be an exit event unless
2357 it is the main thread. 2.6 kernels will report an exit
2358 event for each thread that exits, as expected. */
2360 if (debug_linux_nat)
2361 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2362 target_pid_to_str (lp->ptid));
2368 gdb_assert (pid == GET_LWP (lp->ptid));
2370 if (debug_linux_nat)
2372 fprintf_unfiltered (gdb_stdlog,
2373 "WL: waitpid %s received %s\n",
2374 target_pid_to_str (lp->ptid),
2375 status_to_str (status));
2379 /* Check if the thread has exited. */
2380 if (WIFEXITED (status) || WIFSIGNALED (status))
2383 if (debug_linux_nat)
2384 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2385 target_pid_to_str (lp->ptid));
2394 gdb_assert (WIFSTOPPED (status));
2396 /* Handle GNU/Linux's syscall SIGTRAPs. */
2397 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2399 /* No longer need the sysgood bit. The ptrace event ends up
2400 recorded in lp->waitstatus if we care for it. We can carry
2401 on handling the event like a regular SIGTRAP from here
2403 status = W_STOPCODE (SIGTRAP);
2404 if (linux_handle_syscall_trap (lp, 1))
2405 return wait_lwp (lp);
2408 /* Handle GNU/Linux's extended waitstatus for trace events. */
2409 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2411 if (debug_linux_nat)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "WL: Handling extended status 0x%06x\n",
2415 if (linux_handle_extended_wait (lp, status, 1))
2416 return wait_lwp (lp);
2422 /* Save the most recent siginfo for LP. This is currently only called
2423 for SIGTRAP; some ports use the si_addr field for
2424 target_stopped_data_address. In the future, it may also be used to
2425 restore the siginfo of requeued signals. */
2428 save_siginfo (struct lwp_info *lp)
2431 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2432 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2435 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2438 /* Send a SIGSTOP to LP. */
2441 stop_callback (struct lwp_info *lp, void *data)
2443 if (!lp->stopped && !lp->signalled)
2447 if (debug_linux_nat)
2449 fprintf_unfiltered (gdb_stdlog,
2450 "SC: kill %s **<SIGSTOP>**\n",
2451 target_pid_to_str (lp->ptid));
2454 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2455 if (debug_linux_nat)
2457 fprintf_unfiltered (gdb_stdlog,
2458 "SC: lwp kill %d %s\n",
2460 errno ? safe_strerror (errno) : "ERRNO-OK");
2464 gdb_assert (lp->status == 0);
2470 /* Return non-zero if LWP PID has a pending SIGINT. */
2473 linux_nat_has_pending_sigint (int pid)
2475 sigset_t pending, blocked, ignored;
2477 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2479 if (sigismember (&pending, SIGINT)
2480 && !sigismember (&ignored, SIGINT))
2486 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2489 set_ignore_sigint (struct lwp_info *lp, void *data)
2491 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2492 flag to consume the next one. */
2493 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2494 && WSTOPSIG (lp->status) == SIGINT)
2497 lp->ignore_sigint = 1;
2502 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2503 This function is called after we know the LWP has stopped; if the LWP
2504 stopped before the expected SIGINT was delivered, then it will never have
2505 arrived. Also, if the signal was delivered to a shared queue and consumed
2506 by a different thread, it will never be delivered to this LWP. */
2509 maybe_clear_ignore_sigint (struct lwp_info *lp)
2511 if (!lp->ignore_sigint)
2514 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2516 if (debug_linux_nat)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "MCIS: Clearing bogus flag for %s\n",
2519 target_pid_to_str (lp->ptid));
2520 lp->ignore_sigint = 0;
2524 /* Fetch the possible triggered data watchpoint info and store it in
2527 On some archs, like x86, that use debug registers to set
2528 watchpoints, it's possible that the way to know which watched
2529 address trapped, is to check the register that is used to select
2530 which address to watch. Problem is, between setting the watchpoint
2531 and reading back which data address trapped, the user may change
2532 the set of watchpoints, and, as a consequence, GDB changes the
2533 debug registers in the inferior. To avoid reading back a stale
2534 stopped-data-address when that happens, we cache in LP the fact
2535 that a watchpoint trapped, and the corresponding data address, as
2536 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2537 registers meanwhile, we have the cached data we can rely on. */
2540 save_sigtrap (struct lwp_info *lp)
2542 struct cleanup *old_chain;
2544 if (linux_ops->to_stopped_by_watchpoint == NULL)
2546 lp->stopped_by_watchpoint = 0;
2550 old_chain = save_inferior_ptid ();
2551 inferior_ptid = lp->ptid;
2553 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2555 if (lp->stopped_by_watchpoint)
2557 if (linux_ops->to_stopped_data_address != NULL)
2558 lp->stopped_data_address_p =
2559 linux_ops->to_stopped_data_address (¤t_target,
2560 &lp->stopped_data_address);
2562 lp->stopped_data_address_p = 0;
2565 do_cleanups (old_chain);
2568 /* See save_sigtrap. */
2571 linux_nat_stopped_by_watchpoint (void)
2573 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2575 gdb_assert (lp != NULL);
2577 return lp->stopped_by_watchpoint;
2581 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2583 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2585 gdb_assert (lp != NULL);
2587 *addr_p = lp->stopped_data_address;
2589 return lp->stopped_data_address_p;
2592 /* Wait until LP is stopped. */
2595 stop_wait_callback (struct lwp_info *lp, void *data)
2597 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2599 /* If this is a vfork parent, bail out, it is not going to report
2600 any SIGSTOP until the vfork is done with. */
2601 if (inf->vfork_child != NULL)
2608 status = wait_lwp (lp);
2612 if (lp->ignore_sigint && WIFSTOPPED (status)
2613 && WSTOPSIG (status) == SIGINT)
2615 lp->ignore_sigint = 0;
2618 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2619 if (debug_linux_nat)
2620 fprintf_unfiltered (gdb_stdlog,
2621 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2622 target_pid_to_str (lp->ptid),
2623 errno ? safe_strerror (errno) : "OK");
2625 return stop_wait_callback (lp, NULL);
2628 maybe_clear_ignore_sigint (lp);
2630 if (WSTOPSIG (status) != SIGSTOP)
2632 if (WSTOPSIG (status) == SIGTRAP)
2634 /* If a LWP other than the LWP that we're reporting an
2635 event for has hit a GDB breakpoint (as opposed to
2636 some random trap signal), then just arrange for it to
2637 hit it again later. We don't keep the SIGTRAP status
2638 and don't forward the SIGTRAP signal to the LWP. We
2639 will handle the current event, eventually we will
2640 resume all LWPs, and this one will get its breakpoint
2643 If we do not do this, then we run the risk that the
2644 user will delete or disable the breakpoint, but the
2645 thread will have already tripped on it. */
2647 /* Save the trap's siginfo in case we need it later. */
2652 /* Now resume this LWP and get the SIGSTOP event. */
2654 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2655 if (debug_linux_nat)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "PTRACE_CONT %s, 0, 0 (%s)\n",
2659 target_pid_to_str (lp->ptid),
2660 errno ? safe_strerror (errno) : "OK");
2662 fprintf_unfiltered (gdb_stdlog,
2663 "SWC: Candidate SIGTRAP event in %s\n",
2664 target_pid_to_str (lp->ptid));
2666 /* Hold this event/waitstatus while we check to see if
2667 there are any more (we still want to get that SIGSTOP). */
2668 stop_wait_callback (lp, NULL);
2670 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2671 there's another event, throw it back into the
2675 if (debug_linux_nat)
2676 fprintf_unfiltered (gdb_stdlog,
2677 "SWC: kill %s, %s\n",
2678 target_pid_to_str (lp->ptid),
2679 status_to_str ((int) status));
2680 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2683 /* Save the sigtrap event. */
2684 lp->status = status;
2689 /* The thread was stopped with a signal other than
2690 SIGSTOP, and didn't accidentally trip a breakpoint. */
2692 if (debug_linux_nat)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "SWC: Pending event %s in %s\n",
2696 status_to_str ((int) status),
2697 target_pid_to_str (lp->ptid));
2699 /* Now resume this LWP and get the SIGSTOP event. */
2701 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2702 if (debug_linux_nat)
2703 fprintf_unfiltered (gdb_stdlog,
2704 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2705 target_pid_to_str (lp->ptid),
2706 errno ? safe_strerror (errno) : "OK");
2708 /* Hold this event/waitstatus while we check to see if
2709 there are any more (we still want to get that SIGSTOP). */
2710 stop_wait_callback (lp, NULL);
2712 /* If the lp->status field is still empty, use it to
2713 hold this event. If not, then this event must be
2714 returned to the event queue of the LWP. */
2717 if (debug_linux_nat)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "SWC: kill %s, %s\n",
2721 target_pid_to_str (lp->ptid),
2722 status_to_str ((int) status));
2724 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2727 lp->status = status;
2733 /* We caught the SIGSTOP that we intended to catch, so
2734 there's no SIGSTOP pending. */
2743 /* Return non-zero if LP has a wait status pending. */
2746 status_callback (struct lwp_info *lp, void *data)
2748 /* Only report a pending wait status if we pretend that this has
2749 indeed been resumed. */
2753 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2755 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2756 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2757 0', so a clean process exit can not be stored pending in
2758 lp->status, it is indistinguishable from
2759 no-pending-status. */
2763 if (lp->status != 0)
2769 /* Return non-zero if LP isn't stopped. */
2772 running_callback (struct lwp_info *lp, void *data)
2774 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2777 /* Count the LWP's that have had events. */
2780 count_events_callback (struct lwp_info *lp, void *data)
2784 gdb_assert (count != NULL);
2786 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2787 if (lp->status != 0 && lp->resumed
2788 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2794 /* Select the LWP (if any) that is currently being single-stepped. */
2797 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2799 if (lp->step && lp->status != 0)
2805 /* Select the Nth LWP that has had a SIGTRAP event. */
2808 select_event_lwp_callback (struct lwp_info *lp, void *data)
2810 int *selector = data;
2812 gdb_assert (selector != NULL);
2814 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2815 if (lp->status != 0 && lp->resumed
2816 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2817 if ((*selector)-- == 0)
2824 cancel_breakpoint (struct lwp_info *lp)
2826 /* Arrange for a breakpoint to be hit again later. We don't keep
2827 the SIGTRAP status and don't forward the SIGTRAP signal to the
2828 LWP. We will handle the current event, eventually we will resume
2829 this LWP, and this breakpoint will trap again.
2831 If we do not do this, then we run the risk that the user will
2832 delete or disable the breakpoint, but the LWP will have already
2835 struct regcache *regcache = get_thread_regcache (lp->ptid);
2836 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2839 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2840 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2842 if (debug_linux_nat)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "CB: Push back breakpoint for %s\n",
2845 target_pid_to_str (lp->ptid));
2847 /* Back up the PC if necessary. */
2848 if (gdbarch_decr_pc_after_break (gdbarch))
2849 regcache_write_pc (regcache, pc);
2857 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2859 struct lwp_info *event_lp = data;
2861 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2865 /* If a LWP other than the LWP that we're reporting an event for has
2866 hit a GDB breakpoint (as opposed to some random trap signal),
2867 then just arrange for it to hit it again later. We don't keep
2868 the SIGTRAP status and don't forward the SIGTRAP signal to the
2869 LWP. We will handle the current event, eventually we will resume
2870 all LWPs, and this one will get its breakpoint trap again.
2872 If we do not do this, then we run the risk that the user will
2873 delete or disable the breakpoint, but the LWP will have already
2876 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2878 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2879 && cancel_breakpoint (lp))
2880 /* Throw away the SIGTRAP. */
2886 /* Select one LWP out of those that have events pending. */
2889 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2892 int random_selector;
2893 struct lwp_info *event_lp;
2895 /* Record the wait status for the original LWP. */
2896 (*orig_lp)->status = *status;
2898 /* Give preference to any LWP that is being single-stepped. */
2899 event_lp = iterate_over_lwps (filter,
2900 select_singlestep_lwp_callback, NULL);
2901 if (event_lp != NULL)
2903 if (debug_linux_nat)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "SEL: Select single-step %s\n",
2906 target_pid_to_str (event_lp->ptid));
2910 /* No single-stepping LWP. Select one at random, out of those
2911 which have had SIGTRAP events. */
2913 /* First see how many SIGTRAP events we have. */
2914 iterate_over_lwps (filter, count_events_callback, &num_events);
2916 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2917 random_selector = (int)
2918 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2920 if (debug_linux_nat && num_events > 1)
2921 fprintf_unfiltered (gdb_stdlog,
2922 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2923 num_events, random_selector);
2925 event_lp = iterate_over_lwps (filter,
2926 select_event_lwp_callback,
2930 if (event_lp != NULL)
2932 /* Switch the event LWP. */
2933 *orig_lp = event_lp;
2934 *status = event_lp->status;
2937 /* Flush the wait status for the event LWP. */
2938 (*orig_lp)->status = 0;
2941 /* Return non-zero if LP has been resumed. */
2944 resumed_callback (struct lwp_info *lp, void *data)
2949 /* Stop an active thread, verify it still exists, then resume it. */
2952 stop_and_resume_callback (struct lwp_info *lp, void *data)
2954 struct lwp_info *ptr;
2956 if (!lp->stopped && !lp->signalled)
2958 stop_callback (lp, NULL);
2959 stop_wait_callback (lp, NULL);
2960 /* Resume if the lwp still exists. */
2961 for (ptr = lwp_list; ptr; ptr = ptr->next)
2964 resume_callback (lp, NULL);
2965 resume_set_callback (lp, NULL);
2971 /* Check if we should go on and pass this event to common code.
2972 Return the affected lwp if we are, or NULL otherwise. */
2973 static struct lwp_info *
2974 linux_nat_filter_event (int lwpid, int status, int options)
2976 struct lwp_info *lp;
2978 lp = find_lwp_pid (pid_to_ptid (lwpid));
2980 /* Check for stop events reported by a process we didn't already
2981 know about - anything not already in our LWP list.
2983 If we're expecting to receive stopped processes after
2984 fork, vfork, and clone events, then we'll just add the
2985 new one to our list and go back to waiting for the event
2986 to be reported - the stopped process might be returned
2987 from waitpid before or after the event is. */
2988 if (WIFSTOPPED (status) && !lp)
2990 linux_record_stopped_pid (lwpid, status);
2994 /* Make sure we don't report an event for the exit of an LWP not in
2995 our list, i.e. not part of the current process. This can happen
2996 if we detach from a program we original forked and then it
2998 if (!WIFSTOPPED (status) && !lp)
3001 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3002 CLONE_PTRACE processes which do not use the thread library -
3003 otherwise we wouldn't find the new LWP this way. That doesn't
3004 currently work, and the following code is currently unreachable
3005 due to the two blocks above. If it's fixed some day, this code
3006 should be broken out into a function so that we can also pick up
3007 LWPs from the new interface. */
3010 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3011 if (options & __WCLONE)
3014 gdb_assert (WIFSTOPPED (status)
3015 && WSTOPSIG (status) == SIGSTOP);
3018 if (!in_thread_list (inferior_ptid))
3020 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3021 GET_PID (inferior_ptid));
3022 add_thread (inferior_ptid);
3025 add_thread (lp->ptid);
3028 /* Handle GNU/Linux's syscall SIGTRAPs. */
3029 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3031 /* No longer need the sysgood bit. The ptrace event ends up
3032 recorded in lp->waitstatus if we care for it. We can carry
3033 on handling the event like a regular SIGTRAP from here
3035 status = W_STOPCODE (SIGTRAP);
3036 if (linux_handle_syscall_trap (lp, 0))
3040 /* Handle GNU/Linux's extended waitstatus for trace events. */
3041 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3043 if (debug_linux_nat)
3044 fprintf_unfiltered (gdb_stdlog,
3045 "LLW: Handling extended status 0x%06x\n",
3047 if (linux_handle_extended_wait (lp, status, 0))
3051 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3053 /* Save the trap's siginfo in case we need it later. */
3059 /* Check if the thread has exited. */
3060 if ((WIFEXITED (status) || WIFSIGNALED (status))
3061 && num_lwps (GET_PID (lp->ptid)) > 1)
3063 /* If this is the main thread, we must stop all threads and verify
3064 if they are still alive. This is because in the nptl thread model
3065 on Linux 2.4, there is no signal issued for exiting LWPs
3066 other than the main thread. We only get the main thread exit
3067 signal once all child threads have already exited. If we
3068 stop all the threads and use the stop_wait_callback to check
3069 if they have exited we can determine whether this signal
3070 should be ignored or whether it means the end of the debugged
3071 application, regardless of which threading model is being
3073 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3076 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3077 stop_and_resume_callback, NULL);
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LLW: %s exited.\n",
3083 target_pid_to_str (lp->ptid));
3085 if (num_lwps (GET_PID (lp->ptid)) > 1)
3087 /* If there is at least one more LWP, then the exit signal
3088 was not the end of the debugged application and should be
3095 /* Check if the current LWP has previously exited. In the nptl
3096 thread model, LWPs other than the main thread do not issue
3097 signals when they exit so we must check whenever the thread has
3098 stopped. A similar check is made in stop_wait_callback(). */
3099 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3101 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3103 if (debug_linux_nat)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "LLW: %s exited.\n",
3106 target_pid_to_str (lp->ptid));
3110 /* Make sure there is at least one thread running. */
3111 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3113 /* Discard the event. */
3117 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3118 an attempt to stop an LWP. */
3120 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3122 if (debug_linux_nat)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "LLW: Delayed SIGSTOP caught for %s.\n",
3125 target_pid_to_str (lp->ptid));
3127 /* This is a delayed SIGSTOP. */
3130 registers_changed ();
3132 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3133 lp->step, TARGET_SIGNAL_0);
3134 if (debug_linux_nat)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3138 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3139 target_pid_to_str (lp->ptid));
3142 gdb_assert (lp->resumed);
3144 /* Discard the event. */
3148 /* Make sure we don't report a SIGINT that we have already displayed
3149 for another thread. */
3150 if (lp->ignore_sigint
3151 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3153 if (debug_linux_nat)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "LLW: Delayed SIGINT caught for %s.\n",
3156 target_pid_to_str (lp->ptid));
3158 /* This is a delayed SIGINT. */
3159 lp->ignore_sigint = 0;
3161 registers_changed ();
3162 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3163 lp->step, TARGET_SIGNAL_0);
3164 if (debug_linux_nat)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3168 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3169 target_pid_to_str (lp->ptid));
3172 gdb_assert (lp->resumed);
3174 /* Discard the event. */
3178 /* An interesting event. */
3180 lp->status = status;
3185 linux_nat_wait_1 (struct target_ops *ops,
3186 ptid_t ptid, struct target_waitstatus *ourstatus,
3189 static sigset_t prev_mask;
3190 struct lwp_info *lp = NULL;
3195 if (debug_linux_nat_async)
3196 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3198 /* The first time we get here after starting a new inferior, we may
3199 not have added it to the LWP list yet - this is the earliest
3200 moment at which we know its PID. */
3201 if (ptid_is_pid (inferior_ptid))
3203 /* Upgrade the main thread's ptid. */
3204 thread_change_ptid (inferior_ptid,
3205 BUILD_LWP (GET_PID (inferior_ptid),
3206 GET_PID (inferior_ptid)));
3208 lp = add_lwp (inferior_ptid);
3212 /* Make sure SIGCHLD is blocked. */
3213 block_child_signals (&prev_mask);
3215 if (ptid_equal (ptid, minus_one_ptid))
3217 else if (ptid_is_pid (ptid))
3218 /* A request to wait for a specific tgid. This is not possible
3219 with waitpid, so instead, we wait for any child, and leave
3220 children we're not interested in right now with a pending
3221 status to report later. */
3224 pid = GET_LWP (ptid);
3230 /* Make sure that of those LWPs we want to get an event from, there
3231 is at least one LWP that has been resumed. If there's none, just
3232 bail out. The core may just be flushing asynchronously all
3234 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3236 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3238 if (debug_linux_nat_async)
3239 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3241 restore_child_signals_mask (&prev_mask);
3242 return minus_one_ptid;
3245 /* First check if there is a LWP with a wait status pending. */
3248 /* Any LWP that's been resumed will do. */
3249 lp = iterate_over_lwps (ptid, status_callback, NULL);
3252 if (debug_linux_nat && lp->status)
3253 fprintf_unfiltered (gdb_stdlog,
3254 "LLW: Using pending wait status %s for %s.\n",
3255 status_to_str (lp->status),
3256 target_pid_to_str (lp->ptid));
3259 /* But if we don't find one, we'll have to wait, and check both
3260 cloned and uncloned processes. We start with the cloned
3262 options = __WCLONE | WNOHANG;
3264 else if (is_lwp (ptid))
3266 if (debug_linux_nat)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "LLW: Waiting for specific LWP %s.\n",
3269 target_pid_to_str (ptid));
3271 /* We have a specific LWP to check. */
3272 lp = find_lwp_pid (ptid);
3275 if (debug_linux_nat && lp->status)
3276 fprintf_unfiltered (gdb_stdlog,
3277 "LLW: Using pending wait status %s for %s.\n",
3278 status_to_str (lp->status),
3279 target_pid_to_str (lp->ptid));
3281 /* If we have to wait, take into account whether PID is a cloned
3282 process or not. And we have to convert it to something that
3283 the layer beneath us can understand. */
3284 options = lp->cloned ? __WCLONE : 0;
3285 pid = GET_LWP (ptid);
3287 /* We check for lp->waitstatus in addition to lp->status,
3288 because we can have pending process exits recorded in
3289 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3290 an additional lp->status_p flag. */
3291 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3295 if (lp && lp->signalled)
3297 /* A pending SIGSTOP may interfere with the normal stream of
3298 events. In a typical case where interference is a problem,
3299 we have a SIGSTOP signal pending for LWP A while
3300 single-stepping it, encounter an event in LWP B, and take the
3301 pending SIGSTOP while trying to stop LWP A. After processing
3302 the event in LWP B, LWP A is continued, and we'll never see
3303 the SIGTRAP associated with the last time we were
3304 single-stepping LWP A. */
3306 /* Resume the thread. It should halt immediately returning the
3308 registers_changed ();
3309 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3310 lp->step, TARGET_SIGNAL_0);
3311 if (debug_linux_nat)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3314 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3315 target_pid_to_str (lp->ptid));
3317 gdb_assert (lp->resumed);
3319 /* Catch the pending SIGSTOP. */
3320 status = lp->status;
3323 stop_wait_callback (lp, NULL);
3325 /* If the lp->status field isn't empty, we caught another signal
3326 while flushing the SIGSTOP. Return it back to the event
3327 queue of the LWP, as we already have an event to handle. */
3330 if (debug_linux_nat)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "LLW: kill %s, %s\n",
3333 target_pid_to_str (lp->ptid),
3334 status_to_str (lp->status));
3335 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3338 lp->status = status;
3341 if (!target_can_async_p ())
3343 /* Causes SIGINT to be passed on to the attached process. */
3347 /* Translate generic target_wait options into waitpid options. */
3348 if (target_options & TARGET_WNOHANG)
3355 lwpid = my_waitpid (pid, &status, options);
3359 gdb_assert (pid == -1 || lwpid == pid);
3361 if (debug_linux_nat)
3363 fprintf_unfiltered (gdb_stdlog,
3364 "LLW: waitpid %ld received %s\n",
3365 (long) lwpid, status_to_str (status));
3368 lp = linux_nat_filter_event (lwpid, status, options);
3370 /* STATUS is now no longer valid, use LP->STATUS instead. */
3374 && ptid_is_pid (ptid)
3375 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3377 gdb_assert (lp->resumed);
3379 if (debug_linux_nat)
3380 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3381 ptid_get_lwp (lp->ptid), lp->status);
3383 if (WIFSTOPPED (lp->status))
3385 if (WSTOPSIG (lp->status) != SIGSTOP)
3387 /* Cancel breakpoint hits. The breakpoint may
3388 be removed before we fetch events from this
3389 process to report to the core. It is best
3390 not to assume the moribund breakpoints
3391 heuristic always handles these cases --- it
3392 could be too many events go through to the
3393 core before this one is handled. All-stop
3394 always cancels breakpoint hits in all
3397 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3398 && WSTOPSIG (lp->status) == SIGTRAP
3399 && cancel_breakpoint (lp))
3401 /* Throw away the SIGTRAP. */
3404 if (debug_linux_nat)
3406 "LLW: LWP %ld hit a breakpoint while waiting "
3407 "for another process; cancelled it\n",
3408 ptid_get_lwp (lp->ptid));
3418 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3420 if (debug_linux_nat)
3421 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3422 ptid_get_lwp (lp->ptid));
3424 /* This was the last lwp in the process. Since
3425 events are serialized to GDB core, and we can't
3426 report this one right now, but GDB core and the
3427 other target layers will want to be notified
3428 about the exit code/signal, leave the status
3429 pending for the next time we're able to report
3432 /* Prevent trying to stop this thread again. We'll
3433 never try to resume it because it has a pending
3437 /* Dead LWP's aren't expected to reported a pending
3441 /* Store the pending event in the waitstatus as
3442 well, because W_EXITCODE(0,0) == 0. */
3443 store_waitstatus (&lp->waitstatus, lp->status);
3457 /* waitpid did return something. Restart over. */
3458 options |= __WCLONE;
3466 /* Alternate between checking cloned and uncloned processes. */
3467 options ^= __WCLONE;
3469 /* And every time we have checked both:
3470 In async mode, return to event loop;
3471 In sync mode, suspend waiting for a SIGCHLD signal. */
3472 if (options & __WCLONE)
3474 if (target_options & TARGET_WNOHANG)
3476 /* No interesting event. */
3477 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3479 if (debug_linux_nat_async)
3480 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3482 restore_child_signals_mask (&prev_mask);
3483 return minus_one_ptid;
3486 sigsuspend (&suspend_mask);
3489 else if (target_options & TARGET_WNOHANG)
3491 /* No interesting event for PID yet. */
3492 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3494 if (debug_linux_nat_async)
3495 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3497 restore_child_signals_mask (&prev_mask);
3498 return minus_one_ptid;
3501 /* We shouldn't end up here unless we want to try again. */
3502 gdb_assert (lp == NULL);
3505 if (!target_can_async_p ())
3506 clear_sigint_trap ();
3510 status = lp->status;
3513 /* Don't report signals that GDB isn't interested in, such as
3514 signals that are neither printed nor stopped upon. Stopping all
3515 threads can be a bit time-consuming so if we want decent
3516 performance with heavily multi-threaded programs, especially when
3517 they're using a high frequency timer, we'd better avoid it if we
3520 if (WIFSTOPPED (status))
3522 int signo = target_signal_from_host (WSTOPSIG (status));
3523 struct inferior *inf;
3525 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3528 /* Defer to common code if we get a signal while
3529 single-stepping, since that may need special care, e.g. to
3530 skip the signal handler, or, if we're gaining control of the
3533 && inf->stop_soon == NO_STOP_QUIETLY
3534 && signal_stop_state (signo) == 0
3535 && signal_print_state (signo) == 0
3536 && signal_pass_state (signo) == 1)
3538 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3539 here? It is not clear we should. GDB may not expect
3540 other threads to run. On the other hand, not resuming
3541 newly attached threads may cause an unwanted delay in
3542 getting them running. */
3543 registers_changed ();
3544 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3546 if (debug_linux_nat)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "LLW: %s %s, %s (preempt 'handle')\n",
3550 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3551 target_pid_to_str (lp->ptid),
3552 signo ? strsignal (signo) : "0");
3559 /* Only do the below in all-stop, as we currently use SIGINT
3560 to implement target_stop (see linux_nat_stop) in
3562 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3564 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3565 forwarded to the entire process group, that is, all LWPs
3566 will receive it - unless they're using CLONE_THREAD to
3567 share signals. Since we only want to report it once, we
3568 mark it as ignored for all LWPs except this one. */
3569 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3570 set_ignore_sigint, NULL);
3571 lp->ignore_sigint = 0;
3574 maybe_clear_ignore_sigint (lp);
3578 /* This LWP is stopped now. */
3581 if (debug_linux_nat)
3582 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3583 status_to_str (status), target_pid_to_str (lp->ptid));
3587 /* Now stop all other LWP's ... */
3588 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3590 /* ... and wait until all of them have reported back that
3591 they're no longer running. */
3592 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3594 /* If we're not waiting for a specific LWP, choose an event LWP
3595 from among those that have had events. Giving equal priority
3596 to all LWPs that have had events helps prevent
3599 select_event_lwp (ptid, &lp, &status);
3601 /* Now that we've selected our final event LWP, cancel any
3602 breakpoints in other LWPs that have hit a GDB breakpoint.
3603 See the comment in cancel_breakpoints_callback to find out
3605 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3607 /* In all-stop, from the core's perspective, all LWPs are now
3608 stopped until a new resume action is sent over. */
3609 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3614 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3616 if (debug_linux_nat)
3617 fprintf_unfiltered (gdb_stdlog,
3618 "LLW: trap ptid is %s.\n",
3619 target_pid_to_str (lp->ptid));
3622 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3624 *ourstatus = lp->waitstatus;
3625 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3628 store_waitstatus (ourstatus, status);
3630 if (debug_linux_nat_async)
3631 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3633 restore_child_signals_mask (&prev_mask);
3635 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3636 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3639 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3644 /* Resume LWPs that are currently stopped without any pending status
3645 to report, but are resumed from the core's perspective. */
3648 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3650 ptid_t *wait_ptid_p = data;
3655 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3657 gdb_assert (is_executing (lp->ptid));
3659 /* Don't bother if there's a breakpoint at PC that we'd hit
3660 immediately, and we're not waiting for this LWP. */
3661 if (!ptid_match (lp->ptid, *wait_ptid_p))
3663 struct regcache *regcache = get_thread_regcache (lp->ptid);
3664 CORE_ADDR pc = regcache_read_pc (regcache);
3666 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3670 if (debug_linux_nat)
3671 fprintf_unfiltered (gdb_stdlog,
3672 "RSRL: resuming stopped-resumed LWP %s\n",
3673 target_pid_to_str (lp->ptid));
3675 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3676 lp->step, TARGET_SIGNAL_0);
3678 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3679 lp->stopped_by_watchpoint = 0;
3686 linux_nat_wait (struct target_ops *ops,
3687 ptid_t ptid, struct target_waitstatus *ourstatus,
3692 if (debug_linux_nat)
3693 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3695 /* Flush the async file first. */
3696 if (target_can_async_p ())
3697 async_file_flush ();
3699 /* Resume LWPs that are currently stopped without any pending status
3700 to report, but are resumed from the core's perspective. LWPs get
3701 in this state if we find them stopping at a time we're not
3702 interested in reporting the event (target_wait on a
3703 specific_process, for example, see linux_nat_wait_1), and
3704 meanwhile the event became uninteresting. Don't bother resuming
3705 LWPs we're not going to wait for if they'd stop immediately. */
3707 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3709 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3711 /* If we requested any event, and something came out, assume there
3712 may be more. If we requested a specific lwp or process, also
3713 assume there may be more. */
3714 if (target_can_async_p ()
3715 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3716 || !ptid_equal (ptid, minus_one_ptid)))
3719 /* Get ready for the next event. */
3720 if (target_can_async_p ())
3721 target_async (inferior_event_handler, 0);
3727 kill_callback (struct lwp_info *lp, void *data)
3730 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3731 if (debug_linux_nat)
3732 fprintf_unfiltered (gdb_stdlog,
3733 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3734 target_pid_to_str (lp->ptid),
3735 errno ? safe_strerror (errno) : "OK");
3741 kill_wait_callback (struct lwp_info *lp, void *data)
3745 /* We must make sure that there are no pending events (delayed
3746 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3747 program doesn't interfere with any following debugging session. */
3749 /* For cloned processes we must check both with __WCLONE and
3750 without, since the exit status of a cloned process isn't reported
3756 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3757 if (pid != (pid_t) -1)
3759 if (debug_linux_nat)
3760 fprintf_unfiltered (gdb_stdlog,
3761 "KWC: wait %s received unknown.\n",
3762 target_pid_to_str (lp->ptid));
3763 /* The Linux kernel sometimes fails to kill a thread
3764 completely after PTRACE_KILL; that goes from the stop
3765 point in do_fork out to the one in
3766 get_signal_to_deliever and waits again. So kill it
3768 kill_callback (lp, NULL);
3771 while (pid == GET_LWP (lp->ptid));
3773 gdb_assert (pid == -1 && errno == ECHILD);
3778 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3779 if (pid != (pid_t) -1)
3781 if (debug_linux_nat)
3782 fprintf_unfiltered (gdb_stdlog,
3783 "KWC: wait %s received unk.\n",
3784 target_pid_to_str (lp->ptid));
3785 /* See the call to kill_callback above. */
3786 kill_callback (lp, NULL);
3789 while (pid == GET_LWP (lp->ptid));
3791 gdb_assert (pid == -1 && errno == ECHILD);
3796 linux_nat_kill (struct target_ops *ops)
3798 struct target_waitstatus last;
3802 /* If we're stopped while forking and we haven't followed yet,
3803 kill the other task. We need to do this first because the
3804 parent will be sleeping if this is a vfork. */
3806 get_last_target_status (&last_ptid, &last);
3808 if (last.kind == TARGET_WAITKIND_FORKED
3809 || last.kind == TARGET_WAITKIND_VFORKED)
3811 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3815 if (forks_exist_p ())
3816 linux_fork_killall ();
3819 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3821 /* Stop all threads before killing them, since ptrace requires
3822 that the thread is stopped to sucessfully PTRACE_KILL. */
3823 iterate_over_lwps (ptid, stop_callback, NULL);
3824 /* ... and wait until all of them have reported back that
3825 they're no longer running. */
3826 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3828 /* Kill all LWP's ... */
3829 iterate_over_lwps (ptid, kill_callback, NULL);
3831 /* ... and wait until we've flushed all events. */
3832 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3835 target_mourn_inferior ();
3839 linux_nat_mourn_inferior (struct target_ops *ops)
3841 purge_lwp_list (ptid_get_pid (inferior_ptid));
3843 if (! forks_exist_p ())
3844 /* Normal case, no other forks available. */
3845 linux_ops->to_mourn_inferior (ops);
3847 /* Multi-fork case. The current inferior_ptid has exited, but
3848 there are other viable forks to debug. Delete the exiting
3849 one and context-switch to the first available. */
3850 linux_fork_mourn_inferior ();
3853 /* Convert a native/host siginfo object, into/from the siginfo in the
3854 layout of the inferiors' architecture. */
3857 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3861 if (linux_nat_siginfo_fixup != NULL)
3862 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3864 /* If there was no callback, or the callback didn't do anything,
3865 then just do a straight memcpy. */
3869 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3871 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3876 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3877 const char *annex, gdb_byte *readbuf,
3878 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3881 struct siginfo siginfo;
3882 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3884 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3885 gdb_assert (readbuf || writebuf);
3887 pid = GET_LWP (inferior_ptid);
3889 pid = GET_PID (inferior_ptid);
3891 if (offset > sizeof (siginfo))
3895 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3899 /* When GDB is built as a 64-bit application, ptrace writes into
3900 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3901 inferior with a 64-bit GDB should look the same as debugging it
3902 with a 32-bit GDB, we need to convert it. GDB core always sees
3903 the converted layout, so any read/write will have to be done
3905 siginfo_fixup (&siginfo, inf_siginfo, 0);
3907 if (offset + len > sizeof (siginfo))
3908 len = sizeof (siginfo) - offset;
3910 if (readbuf != NULL)
3911 memcpy (readbuf, inf_siginfo + offset, len);
3914 memcpy (inf_siginfo + offset, writebuf, len);
3916 /* Convert back to ptrace layout before flushing it out. */
3917 siginfo_fixup (&siginfo, inf_siginfo, 1);
3920 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3929 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3930 const char *annex, gdb_byte *readbuf,
3931 const gdb_byte *writebuf,
3932 ULONGEST offset, LONGEST len)
3934 struct cleanup *old_chain;
3937 if (object == TARGET_OBJECT_SIGNAL_INFO)
3938 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3941 /* The target is connected but no live inferior is selected. Pass
3942 this request down to a lower stratum (e.g., the executable
3944 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3947 old_chain = save_inferior_ptid ();
3949 if (is_lwp (inferior_ptid))
3950 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3952 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3955 do_cleanups (old_chain);
3960 linux_thread_alive (ptid_t ptid)
3964 gdb_assert (is_lwp (ptid));
3966 /* Send signal 0 instead of anything ptrace, because ptracing a
3967 running thread errors out claiming that the thread doesn't
3969 err = kill_lwp (GET_LWP (ptid), 0);
3971 if (debug_linux_nat)
3972 fprintf_unfiltered (gdb_stdlog,
3973 "LLTA: KILL(SIG0) %s (%s)\n",
3974 target_pid_to_str (ptid),
3975 err ? safe_strerror (err) : "OK");
3984 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3986 return linux_thread_alive (ptid);
3990 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3992 static char buf[64];
3995 && (GET_PID (ptid) != GET_LWP (ptid)
3996 || num_lwps (GET_PID (ptid)) > 1))
3998 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4002 return normal_pid_to_str (ptid);
4005 /* Accepts an integer PID; Returns a string representing a file that
4006 can be opened to get the symbols for the child process. */
4009 linux_child_pid_to_exec_file (int pid)
4011 char *name1, *name2;
4013 name1 = xmalloc (MAXPATHLEN);
4014 name2 = xmalloc (MAXPATHLEN);
4015 make_cleanup (xfree, name1);
4016 make_cleanup (xfree, name2);
4017 memset (name2, 0, MAXPATHLEN);
4019 sprintf (name1, "/proc/%d/exe", pid);
4020 if (readlink (name1, name2, MAXPATHLEN) > 0)
4026 /* Service function for corefiles and info proc. */
4029 read_mapping (FILE *mapfile,
4034 char *device, long long *inode, char *filename)
4036 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4037 addr, endaddr, permissions, offset, device, inode);
4040 if (ret > 0 && ret != EOF)
4042 /* Eat everything up to EOL for the filename. This will prevent
4043 weird filenames (such as one with embedded whitespace) from
4044 confusing this code. It also makes this code more robust in
4045 respect to annotations the kernel may add after the filename.
4047 Note the filename is used for informational purposes
4049 ret += fscanf (mapfile, "%[^\n]\n", filename);
4052 return (ret != 0 && ret != EOF);
4055 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4056 regions in the inferior for a corefile. */
4059 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4061 int, int, int, void *), void *obfd)
4063 int pid = PIDGET (inferior_ptid);
4064 char mapsfilename[MAXPATHLEN];
4066 long long addr, endaddr, size, offset, inode;
4067 char permissions[8], device[8], filename[MAXPATHLEN];
4068 int read, write, exec;
4069 struct cleanup *cleanup;
4071 /* Compose the filename for the /proc memory map, and open it. */
4072 sprintf (mapsfilename, "/proc/%d/maps", pid);
4073 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4074 error (_("Could not open %s."), mapsfilename);
4075 cleanup = make_cleanup_fclose (mapsfile);
4078 fprintf_filtered (gdb_stdout,
4079 "Reading memory regions from %s\n", mapsfilename);
4081 /* Now iterate until end-of-file. */
4082 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4083 &offset, &device[0], &inode, &filename[0]))
4085 size = endaddr - addr;
4087 /* Get the segment's permissions. */
4088 read = (strchr (permissions, 'r') != 0);
4089 write = (strchr (permissions, 'w') != 0);
4090 exec = (strchr (permissions, 'x') != 0);
4094 fprintf_filtered (gdb_stdout,
4095 "Save segment, %s bytes at %s (%c%c%c)",
4096 plongest (size), paddress (target_gdbarch, addr),
4098 write ? 'w' : ' ', exec ? 'x' : ' ');
4100 fprintf_filtered (gdb_stdout, " for %s", filename);
4101 fprintf_filtered (gdb_stdout, "\n");
4104 /* Invoke the callback function to create the corefile
4106 func (addr, size, read, write, exec, obfd);
4108 do_cleanups (cleanup);
4113 find_signalled_thread (struct thread_info *info, void *data)
4115 if (info->stop_signal != TARGET_SIGNAL_0
4116 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4122 static enum target_signal
4123 find_stop_signal (void)
4125 struct thread_info *info =
4126 iterate_over_threads (find_signalled_thread, NULL);
4129 return info->stop_signal;
4131 return TARGET_SIGNAL_0;
4134 /* Records the thread's register state for the corefile note
4138 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4139 char *note_data, int *note_size,
4140 enum target_signal stop_signal)
4142 unsigned long lwp = ptid_get_lwp (ptid);
4143 struct gdbarch *gdbarch = target_gdbarch;
4144 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4145 const struct regset *regset;
4147 struct cleanup *old_chain;
4148 struct core_regset_section *sect_list;
4151 old_chain = save_inferior_ptid ();
4152 inferior_ptid = ptid;
4153 target_fetch_registers (regcache, -1);
4154 do_cleanups (old_chain);
4156 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4157 sect_list = gdbarch_core_regset_sections (gdbarch);
4159 /* The loop below uses the new struct core_regset_section, which stores
4160 the supported section names and sizes for the core file. Note that
4161 note PRSTATUS needs to be treated specially. But the other notes are
4162 structurally the same, so they can benefit from the new struct. */
4163 if (core_regset_p && sect_list != NULL)
4164 while (sect_list->sect_name != NULL)
4166 regset = gdbarch_regset_from_core_section (gdbarch,
4167 sect_list->sect_name,
4169 gdb_assert (regset && regset->collect_regset);
4170 gdb_regset = xmalloc (sect_list->size);
4171 regset->collect_regset (regset, regcache, -1,
4172 gdb_regset, sect_list->size);
4174 if (strcmp (sect_list->sect_name, ".reg") == 0)
4175 note_data = (char *) elfcore_write_prstatus
4176 (obfd, note_data, note_size,
4177 lwp, stop_signal, gdb_regset);
4179 note_data = (char *) elfcore_write_register_note
4180 (obfd, note_data, note_size,
4181 sect_list->sect_name, gdb_regset,
4187 /* For architectures that does not have the struct core_regset_section
4188 implemented, we use the old method. When all the architectures have
4189 the new support, the code below should be deleted. */
4192 gdb_gregset_t gregs;
4193 gdb_fpregset_t fpregs;
4196 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4197 sizeof (gregs))) != NULL
4198 && regset->collect_regset != NULL)
4199 regset->collect_regset (regset, regcache, -1,
4200 &gregs, sizeof (gregs));
4202 fill_gregset (regcache, &gregs, -1);
4204 note_data = (char *) elfcore_write_prstatus (obfd,
4208 stop_signal, &gregs);
4211 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4212 sizeof (fpregs))) != NULL
4213 && regset->collect_regset != NULL)
4214 regset->collect_regset (regset, regcache, -1,
4215 &fpregs, sizeof (fpregs));
4217 fill_fpregset (regcache, &fpregs, -1);
4219 note_data = (char *) elfcore_write_prfpreg (obfd,
4222 &fpregs, sizeof (fpregs));
4228 struct linux_nat_corefile_thread_data
4234 enum target_signal stop_signal;
4237 /* Called by gdbthread.c once per thread. Records the thread's
4238 register state for the corefile note section. */
4241 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4243 struct linux_nat_corefile_thread_data *args = data;
4245 args->note_data = linux_nat_do_thread_registers (args->obfd,
4255 /* Enumerate spufs IDs for process PID. */
4258 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4262 struct dirent *entry;
4264 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4265 dir = opendir (path);
4270 while ((entry = readdir (dir)) != NULL)
4276 fd = atoi (entry->d_name);
4280 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4281 if (stat (path, &st) != 0)
4283 if (!S_ISDIR (st.st_mode))
4286 if (statfs (path, &stfs) != 0)
4288 if (stfs.f_type != SPUFS_MAGIC)
4291 callback (data, fd);
4297 /* Generate corefile notes for SPU contexts. */
4299 struct linux_spu_corefile_data
4307 linux_spu_corefile_callback (void *data, int fd)
4309 struct linux_spu_corefile_data *args = data;
4312 static const char *spu_files[] =
4334 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4336 char annex[32], note_name[32];
4340 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4341 spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU,
4345 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4346 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4347 args->note_size, note_name,
4348 NT_SPU, spu_data, spu_len);
4355 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4357 struct linux_spu_corefile_data args;
4360 args.note_data = note_data;
4361 args.note_size = note_size;
4363 iterate_over_spus (PIDGET (inferior_ptid),
4364 linux_spu_corefile_callback, &args);
4366 return args.note_data;
4369 /* Fills the "to_make_corefile_note" target vector. Builds the note
4370 section for a corefile, and returns it in a malloc buffer. */
4373 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4375 struct linux_nat_corefile_thread_data thread_args;
4376 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4377 char fname[16] = { '\0' };
4378 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4379 char psargs[80] = { '\0' };
4380 char *note_data = NULL;
4381 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4385 if (get_exec_file (0))
4387 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4388 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4389 if (get_inferior_args ())
4392 char *psargs_end = psargs + sizeof (psargs);
4394 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4396 string_end = memchr (psargs, 0, sizeof (psargs));
4397 if (string_end != NULL)
4399 *string_end++ = ' ';
4400 strncpy (string_end, get_inferior_args (),
4401 psargs_end - string_end);
4404 note_data = (char *) elfcore_write_prpsinfo (obfd,
4406 note_size, fname, psargs);
4409 /* Dump information for threads. */
4410 thread_args.obfd = obfd;
4411 thread_args.note_data = note_data;
4412 thread_args.note_size = note_size;
4413 thread_args.num_notes = 0;
4414 thread_args.stop_signal = find_stop_signal ();
4415 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4416 gdb_assert (thread_args.num_notes != 0);
4417 note_data = thread_args.note_data;
4419 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
4423 note_data = elfcore_write_note (obfd, note_data, note_size,
4424 "CORE", NT_AUXV, auxv, auxv_len);
4428 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4430 make_cleanup (xfree, note_data);
4434 /* Implement the "info proc" command. */
4437 linux_nat_info_proc_cmd (char *args, int from_tty)
4439 /* A long is used for pid instead of an int to avoid a loss of precision
4440 compiler warning from the output of strtoul. */
4441 long pid = PIDGET (inferior_ptid);
4444 char buffer[MAXPATHLEN];
4445 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4457 /* Break up 'args' into an argv array. */
4458 argv = gdb_buildargv (args);
4459 make_cleanup_freeargv (argv);
4461 while (argv != NULL && *argv != NULL)
4463 if (isdigit (argv[0][0]))
4465 pid = strtoul (argv[0], NULL, 10);
4467 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4471 else if (strcmp (argv[0], "status") == 0)
4475 else if (strcmp (argv[0], "stat") == 0)
4479 else if (strcmp (argv[0], "cmd") == 0)
4483 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4487 else if (strcmp (argv[0], "cwd") == 0)
4491 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4497 /* [...] (future options here) */
4502 error (_("No current process: you must name one."));
4504 sprintf (fname1, "/proc/%ld", pid);
4505 if (stat (fname1, &dummy) != 0)
4506 error (_("No /proc directory: '%s'"), fname1);
4508 printf_filtered (_("process %ld\n"), pid);
4509 if (cmdline_f || all)
4511 sprintf (fname1, "/proc/%ld/cmdline", pid);
4512 if ((procfile = fopen (fname1, "r")) != NULL)
4514 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4516 if (fgets (buffer, sizeof (buffer), procfile))
4517 printf_filtered ("cmdline = '%s'\n", buffer);
4519 warning (_("unable to read '%s'"), fname1);
4520 do_cleanups (cleanup);
4523 warning (_("unable to open /proc file '%s'"), fname1);
4527 sprintf (fname1, "/proc/%ld/cwd", pid);
4528 memset (fname2, 0, sizeof (fname2));
4529 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4530 printf_filtered ("cwd = '%s'\n", fname2);
4532 warning (_("unable to read link '%s'"), fname1);
4536 sprintf (fname1, "/proc/%ld/exe", pid);
4537 memset (fname2, 0, sizeof (fname2));
4538 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4539 printf_filtered ("exe = '%s'\n", fname2);
4541 warning (_("unable to read link '%s'"), fname1);
4543 if (mappings_f || all)
4545 sprintf (fname1, "/proc/%ld/maps", pid);
4546 if ((procfile = fopen (fname1, "r")) != NULL)
4548 long long addr, endaddr, size, offset, inode;
4549 char permissions[8], device[8], filename[MAXPATHLEN];
4550 struct cleanup *cleanup;
4552 cleanup = make_cleanup_fclose (procfile);
4553 printf_filtered (_("Mapped address spaces:\n\n"));
4554 if (gdbarch_addr_bit (target_gdbarch) == 32)
4556 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4559 " Size", " Offset", "objfile");
4563 printf_filtered (" %18s %18s %10s %10s %7s\n",
4566 " Size", " Offset", "objfile");
4569 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4570 &offset, &device[0], &inode, &filename[0]))
4572 size = endaddr - addr;
4574 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4575 calls here (and possibly above) should be abstracted
4576 out into their own functions? Andrew suggests using
4577 a generic local_address_string instead to print out
4578 the addresses; that makes sense to me, too. */
4580 if (gdbarch_addr_bit (target_gdbarch) == 32)
4582 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4583 (unsigned long) addr, /* FIXME: pr_addr */
4584 (unsigned long) endaddr,
4586 (unsigned int) offset,
4587 filename[0] ? filename : "");
4591 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4592 (unsigned long) addr, /* FIXME: pr_addr */
4593 (unsigned long) endaddr,
4595 (unsigned int) offset,
4596 filename[0] ? filename : "");
4600 do_cleanups (cleanup);
4603 warning (_("unable to open /proc file '%s'"), fname1);
4605 if (status_f || all)
4607 sprintf (fname1, "/proc/%ld/status", pid);
4608 if ((procfile = fopen (fname1, "r")) != NULL)
4610 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4612 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4613 puts_filtered (buffer);
4614 do_cleanups (cleanup);
4617 warning (_("unable to open /proc file '%s'"), fname1);
4621 sprintf (fname1, "/proc/%ld/stat", pid);
4622 if ((procfile = fopen (fname1, "r")) != NULL)
4627 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4629 if (fscanf (procfile, "%d ", &itmp) > 0)
4630 printf_filtered (_("Process: %d\n"), itmp);
4631 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4632 printf_filtered (_("Exec file: %s\n"), buffer);
4633 if (fscanf (procfile, "%c ", &ctmp) > 0)
4634 printf_filtered (_("State: %c\n"), ctmp);
4635 if (fscanf (procfile, "%d ", &itmp) > 0)
4636 printf_filtered (_("Parent process: %d\n"), itmp);
4637 if (fscanf (procfile, "%d ", &itmp) > 0)
4638 printf_filtered (_("Process group: %d\n"), itmp);
4639 if (fscanf (procfile, "%d ", &itmp) > 0)
4640 printf_filtered (_("Session id: %d\n"), itmp);
4641 if (fscanf (procfile, "%d ", &itmp) > 0)
4642 printf_filtered (_("TTY: %d\n"), itmp);
4643 if (fscanf (procfile, "%d ", &itmp) > 0)
4644 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4645 if (fscanf (procfile, "%lu ", <mp) > 0)
4646 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4647 if (fscanf (procfile, "%lu ", <mp) > 0)
4648 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4649 (unsigned long) ltmp);
4650 if (fscanf (procfile, "%lu ", <mp) > 0)
4651 printf_filtered (_("Minor faults, children: %lu\n"),
4652 (unsigned long) ltmp);
4653 if (fscanf (procfile, "%lu ", <mp) > 0)
4654 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4655 (unsigned long) ltmp);
4656 if (fscanf (procfile, "%lu ", <mp) > 0)
4657 printf_filtered (_("Major faults, children: %lu\n"),
4658 (unsigned long) ltmp);
4659 if (fscanf (procfile, "%ld ", <mp) > 0)
4660 printf_filtered (_("utime: %ld\n"), ltmp);
4661 if (fscanf (procfile, "%ld ", <mp) > 0)
4662 printf_filtered (_("stime: %ld\n"), ltmp);
4663 if (fscanf (procfile, "%ld ", <mp) > 0)
4664 printf_filtered (_("utime, children: %ld\n"), ltmp);
4665 if (fscanf (procfile, "%ld ", <mp) > 0)
4666 printf_filtered (_("stime, children: %ld\n"), ltmp);
4667 if (fscanf (procfile, "%ld ", <mp) > 0)
4668 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4670 if (fscanf (procfile, "%ld ", <mp) > 0)
4671 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4672 if (fscanf (procfile, "%lu ", <mp) > 0)
4673 printf_filtered (_("jiffies until next timeout: %lu\n"),
4674 (unsigned long) ltmp);
4675 if (fscanf (procfile, "%lu ", <mp) > 0)
4676 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4677 (unsigned long) ltmp);
4678 if (fscanf (procfile, "%ld ", <mp) > 0)
4679 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4681 if (fscanf (procfile, "%lu ", <mp) > 0)
4682 printf_filtered (_("Virtual memory size: %lu\n"),
4683 (unsigned long) ltmp);
4684 if (fscanf (procfile, "%lu ", <mp) > 0)
4685 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4686 if (fscanf (procfile, "%lu ", <mp) > 0)
4687 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4688 if (fscanf (procfile, "%lu ", <mp) > 0)
4689 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4690 if (fscanf (procfile, "%lu ", <mp) > 0)
4691 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4692 if (fscanf (procfile, "%lu ", <mp) > 0)
4693 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4694 #if 0 /* Don't know how architecture-dependent the rest is...
4695 Anyway the signal bitmap info is available from "status". */
4696 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4697 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4698 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4699 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4700 if (fscanf (procfile, "%ld ", <mp) > 0)
4701 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4702 if (fscanf (procfile, "%ld ", <mp) > 0)
4703 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4704 if (fscanf (procfile, "%ld ", <mp) > 0)
4705 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4706 if (fscanf (procfile, "%ld ", <mp) > 0)
4707 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4708 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4709 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4711 do_cleanups (cleanup);
4714 warning (_("unable to open /proc file '%s'"), fname1);
4718 /* Implement the to_xfer_partial interface for memory reads using the /proc
4719 filesystem. Because we can use a single read() call for /proc, this
4720 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4721 but it doesn't support writes. */
4724 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4725 const char *annex, gdb_byte *readbuf,
4726 const gdb_byte *writebuf,
4727 ULONGEST offset, LONGEST len)
4733 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4736 /* Don't bother for one word. */
4737 if (len < 3 * sizeof (long))
4740 /* We could keep this file open and cache it - possibly one per
4741 thread. That requires some juggling, but is even faster. */
4742 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4743 fd = open (filename, O_RDONLY | O_LARGEFILE);
4747 /* If pread64 is available, use it. It's faster if the kernel
4748 supports it (only one syscall), and it's 64-bit safe even on
4749 32-bit platforms (for instance, SPARC debugging a SPARC64
4752 if (pread64 (fd, readbuf, len, offset) != len)
4754 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4765 /* Enumerate spufs IDs for process PID. */
4767 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4769 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4771 LONGEST written = 0;
4774 struct dirent *entry;
4776 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4777 dir = opendir (path);
4782 while ((entry = readdir (dir)) != NULL)
4788 fd = atoi (entry->d_name);
4792 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4793 if (stat (path, &st) != 0)
4795 if (!S_ISDIR (st.st_mode))
4798 if (statfs (path, &stfs) != 0)
4800 if (stfs.f_type != SPUFS_MAGIC)
4803 if (pos >= offset && pos + 4 <= offset + len)
4805 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4815 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4816 object type, using the /proc file system. */
4818 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4819 const char *annex, gdb_byte *readbuf,
4820 const gdb_byte *writebuf,
4821 ULONGEST offset, LONGEST len)
4826 int pid = PIDGET (inferior_ptid);
4833 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4836 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4837 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4842 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4849 ret = write (fd, writebuf, (size_t) len);
4851 ret = read (fd, readbuf, (size_t) len);
4858 /* Parse LINE as a signal set and add its set bits to SIGS. */
4861 add_line_to_sigset (const char *line, sigset_t *sigs)
4863 int len = strlen (line) - 1;
4867 if (line[len] != '\n')
4868 error (_("Could not parse signal set: %s"), line);
4876 if (*p >= '0' && *p <= '9')
4878 else if (*p >= 'a' && *p <= 'f')
4879 digit = *p - 'a' + 10;
4881 error (_("Could not parse signal set: %s"), line);
4886 sigaddset (sigs, signum + 1);
4888 sigaddset (sigs, signum + 2);
4890 sigaddset (sigs, signum + 3);
4892 sigaddset (sigs, signum + 4);
4898 /* Find process PID's pending signals from /proc/pid/status and set
4902 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4905 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4906 struct cleanup *cleanup;
4908 sigemptyset (pending);
4909 sigemptyset (blocked);
4910 sigemptyset (ignored);
4911 sprintf (fname, "/proc/%d/status", pid);
4912 procfile = fopen (fname, "r");
4913 if (procfile == NULL)
4914 error (_("Could not open %s"), fname);
4915 cleanup = make_cleanup_fclose (procfile);
4917 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4919 /* Normal queued signals are on the SigPnd line in the status
4920 file. However, 2.6 kernels also have a "shared" pending
4921 queue for delivering signals to a thread group, so check for
4924 Unfortunately some Red Hat kernels include the shared pending
4925 queue but not the ShdPnd status field. */
4927 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4928 add_line_to_sigset (buffer + 8, pending);
4929 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4930 add_line_to_sigset (buffer + 8, pending);
4931 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4932 add_line_to_sigset (buffer + 8, blocked);
4933 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4934 add_line_to_sigset (buffer + 8, ignored);
4937 do_cleanups (cleanup);
4941 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4942 const char *annex, gdb_byte *readbuf,
4943 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4945 /* We make the process list snapshot when the object starts to be
4947 static const char *buf;
4948 static LONGEST len_avail = -1;
4949 static struct obstack obstack;
4953 gdb_assert (object == TARGET_OBJECT_OSDATA);
4959 if (len_avail != -1 && len_avail != 0)
4960 obstack_free (&obstack, NULL);
4963 obstack_init (&obstack);
4964 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
4966 obstack_xml_printf (
4969 "<column name=\"Type\">processes</column>"
4970 "<column name=\"Description\">Listing of all processes</column>"
4973 obstack_grow_str0 (&obstack, "</osdata>\n");
4974 buf = obstack_finish (&obstack);
4975 len_avail = strlen (buf);
4978 if (offset >= len_avail)
4980 /* Done. Get rid of the obstack. */
4981 obstack_free (&obstack, NULL);
4987 if (len > len_avail - offset)
4988 len = len_avail - offset;
4989 memcpy (readbuf, buf + offset, len);
4994 if (strcmp (annex, "processes") != 0)
4997 gdb_assert (readbuf && !writebuf);
5001 if (len_avail != -1 && len_avail != 0)
5002 obstack_free (&obstack, NULL);
5005 obstack_init (&obstack);
5006 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5008 dirp = opendir ("/proc");
5013 while ((dp = readdir (dirp)) != NULL)
5015 struct stat statbuf;
5016 char procentry[sizeof ("/proc/4294967295")];
5018 if (!isdigit (dp->d_name[0])
5019 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5022 sprintf (procentry, "/proc/%s", dp->d_name);
5023 if (stat (procentry, &statbuf) == 0
5024 && S_ISDIR (statbuf.st_mode))
5028 char cmd[MAXPATHLEN + 1];
5029 struct passwd *entry;
5031 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5032 entry = getpwuid (statbuf.st_uid);
5034 if ((f = fopen (pathname, "r")) != NULL)
5036 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5042 for (i = 0; i < len; i++)
5047 obstack_xml_printf (
5050 "<column name=\"pid\">%s</column>"
5051 "<column name=\"user\">%s</column>"
5052 "<column name=\"command\">%s</column>"
5055 entry ? entry->pw_name : "?",
5068 obstack_grow_str0 (&obstack, "</osdata>\n");
5069 buf = obstack_finish (&obstack);
5070 len_avail = strlen (buf);
5073 if (offset >= len_avail)
5075 /* Done. Get rid of the obstack. */
5076 obstack_free (&obstack, NULL);
5082 if (len > len_avail - offset)
5083 len = len_avail - offset;
5084 memcpy (readbuf, buf + offset, len);
5090 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5091 const char *annex, gdb_byte *readbuf,
5092 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5096 if (object == TARGET_OBJECT_AUXV)
5097 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5100 if (object == TARGET_OBJECT_OSDATA)
5101 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5104 if (object == TARGET_OBJECT_SPU)
5105 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5108 /* GDB calculates all the addresses in possibly larget width of the address.
5109 Address width needs to be masked before its final use - either by
5110 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5112 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5114 if (object == TARGET_OBJECT_MEMORY)
5116 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5118 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5119 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5122 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5127 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5131 /* Create a prototype generic GNU/Linux target. The client can override
5132 it with local methods. */
5135 linux_target_install_ops (struct target_ops *t)
5137 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5138 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5139 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5140 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5141 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5142 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5143 t->to_post_attach = linux_child_post_attach;
5144 t->to_follow_fork = linux_child_follow_fork;
5145 t->to_find_memory_regions = linux_nat_find_memory_regions;
5146 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5148 super_xfer_partial = t->to_xfer_partial;
5149 t->to_xfer_partial = linux_xfer_partial;
5155 struct target_ops *t;
5157 t = inf_ptrace_target ();
5158 linux_target_install_ops (t);
5164 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5166 struct target_ops *t;
5168 t = inf_ptrace_trad_target (register_u_offset);
5169 linux_target_install_ops (t);
5174 /* target_is_async_p implementation. */
5177 linux_nat_is_async_p (void)
5179 /* NOTE: palves 2008-03-21: We're only async when the user requests
5180 it explicitly with the "set target-async" command.
5181 Someday, linux will always be async. */
5182 if (!target_async_permitted)
5185 /* See target.h/target_async_mask. */
5186 return linux_nat_async_mask_value;
5189 /* target_can_async_p implementation. */
5192 linux_nat_can_async_p (void)
5194 /* NOTE: palves 2008-03-21: We're only async when the user requests
5195 it explicitly with the "set target-async" command.
5196 Someday, linux will always be async. */
5197 if (!target_async_permitted)
5200 /* See target.h/target_async_mask. */
5201 return linux_nat_async_mask_value;
5205 linux_nat_supports_non_stop (void)
5210 /* True if we want to support multi-process. To be removed when GDB
5211 supports multi-exec. */
5213 int linux_multi_process = 1;
5216 linux_nat_supports_multi_process (void)
5218 return linux_multi_process;
5221 /* target_async_mask implementation. */
5224 linux_nat_async_mask (int new_mask)
5226 int curr_mask = linux_nat_async_mask_value;
5228 if (curr_mask != new_mask)
5232 linux_nat_async (NULL, 0);
5233 linux_nat_async_mask_value = new_mask;
5237 linux_nat_async_mask_value = new_mask;
5239 /* If we're going out of async-mask in all-stop, then the
5240 inferior is stopped. The next resume will call
5241 target_async. In non-stop, the target event source
5242 should be always registered in the event loop. Do so
5245 linux_nat_async (inferior_event_handler, 0);
5252 static int async_terminal_is_ours = 1;
5254 /* target_terminal_inferior implementation. */
5257 linux_nat_terminal_inferior (void)
5259 if (!target_is_async_p ())
5261 /* Async mode is disabled. */
5262 terminal_inferior ();
5266 terminal_inferior ();
5268 /* Calls to target_terminal_*() are meant to be idempotent. */
5269 if (!async_terminal_is_ours)
5272 delete_file_handler (input_fd);
5273 async_terminal_is_ours = 0;
5277 /* target_terminal_ours implementation. */
5280 linux_nat_terminal_ours (void)
5282 if (!target_is_async_p ())
5284 /* Async mode is disabled. */
5289 /* GDB should never give the terminal to the inferior if the
5290 inferior is running in the background (run&, continue&, etc.),
5291 but claiming it sure should. */
5294 if (async_terminal_is_ours)
5297 clear_sigint_trap ();
5298 add_file_handler (input_fd, stdin_event_handler, 0);
5299 async_terminal_is_ours = 1;
5302 static void (*async_client_callback) (enum inferior_event_type event_type,
5304 static void *async_client_context;
5306 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5307 so we notice when any child changes state, and notify the
5308 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5309 above to wait for the arrival of a SIGCHLD. */
5312 sigchld_handler (int signo)
5314 int old_errno = errno;
5316 if (debug_linux_nat_async)
5317 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5319 if (signo == SIGCHLD
5320 && linux_nat_event_pipe[0] != -1)
5321 async_file_mark (); /* Let the event loop know that there are
5322 events to handle. */
5327 /* Callback registered with the target events file descriptor. */
5330 handle_target_event (int error, gdb_client_data client_data)
5332 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5335 /* Create/destroy the target events pipe. Returns previous state. */
5338 linux_async_pipe (int enable)
5340 int previous = (linux_nat_event_pipe[0] != -1);
5342 if (previous != enable)
5346 block_child_signals (&prev_mask);
5350 if (pipe (linux_nat_event_pipe) == -1)
5351 internal_error (__FILE__, __LINE__,
5352 "creating event pipe failed.");
5354 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5355 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5359 close (linux_nat_event_pipe[0]);
5360 close (linux_nat_event_pipe[1]);
5361 linux_nat_event_pipe[0] = -1;
5362 linux_nat_event_pipe[1] = -1;
5365 restore_child_signals_mask (&prev_mask);
5371 /* target_async implementation. */
5374 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5375 void *context), void *context)
5377 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5378 internal_error (__FILE__, __LINE__,
5379 "Calling target_async when async is masked");
5381 if (callback != NULL)
5383 async_client_callback = callback;
5384 async_client_context = context;
5385 if (!linux_async_pipe (1))
5387 add_file_handler (linux_nat_event_pipe[0],
5388 handle_target_event, NULL);
5389 /* There may be pending events to handle. Tell the event loop
5396 async_client_callback = callback;
5397 async_client_context = context;
5398 delete_file_handler (linux_nat_event_pipe[0]);
5399 linux_async_pipe (0);
5404 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5408 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5412 ptid_t ptid = lwp->ptid;
5414 if (debug_linux_nat)
5415 fprintf_unfiltered (gdb_stdlog,
5416 "LNSL: running -> suspending %s\n",
5417 target_pid_to_str (lwp->ptid));
5420 stop_callback (lwp, NULL);
5421 stop_wait_callback (lwp, NULL);
5423 /* If the lwp exits while we try to stop it, there's nothing
5425 lwp = find_lwp_pid (ptid);
5429 /* If we didn't collect any signal other than SIGSTOP while
5430 stopping the LWP, push a SIGNAL_0 event. In either case, the
5431 event-loop will end up calling target_wait which will collect
5433 if (lwp->status == 0)
5434 lwp->status = W_STOPCODE (0);
5439 /* Already known to be stopped; do nothing. */
5441 if (debug_linux_nat)
5443 if (find_thread_ptid (lwp->ptid)->stop_requested)
5444 fprintf_unfiltered (gdb_stdlog, "\
5445 LNSL: already stopped/stop_requested %s\n",
5446 target_pid_to_str (lwp->ptid));
5448 fprintf_unfiltered (gdb_stdlog, "\
5449 LNSL: already stopped/no stop_requested yet %s\n",
5450 target_pid_to_str (lwp->ptid));
5457 linux_nat_stop (ptid_t ptid)
5460 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5462 linux_ops->to_stop (ptid);
5466 linux_nat_close (int quitting)
5468 /* Unregister from the event loop. */
5469 if (target_is_async_p ())
5470 target_async (NULL, 0);
5472 /* Reset the async_masking. */
5473 linux_nat_async_mask_value = 1;
5475 if (linux_ops->to_close)
5476 linux_ops->to_close (quitting);
5479 /* When requests are passed down from the linux-nat layer to the
5480 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5481 used. The address space pointer is stored in the inferior object,
5482 but the common code that is passed such ptid can't tell whether
5483 lwpid is a "main" process id or not (it assumes so). We reverse
5484 look up the "main" process id from the lwp here. */
5486 struct address_space *
5487 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5489 struct lwp_info *lwp;
5490 struct inferior *inf;
5493 pid = GET_LWP (ptid);
5494 if (GET_LWP (ptid) == 0)
5496 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5498 lwp = find_lwp_pid (ptid);
5499 pid = GET_PID (lwp->ptid);
5503 /* A (pid,lwpid,0) ptid. */
5504 pid = GET_PID (ptid);
5507 inf = find_inferior_pid (pid);
5508 gdb_assert (inf != NULL);
5513 linux_nat_core_of_thread_1 (ptid_t ptid)
5515 struct cleanup *back_to;
5518 char *content = NULL;
5521 int content_read = 0;
5525 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5526 GET_PID (ptid), GET_LWP (ptid));
5527 back_to = make_cleanup (xfree, filename);
5529 f = fopen (filename, "r");
5532 do_cleanups (back_to);
5536 make_cleanup_fclose (f);
5542 content = xrealloc (content, content_read + 1024);
5543 n = fread (content + content_read, 1, 1024, f);
5547 content[content_read] = '\0';
5552 make_cleanup (xfree, content);
5554 p = strchr (content, '(');
5558 p = strchr (p, ')');
5562 /* If the first field after program name has index 0, then core number is
5563 the field with index 36. There's no constant for that anywhere. */
5565 p = strtok_r (p, " ", &ts);
5566 for (i = 0; p != NULL && i != 36; ++i)
5567 p = strtok_r (NULL, " ", &ts);
5569 if (p == NULL || sscanf (p, "%d", &core) == 0)
5572 do_cleanups (back_to);
5577 /* Return the cached value of the processor core for thread PTID. */
5580 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5582 struct lwp_info *info = find_lwp_pid (ptid);
5590 linux_nat_add_target (struct target_ops *t)
5592 /* Save the provided single-threaded target. We save this in a separate
5593 variable because another target we've inherited from (e.g. inf-ptrace)
5594 may have saved a pointer to T; we want to use it for the final
5595 process stratum target. */
5596 linux_ops_saved = *t;
5597 linux_ops = &linux_ops_saved;
5599 /* Override some methods for multithreading. */
5600 t->to_create_inferior = linux_nat_create_inferior;
5601 t->to_attach = linux_nat_attach;
5602 t->to_detach = linux_nat_detach;
5603 t->to_resume = linux_nat_resume;
5604 t->to_wait = linux_nat_wait;
5605 t->to_xfer_partial = linux_nat_xfer_partial;
5606 t->to_kill = linux_nat_kill;
5607 t->to_mourn_inferior = linux_nat_mourn_inferior;
5608 t->to_thread_alive = linux_nat_thread_alive;
5609 t->to_pid_to_str = linux_nat_pid_to_str;
5610 t->to_has_thread_control = tc_schedlock;
5611 t->to_thread_address_space = linux_nat_thread_address_space;
5612 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5613 t->to_stopped_data_address = linux_nat_stopped_data_address;
5615 t->to_can_async_p = linux_nat_can_async_p;
5616 t->to_is_async_p = linux_nat_is_async_p;
5617 t->to_supports_non_stop = linux_nat_supports_non_stop;
5618 t->to_async = linux_nat_async;
5619 t->to_async_mask = linux_nat_async_mask;
5620 t->to_terminal_inferior = linux_nat_terminal_inferior;
5621 t->to_terminal_ours = linux_nat_terminal_ours;
5622 t->to_close = linux_nat_close;
5624 /* Methods for non-stop support. */
5625 t->to_stop = linux_nat_stop;
5627 t->to_supports_multi_process = linux_nat_supports_multi_process;
5629 t->to_core_of_thread = linux_nat_core_of_thread;
5631 /* We don't change the stratum; this target will sit at
5632 process_stratum and thread_db will set at thread_stratum. This
5633 is a little strange, since this is a multi-threaded-capable
5634 target, but we want to be on the stack below thread_db, and we
5635 also want to be used for single-threaded processes. */
5640 /* Register a method to call whenever a new thread is attached. */
5642 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5644 /* Save the pointer. We only support a single registered instance
5645 of the GNU/Linux native target, so we do not need to map this to
5647 linux_nat_new_thread = new_thread;
5650 /* Register a method that converts a siginfo object between the layout
5651 that ptrace returns, and the layout in the architecture of the
5654 linux_nat_set_siginfo_fixup (struct target_ops *t,
5655 int (*siginfo_fixup) (struct siginfo *,
5659 /* Save the pointer. */
5660 linux_nat_siginfo_fixup = siginfo_fixup;
5663 /* Return the saved siginfo associated with PTID. */
5665 linux_nat_get_siginfo (ptid_t ptid)
5667 struct lwp_info *lp = find_lwp_pid (ptid);
5669 gdb_assert (lp != NULL);
5671 return &lp->siginfo;
5674 /* Provide a prototype to silence -Wmissing-prototypes. */
5675 extern initialize_file_ftype _initialize_linux_nat;
5678 _initialize_linux_nat (void)
5680 add_info ("proc", linux_nat_info_proc_cmd, _("\
5681 Show /proc process information about any running process.\n\
5682 Specify any process id, or use the program being debugged by default.\n\
5683 Specify any of the following keywords for detailed info:\n\
5684 mappings -- list of mapped memory regions.\n\
5685 stat -- list a bunch of random process info.\n\
5686 status -- list a different bunch of random process info.\n\
5687 all -- list all available /proc info."));
5689 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5690 &debug_linux_nat, _("\
5691 Set debugging of GNU/Linux lwp module."), _("\
5692 Show debugging of GNU/Linux lwp module."), _("\
5693 Enables printf debugging output."),
5695 show_debug_linux_nat,
5696 &setdebuglist, &showdebuglist);
5698 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5699 &debug_linux_nat_async, _("\
5700 Set debugging of GNU/Linux async lwp module."), _("\
5701 Show debugging of GNU/Linux async lwp module."), _("\
5702 Enables printf debugging output."),
5704 show_debug_linux_nat_async,
5705 &setdebuglist, &showdebuglist);
5707 /* Save this mask as the default. */
5708 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5710 /* Install a SIGCHLD handler. */
5711 sigchld_action.sa_handler = sigchld_handler;
5712 sigemptyset (&sigchld_action.sa_mask);
5713 sigchld_action.sa_flags = SA_RESTART;
5715 /* Make it the default. */
5716 sigaction (SIGCHLD, &sigchld_action, NULL);
5718 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5719 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5720 sigdelset (&suspend_mask, SIGCHLD);
5722 sigemptyset (&blocked_mask);
5724 add_setshow_boolean_cmd ("disable-randomization", class_support,
5725 &disable_randomization, _("\
5726 Set disabling of debuggee's virtual address space randomization."), _("\
5727 Show disabling of debuggee's virtual address space randomization."), _("\
5728 When this mode is on (which is the default), randomization of the virtual\n\
5729 address space is disabled. Standalone programs run with the randomization\n\
5730 enabled by default on some platforms."),
5731 &set_disable_randomization,
5732 &show_disable_randomization,
5733 &setlist, &showlist);
5737 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5738 the GNU/Linux Threads library and therefore doesn't really belong
5741 /* Read variable NAME in the target and return its value if found.
5742 Otherwise return zero. It is assumed that the type of the variable
5746 get_signo (const char *name)
5748 struct minimal_symbol *ms;
5751 ms = lookup_minimal_symbol (name, NULL, NULL);
5755 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5756 sizeof (signo)) != 0)
5762 /* Return the set of signals used by the threads library in *SET. */
5765 lin_thread_get_thread_signals (sigset_t *set)
5767 struct sigaction action;
5768 int restart, cancel;
5770 sigemptyset (&blocked_mask);
5773 restart = get_signo ("__pthread_sig_restart");
5774 cancel = get_signo ("__pthread_sig_cancel");
5776 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5777 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5778 not provide any way for the debugger to query the signal numbers -
5779 fortunately they don't change! */
5782 restart = __SIGRTMIN;
5785 cancel = __SIGRTMIN + 1;
5787 sigaddset (set, restart);
5788 sigaddset (set, cancel);
5790 /* The GNU/Linux Threads library makes terminating threads send a
5791 special "cancel" signal instead of SIGCHLD. Make sure we catch
5792 those (to prevent them from terminating GDB itself, which is
5793 likely to be their default action) and treat them the same way as
5796 action.sa_handler = sigchld_handler;
5797 sigemptyset (&action.sa_mask);
5798 action.sa_flags = SA_RESTART;
5799 sigaction (cancel, &action, NULL);
5801 /* We block the "cancel" signal throughout this code ... */
5802 sigaddset (&blocked_mask, cancel);
5803 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5805 /* ... except during a sigsuspend. */
5806 sigdelset (&suspend_mask, cancel);