1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #include <sys/types.h>
55 #include "xml-support.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
62 #include "tracepoint.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
67 #include "nat/linux-namespaces.h"
71 #define SPUFS_MAGIC 0x23c9b64e
74 /* This comment documents high-level logic of this file.
76 Waiting for events in sync mode
77 ===============================
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
82 When waiting for an event in all threads, waitpid is not quite good:
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
93 The solution is to always use -1 and WNOHANG, together with
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
186 #define O_LARGEFILE 0
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
200 /* The method to call, if any, when a new fork is attached. */
201 static linux_nat_new_fork_ftype *linux_nat_new_fork;
203 /* The method to call, if any, when a process is no longer
205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
207 /* Hook to call prior to resuming a thread. */
208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
210 /* The method to call, if any, when the siginfo object needs to be
211 converted between the layout returned by ptrace, and the layout in
212 the architecture of the inferior. */
213 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
218 Called by our to_xfer_partial. */
219 static target_xfer_partial_ftype *super_xfer_partial;
221 /* The saved to_close method, inherited from inf-ptrace.c.
222 Called by our to_close. */
223 static void (*super_close) (struct target_ops *);
225 static unsigned int debug_linux_nat;
227 show_debug_linux_nat (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
230 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 struct simple_pid_list
238 struct simple_pid_list *next;
240 struct simple_pid_list *stopped_pids;
242 /* Whether target_thread_events is in effect. */
243 static int report_thread_events;
245 /* Async mode support. */
247 /* The read/write ends of the pipe registered as waitable file in the
249 static int linux_nat_event_pipe[2] = { -1, -1 };
251 /* True if we're currently in async mode. */
252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
254 /* Flush the event pipe. */
257 async_file_flush (void)
264 ret = read (linux_nat_event_pipe[0], &buf, 1);
266 while (ret >= 0 || (ret == -1 && errno == EINTR));
269 /* Put something (anything, doesn't matter what, or how much) in event
270 pipe, so that the select/poll in the event-loop realizes we have
271 something to process. */
274 async_file_mark (void)
278 /* It doesn't really matter what the pipe contains, as long we end
279 up with something in it. Might as well flush the previous
285 ret = write (linux_nat_event_pipe[1], "+", 1);
287 while (ret == -1 && errno == EINTR);
289 /* Ignore EAGAIN. If the pipe is full, the event loop will already
290 be awakened anyway. */
293 static int kill_lwp (int lwpid, int signo);
295 static int stop_callback (struct lwp_info *lp, void *data);
296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
298 static void block_child_signals (sigset_t *prev_mask);
299 static void restore_child_signals_mask (sigset_t *prev_mask);
302 static struct lwp_info *add_lwp (ptid_t ptid);
303 static void purge_lwp_list (int pid);
304 static void delete_lwp (ptid_t ptid);
305 static struct lwp_info *find_lwp_pid (ptid_t ptid);
307 static int lwp_status_pending_p (struct lwp_info *lp);
309 static int sigtrap_is_event (int status);
310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
312 static void save_stop_reason (struct lwp_info *lp);
317 /* See nat/linux-nat.h. */
320 ptid_of_lwp (struct lwp_info *lwp)
325 /* See nat/linux-nat.h. */
328 lwp_set_arch_private_info (struct lwp_info *lwp,
329 struct arch_lwp_info *info)
331 lwp->arch_private = info;
334 /* See nat/linux-nat.h. */
336 struct arch_lwp_info *
337 lwp_arch_private_info (struct lwp_info *lwp)
339 return lwp->arch_private;
342 /* See nat/linux-nat.h. */
345 lwp_is_stopped (struct lwp_info *lwp)
350 /* See nat/linux-nat.h. */
352 enum target_stop_reason
353 lwp_stop_reason (struct lwp_info *lwp)
355 return lwp->stop_reason;
358 /* See nat/linux-nat.h. */
361 lwp_is_stepping (struct lwp_info *lwp)
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
372 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
375 new_pid->status = status;
376 new_pid->next = *listp;
381 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
383 struct simple_pid_list **p;
385 for (p = listp; *p != NULL; p = &(*p)->next)
386 if ((*p)->pid == pid)
388 struct simple_pid_list *next = (*p)->next;
390 *statusp = (*p)->status;
398 /* Return the ptrace options that we want to try to enable. */
401 linux_nat_ptrace_options (int attached)
406 options |= PTRACE_O_EXITKILL;
408 options |= (PTRACE_O_TRACESYSGOOD
409 | PTRACE_O_TRACEVFORKDONE
410 | PTRACE_O_TRACEVFORK
412 | PTRACE_O_TRACEEXEC);
417 /* Initialize ptrace warnings and check for supported ptrace
420 ATTACHED should be nonzero iff we attached to the inferior. */
423 linux_init_ptrace (pid_t pid, int attached)
425 int options = linux_nat_ptrace_options (attached);
427 linux_enable_event_reporting (pid, options);
428 linux_ptrace_init_warnings ();
432 linux_child_post_attach (struct target_ops *self, int pid)
434 linux_init_ptrace (pid, 1);
438 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
440 linux_init_ptrace (ptid_get_pid (ptid), 0);
443 /* Return the number of known LWPs in the tgid given by PID. */
451 for (lp = lwp_list; lp; lp = lp->next)
452 if (ptid_get_pid (lp->ptid) == pid)
458 /* Call delete_lwp with prototype compatible for make_cleanup. */
461 delete_lwp_cleanup (void *lp_voidp)
463 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
465 delete_lwp (lp->ptid);
468 /* Target hook for follow_fork. On entry inferior_ptid must be the
469 ptid of the followed inferior. At return, inferior_ptid will be
473 linux_child_follow_fork (struct target_ops *ops, int follow_child,
478 struct lwp_info *child_lp = NULL;
479 int status = W_STOPCODE (0);
481 ptid_t parent_ptid, child_ptid;
482 int parent_pid, child_pid;
484 has_vforked = (inferior_thread ()->pending_follow.kind
485 == TARGET_WAITKIND_VFORKED);
486 parent_ptid = inferior_ptid;
487 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
488 parent_pid = ptid_get_lwp (parent_ptid);
489 child_pid = ptid_get_lwp (child_ptid);
491 /* We're already attached to the parent, by default. */
492 child_lp = add_lwp (child_ptid);
493 child_lp->stopped = 1;
494 child_lp->last_resume_kind = resume_stop;
496 /* Detach new forked process? */
499 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
502 if (linux_nat_prepare_to_resume != NULL)
503 linux_nat_prepare_to_resume (child_lp);
505 /* When debugging an inferior in an architecture that supports
506 hardware single stepping on a kernel without commit
507 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
508 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
509 set if the parent process had them set.
510 To work around this, single step the child process
511 once before detaching to clear the flags. */
513 if (!gdbarch_software_single_step_p (target_thread_architecture
516 linux_disable_event_reporting (child_pid);
517 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
518 perror_with_name (_("Couldn't do single step"));
519 if (my_waitpid (child_pid, &status, 0) < 0)
520 perror_with_name (_("Couldn't wait vfork process"));
523 if (WIFSTOPPED (status))
527 signo = WSTOPSIG (status);
529 && !signal_pass_state (gdb_signal_from_host (signo)))
531 ptrace (PTRACE_DETACH, child_pid, 0, signo);
534 do_cleanups (old_chain);
538 scoped_restore save_inferior_ptid
539 = make_scoped_restore (&inferior_ptid);
540 inferior_ptid = child_ptid;
542 /* Let the thread_db layer learn about this new process. */
543 check_for_thread_db ();
548 struct lwp_info *parent_lp;
550 parent_lp = find_lwp_pid (parent_ptid);
551 gdb_assert (linux_supports_tracefork () >= 0);
553 if (linux_supports_tracevforkdone ())
556 fprintf_unfiltered (gdb_stdlog,
557 "LCFF: waiting for VFORK_DONE on %d\n",
559 parent_lp->stopped = 1;
561 /* We'll handle the VFORK_DONE event like any other
562 event, in target_wait. */
566 /* We can't insert breakpoints until the child has
567 finished with the shared memory region. We need to
568 wait until that happens. Ideal would be to just
570 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
571 - waitpid (parent_pid, &status, __WALL);
572 However, most architectures can't handle a syscall
573 being traced on the way out if it wasn't traced on
576 We might also think to loop, continuing the child
577 until it exits or gets a SIGTRAP. One problem is
578 that the child might call ptrace with PTRACE_TRACEME.
580 There's no simple and reliable way to figure out when
581 the vforked child will be done with its copy of the
582 shared memory. We could step it out of the syscall,
583 two instructions, let it go, and then single-step the
584 parent once. When we have hardware single-step, this
585 would work; with software single-step it could still
586 be made to work but we'd have to be able to insert
587 single-step breakpoints in the child, and we'd have
588 to insert -just- the single-step breakpoint in the
589 parent. Very awkward.
591 In the end, the best we can do is to make sure it
592 runs for a little while. Hopefully it will be out of
593 range of any breakpoints we reinsert. Usually this
594 is only the single-step breakpoint at vfork's return
598 fprintf_unfiltered (gdb_stdlog,
599 "LCFF: no VFORK_DONE "
600 "support, sleeping a bit\n");
604 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
605 and leave it pending. The next linux_nat_resume call
606 will notice a pending event, and bypasses actually
607 resuming the inferior. */
608 parent_lp->status = 0;
609 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
610 parent_lp->stopped = 1;
612 /* If we're in async mode, need to tell the event loop
613 there's something here to process. */
614 if (target_is_async_p ())
621 struct lwp_info *child_lp;
623 child_lp = add_lwp (inferior_ptid);
624 child_lp->stopped = 1;
625 child_lp->last_resume_kind = resume_stop;
627 /* Let the thread_db layer learn about this new process. */
628 check_for_thread_db ();
636 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
638 return !linux_supports_tracefork ();
642 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
648 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
650 return !linux_supports_tracefork ();
654 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
660 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
662 return !linux_supports_tracefork ();
666 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
672 linux_child_set_syscall_catchpoint (struct target_ops *self,
673 int pid, int needed, int any_count,
674 int table_size, int *table)
676 if (!linux_supports_tracesysgood ())
679 /* On GNU/Linux, we ignore the arguments. It means that we only
680 enable the syscall catchpoints, but do not disable them.
682 Also, we do not use the `table' information because we do not
683 filter system calls here. We let GDB do the logic for us. */
687 /* List of known LWPs, keyed by LWP PID. This speeds up the common
688 case of mapping a PID returned from the kernel to our corresponding
689 lwp_info data structure. */
690 static htab_t lwp_lwpid_htab;
692 /* Calculate a hash from a lwp_info's LWP PID. */
695 lwp_info_hash (const void *ap)
697 const struct lwp_info *lp = (struct lwp_info *) ap;
698 pid_t pid = ptid_get_lwp (lp->ptid);
700 return iterative_hash_object (pid, 0);
703 /* Equality function for the lwp_info hash table. Compares the LWP's
707 lwp_lwpid_htab_eq (const void *a, const void *b)
709 const struct lwp_info *entry = (const struct lwp_info *) a;
710 const struct lwp_info *element = (const struct lwp_info *) b;
712 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
715 /* Create the lwp_lwpid_htab hash table. */
718 lwp_lwpid_htab_create (void)
720 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
723 /* Add LP to the hash table. */
726 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
730 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
731 gdb_assert (slot != NULL && *slot == NULL);
735 /* Head of doubly-linked list of known LWPs. Sorted by reverse
736 creation order. This order is assumed in some cases. E.g.,
737 reaping status after killing alls lwps of a process: the leader LWP
738 must be reaped last. */
739 struct lwp_info *lwp_list;
741 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
744 lwp_list_add (struct lwp_info *lp)
747 if (lwp_list != NULL)
752 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
756 lwp_list_remove (struct lwp_info *lp)
758 /* Remove from sorted-by-creation-order list. */
759 if (lp->next != NULL)
760 lp->next->prev = lp->prev;
761 if (lp->prev != NULL)
762 lp->prev->next = lp->next;
769 /* Original signal mask. */
770 static sigset_t normal_mask;
772 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
773 _initialize_linux_nat. */
774 static sigset_t suspend_mask;
776 /* Signals to block to make that sigsuspend work. */
777 static sigset_t blocked_mask;
779 /* SIGCHLD action. */
780 struct sigaction sigchld_action;
782 /* Block child signals (SIGCHLD and linux threads signals), and store
783 the previous mask in PREV_MASK. */
786 block_child_signals (sigset_t *prev_mask)
788 /* Make sure SIGCHLD is blocked. */
789 if (!sigismember (&blocked_mask, SIGCHLD))
790 sigaddset (&blocked_mask, SIGCHLD);
792 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
795 /* Restore child signals mask, previously returned by
796 block_child_signals. */
799 restore_child_signals_mask (sigset_t *prev_mask)
801 sigprocmask (SIG_SETMASK, prev_mask, NULL);
804 /* Mask of signals to pass directly to the inferior. */
805 static sigset_t pass_mask;
807 /* Update signals to pass to the inferior. */
809 linux_nat_pass_signals (struct target_ops *self,
810 int numsigs, unsigned char *pass_signals)
814 sigemptyset (&pass_mask);
816 for (signo = 1; signo < NSIG; signo++)
818 int target_signo = gdb_signal_from_host (signo);
819 if (target_signo < numsigs && pass_signals[target_signo])
820 sigaddset (&pass_mask, signo);
826 /* Prototypes for local functions. */
827 static int stop_wait_callback (struct lwp_info *lp, void *data);
828 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
829 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
830 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
834 /* Destroy and free LP. */
837 lwp_free (struct lwp_info *lp)
839 xfree (lp->arch_private);
843 /* Traversal function for purge_lwp_list. */
846 lwp_lwpid_htab_remove_pid (void **slot, void *info)
848 struct lwp_info *lp = (struct lwp_info *) *slot;
849 int pid = *(int *) info;
851 if (ptid_get_pid (lp->ptid) == pid)
853 htab_clear_slot (lwp_lwpid_htab, slot);
854 lwp_list_remove (lp);
861 /* Remove all LWPs belong to PID from the lwp list. */
864 purge_lwp_list (int pid)
866 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
869 /* Add the LWP specified by PTID to the list. PTID is the first LWP
870 in the process. Return a pointer to the structure describing the
873 This differs from add_lwp in that we don't let the arch specific
874 bits know about this new thread. Current clients of this callback
875 take the opportunity to install watchpoints in the new thread, and
876 we shouldn't do that for the first thread. If we're spawning a
877 child ("run"), the thread executes the shell wrapper first, and we
878 shouldn't touch it until it execs the program we want to debug.
879 For "attach", it'd be okay to call the callback, but it's not
880 necessary, because watchpoints can't yet have been inserted into
883 static struct lwp_info *
884 add_initial_lwp (ptid_t ptid)
888 gdb_assert (ptid_lwp_p (ptid));
890 lp = XNEW (struct lwp_info);
892 memset (lp, 0, sizeof (struct lwp_info));
894 lp->last_resume_kind = resume_continue;
895 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
900 /* Add to sorted-by-reverse-creation-order list. */
903 /* Add to keyed-by-pid htab. */
904 lwp_lwpid_htab_add_lwp (lp);
909 /* Add the LWP specified by PID to the list. Return a pointer to the
910 structure describing the new LWP. The LWP should already be
913 static struct lwp_info *
914 add_lwp (ptid_t ptid)
918 lp = add_initial_lwp (ptid);
920 /* Let the arch specific bits know about this new thread. Current
921 clients of this callback take the opportunity to install
922 watchpoints in the new thread. We don't do this for the first
923 thread though. See add_initial_lwp. */
924 if (linux_nat_new_thread != NULL)
925 linux_nat_new_thread (lp);
930 /* Remove the LWP specified by PID from the list. */
933 delete_lwp (ptid_t ptid)
937 struct lwp_info dummy;
940 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
944 lp = *(struct lwp_info **) slot;
945 gdb_assert (lp != NULL);
947 htab_clear_slot (lwp_lwpid_htab, slot);
949 /* Remove from sorted-by-creation-order list. */
950 lwp_list_remove (lp);
956 /* Return a pointer to the structure describing the LWP corresponding
957 to PID. If no corresponding LWP could be found, return NULL. */
959 static struct lwp_info *
960 find_lwp_pid (ptid_t ptid)
964 struct lwp_info dummy;
966 if (ptid_lwp_p (ptid))
967 lwp = ptid_get_lwp (ptid);
969 lwp = ptid_get_pid (ptid);
971 dummy.ptid = ptid_build (0, lwp, 0);
972 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
976 /* See nat/linux-nat.h. */
979 iterate_over_lwps (ptid_t filter,
980 iterate_over_lwps_ftype callback,
983 struct lwp_info *lp, *lpnext;
985 for (lp = lwp_list; lp; lp = lpnext)
989 if (ptid_match (lp->ptid, filter))
991 if ((*callback) (lp, data) != 0)
999 /* Update our internal state when changing from one checkpoint to
1000 another indicated by NEW_PTID. We can only switch single-threaded
1001 applications, so we only create one new LWP, and the previous list
1005 linux_nat_switch_fork (ptid_t new_ptid)
1007 struct lwp_info *lp;
1009 purge_lwp_list (ptid_get_pid (inferior_ptid));
1011 lp = add_lwp (new_ptid);
1014 /* This changes the thread's ptid while preserving the gdb thread
1015 num. Also changes the inferior pid, while preserving the
1017 thread_change_ptid (inferior_ptid, new_ptid);
1019 /* We've just told GDB core that the thread changed target id, but,
1020 in fact, it really is a different thread, with different register
1022 registers_changed ();
1025 /* Handle the exit of a single thread LP. */
1028 exit_lwp (struct lwp_info *lp)
1030 struct thread_info *th = find_thread_ptid (lp->ptid);
1034 if (print_thread_events)
1035 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1037 delete_thread (lp->ptid);
1040 delete_lwp (lp->ptid);
1043 /* Wait for the LWP specified by LP, which we have just attached to.
1044 Returns a wait status for that LWP, to cache. */
1047 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1049 pid_t new_pid, pid = ptid_get_lwp (ptid);
1052 if (linux_proc_pid_is_stopped (pid))
1054 if (debug_linux_nat)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "LNPAW: Attaching to a stopped process\n");
1058 /* The process is definitely stopped. It is in a job control
1059 stop, unless the kernel predates the TASK_STOPPED /
1060 TASK_TRACED distinction, in which case it might be in a
1061 ptrace stop. Make sure it is in a ptrace stop; from there we
1062 can kill it, signal it, et cetera.
1064 First make sure there is a pending SIGSTOP. Since we are
1065 already attached, the process can not transition from stopped
1066 to running without a PTRACE_CONT; so we know this signal will
1067 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1068 probably already in the queue (unless this kernel is old
1069 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1070 is not an RT signal, it can only be queued once. */
1071 kill_lwp (pid, SIGSTOP);
1073 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1074 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1075 ptrace (PTRACE_CONT, pid, 0, 0);
1078 /* Make sure the initial process is stopped. The user-level threads
1079 layer might want to poke around in the inferior, and that won't
1080 work if things haven't stabilized yet. */
1081 new_pid = my_waitpid (pid, &status, __WALL);
1082 gdb_assert (pid == new_pid);
1084 if (!WIFSTOPPED (status))
1086 /* The pid we tried to attach has apparently just exited. */
1087 if (debug_linux_nat)
1088 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1089 pid, status_to_str (status));
1093 if (WSTOPSIG (status) != SIGSTOP)
1096 if (debug_linux_nat)
1097 fprintf_unfiltered (gdb_stdlog,
1098 "LNPAW: Received %s after attaching\n",
1099 status_to_str (status));
1106 linux_nat_create_inferior (struct target_ops *ops,
1107 const char *exec_file, const std::string &allargs,
1108 char **env, int from_tty)
1110 struct cleanup *restore_personality
1111 = maybe_disable_address_space_randomization (disable_randomization);
1113 /* The fork_child mechanism is synchronous and calls target_wait, so
1114 we have to mask the async mode. */
1116 /* Make sure we report all signals during startup. */
1117 linux_nat_pass_signals (ops, 0, NULL);
1119 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1121 do_cleanups (restore_personality);
1124 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1125 already attached. Returns true if a new LWP is found, false
1129 attach_proc_task_lwp_callback (ptid_t ptid)
1131 struct lwp_info *lp;
1133 /* Ignore LWPs we're already attached to. */
1134 lp = find_lwp_pid (ptid);
1137 int lwpid = ptid_get_lwp (ptid);
1139 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1143 /* Be quiet if we simply raced with the thread exiting.
1144 EPERM is returned if the thread's task still exists, and
1145 is marked as exited or zombie, as well as other
1146 conditions, so in that case, confirm the status in
1147 /proc/PID/status. */
1149 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1151 if (debug_linux_nat)
1153 fprintf_unfiltered (gdb_stdlog,
1154 "Cannot attach to lwp %d: "
1155 "thread is gone (%d: %s)\n",
1156 lwpid, err, safe_strerror (err));
1161 warning (_("Cannot attach to lwp %d: %s"),
1163 linux_ptrace_attach_fail_reason_string (ptid,
1169 if (debug_linux_nat)
1170 fprintf_unfiltered (gdb_stdlog,
1171 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1172 target_pid_to_str (ptid));
1174 lp = add_lwp (ptid);
1176 /* The next time we wait for this LWP we'll see a SIGSTOP as
1177 PTRACE_ATTACH brings it to a halt. */
1180 /* We need to wait for a stop before being able to make the
1181 next ptrace call on this LWP. */
1182 lp->must_set_ptrace_flags = 1;
1184 /* So that wait collects the SIGSTOP. */
1187 /* Also add the LWP to gdb's thread list, in case a
1188 matching libthread_db is not found (or the process uses
1190 add_thread (lp->ptid);
1191 set_running (lp->ptid, 1);
1192 set_executing (lp->ptid, 1);
1201 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1203 struct lwp_info *lp;
1207 /* Make sure we report all signals during attach. */
1208 linux_nat_pass_signals (ops, 0, NULL);
1212 linux_ops->to_attach (ops, args, from_tty);
1214 CATCH (ex, RETURN_MASK_ERROR)
1216 pid_t pid = parse_pid_to_attach (args);
1217 struct buffer buffer;
1218 char *message, *buffer_s;
1220 message = xstrdup (ex.message);
1221 make_cleanup (xfree, message);
1223 buffer_init (&buffer);
1224 linux_ptrace_attach_fail_reason (pid, &buffer);
1226 buffer_grow_str0 (&buffer, "");
1227 buffer_s = buffer_finish (&buffer);
1228 make_cleanup (xfree, buffer_s);
1230 if (*buffer_s != '\0')
1231 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1233 throw_error (ex.error, "%s", message);
1237 /* The ptrace base target adds the main thread with (pid,0,0)
1238 format. Decorate it with lwp info. */
1239 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1240 ptid_get_pid (inferior_ptid),
1242 thread_change_ptid (inferior_ptid, ptid);
1244 /* Add the initial process as the first LWP to the list. */
1245 lp = add_initial_lwp (ptid);
1247 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1248 if (!WIFSTOPPED (status))
1250 if (WIFEXITED (status))
1252 int exit_code = WEXITSTATUS (status);
1254 target_terminal_ours ();
1255 target_mourn_inferior (inferior_ptid);
1257 error (_("Unable to attach: program exited normally."));
1259 error (_("Unable to attach: program exited with code %d."),
1262 else if (WIFSIGNALED (status))
1264 enum gdb_signal signo;
1266 target_terminal_ours ();
1267 target_mourn_inferior (inferior_ptid);
1269 signo = gdb_signal_from_host (WTERMSIG (status));
1270 error (_("Unable to attach: program terminated with signal "
1272 gdb_signal_to_name (signo),
1273 gdb_signal_to_string (signo));
1276 internal_error (__FILE__, __LINE__,
1277 _("unexpected status %d for PID %ld"),
1278 status, (long) ptid_get_lwp (ptid));
1283 /* Save the wait status to report later. */
1285 if (debug_linux_nat)
1286 fprintf_unfiltered (gdb_stdlog,
1287 "LNA: waitpid %ld, saving status %s\n",
1288 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1290 lp->status = status;
1292 /* We must attach to every LWP. If /proc is mounted, use that to
1293 find them now. The inferior may be using raw clone instead of
1294 using pthreads. But even if it is using pthreads, thread_db
1295 walks structures in the inferior's address space to find the list
1296 of threads/LWPs, and those structures may well be corrupted.
1297 Note that once thread_db is loaded, we'll still use it to list
1298 threads and associate pthread info with each LWP. */
1299 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1300 attach_proc_task_lwp_callback);
1302 if (target_can_async_p ())
1306 /* Get pending signal of THREAD as a host signal number, for detaching
1307 purposes. This is the signal the thread last stopped for, which we
1308 need to deliver to the thread when detaching, otherwise, it'd be
1312 get_detach_signal (struct lwp_info *lp)
1314 enum gdb_signal signo = GDB_SIGNAL_0;
1316 /* If we paused threads momentarily, we may have stored pending
1317 events in lp->status or lp->waitstatus (see stop_wait_callback),
1318 and GDB core hasn't seen any signal for those threads.
1319 Otherwise, the last signal reported to the core is found in the
1320 thread object's stop_signal.
1322 There's a corner case that isn't handled here at present. Only
1323 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1324 stop_signal make sense as a real signal to pass to the inferior.
1325 Some catchpoint related events, like
1326 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1327 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1328 those traps are debug API (ptrace in our case) related and
1329 induced; the inferior wouldn't see them if it wasn't being
1330 traced. Hence, we should never pass them to the inferior, even
1331 when set to pass state. Since this corner case isn't handled by
1332 infrun.c when proceeding with a signal, for consistency, neither
1333 do we handle it here (or elsewhere in the file we check for
1334 signal pass state). Normally SIGTRAP isn't set to pass state, so
1335 this is really a corner case. */
1337 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1338 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1339 else if (lp->status)
1340 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1341 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1343 struct thread_info *tp = find_thread_ptid (lp->ptid);
1345 if (tp->suspend.waitstatus_pending_p)
1346 signo = tp->suspend.waitstatus.value.sig;
1348 signo = tp->suspend.stop_signal;
1350 else if (!target_is_non_stop_p ())
1352 struct target_waitstatus last;
1355 get_last_target_status (&last_ptid, &last);
1357 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1359 struct thread_info *tp = find_thread_ptid (lp->ptid);
1361 signo = tp->suspend.stop_signal;
1365 if (signo == GDB_SIGNAL_0)
1367 if (debug_linux_nat)
1368 fprintf_unfiltered (gdb_stdlog,
1369 "GPT: lwp %s has no pending signal\n",
1370 target_pid_to_str (lp->ptid));
1372 else if (!signal_pass_state (signo))
1374 if (debug_linux_nat)
1375 fprintf_unfiltered (gdb_stdlog,
1376 "GPT: lwp %s had signal %s, "
1377 "but it is in no pass state\n",
1378 target_pid_to_str (lp->ptid),
1379 gdb_signal_to_string (signo));
1383 if (debug_linux_nat)
1384 fprintf_unfiltered (gdb_stdlog,
1385 "GPT: lwp %s has pending signal %s\n",
1386 target_pid_to_str (lp->ptid),
1387 gdb_signal_to_string (signo));
1389 return gdb_signal_to_host (signo);
1395 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1396 signal number that should be passed to the LWP when detaching.
1397 Otherwise pass any pending signal the LWP may have, if any. */
1400 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1402 int lwpid = ptid_get_lwp (lp->ptid);
1405 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1407 if (debug_linux_nat && lp->status)
1408 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1409 strsignal (WSTOPSIG (lp->status)),
1410 target_pid_to_str (lp->ptid));
1412 /* If there is a pending SIGSTOP, get rid of it. */
1415 if (debug_linux_nat)
1416 fprintf_unfiltered (gdb_stdlog,
1417 "DC: Sending SIGCONT to %s\n",
1418 target_pid_to_str (lp->ptid));
1420 kill_lwp (lwpid, SIGCONT);
1424 if (signo_p == NULL)
1426 /* Pass on any pending signal for this LWP. */
1427 signo = get_detach_signal (lp);
1432 /* Preparing to resume may try to write registers, and fail if the
1433 lwp is zombie. If that happens, ignore the error. We'll handle
1434 it below, when detach fails with ESRCH. */
1437 if (linux_nat_prepare_to_resume != NULL)
1438 linux_nat_prepare_to_resume (lp);
1440 CATCH (ex, RETURN_MASK_ERROR)
1442 if (!check_ptrace_stopped_lwp_gone (lp))
1443 throw_exception (ex);
1447 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1449 int save_errno = errno;
1451 /* We know the thread exists, so ESRCH must mean the lwp is
1452 zombie. This can happen if one of the already-detached
1453 threads exits the whole thread group. In that case we're
1454 still attached, and must reap the lwp. */
1455 if (save_errno == ESRCH)
1459 ret = my_waitpid (lwpid, &status, __WALL);
1462 warning (_("Couldn't reap LWP %d while detaching: %s"),
1463 lwpid, strerror (errno));
1465 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1467 warning (_("Reaping LWP %d while detaching "
1468 "returned unexpected status 0x%x"),
1474 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1475 safe_strerror (save_errno));
1478 else if (debug_linux_nat)
1480 fprintf_unfiltered (gdb_stdlog,
1481 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1482 target_pid_to_str (lp->ptid),
1486 delete_lwp (lp->ptid);
1490 detach_callback (struct lwp_info *lp, void *data)
1492 /* We don't actually detach from the thread group leader just yet.
1493 If the thread group exits, we must reap the zombie clone lwps
1494 before we're able to reap the leader. */
1495 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1496 detach_one_lwp (lp, NULL);
1501 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1504 struct lwp_info *main_lwp;
1506 pid = ptid_get_pid (inferior_ptid);
1508 /* Don't unregister from the event loop, as there may be other
1509 inferiors running. */
1511 /* Stop all threads before detaching. ptrace requires that the
1512 thread is stopped to sucessfully detach. */
1513 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1514 /* ... and wait until all of them have reported back that
1515 they're no longer running. */
1516 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1518 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1520 /* Only the initial process should be left right now. */
1521 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1523 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1525 if (forks_exist_p ())
1527 /* Multi-fork case. The current inferior_ptid is being detached
1528 from, but there are other viable forks to debug. Detach from
1529 the current fork, and context-switch to the first
1531 linux_fork_detach (args, from_tty);
1537 target_announce_detach (from_tty);
1539 /* Pass on any pending signal for the last LWP, unless the user
1540 requested detaching with a different signal (most likely 0,
1541 meaning, discard the signal). */
1543 signo = atoi (args);
1545 signo = get_detach_signal (main_lwp);
1547 detach_one_lwp (main_lwp, &signo);
1549 inf_ptrace_detach_success (ops);
1553 /* Resume execution of the inferior process. If STEP is nonzero,
1554 single-step it. If SIGNAL is nonzero, give it that signal. */
1557 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1558 enum gdb_signal signo)
1562 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1563 We only presently need that if the LWP is stepped though (to
1564 handle the case of stepping a breakpoint instruction). */
1567 struct regcache *regcache = get_thread_regcache (lp->ptid);
1569 lp->stop_pc = regcache_read_pc (regcache);
1574 if (linux_nat_prepare_to_resume != NULL)
1575 linux_nat_prepare_to_resume (lp);
1576 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1578 /* Successfully resumed. Clear state that no longer makes sense,
1579 and mark the LWP as running. Must not do this before resuming
1580 otherwise if that fails other code will be confused. E.g., we'd
1581 later try to stop the LWP and hang forever waiting for a stop
1582 status. Note that we must not throw after this is cleared,
1583 otherwise handle_zombie_lwp_error would get confused. */
1586 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1587 registers_changed_ptid (lp->ptid);
1590 /* Called when we try to resume a stopped LWP and that errors out. If
1591 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1592 or about to become), discard the error, clear any pending status
1593 the LWP may have, and return true (we'll collect the exit status
1594 soon enough). Otherwise, return false. */
1597 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1599 /* If we get an error after resuming the LWP successfully, we'd
1600 confuse !T state for the LWP being gone. */
1601 gdb_assert (lp->stopped);
1603 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1604 because even if ptrace failed with ESRCH, the tracee may be "not
1605 yet fully dead", but already refusing ptrace requests. In that
1606 case the tracee has 'R (Running)' state for a little bit
1607 (observed in Linux 3.18). See also the note on ESRCH in the
1608 ptrace(2) man page. Instead, check whether the LWP has any state
1609 other than ptrace-stopped. */
1611 /* Don't assume anything if /proc/PID/status can't be read. */
1612 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1614 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1616 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1622 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1623 disappears while we try to resume it. */
1626 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1630 linux_resume_one_lwp_throw (lp, step, signo);
1632 CATCH (ex, RETURN_MASK_ERROR)
1634 if (!check_ptrace_stopped_lwp_gone (lp))
1635 throw_exception (ex);
1643 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1647 struct inferior *inf = find_inferior_ptid (lp->ptid);
1649 if (inf->vfork_child != NULL)
1651 if (debug_linux_nat)
1652 fprintf_unfiltered (gdb_stdlog,
1653 "RC: Not resuming %s (vfork parent)\n",
1654 target_pid_to_str (lp->ptid));
1656 else if (!lwp_status_pending_p (lp))
1658 if (debug_linux_nat)
1659 fprintf_unfiltered (gdb_stdlog,
1660 "RC: Resuming sibling %s, %s, %s\n",
1661 target_pid_to_str (lp->ptid),
1662 (signo != GDB_SIGNAL_0
1663 ? strsignal (gdb_signal_to_host (signo))
1665 step ? "step" : "resume");
1667 linux_resume_one_lwp (lp, step, signo);
1671 if (debug_linux_nat)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "RC: Not resuming sibling %s (has pending)\n",
1674 target_pid_to_str (lp->ptid));
1679 if (debug_linux_nat)
1680 fprintf_unfiltered (gdb_stdlog,
1681 "RC: Not resuming sibling %s (not stopped)\n",
1682 target_pid_to_str (lp->ptid));
1686 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1687 Resume LWP with the last stop signal, if it is in pass state. */
1690 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1692 enum gdb_signal signo = GDB_SIGNAL_0;
1699 struct thread_info *thread;
1701 thread = find_thread_ptid (lp->ptid);
1704 signo = thread->suspend.stop_signal;
1705 thread->suspend.stop_signal = GDB_SIGNAL_0;
1709 resume_lwp (lp, 0, signo);
1714 resume_clear_callback (struct lwp_info *lp, void *data)
1717 lp->last_resume_kind = resume_stop;
1722 resume_set_callback (struct lwp_info *lp, void *data)
1725 lp->last_resume_kind = resume_continue;
1730 linux_nat_resume (struct target_ops *ops,
1731 ptid_t ptid, int step, enum gdb_signal signo)
1733 struct lwp_info *lp;
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1739 step ? "step" : "resume",
1740 target_pid_to_str (ptid),
1741 (signo != GDB_SIGNAL_0
1742 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1743 target_pid_to_str (inferior_ptid));
1745 /* A specific PTID means `step only this process id'. */
1746 resume_many = (ptid_equal (minus_one_ptid, ptid)
1747 || ptid_is_pid (ptid));
1749 /* Mark the lwps we're resuming as resumed. */
1750 iterate_over_lwps (ptid, resume_set_callback, NULL);
1752 /* See if it's the current inferior that should be handled
1755 lp = find_lwp_pid (inferior_ptid);
1757 lp = find_lwp_pid (ptid);
1758 gdb_assert (lp != NULL);
1760 /* Remember if we're stepping. */
1761 lp->last_resume_kind = step ? resume_step : resume_continue;
1763 /* If we have a pending wait status for this thread, there is no
1764 point in resuming the process. But first make sure that
1765 linux_nat_wait won't preemptively handle the event - we
1766 should never take this short-circuit if we are going to
1767 leave LP running, since we have skipped resuming all the
1768 other threads. This bit of code needs to be synchronized
1769 with linux_nat_wait. */
1771 if (lp->status && WIFSTOPPED (lp->status))
1774 && WSTOPSIG (lp->status)
1775 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1777 if (debug_linux_nat)
1778 fprintf_unfiltered (gdb_stdlog,
1779 "LLR: Not short circuiting for ignored "
1780 "status 0x%x\n", lp->status);
1782 /* FIXME: What should we do if we are supposed to continue
1783 this thread with a signal? */
1784 gdb_assert (signo == GDB_SIGNAL_0);
1785 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1790 if (lwp_status_pending_p (lp))
1792 /* FIXME: What should we do if we are supposed to continue
1793 this thread with a signal? */
1794 gdb_assert (signo == GDB_SIGNAL_0);
1796 if (debug_linux_nat)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "LLR: Short circuiting for status 0x%x\n",
1801 if (target_can_async_p ())
1804 /* Tell the event loop we have something to process. */
1811 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1813 if (debug_linux_nat)
1814 fprintf_unfiltered (gdb_stdlog,
1815 "LLR: %s %s, %s (resume event thread)\n",
1816 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1817 target_pid_to_str (lp->ptid),
1818 (signo != GDB_SIGNAL_0
1819 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1821 linux_resume_one_lwp (lp, step, signo);
1823 if (target_can_async_p ())
1827 /* Send a signal to an LWP. */
1830 kill_lwp (int lwpid, int signo)
1835 ret = syscall (__NR_tkill, lwpid, signo);
1836 if (errno == ENOSYS)
1838 /* If tkill fails, then we are not using nptl threads, a
1839 configuration we no longer support. */
1840 perror_with_name (("tkill"));
1845 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1846 event, check if the core is interested in it: if not, ignore the
1847 event, and keep waiting; otherwise, we need to toggle the LWP's
1848 syscall entry/exit status, since the ptrace event itself doesn't
1849 indicate it, and report the trap to higher layers. */
1852 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1854 struct target_waitstatus *ourstatus = &lp->waitstatus;
1855 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1856 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1860 /* If we're stopping threads, there's a SIGSTOP pending, which
1861 makes it so that the LWP reports an immediate syscall return,
1862 followed by the SIGSTOP. Skip seeing that "return" using
1863 PTRACE_CONT directly, and let stop_wait_callback collect the
1864 SIGSTOP. Later when the thread is resumed, a new syscall
1865 entry event. If we didn't do this (and returned 0), we'd
1866 leave a syscall entry pending, and our caller, by using
1867 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1868 itself. Later, when the user re-resumes this LWP, we'd see
1869 another syscall entry event and we'd mistake it for a return.
1871 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1872 (leaving immediately with LWP->signalled set, without issuing
1873 a PTRACE_CONT), it would still be problematic to leave this
1874 syscall enter pending, as later when the thread is resumed,
1875 it would then see the same syscall exit mentioned above,
1876 followed by the delayed SIGSTOP, while the syscall didn't
1877 actually get to execute. It seems it would be even more
1878 confusing to the user. */
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "LHST: ignoring syscall %d "
1883 "for LWP %ld (stopping threads), "
1884 "resuming with PTRACE_CONT for SIGSTOP\n",
1886 ptid_get_lwp (lp->ptid));
1888 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1889 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1894 /* Always update the entry/return state, even if this particular
1895 syscall isn't interesting to the core now. In async mode,
1896 the user could install a new catchpoint for this syscall
1897 between syscall enter/return, and we'll need to know to
1898 report a syscall return if that happens. */
1899 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1900 ? TARGET_WAITKIND_SYSCALL_RETURN
1901 : TARGET_WAITKIND_SYSCALL_ENTRY);
1903 if (catch_syscall_enabled ())
1905 if (catching_syscall_number (syscall_number))
1907 /* Alright, an event to report. */
1908 ourstatus->kind = lp->syscall_state;
1909 ourstatus->value.syscall_number = syscall_number;
1911 if (debug_linux_nat)
1912 fprintf_unfiltered (gdb_stdlog,
1913 "LHST: stopping for %s of syscall %d"
1916 == TARGET_WAITKIND_SYSCALL_ENTRY
1917 ? "entry" : "return",
1919 ptid_get_lwp (lp->ptid));
1923 if (debug_linux_nat)
1924 fprintf_unfiltered (gdb_stdlog,
1925 "LHST: ignoring %s of syscall %d "
1927 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1928 ? "entry" : "return",
1930 ptid_get_lwp (lp->ptid));
1934 /* If we had been syscall tracing, and hence used PT_SYSCALL
1935 before on this LWP, it could happen that the user removes all
1936 syscall catchpoints before we get to process this event.
1937 There are two noteworthy issues here:
1939 - When stopped at a syscall entry event, resuming with
1940 PT_STEP still resumes executing the syscall and reports a
1943 - Only PT_SYSCALL catches syscall enters. If we last
1944 single-stepped this thread, then this event can't be a
1945 syscall enter. If we last single-stepped this thread, this
1946 has to be a syscall exit.
1948 The points above mean that the next resume, be it PT_STEP or
1949 PT_CONTINUE, can not trigger a syscall trace event. */
1950 if (debug_linux_nat)
1951 fprintf_unfiltered (gdb_stdlog,
1952 "LHST: caught syscall event "
1953 "with no syscall catchpoints."
1954 " %d for LWP %ld, ignoring\n",
1956 ptid_get_lwp (lp->ptid));
1957 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1960 /* The core isn't interested in this event. For efficiency, avoid
1961 stopping all threads only to have the core resume them all again.
1962 Since we're not stopping threads, if we're still syscall tracing
1963 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1964 subsequent syscall. Simply resume using the inf-ptrace layer,
1965 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1967 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1971 /* Handle a GNU/Linux extended wait response. If we see a clone
1972 event, we need to add the new LWP to our list (and not report the
1973 trap to higher layers). This function returns non-zero if the
1974 event should be ignored and we should wait again. If STOPPING is
1975 true, the new LWP remains stopped, otherwise it is continued. */
1978 linux_handle_extended_wait (struct lwp_info *lp, int status)
1980 int pid = ptid_get_lwp (lp->ptid);
1981 struct target_waitstatus *ourstatus = &lp->waitstatus;
1982 int event = linux_ptrace_get_extended_event (status);
1984 /* All extended events we currently use are mid-syscall. Only
1985 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1986 you have to be using PTRACE_SEIZE to get that. */
1987 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1989 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1990 || event == PTRACE_EVENT_CLONE)
1992 unsigned long new_pid;
1995 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1997 /* If we haven't already seen the new PID stop, wait for it now. */
1998 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2000 /* The new child has a pending SIGSTOP. We can't affect it until it
2001 hits the SIGSTOP, but we're already attached. */
2002 ret = my_waitpid (new_pid, &status, __WALL);
2004 perror_with_name (_("waiting for new child"));
2005 else if (ret != new_pid)
2006 internal_error (__FILE__, __LINE__,
2007 _("wait returned unexpected PID %d"), ret);
2008 else if (!WIFSTOPPED (status))
2009 internal_error (__FILE__, __LINE__,
2010 _("wait returned unexpected status 0x%x"), status);
2013 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2015 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2017 /* The arch-specific native code may need to know about new
2018 forks even if those end up never mapped to an
2020 if (linux_nat_new_fork != NULL)
2021 linux_nat_new_fork (lp, new_pid);
2024 if (event == PTRACE_EVENT_FORK
2025 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2027 /* Handle checkpointing by linux-fork.c here as a special
2028 case. We don't want the follow-fork-mode or 'catch fork'
2029 to interfere with this. */
2031 /* This won't actually modify the breakpoint list, but will
2032 physically remove the breakpoints from the child. */
2033 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2035 /* Retain child fork in ptrace (stopped) state. */
2036 if (!find_fork_pid (new_pid))
2039 /* Report as spurious, so that infrun doesn't want to follow
2040 this fork. We're actually doing an infcall in
2042 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2044 /* Report the stop to the core. */
2048 if (event == PTRACE_EVENT_FORK)
2049 ourstatus->kind = TARGET_WAITKIND_FORKED;
2050 else if (event == PTRACE_EVENT_VFORK)
2051 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2052 else if (event == PTRACE_EVENT_CLONE)
2054 struct lwp_info *new_lp;
2056 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2058 if (debug_linux_nat)
2059 fprintf_unfiltered (gdb_stdlog,
2060 "LHEW: Got clone event "
2061 "from LWP %d, new child is LWP %ld\n",
2064 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2065 new_lp->stopped = 1;
2066 new_lp->resumed = 1;
2068 /* If the thread_db layer is active, let it record the user
2069 level thread id and status, and add the thread to GDB's
2071 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2073 /* The process is not using thread_db. Add the LWP to
2075 target_post_attach (ptid_get_lwp (new_lp->ptid));
2076 add_thread (new_lp->ptid);
2079 /* Even if we're stopping the thread for some reason
2080 internal to this module, from the perspective of infrun
2081 and the user/frontend, this new thread is running until
2082 it next reports a stop. */
2083 set_running (new_lp->ptid, 1);
2084 set_executing (new_lp->ptid, 1);
2086 if (WSTOPSIG (status) != SIGSTOP)
2088 /* This can happen if someone starts sending signals to
2089 the new thread before it gets a chance to run, which
2090 have a lower number than SIGSTOP (e.g. SIGUSR1).
2091 This is an unlikely case, and harder to handle for
2092 fork / vfork than for clone, so we do not try - but
2093 we handle it for clone events here. */
2095 new_lp->signalled = 1;
2097 /* We created NEW_LP so it cannot yet contain STATUS. */
2098 gdb_assert (new_lp->status == 0);
2100 /* Save the wait status to report later. */
2101 if (debug_linux_nat)
2102 fprintf_unfiltered (gdb_stdlog,
2103 "LHEW: waitpid of new LWP %ld, "
2104 "saving status %s\n",
2105 (long) ptid_get_lwp (new_lp->ptid),
2106 status_to_str (status));
2107 new_lp->status = status;
2109 else if (report_thread_events)
2111 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2112 new_lp->status = status;
2121 if (event == PTRACE_EVENT_EXEC)
2123 if (debug_linux_nat)
2124 fprintf_unfiltered (gdb_stdlog,
2125 "LHEW: Got exec event from LWP %ld\n",
2126 ptid_get_lwp (lp->ptid));
2128 ourstatus->kind = TARGET_WAITKIND_EXECD;
2129 ourstatus->value.execd_pathname
2130 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2132 /* The thread that execed must have been resumed, but, when a
2133 thread execs, it changes its tid to the tgid, and the old
2134 tgid thread might have not been resumed. */
2139 if (event == PTRACE_EVENT_VFORK_DONE)
2141 if (current_inferior ()->waiting_for_vfork_done)
2143 if (debug_linux_nat)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "LHEW: Got expected PTRACE_EVENT_"
2146 "VFORK_DONE from LWP %ld: stopping\n",
2147 ptid_get_lwp (lp->ptid));
2149 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2153 if (debug_linux_nat)
2154 fprintf_unfiltered (gdb_stdlog,
2155 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2156 "from LWP %ld: ignoring\n",
2157 ptid_get_lwp (lp->ptid));
2161 internal_error (__FILE__, __LINE__,
2162 _("unknown ptrace event %d"), event);
2165 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2169 wait_lwp (struct lwp_info *lp)
2173 int thread_dead = 0;
2176 gdb_assert (!lp->stopped);
2177 gdb_assert (lp->status == 0);
2179 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2180 block_child_signals (&prev_mask);
2184 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2185 if (pid == -1 && errno == ECHILD)
2187 /* The thread has previously exited. We need to delete it
2188 now because if this was a non-leader thread execing, we
2189 won't get an exit event. See comments on exec events at
2190 the top of the file. */
2192 if (debug_linux_nat)
2193 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2194 target_pid_to_str (lp->ptid));
2199 /* Bugs 10970, 12702.
2200 Thread group leader may have exited in which case we'll lock up in
2201 waitpid if there are other threads, even if they are all zombies too.
2202 Basically, we're not supposed to use waitpid this way.
2203 tkill(pid,0) cannot be used here as it gets ESRCH for both
2204 for zombie and running processes.
2206 As a workaround, check if we're waiting for the thread group leader and
2207 if it's a zombie, and avoid calling waitpid if it is.
2209 This is racy, what if the tgl becomes a zombie right after we check?
2210 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2211 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2213 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2214 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2217 if (debug_linux_nat)
2218 fprintf_unfiltered (gdb_stdlog,
2219 "WL: Thread group leader %s vanished.\n",
2220 target_pid_to_str (lp->ptid));
2224 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2225 get invoked despite our caller had them intentionally blocked by
2226 block_child_signals. This is sensitive only to the loop of
2227 linux_nat_wait_1 and there if we get called my_waitpid gets called
2228 again before it gets to sigsuspend so we can safely let the handlers
2229 get executed here. */
2231 if (debug_linux_nat)
2232 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2233 sigsuspend (&suspend_mask);
2236 restore_child_signals_mask (&prev_mask);
2240 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2242 if (debug_linux_nat)
2244 fprintf_unfiltered (gdb_stdlog,
2245 "WL: waitpid %s received %s\n",
2246 target_pid_to_str (lp->ptid),
2247 status_to_str (status));
2250 /* Check if the thread has exited. */
2251 if (WIFEXITED (status) || WIFSIGNALED (status))
2253 if (report_thread_events
2254 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2256 if (debug_linux_nat)
2257 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2258 ptid_get_pid (lp->ptid));
2260 /* If this is the leader exiting, it means the whole
2261 process is gone. Store the status to report to the
2262 core. Store it in lp->waitstatus, because lp->status
2263 would be ambiguous (W_EXITCODE(0,0) == 0). */
2264 store_waitstatus (&lp->waitstatus, status);
2269 if (debug_linux_nat)
2270 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2271 target_pid_to_str (lp->ptid));
2281 gdb_assert (WIFSTOPPED (status));
2284 if (lp->must_set_ptrace_flags)
2286 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2287 int options = linux_nat_ptrace_options (inf->attach_flag);
2289 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2290 lp->must_set_ptrace_flags = 0;
2293 /* Handle GNU/Linux's syscall SIGTRAPs. */
2294 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2296 /* No longer need the sysgood bit. The ptrace event ends up
2297 recorded in lp->waitstatus if we care for it. We can carry
2298 on handling the event like a regular SIGTRAP from here
2300 status = W_STOPCODE (SIGTRAP);
2301 if (linux_handle_syscall_trap (lp, 1))
2302 return wait_lwp (lp);
2306 /* Almost all other ptrace-stops are known to be outside of system
2307 calls, with further exceptions in linux_handle_extended_wait. */
2308 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2311 /* Handle GNU/Linux's extended waitstatus for trace events. */
2312 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2313 && linux_is_extended_waitstatus (status))
2315 if (debug_linux_nat)
2316 fprintf_unfiltered (gdb_stdlog,
2317 "WL: Handling extended status 0x%06x\n",
2319 linux_handle_extended_wait (lp, status);
2326 /* Send a SIGSTOP to LP. */
2329 stop_callback (struct lwp_info *lp, void *data)
2331 if (!lp->stopped && !lp->signalled)
2335 if (debug_linux_nat)
2337 fprintf_unfiltered (gdb_stdlog,
2338 "SC: kill %s **<SIGSTOP>**\n",
2339 target_pid_to_str (lp->ptid));
2342 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2343 if (debug_linux_nat)
2345 fprintf_unfiltered (gdb_stdlog,
2346 "SC: lwp kill %d %s\n",
2348 errno ? safe_strerror (errno) : "ERRNO-OK");
2352 gdb_assert (lp->status == 0);
2358 /* Request a stop on LWP. */
2361 linux_stop_lwp (struct lwp_info *lwp)
2363 stop_callback (lwp, NULL);
2366 /* See linux-nat.h */
2369 linux_stop_and_wait_all_lwps (void)
2371 /* Stop all LWP's ... */
2372 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2374 /* ... and wait until all of them have reported back that
2375 they're no longer running. */
2376 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2379 /* See linux-nat.h */
2382 linux_unstop_all_lwps (void)
2384 iterate_over_lwps (minus_one_ptid,
2385 resume_stopped_resumed_lwps, &minus_one_ptid);
2388 /* Return non-zero if LWP PID has a pending SIGINT. */
2391 linux_nat_has_pending_sigint (int pid)
2393 sigset_t pending, blocked, ignored;
2395 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2397 if (sigismember (&pending, SIGINT)
2398 && !sigismember (&ignored, SIGINT))
2404 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2407 set_ignore_sigint (struct lwp_info *lp, void *data)
2409 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2410 flag to consume the next one. */
2411 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2412 && WSTOPSIG (lp->status) == SIGINT)
2415 lp->ignore_sigint = 1;
2420 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2421 This function is called after we know the LWP has stopped; if the LWP
2422 stopped before the expected SIGINT was delivered, then it will never have
2423 arrived. Also, if the signal was delivered to a shared queue and consumed
2424 by a different thread, it will never be delivered to this LWP. */
2427 maybe_clear_ignore_sigint (struct lwp_info *lp)
2429 if (!lp->ignore_sigint)
2432 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2434 if (debug_linux_nat)
2435 fprintf_unfiltered (gdb_stdlog,
2436 "MCIS: Clearing bogus flag for %s\n",
2437 target_pid_to_str (lp->ptid));
2438 lp->ignore_sigint = 0;
2442 /* Fetch the possible triggered data watchpoint info and store it in
2445 On some archs, like x86, that use debug registers to set
2446 watchpoints, it's possible that the way to know which watched
2447 address trapped, is to check the register that is used to select
2448 which address to watch. Problem is, between setting the watchpoint
2449 and reading back which data address trapped, the user may change
2450 the set of watchpoints, and, as a consequence, GDB changes the
2451 debug registers in the inferior. To avoid reading back a stale
2452 stopped-data-address when that happens, we cache in LP the fact
2453 that a watchpoint trapped, and the corresponding data address, as
2454 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2455 registers meanwhile, we have the cached data we can rely on. */
2458 check_stopped_by_watchpoint (struct lwp_info *lp)
2460 if (linux_ops->to_stopped_by_watchpoint == NULL)
2463 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2464 inferior_ptid = lp->ptid;
2466 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2468 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2470 if (linux_ops->to_stopped_data_address != NULL)
2471 lp->stopped_data_address_p =
2472 linux_ops->to_stopped_data_address (¤t_target,
2473 &lp->stopped_data_address);
2475 lp->stopped_data_address_p = 0;
2478 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2481 /* Returns true if the LWP had stopped for a watchpoint. */
2484 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2486 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2488 gdb_assert (lp != NULL);
2490 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2494 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2496 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2498 gdb_assert (lp != NULL);
2500 *addr_p = lp->stopped_data_address;
2502 return lp->stopped_data_address_p;
2505 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2508 sigtrap_is_event (int status)
2510 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2513 /* Set alternative SIGTRAP-like events recognizer. If
2514 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2518 linux_nat_set_status_is_event (struct target_ops *t,
2519 int (*status_is_event) (int status))
2521 linux_nat_status_is_event = status_is_event;
2524 /* Wait until LP is stopped. */
2527 stop_wait_callback (struct lwp_info *lp, void *data)
2529 struct inferior *inf = find_inferior_ptid (lp->ptid);
2531 /* If this is a vfork parent, bail out, it is not going to report
2532 any SIGSTOP until the vfork is done with. */
2533 if (inf->vfork_child != NULL)
2540 status = wait_lwp (lp);
2544 if (lp->ignore_sigint && WIFSTOPPED (status)
2545 && WSTOPSIG (status) == SIGINT)
2547 lp->ignore_sigint = 0;
2550 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2552 if (debug_linux_nat)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "PTRACE_CONT %s, 0, 0 (%s) "
2555 "(discarding SIGINT)\n",
2556 target_pid_to_str (lp->ptid),
2557 errno ? safe_strerror (errno) : "OK");
2559 return stop_wait_callback (lp, NULL);
2562 maybe_clear_ignore_sigint (lp);
2564 if (WSTOPSIG (status) != SIGSTOP)
2566 /* The thread was stopped with a signal other than SIGSTOP. */
2568 if (debug_linux_nat)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "SWC: Pending event %s in %s\n",
2571 status_to_str ((int) status),
2572 target_pid_to_str (lp->ptid));
2574 /* Save the sigtrap event. */
2575 lp->status = status;
2576 gdb_assert (lp->signalled);
2577 save_stop_reason (lp);
2581 /* We caught the SIGSTOP that we intended to catch, so
2582 there's no SIGSTOP pending. */
2584 if (debug_linux_nat)
2585 fprintf_unfiltered (gdb_stdlog,
2586 "SWC: Expected SIGSTOP caught for %s.\n",
2587 target_pid_to_str (lp->ptid));
2589 /* Reset SIGNALLED only after the stop_wait_callback call
2590 above as it does gdb_assert on SIGNALLED. */
2598 /* Return non-zero if LP has a wait status pending. Discard the
2599 pending event and resume the LWP if the event that originally
2600 caused the stop became uninteresting. */
2603 status_callback (struct lwp_info *lp, void *data)
2605 /* Only report a pending wait status if we pretend that this has
2606 indeed been resumed. */
2610 if (!lwp_status_pending_p (lp))
2613 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2614 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2616 struct regcache *regcache = get_thread_regcache (lp->ptid);
2620 pc = regcache_read_pc (regcache);
2622 if (pc != lp->stop_pc)
2624 if (debug_linux_nat)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "SC: PC of %s changed. was=%s, now=%s\n",
2627 target_pid_to_str (lp->ptid),
2628 paddress (target_gdbarch (), lp->stop_pc),
2629 paddress (target_gdbarch (), pc));
2633 #if !USE_SIGTRAP_SIGINFO
2634 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2636 if (debug_linux_nat)
2637 fprintf_unfiltered (gdb_stdlog,
2638 "SC: previous breakpoint of %s, at %s gone\n",
2639 target_pid_to_str (lp->ptid),
2640 paddress (target_gdbarch (), lp->stop_pc));
2648 if (debug_linux_nat)
2649 fprintf_unfiltered (gdb_stdlog,
2650 "SC: pending event of %s cancelled.\n",
2651 target_pid_to_str (lp->ptid));
2654 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2662 /* Count the LWP's that have had events. */
2665 count_events_callback (struct lwp_info *lp, void *data)
2667 int *count = (int *) data;
2669 gdb_assert (count != NULL);
2671 /* Select only resumed LWPs that have an event pending. */
2672 if (lp->resumed && lwp_status_pending_p (lp))
2678 /* Select the LWP (if any) that is currently being single-stepped. */
2681 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2683 if (lp->last_resume_kind == resume_step
2690 /* Returns true if LP has a status pending. */
2693 lwp_status_pending_p (struct lwp_info *lp)
2695 /* We check for lp->waitstatus in addition to lp->status, because we
2696 can have pending process exits recorded in lp->status and
2697 W_EXITCODE(0,0) happens to be 0. */
2698 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2701 /* Select the Nth LWP that has had an event. */
2704 select_event_lwp_callback (struct lwp_info *lp, void *data)
2706 int *selector = (int *) data;
2708 gdb_assert (selector != NULL);
2710 /* Select only resumed LWPs that have an event pending. */
2711 if (lp->resumed && lwp_status_pending_p (lp))
2712 if ((*selector)-- == 0)
2718 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2719 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2720 and save the result in the LWP's stop_reason field. If it stopped
2721 for a breakpoint, decrement the PC if necessary on the lwp's
2725 save_stop_reason (struct lwp_info *lp)
2727 struct regcache *regcache;
2728 struct gdbarch *gdbarch;
2731 #if USE_SIGTRAP_SIGINFO
2735 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2736 gdb_assert (lp->status != 0);
2738 if (!linux_nat_status_is_event (lp->status))
2741 regcache = get_thread_regcache (lp->ptid);
2742 gdbarch = get_regcache_arch (regcache);
2744 pc = regcache_read_pc (regcache);
2745 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2747 #if USE_SIGTRAP_SIGINFO
2748 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2750 if (siginfo.si_signo == SIGTRAP)
2752 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2753 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2755 /* The si_code is ambiguous on this arch -- check debug
2757 if (!check_stopped_by_watchpoint (lp))
2758 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2760 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2762 /* If we determine the LWP stopped for a SW breakpoint,
2763 trust it. Particularly don't check watchpoint
2764 registers, because at least on s390, we'd find
2765 stopped-by-watchpoint as long as there's a watchpoint
2767 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2769 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2771 /* This can indicate either a hardware breakpoint or
2772 hardware watchpoint. Check debug registers. */
2773 if (!check_stopped_by_watchpoint (lp))
2774 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2776 else if (siginfo.si_code == TRAP_TRACE)
2778 if (debug_linux_nat)
2779 fprintf_unfiltered (gdb_stdlog,
2780 "CSBB: %s stopped by trace\n",
2781 target_pid_to_str (lp->ptid));
2783 /* We may have single stepped an instruction that
2784 triggered a watchpoint. In that case, on some
2785 architectures (such as x86), instead of TRAP_HWBKPT,
2786 si_code indicates TRAP_TRACE, and we need to check
2787 the debug registers separately. */
2788 check_stopped_by_watchpoint (lp);
2793 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2794 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2797 /* The LWP was either continued, or stepped a software
2798 breakpoint instruction. */
2799 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2802 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2803 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2805 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2806 check_stopped_by_watchpoint (lp);
2809 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2811 if (debug_linux_nat)
2812 fprintf_unfiltered (gdb_stdlog,
2813 "CSBB: %s stopped by software breakpoint\n",
2814 target_pid_to_str (lp->ptid));
2816 /* Back up the PC if necessary. */
2818 regcache_write_pc (regcache, sw_bp_pc);
2820 /* Update this so we record the correct stop PC below. */
2823 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2825 if (debug_linux_nat)
2826 fprintf_unfiltered (gdb_stdlog,
2827 "CSBB: %s stopped by hardware breakpoint\n",
2828 target_pid_to_str (lp->ptid));
2830 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2832 if (debug_linux_nat)
2833 fprintf_unfiltered (gdb_stdlog,
2834 "CSBB: %s stopped by hardware watchpoint\n",
2835 target_pid_to_str (lp->ptid));
2842 /* Returns true if the LWP had stopped for a software breakpoint. */
2845 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2847 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2849 gdb_assert (lp != NULL);
2851 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2854 /* Implement the supports_stopped_by_sw_breakpoint method. */
2857 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2859 return USE_SIGTRAP_SIGINFO;
2862 /* Returns true if the LWP had stopped for a hardware
2863 breakpoint/watchpoint. */
2866 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2868 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2870 gdb_assert (lp != NULL);
2872 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2875 /* Implement the supports_stopped_by_hw_breakpoint method. */
2878 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2880 return USE_SIGTRAP_SIGINFO;
2883 /* Select one LWP out of those that have events pending. */
2886 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2889 int random_selector;
2890 struct lwp_info *event_lp = NULL;
2892 /* Record the wait status for the original LWP. */
2893 (*orig_lp)->status = *status;
2895 /* In all-stop, give preference to the LWP that is being
2896 single-stepped. There will be at most one, and it will be the
2897 LWP that the core is most interested in. If we didn't do this,
2898 then we'd have to handle pending step SIGTRAPs somehow in case
2899 the core later continues the previously-stepped thread, as
2900 otherwise we'd report the pending SIGTRAP then, and the core, not
2901 having stepped the thread, wouldn't understand what the trap was
2902 for, and therefore would report it to the user as a random
2904 if (!target_is_non_stop_p ())
2906 event_lp = iterate_over_lwps (filter,
2907 select_singlestep_lwp_callback, NULL);
2908 if (event_lp != NULL)
2910 if (debug_linux_nat)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "SEL: Select single-step %s\n",
2913 target_pid_to_str (event_lp->ptid));
2917 if (event_lp == NULL)
2919 /* Pick one at random, out of those which have had events. */
2921 /* First see how many events we have. */
2922 iterate_over_lwps (filter, count_events_callback, &num_events);
2923 gdb_assert (num_events > 0);
2925 /* Now randomly pick a LWP out of those that have had
2927 random_selector = (int)
2928 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2930 if (debug_linux_nat && num_events > 1)
2931 fprintf_unfiltered (gdb_stdlog,
2932 "SEL: Found %d events, selecting #%d\n",
2933 num_events, random_selector);
2935 event_lp = iterate_over_lwps (filter,
2936 select_event_lwp_callback,
2940 if (event_lp != NULL)
2942 /* Switch the event LWP. */
2943 *orig_lp = event_lp;
2944 *status = event_lp->status;
2947 /* Flush the wait status for the event LWP. */
2948 (*orig_lp)->status = 0;
2951 /* Return non-zero if LP has been resumed. */
2954 resumed_callback (struct lwp_info *lp, void *data)
2959 /* Check if we should go on and pass this event to common code.
2960 Return the affected lwp if we are, or NULL otherwise. */
2962 static struct lwp_info *
2963 linux_nat_filter_event (int lwpid, int status)
2965 struct lwp_info *lp;
2966 int event = linux_ptrace_get_extended_event (status);
2968 lp = find_lwp_pid (pid_to_ptid (lwpid));
2970 /* Check for stop events reported by a process we didn't already
2971 know about - anything not already in our LWP list.
2973 If we're expecting to receive stopped processes after
2974 fork, vfork, and clone events, then we'll just add the
2975 new one to our list and go back to waiting for the event
2976 to be reported - the stopped process might be returned
2977 from waitpid before or after the event is.
2979 But note the case of a non-leader thread exec'ing after the
2980 leader having exited, and gone from our lists. The non-leader
2981 thread changes its tid to the tgid. */
2983 if (WIFSTOPPED (status) && lp == NULL
2984 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2986 /* A multi-thread exec after we had seen the leader exiting. */
2987 if (debug_linux_nat)
2988 fprintf_unfiltered (gdb_stdlog,
2989 "LLW: Re-adding thread group leader LWP %d.\n",
2992 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2995 add_thread (lp->ptid);
2998 if (WIFSTOPPED (status) && !lp)
3000 if (debug_linux_nat)
3001 fprintf_unfiltered (gdb_stdlog,
3002 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3003 (long) lwpid, status_to_str (status));
3004 add_to_pid_list (&stopped_pids, lwpid, status);
3008 /* Make sure we don't report an event for the exit of an LWP not in
3009 our list, i.e. not part of the current process. This can happen
3010 if we detach from a program we originally forked and then it
3012 if (!WIFSTOPPED (status) && !lp)
3015 /* This LWP is stopped now. (And if dead, this prevents it from
3016 ever being continued.) */
3019 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3021 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3022 int options = linux_nat_ptrace_options (inf->attach_flag);
3024 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3025 lp->must_set_ptrace_flags = 0;
3028 /* Handle GNU/Linux's syscall SIGTRAPs. */
3029 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3031 /* No longer need the sysgood bit. The ptrace event ends up
3032 recorded in lp->waitstatus if we care for it. We can carry
3033 on handling the event like a regular SIGTRAP from here
3035 status = W_STOPCODE (SIGTRAP);
3036 if (linux_handle_syscall_trap (lp, 0))
3041 /* Almost all other ptrace-stops are known to be outside of system
3042 calls, with further exceptions in linux_handle_extended_wait. */
3043 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3046 /* Handle GNU/Linux's extended waitstatus for trace events. */
3047 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3048 && linux_is_extended_waitstatus (status))
3050 if (debug_linux_nat)
3051 fprintf_unfiltered (gdb_stdlog,
3052 "LLW: Handling extended status 0x%06x\n",
3054 if (linux_handle_extended_wait (lp, status))
3058 /* Check if the thread has exited. */
3059 if (WIFEXITED (status) || WIFSIGNALED (status))
3061 if (!report_thread_events
3062 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3064 if (debug_linux_nat)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "LLW: %s exited.\n",
3067 target_pid_to_str (lp->ptid));
3069 /* If there is at least one more LWP, then the exit signal
3070 was not the end of the debugged application and should be
3076 /* Note that even if the leader was ptrace-stopped, it can still
3077 exit, if e.g., some other thread brings down the whole
3078 process (calls `exit'). So don't assert that the lwp is
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LWP %ld exited (resumed=%d)\n",
3083 ptid_get_lwp (lp->ptid), lp->resumed);
3085 /* Dead LWP's aren't expected to reported a pending sigstop. */
3088 /* Store the pending event in the waitstatus, because
3089 W_EXITCODE(0,0) == 0. */
3090 store_waitstatus (&lp->waitstatus, status);
3094 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3095 an attempt to stop an LWP. */
3097 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3101 if (lp->last_resume_kind == resume_stop)
3103 if (debug_linux_nat)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "LLW: resume_stop SIGSTOP caught for %s.\n",
3106 target_pid_to_str (lp->ptid));
3110 /* This is a delayed SIGSTOP. Filter out the event. */
3112 if (debug_linux_nat)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3116 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3117 target_pid_to_str (lp->ptid));
3119 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3120 gdb_assert (lp->resumed);
3125 /* Make sure we don't report a SIGINT that we have already displayed
3126 for another thread. */
3127 if (lp->ignore_sigint
3128 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3130 if (debug_linux_nat)
3131 fprintf_unfiltered (gdb_stdlog,
3132 "LLW: Delayed SIGINT caught for %s.\n",
3133 target_pid_to_str (lp->ptid));
3135 /* This is a delayed SIGINT. */
3136 lp->ignore_sigint = 0;
3138 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3139 if (debug_linux_nat)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3143 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3144 target_pid_to_str (lp->ptid));
3145 gdb_assert (lp->resumed);
3147 /* Discard the event. */
3151 /* Don't report signals that GDB isn't interested in, such as
3152 signals that are neither printed nor stopped upon. Stopping all
3153 threads can be a bit time-consuming so if we want decent
3154 performance with heavily multi-threaded programs, especially when
3155 they're using a high frequency timer, we'd better avoid it if we
3157 if (WIFSTOPPED (status))
3159 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3161 if (!target_is_non_stop_p ())
3163 /* Only do the below in all-stop, as we currently use SIGSTOP
3164 to implement target_stop (see linux_nat_stop) in
3166 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3168 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3169 forwarded to the entire process group, that is, all LWPs
3170 will receive it - unless they're using CLONE_THREAD to
3171 share signals. Since we only want to report it once, we
3172 mark it as ignored for all LWPs except this one. */
3173 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3174 set_ignore_sigint, NULL);
3175 lp->ignore_sigint = 0;
3178 maybe_clear_ignore_sigint (lp);
3181 /* When using hardware single-step, we need to report every signal.
3182 Otherwise, signals in pass_mask may be short-circuited
3183 except signals that might be caused by a breakpoint. */
3185 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3186 && !linux_wstatus_maybe_breakpoint (status))
3188 linux_resume_one_lwp (lp, lp->step, signo);
3189 if (debug_linux_nat)
3190 fprintf_unfiltered (gdb_stdlog,
3191 "LLW: %s %s, %s (preempt 'handle')\n",
3193 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3194 target_pid_to_str (lp->ptid),
3195 (signo != GDB_SIGNAL_0
3196 ? strsignal (gdb_signal_to_host (signo))
3202 /* An interesting event. */
3204 lp->status = status;
3205 save_stop_reason (lp);
3209 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3210 their exits until all other threads in the group have exited. */
3213 check_zombie_leaders (void)
3215 struct inferior *inf;
3219 struct lwp_info *leader_lp;
3224 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3225 if (leader_lp != NULL
3226 /* Check if there are other threads in the group, as we may
3227 have raced with the inferior simply exiting. */
3228 && num_lwps (inf->pid) > 1
3229 && linux_proc_pid_is_zombie (inf->pid))
3231 if (debug_linux_nat)
3232 fprintf_unfiltered (gdb_stdlog,
3233 "CZL: Thread group leader %d zombie "
3234 "(it exited, or another thread execd).\n",
3237 /* A leader zombie can mean one of two things:
3239 - It exited, and there's an exit status pending
3240 available, or only the leader exited (not the whole
3241 program). In the latter case, we can't waitpid the
3242 leader's exit status until all other threads are gone.
3244 - There are 3 or more threads in the group, and a thread
3245 other than the leader exec'd. See comments on exec
3246 events at the top of the file. We could try
3247 distinguishing the exit and exec cases, by waiting once
3248 more, and seeing if something comes out, but it doesn't
3249 sound useful. The previous leader _does_ go away, and
3250 we'll re-add the new one once we see the exec event
3251 (which is just the same as what would happen if the
3252 previous leader did exit voluntarily before some other
3255 if (debug_linux_nat)
3256 fprintf_unfiltered (gdb_stdlog,
3257 "CZL: Thread group leader %d vanished.\n",
3259 exit_lwp (leader_lp);
3264 /* Convenience function that is called when the kernel reports an exit
3265 event. This decides whether to report the event to GDB as a
3266 process exit event, a thread exit event, or to suppress the
3270 filter_exit_event (struct lwp_info *event_child,
3271 struct target_waitstatus *ourstatus)
3273 ptid_t ptid = event_child->ptid;
3275 if (num_lwps (ptid_get_pid (ptid)) > 1)
3277 if (report_thread_events)
3278 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3280 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3282 exit_lwp (event_child);
3289 linux_nat_wait_1 (struct target_ops *ops,
3290 ptid_t ptid, struct target_waitstatus *ourstatus,
3294 enum resume_kind last_resume_kind;
3295 struct lwp_info *lp;
3298 if (debug_linux_nat)
3299 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3301 /* The first time we get here after starting a new inferior, we may
3302 not have added it to the LWP list yet - this is the earliest
3303 moment at which we know its PID. */
3304 if (ptid_is_pid (inferior_ptid))
3306 /* Upgrade the main thread's ptid. */
3307 thread_change_ptid (inferior_ptid,
3308 ptid_build (ptid_get_pid (inferior_ptid),
3309 ptid_get_pid (inferior_ptid), 0));
3311 lp = add_initial_lwp (inferior_ptid);
3315 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3316 block_child_signals (&prev_mask);
3318 /* First check if there is a LWP with a wait status pending. */
3319 lp = iterate_over_lwps (ptid, status_callback, NULL);
3322 if (debug_linux_nat)
3323 fprintf_unfiltered (gdb_stdlog,
3324 "LLW: Using pending wait status %s for %s.\n",
3325 status_to_str (lp->status),
3326 target_pid_to_str (lp->ptid));
3329 /* But if we don't find a pending event, we'll have to wait. Always
3330 pull all events out of the kernel. We'll randomly select an
3331 event LWP out of all that have events, to prevent starvation. */
3337 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3340 - If the thread group leader exits while other threads in the
3341 thread group still exist, waitpid(TGID, ...) hangs. That
3342 waitpid won't return an exit status until the other threads
3343 in the group are reapped.
3345 - When a non-leader thread execs, that thread just vanishes
3346 without reporting an exit (so we'd hang if we waited for it
3347 explicitly in that case). The exec event is reported to
3351 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3353 if (debug_linux_nat)
3354 fprintf_unfiltered (gdb_stdlog,
3355 "LNW: waitpid(-1, ...) returned %d, %s\n",
3356 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3360 if (debug_linux_nat)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "LLW: waitpid %ld received %s\n",
3364 (long) lwpid, status_to_str (status));
3367 linux_nat_filter_event (lwpid, status);
3368 /* Retry until nothing comes out of waitpid. A single
3369 SIGCHLD can indicate more than one child stopped. */
3373 /* Now that we've pulled all events out of the kernel, resume
3374 LWPs that don't have an interesting event to report. */
3375 iterate_over_lwps (minus_one_ptid,
3376 resume_stopped_resumed_lwps, &minus_one_ptid);
3378 /* ... and find an LWP with a status to report to the core, if
3380 lp = iterate_over_lwps (ptid, status_callback, NULL);
3384 /* Check for zombie thread group leaders. Those can't be reaped
3385 until all other threads in the thread group are. */
3386 check_zombie_leaders ();
3388 /* If there are no resumed children left, bail. We'd be stuck
3389 forever in the sigsuspend call below otherwise. */
3390 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3392 if (debug_linux_nat)
3393 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3395 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3397 restore_child_signals_mask (&prev_mask);
3398 return minus_one_ptid;
3401 /* No interesting event to report to the core. */
3403 if (target_options & TARGET_WNOHANG)
3405 if (debug_linux_nat)
3406 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3408 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3409 restore_child_signals_mask (&prev_mask);
3410 return minus_one_ptid;
3413 /* We shouldn't end up here unless we want to try again. */
3414 gdb_assert (lp == NULL);
3416 /* Block until we get an event reported with SIGCHLD. */
3417 if (debug_linux_nat)
3418 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3419 sigsuspend (&suspend_mask);
3424 status = lp->status;
3427 if (!target_is_non_stop_p ())
3429 /* Now stop all other LWP's ... */
3430 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3432 /* ... and wait until all of them have reported back that
3433 they're no longer running. */
3434 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3437 /* If we're not waiting for a specific LWP, choose an event LWP from
3438 among those that have had events. Giving equal priority to all
3439 LWPs that have had events helps prevent starvation. */
3440 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3441 select_event_lwp (ptid, &lp, &status);
3443 gdb_assert (lp != NULL);
3445 /* Now that we've selected our final event LWP, un-adjust its PC if
3446 it was a software breakpoint, and we can't reliably support the
3447 "stopped by software breakpoint" stop reason. */
3448 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3449 && !USE_SIGTRAP_SIGINFO)
3451 struct regcache *regcache = get_thread_regcache (lp->ptid);
3452 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3453 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3459 pc = regcache_read_pc (regcache);
3460 regcache_write_pc (regcache, pc + decr_pc);
3464 /* We'll need this to determine whether to report a SIGSTOP as
3465 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3467 last_resume_kind = lp->last_resume_kind;
3469 if (!target_is_non_stop_p ())
3471 /* In all-stop, from the core's perspective, all LWPs are now
3472 stopped until a new resume action is sent over. */
3473 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3477 resume_clear_callback (lp, NULL);
3480 if (linux_nat_status_is_event (status))
3482 if (debug_linux_nat)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "LLW: trap ptid is %s.\n",
3485 target_pid_to_str (lp->ptid));
3488 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3490 *ourstatus = lp->waitstatus;
3491 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3494 store_waitstatus (ourstatus, status);
3496 if (debug_linux_nat)
3497 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3499 restore_child_signals_mask (&prev_mask);
3501 if (last_resume_kind == resume_stop
3502 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3503 && WSTOPSIG (status) == SIGSTOP)
3505 /* A thread that has been requested to stop by GDB with
3506 target_stop, and it stopped cleanly, so report as SIG0. The
3507 use of SIGSTOP is an implementation detail. */
3508 ourstatus->value.sig = GDB_SIGNAL_0;
3511 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3512 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3515 lp->core = linux_common_core_of_thread (lp->ptid);
3517 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3518 return filter_exit_event (lp, ourstatus);
3523 /* Resume LWPs that are currently stopped without any pending status
3524 to report, but are resumed from the core's perspective. */
3527 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3529 ptid_t *wait_ptid_p = (ptid_t *) data;
3533 if (debug_linux_nat)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "RSRL: NOT resuming LWP %s, not stopped\n",
3536 target_pid_to_str (lp->ptid));
3538 else if (!lp->resumed)
3540 if (debug_linux_nat)
3541 fprintf_unfiltered (gdb_stdlog,
3542 "RSRL: NOT resuming LWP %s, not resumed\n",
3543 target_pid_to_str (lp->ptid));
3545 else if (lwp_status_pending_p (lp))
3547 if (debug_linux_nat)
3548 fprintf_unfiltered (gdb_stdlog,
3549 "RSRL: NOT resuming LWP %s, has pending status\n",
3550 target_pid_to_str (lp->ptid));
3554 struct regcache *regcache = get_thread_regcache (lp->ptid);
3555 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3559 CORE_ADDR pc = regcache_read_pc (regcache);
3560 int leave_stopped = 0;
3562 /* Don't bother if there's a breakpoint at PC that we'd hit
3563 immediately, and we're not waiting for this LWP. */
3564 if (!ptid_match (lp->ptid, *wait_ptid_p))
3566 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3572 if (debug_linux_nat)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "RSRL: resuming stopped-resumed LWP %s at "
3576 target_pid_to_str (lp->ptid),
3577 paddress (gdbarch, pc),
3580 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3583 CATCH (ex, RETURN_MASK_ERROR)
3585 if (!check_ptrace_stopped_lwp_gone (lp))
3586 throw_exception (ex);
3595 linux_nat_wait (struct target_ops *ops,
3596 ptid_t ptid, struct target_waitstatus *ourstatus,
3601 if (debug_linux_nat)
3603 char *options_string;
3605 options_string = target_options_to_string (target_options);
3606 fprintf_unfiltered (gdb_stdlog,
3607 "linux_nat_wait: [%s], [%s]\n",
3608 target_pid_to_str (ptid),
3610 xfree (options_string);
3613 /* Flush the async file first. */
3614 if (target_is_async_p ())
3615 async_file_flush ();
3617 /* Resume LWPs that are currently stopped without any pending status
3618 to report, but are resumed from the core's perspective. LWPs get
3619 in this state if we find them stopping at a time we're not
3620 interested in reporting the event (target_wait on a
3621 specific_process, for example, see linux_nat_wait_1), and
3622 meanwhile the event became uninteresting. Don't bother resuming
3623 LWPs we're not going to wait for if they'd stop immediately. */
3624 if (target_is_non_stop_p ())
3625 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3627 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3629 /* If we requested any event, and something came out, assume there
3630 may be more. If we requested a specific lwp or process, also
3631 assume there may be more. */
3632 if (target_is_async_p ()
3633 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3634 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3635 || !ptid_equal (ptid, minus_one_ptid)))
3644 kill_one_lwp (pid_t pid)
3646 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3649 kill_lwp (pid, SIGKILL);
3650 if (debug_linux_nat)
3652 int save_errno = errno;
3654 fprintf_unfiltered (gdb_stdlog,
3655 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3656 save_errno ? safe_strerror (save_errno) : "OK");
3659 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3662 ptrace (PTRACE_KILL, pid, 0, 0);
3663 if (debug_linux_nat)
3665 int save_errno = errno;
3667 fprintf_unfiltered (gdb_stdlog,
3668 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3669 save_errno ? safe_strerror (save_errno) : "OK");
3673 /* Wait for an LWP to die. */
3676 kill_wait_one_lwp (pid_t pid)
3680 /* We must make sure that there are no pending events (delayed
3681 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3682 program doesn't interfere with any following debugging session. */
3686 res = my_waitpid (pid, NULL, __WALL);
3687 if (res != (pid_t) -1)
3689 if (debug_linux_nat)
3690 fprintf_unfiltered (gdb_stdlog,
3691 "KWC: wait %ld received unknown.\n",
3693 /* The Linux kernel sometimes fails to kill a thread
3694 completely after PTRACE_KILL; that goes from the stop
3695 point in do_fork out to the one in get_signal_to_deliver
3696 and waits again. So kill it again. */
3702 gdb_assert (res == -1 && errno == ECHILD);
3705 /* Callback for iterate_over_lwps. */
3708 kill_callback (struct lwp_info *lp, void *data)
3710 kill_one_lwp (ptid_get_lwp (lp->ptid));
3714 /* Callback for iterate_over_lwps. */
3717 kill_wait_callback (struct lwp_info *lp, void *data)
3719 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3723 /* Kill the fork children of any threads of inferior INF that are
3724 stopped at a fork event. */
3727 kill_unfollowed_fork_children (struct inferior *inf)
3729 struct thread_info *thread;
3731 ALL_NON_EXITED_THREADS (thread)
3732 if (thread->inf == inf)
3734 struct target_waitstatus *ws = &thread->pending_follow;
3736 if (ws->kind == TARGET_WAITKIND_FORKED
3737 || ws->kind == TARGET_WAITKIND_VFORKED)
3739 ptid_t child_ptid = ws->value.related_pid;
3740 int child_pid = ptid_get_pid (child_ptid);
3741 int child_lwp = ptid_get_lwp (child_ptid);
3743 kill_one_lwp (child_lwp);
3744 kill_wait_one_lwp (child_lwp);
3746 /* Let the arch-specific native code know this process is
3748 linux_nat_forget_process (child_pid);
3754 linux_nat_kill (struct target_ops *ops)
3756 /* If we're stopped while forking and we haven't followed yet,
3757 kill the other task. We need to do this first because the
3758 parent will be sleeping if this is a vfork. */
3759 kill_unfollowed_fork_children (current_inferior ());
3761 if (forks_exist_p ())
3762 linux_fork_killall ();
3765 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3767 /* Stop all threads before killing them, since ptrace requires
3768 that the thread is stopped to sucessfully PTRACE_KILL. */
3769 iterate_over_lwps (ptid, stop_callback, NULL);
3770 /* ... and wait until all of them have reported back that
3771 they're no longer running. */
3772 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3774 /* Kill all LWP's ... */
3775 iterate_over_lwps (ptid, kill_callback, NULL);
3777 /* ... and wait until we've flushed all events. */
3778 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3781 target_mourn_inferior (inferior_ptid);
3785 linux_nat_mourn_inferior (struct target_ops *ops)
3787 int pid = ptid_get_pid (inferior_ptid);
3789 purge_lwp_list (pid);
3791 if (! forks_exist_p ())
3792 /* Normal case, no other forks available. */
3793 linux_ops->to_mourn_inferior (ops);
3795 /* Multi-fork case. The current inferior_ptid has exited, but
3796 there are other viable forks to debug. Delete the exiting
3797 one and context-switch to the first available. */
3798 linux_fork_mourn_inferior ();
3800 /* Let the arch-specific native code know this process is gone. */
3801 linux_nat_forget_process (pid);
3804 /* Convert a native/host siginfo object, into/from the siginfo in the
3805 layout of the inferiors' architecture. */
3808 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3812 if (linux_nat_siginfo_fixup != NULL)
3813 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3815 /* If there was no callback, or the callback didn't do anything,
3816 then just do a straight memcpy. */
3820 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3822 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3826 static enum target_xfer_status
3827 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3828 const char *annex, gdb_byte *readbuf,
3829 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3830 ULONGEST *xfered_len)
3834 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3836 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3837 gdb_assert (readbuf || writebuf);
3839 pid = ptid_get_lwp (inferior_ptid);
3841 pid = ptid_get_pid (inferior_ptid);
3843 if (offset > sizeof (siginfo))
3844 return TARGET_XFER_E_IO;
3847 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3849 return TARGET_XFER_E_IO;
3851 /* When GDB is built as a 64-bit application, ptrace writes into
3852 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3853 inferior with a 64-bit GDB should look the same as debugging it
3854 with a 32-bit GDB, we need to convert it. GDB core always sees
3855 the converted layout, so any read/write will have to be done
3857 siginfo_fixup (&siginfo, inf_siginfo, 0);
3859 if (offset + len > sizeof (siginfo))
3860 len = sizeof (siginfo) - offset;
3862 if (readbuf != NULL)
3863 memcpy (readbuf, inf_siginfo + offset, len);
3866 memcpy (inf_siginfo + offset, writebuf, len);
3868 /* Convert back to ptrace layout before flushing it out. */
3869 siginfo_fixup (&siginfo, inf_siginfo, 1);
3872 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3874 return TARGET_XFER_E_IO;
3878 return TARGET_XFER_OK;
3881 static enum target_xfer_status
3882 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3883 const char *annex, gdb_byte *readbuf,
3884 const gdb_byte *writebuf,
3885 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3887 enum target_xfer_status xfer;
3889 if (object == TARGET_OBJECT_SIGNAL_INFO)
3890 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3891 offset, len, xfered_len);
3893 /* The target is connected but no live inferior is selected. Pass
3894 this request down to a lower stratum (e.g., the executable
3896 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3897 return TARGET_XFER_EOF;
3899 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3900 offset, len, xfered_len);
3906 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3908 /* As long as a PTID is in lwp list, consider it alive. */
3909 return find_lwp_pid (ptid) != NULL;
3912 /* Implement the to_update_thread_list target method for this
3916 linux_nat_update_thread_list (struct target_ops *ops)
3918 struct lwp_info *lwp;
3920 /* We add/delete threads from the list as clone/exit events are
3921 processed, so just try deleting exited threads still in the
3923 delete_exited_threads ();
3925 /* Update the processor core that each lwp/thread was last seen
3929 /* Avoid accessing /proc if the thread hasn't run since we last
3930 time we fetched the thread's core. Accessing /proc becomes
3931 noticeably expensive when we have thousands of LWPs. */
3932 if (lwp->core == -1)
3933 lwp->core = linux_common_core_of_thread (lwp->ptid);
3938 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3940 static char buf[64];
3942 if (ptid_lwp_p (ptid)
3943 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3944 || num_lwps (ptid_get_pid (ptid)) > 1))
3946 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3950 return normal_pid_to_str (ptid);
3954 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3956 return linux_proc_tid_get_name (thr->ptid);
3959 /* Accepts an integer PID; Returns a string representing a file that
3960 can be opened to get the symbols for the child process. */
3963 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3965 return linux_proc_pid_to_exec_file (pid);
3968 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3969 Because we can use a single read/write call, this can be much more
3970 efficient than banging away at PTRACE_PEEKTEXT. */
3972 static enum target_xfer_status
3973 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3974 const char *annex, gdb_byte *readbuf,
3975 const gdb_byte *writebuf,
3976 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3982 if (object != TARGET_OBJECT_MEMORY)
3983 return TARGET_XFER_EOF;
3985 /* Don't bother for one word. */
3986 if (len < 3 * sizeof (long))
3987 return TARGET_XFER_EOF;
3989 /* We could keep this file open and cache it - possibly one per
3990 thread. That requires some juggling, but is even faster. */
3991 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3992 ptid_get_lwp (inferior_ptid));
3993 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3996 return TARGET_XFER_EOF;
3998 /* Use pread64/pwrite64 if available, since they save a syscall and can
3999 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4000 debugging a SPARC64 application). */
4002 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4003 : pwrite64 (fd, writebuf, len, offset));
4005 ret = lseek (fd, offset, SEEK_SET);
4007 ret = (readbuf ? read (fd, readbuf, len)
4008 : write (fd, writebuf, len));
4013 if (ret == -1 || ret == 0)
4014 return TARGET_XFER_EOF;
4018 return TARGET_XFER_OK;
4023 /* Enumerate spufs IDs for process PID. */
4025 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4027 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4029 LONGEST written = 0;
4032 struct dirent *entry;
4034 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4035 dir = opendir (path);
4040 while ((entry = readdir (dir)) != NULL)
4046 fd = atoi (entry->d_name);
4050 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4051 if (stat (path, &st) != 0)
4053 if (!S_ISDIR (st.st_mode))
4056 if (statfs (path, &stfs) != 0)
4058 if (stfs.f_type != SPUFS_MAGIC)
4061 if (pos >= offset && pos + 4 <= offset + len)
4063 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4073 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4074 object type, using the /proc file system. */
4076 static enum target_xfer_status
4077 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4078 const char *annex, gdb_byte *readbuf,
4079 const gdb_byte *writebuf,
4080 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4085 int pid = ptid_get_lwp (inferior_ptid);
4090 return TARGET_XFER_E_IO;
4093 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4096 return TARGET_XFER_E_IO;
4098 return TARGET_XFER_EOF;
4101 *xfered_len = (ULONGEST) l;
4102 return TARGET_XFER_OK;
4107 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4108 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4110 return TARGET_XFER_E_IO;
4113 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4116 return TARGET_XFER_EOF;
4120 ret = write (fd, writebuf, (size_t) len);
4122 ret = read (fd, readbuf, (size_t) len);
4127 return TARGET_XFER_E_IO;
4129 return TARGET_XFER_EOF;
4132 *xfered_len = (ULONGEST) ret;
4133 return TARGET_XFER_OK;
4138 /* Parse LINE as a signal set and add its set bits to SIGS. */
4141 add_line_to_sigset (const char *line, sigset_t *sigs)
4143 int len = strlen (line) - 1;
4147 if (line[len] != '\n')
4148 error (_("Could not parse signal set: %s"), line);
4156 if (*p >= '0' && *p <= '9')
4158 else if (*p >= 'a' && *p <= 'f')
4159 digit = *p - 'a' + 10;
4161 error (_("Could not parse signal set: %s"), line);
4166 sigaddset (sigs, signum + 1);
4168 sigaddset (sigs, signum + 2);
4170 sigaddset (sigs, signum + 3);
4172 sigaddset (sigs, signum + 4);
4178 /* Find process PID's pending signals from /proc/pid/status and set
4182 linux_proc_pending_signals (int pid, sigset_t *pending,
4183 sigset_t *blocked, sigset_t *ignored)
4185 char buffer[PATH_MAX], fname[PATH_MAX];
4187 sigemptyset (pending);
4188 sigemptyset (blocked);
4189 sigemptyset (ignored);
4190 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4191 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4192 if (procfile == NULL)
4193 error (_("Could not open %s"), fname);
4195 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4197 /* Normal queued signals are on the SigPnd line in the status
4198 file. However, 2.6 kernels also have a "shared" pending
4199 queue for delivering signals to a thread group, so check for
4202 Unfortunately some Red Hat kernels include the shared pending
4203 queue but not the ShdPnd status field. */
4205 if (startswith (buffer, "SigPnd:\t"))
4206 add_line_to_sigset (buffer + 8, pending);
4207 else if (startswith (buffer, "ShdPnd:\t"))
4208 add_line_to_sigset (buffer + 8, pending);
4209 else if (startswith (buffer, "SigBlk:\t"))
4210 add_line_to_sigset (buffer + 8, blocked);
4211 else if (startswith (buffer, "SigIgn:\t"))
4212 add_line_to_sigset (buffer + 8, ignored);
4216 static enum target_xfer_status
4217 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4218 const char *annex, gdb_byte *readbuf,
4219 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4220 ULONGEST *xfered_len)
4222 gdb_assert (object == TARGET_OBJECT_OSDATA);
4224 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4225 if (*xfered_len == 0)
4226 return TARGET_XFER_EOF;
4228 return TARGET_XFER_OK;
4231 static enum target_xfer_status
4232 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4233 const char *annex, gdb_byte *readbuf,
4234 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4235 ULONGEST *xfered_len)
4237 enum target_xfer_status xfer;
4239 if (object == TARGET_OBJECT_AUXV)
4240 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4241 offset, len, xfered_len);
4243 if (object == TARGET_OBJECT_OSDATA)
4244 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4245 offset, len, xfered_len);
4247 if (object == TARGET_OBJECT_SPU)
4248 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4249 offset, len, xfered_len);
4251 /* GDB calculates all the addresses in possibly larget width of the address.
4252 Address width needs to be masked before its final use - either by
4253 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4255 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4257 if (object == TARGET_OBJECT_MEMORY)
4259 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4261 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4262 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4265 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4266 offset, len, xfered_len);
4267 if (xfer != TARGET_XFER_EOF)
4270 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4271 offset, len, xfered_len);
4275 cleanup_target_stop (void *arg)
4277 ptid_t *ptid = (ptid_t *) arg;
4279 gdb_assert (arg != NULL);
4282 target_continue_no_signal (*ptid);
4285 static VEC(static_tracepoint_marker_p) *
4286 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4289 char s[IPA_CMD_BUF_SIZE];
4290 struct cleanup *old_chain;
4291 int pid = ptid_get_pid (inferior_ptid);
4292 VEC(static_tracepoint_marker_p) *markers = NULL;
4293 struct static_tracepoint_marker *marker = NULL;
4295 ptid_t ptid = ptid_build (pid, 0, 0);
4300 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4301 s[sizeof ("qTfSTM")] = 0;
4303 agent_run_command (pid, s, strlen (s) + 1);
4305 old_chain = make_cleanup (free_current_marker, &marker);
4306 make_cleanup (cleanup_target_stop, &ptid);
4311 marker = XCNEW (struct static_tracepoint_marker);
4315 parse_static_tracepoint_marker_definition (p, &p, marker);
4317 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4319 VEC_safe_push (static_tracepoint_marker_p,
4325 release_static_tracepoint_marker (marker);
4326 memset (marker, 0, sizeof (*marker));
4329 while (*p++ == ','); /* comma-separated list */
4331 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4332 s[sizeof ("qTsSTM")] = 0;
4333 agent_run_command (pid, s, strlen (s) + 1);
4337 do_cleanups (old_chain);
4342 /* Create a prototype generic GNU/Linux target. The client can override
4343 it with local methods. */
4346 linux_target_install_ops (struct target_ops *t)
4348 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4349 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4350 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4351 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4352 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4353 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4354 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4355 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4356 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4357 t->to_post_attach = linux_child_post_attach;
4358 t->to_follow_fork = linux_child_follow_fork;
4360 super_xfer_partial = t->to_xfer_partial;
4361 t->to_xfer_partial = linux_xfer_partial;
4363 t->to_static_tracepoint_markers_by_strid
4364 = linux_child_static_tracepoint_markers_by_strid;
4370 struct target_ops *t;
4372 t = inf_ptrace_target ();
4373 linux_target_install_ops (t);
4379 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4381 struct target_ops *t;
4383 t = inf_ptrace_trad_target (register_u_offset);
4384 linux_target_install_ops (t);
4389 /* target_is_async_p implementation. */
4392 linux_nat_is_async_p (struct target_ops *ops)
4394 return linux_is_async_p ();
4397 /* target_can_async_p implementation. */
4400 linux_nat_can_async_p (struct target_ops *ops)
4402 /* We're always async, unless the user explicitly prevented it with the
4403 "maint set target-async" command. */
4404 return target_async_permitted;
4408 linux_nat_supports_non_stop (struct target_ops *self)
4413 /* to_always_non_stop_p implementation. */
4416 linux_nat_always_non_stop_p (struct target_ops *self)
4421 /* True if we want to support multi-process. To be removed when GDB
4422 supports multi-exec. */
4424 int linux_multi_process = 1;
4427 linux_nat_supports_multi_process (struct target_ops *self)
4429 return linux_multi_process;
4433 linux_nat_supports_disable_randomization (struct target_ops *self)
4435 #ifdef HAVE_PERSONALITY
4442 static int async_terminal_is_ours = 1;
4444 /* target_terminal_inferior implementation.
4446 This is a wrapper around child_terminal_inferior to add async support. */
4449 linux_nat_terminal_inferior (struct target_ops *self)
4451 child_terminal_inferior (self);
4453 /* Calls to target_terminal_*() are meant to be idempotent. */
4454 if (!async_terminal_is_ours)
4457 async_terminal_is_ours = 0;
4461 /* target_terminal_ours implementation.
4463 This is a wrapper around child_terminal_ours to add async support (and
4464 implement the target_terminal_ours vs target_terminal_ours_for_output
4465 distinction). child_terminal_ours is currently no different than
4466 child_terminal_ours_for_output.
4467 We leave target_terminal_ours_for_output alone, leaving it to
4468 child_terminal_ours_for_output. */
4471 linux_nat_terminal_ours (struct target_ops *self)
4473 /* GDB should never give the terminal to the inferior if the
4474 inferior is running in the background (run&, continue&, etc.),
4475 but claiming it sure should. */
4476 child_terminal_ours (self);
4478 if (async_terminal_is_ours)
4481 clear_sigint_trap ();
4482 async_terminal_is_ours = 1;
4485 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4486 so we notice when any child changes state, and notify the
4487 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4488 above to wait for the arrival of a SIGCHLD. */
4491 sigchld_handler (int signo)
4493 int old_errno = errno;
4495 if (debug_linux_nat)
4496 ui_file_write_async_safe (gdb_stdlog,
4497 "sigchld\n", sizeof ("sigchld\n") - 1);
4499 if (signo == SIGCHLD
4500 && linux_nat_event_pipe[0] != -1)
4501 async_file_mark (); /* Let the event loop know that there are
4502 events to handle. */
4507 /* Callback registered with the target events file descriptor. */
4510 handle_target_event (int error, gdb_client_data client_data)
4512 inferior_event_handler (INF_REG_EVENT, NULL);
4515 /* Create/destroy the target events pipe. Returns previous state. */
4518 linux_async_pipe (int enable)
4520 int previous = linux_is_async_p ();
4522 if (previous != enable)
4526 /* Block child signals while we create/destroy the pipe, as
4527 their handler writes to it. */
4528 block_child_signals (&prev_mask);
4532 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4533 internal_error (__FILE__, __LINE__,
4534 "creating event pipe failed.");
4536 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4537 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4541 close (linux_nat_event_pipe[0]);
4542 close (linux_nat_event_pipe[1]);
4543 linux_nat_event_pipe[0] = -1;
4544 linux_nat_event_pipe[1] = -1;
4547 restore_child_signals_mask (&prev_mask);
4553 /* target_async implementation. */
4556 linux_nat_async (struct target_ops *ops, int enable)
4560 if (!linux_async_pipe (1))
4562 add_file_handler (linux_nat_event_pipe[0],
4563 handle_target_event, NULL);
4564 /* There may be pending events to handle. Tell the event loop
4571 delete_file_handler (linux_nat_event_pipe[0]);
4572 linux_async_pipe (0);
4577 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4581 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4585 if (debug_linux_nat)
4586 fprintf_unfiltered (gdb_stdlog,
4587 "LNSL: running -> suspending %s\n",
4588 target_pid_to_str (lwp->ptid));
4591 if (lwp->last_resume_kind == resume_stop)
4593 if (debug_linux_nat)
4594 fprintf_unfiltered (gdb_stdlog,
4595 "linux-nat: already stopping LWP %ld at "
4597 ptid_get_lwp (lwp->ptid));
4601 stop_callback (lwp, NULL);
4602 lwp->last_resume_kind = resume_stop;
4606 /* Already known to be stopped; do nothing. */
4608 if (debug_linux_nat)
4610 if (find_thread_ptid (lwp->ptid)->stop_requested)
4611 fprintf_unfiltered (gdb_stdlog,
4612 "LNSL: already stopped/stop_requested %s\n",
4613 target_pid_to_str (lwp->ptid));
4615 fprintf_unfiltered (gdb_stdlog,
4616 "LNSL: already stopped/no "
4617 "stop_requested yet %s\n",
4618 target_pid_to_str (lwp->ptid));
4625 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4627 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4631 linux_nat_close (struct target_ops *self)
4633 /* Unregister from the event loop. */
4634 if (linux_nat_is_async_p (self))
4635 linux_nat_async (self, 0);
4637 if (linux_ops->to_close)
4638 linux_ops->to_close (linux_ops);
4643 /* When requests are passed down from the linux-nat layer to the
4644 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4645 used. The address space pointer is stored in the inferior object,
4646 but the common code that is passed such ptid can't tell whether
4647 lwpid is a "main" process id or not (it assumes so). We reverse
4648 look up the "main" process id from the lwp here. */
4650 static struct address_space *
4651 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4653 struct lwp_info *lwp;
4654 struct inferior *inf;
4657 if (ptid_get_lwp (ptid) == 0)
4659 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4661 lwp = find_lwp_pid (ptid);
4662 pid = ptid_get_pid (lwp->ptid);
4666 /* A (pid,lwpid,0) ptid. */
4667 pid = ptid_get_pid (ptid);
4670 inf = find_inferior_pid (pid);
4671 gdb_assert (inf != NULL);
4675 /* Return the cached value of the processor core for thread PTID. */
4678 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4680 struct lwp_info *info = find_lwp_pid (ptid);
4687 /* Implementation of to_filesystem_is_local. */
4690 linux_nat_filesystem_is_local (struct target_ops *ops)
4692 struct inferior *inf = current_inferior ();
4694 if (inf->fake_pid_p || inf->pid == 0)
4697 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4700 /* Convert the INF argument passed to a to_fileio_* method
4701 to a process ID suitable for passing to its corresponding
4702 linux_mntns_* function. If INF is non-NULL then the
4703 caller is requesting the filesystem seen by INF. If INF
4704 is NULL then the caller is requesting the filesystem seen
4705 by the GDB. We fall back to GDB's filesystem in the case
4706 that INF is non-NULL but its PID is unknown. */
4709 linux_nat_fileio_pid_of (struct inferior *inf)
4711 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4717 /* Implementation of to_fileio_open. */
4720 linux_nat_fileio_open (struct target_ops *self,
4721 struct inferior *inf, const char *filename,
4722 int flags, int mode, int warn_if_slow,
4729 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4730 || fileio_to_host_mode (mode, &nat_mode) == -1)
4732 *target_errno = FILEIO_EINVAL;
4736 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4737 filename, nat_flags, nat_mode);
4739 *target_errno = host_to_fileio_error (errno);
4744 /* Implementation of to_fileio_readlink. */
4747 linux_nat_fileio_readlink (struct target_ops *self,
4748 struct inferior *inf, const char *filename,
4755 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4756 filename, buf, sizeof (buf));
4759 *target_errno = host_to_fileio_error (errno);
4763 ret = (char *) xmalloc (len + 1);
4764 memcpy (ret, buf, len);
4769 /* Implementation of to_fileio_unlink. */
4772 linux_nat_fileio_unlink (struct target_ops *self,
4773 struct inferior *inf, const char *filename,
4778 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4781 *target_errno = host_to_fileio_error (errno);
4786 /* Implementation of the to_thread_events method. */
4789 linux_nat_thread_events (struct target_ops *ops, int enable)
4791 report_thread_events = enable;
4795 linux_nat_add_target (struct target_ops *t)
4797 /* Save the provided single-threaded target. We save this in a separate
4798 variable because another target we've inherited from (e.g. inf-ptrace)
4799 may have saved a pointer to T; we want to use it for the final
4800 process stratum target. */
4801 linux_ops_saved = *t;
4802 linux_ops = &linux_ops_saved;
4804 /* Override some methods for multithreading. */
4805 t->to_create_inferior = linux_nat_create_inferior;
4806 t->to_attach = linux_nat_attach;
4807 t->to_detach = linux_nat_detach;
4808 t->to_resume = linux_nat_resume;
4809 t->to_wait = linux_nat_wait;
4810 t->to_pass_signals = linux_nat_pass_signals;
4811 t->to_xfer_partial = linux_nat_xfer_partial;
4812 t->to_kill = linux_nat_kill;
4813 t->to_mourn_inferior = linux_nat_mourn_inferior;
4814 t->to_thread_alive = linux_nat_thread_alive;
4815 t->to_update_thread_list = linux_nat_update_thread_list;
4816 t->to_pid_to_str = linux_nat_pid_to_str;
4817 t->to_thread_name = linux_nat_thread_name;
4818 t->to_has_thread_control = tc_schedlock;
4819 t->to_thread_address_space = linux_nat_thread_address_space;
4820 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4821 t->to_stopped_data_address = linux_nat_stopped_data_address;
4822 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4823 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4824 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4825 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4826 t->to_thread_events = linux_nat_thread_events;
4828 t->to_can_async_p = linux_nat_can_async_p;
4829 t->to_is_async_p = linux_nat_is_async_p;
4830 t->to_supports_non_stop = linux_nat_supports_non_stop;
4831 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4832 t->to_async = linux_nat_async;
4833 t->to_terminal_inferior = linux_nat_terminal_inferior;
4834 t->to_terminal_ours = linux_nat_terminal_ours;
4836 super_close = t->to_close;
4837 t->to_close = linux_nat_close;
4839 t->to_stop = linux_nat_stop;
4841 t->to_supports_multi_process = linux_nat_supports_multi_process;
4843 t->to_supports_disable_randomization
4844 = linux_nat_supports_disable_randomization;
4846 t->to_core_of_thread = linux_nat_core_of_thread;
4848 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4849 t->to_fileio_open = linux_nat_fileio_open;
4850 t->to_fileio_readlink = linux_nat_fileio_readlink;
4851 t->to_fileio_unlink = linux_nat_fileio_unlink;
4853 /* We don't change the stratum; this target will sit at
4854 process_stratum and thread_db will set at thread_stratum. This
4855 is a little strange, since this is a multi-threaded-capable
4856 target, but we want to be on the stack below thread_db, and we
4857 also want to be used for single-threaded processes. */
4862 /* Register a method to call whenever a new thread is attached. */
4864 linux_nat_set_new_thread (struct target_ops *t,
4865 void (*new_thread) (struct lwp_info *))
4867 /* Save the pointer. We only support a single registered instance
4868 of the GNU/Linux native target, so we do not need to map this to
4870 linux_nat_new_thread = new_thread;
4873 /* See declaration in linux-nat.h. */
4876 linux_nat_set_new_fork (struct target_ops *t,
4877 linux_nat_new_fork_ftype *new_fork)
4879 /* Save the pointer. */
4880 linux_nat_new_fork = new_fork;
4883 /* See declaration in linux-nat.h. */
4886 linux_nat_set_forget_process (struct target_ops *t,
4887 linux_nat_forget_process_ftype *fn)
4889 /* Save the pointer. */
4890 linux_nat_forget_process_hook = fn;
4893 /* See declaration in linux-nat.h. */
4896 linux_nat_forget_process (pid_t pid)
4898 if (linux_nat_forget_process_hook != NULL)
4899 linux_nat_forget_process_hook (pid);
4902 /* Register a method that converts a siginfo object between the layout
4903 that ptrace returns, and the layout in the architecture of the
4906 linux_nat_set_siginfo_fixup (struct target_ops *t,
4907 int (*siginfo_fixup) (siginfo_t *,
4911 /* Save the pointer. */
4912 linux_nat_siginfo_fixup = siginfo_fixup;
4915 /* Register a method to call prior to resuming a thread. */
4918 linux_nat_set_prepare_to_resume (struct target_ops *t,
4919 void (*prepare_to_resume) (struct lwp_info *))
4921 /* Save the pointer. */
4922 linux_nat_prepare_to_resume = prepare_to_resume;
4925 /* See linux-nat.h. */
4928 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4932 pid = ptid_get_lwp (ptid);
4934 pid = ptid_get_pid (ptid);
4937 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4940 memset (siginfo, 0, sizeof (*siginfo));
4946 /* See nat/linux-nat.h. */
4949 current_lwp_ptid (void)
4951 gdb_assert (ptid_lwp_p (inferior_ptid));
4952 return inferior_ptid;
4955 /* Provide a prototype to silence -Wmissing-prototypes. */
4956 extern initialize_file_ftype _initialize_linux_nat;
4959 _initialize_linux_nat (void)
4961 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4962 &debug_linux_nat, _("\
4963 Set debugging of GNU/Linux lwp module."), _("\
4964 Show debugging of GNU/Linux lwp module."), _("\
4965 Enables printf debugging output."),
4967 show_debug_linux_nat,
4968 &setdebuglist, &showdebuglist);
4970 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4971 &debug_linux_namespaces, _("\
4972 Set debugging of GNU/Linux namespaces module."), _("\
4973 Show debugging of GNU/Linux namespaces module."), _("\
4974 Enables printf debugging output."),
4977 &setdebuglist, &showdebuglist);
4979 /* Save this mask as the default. */
4980 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4982 /* Install a SIGCHLD handler. */
4983 sigchld_action.sa_handler = sigchld_handler;
4984 sigemptyset (&sigchld_action.sa_mask);
4985 sigchld_action.sa_flags = SA_RESTART;
4987 /* Make it the default. */
4988 sigaction (SIGCHLD, &sigchld_action, NULL);
4990 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4991 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4992 sigdelset (&suspend_mask, SIGCHLD);
4994 sigemptyset (&blocked_mask);
4996 lwp_lwpid_htab_create ();
5000 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5001 the GNU/Linux Threads library and therefore doesn't really belong
5004 /* Return the set of signals used by the threads library in *SET. */
5007 lin_thread_get_thread_signals (sigset_t *set)
5011 /* NPTL reserves the first two RT signals, but does not provide any
5012 way for the debugger to query the signal numbers - fortunately
5013 they don't change. */
5014 sigaddset (set, __SIGRTMIN);
5015 sigaddset (set, __SIGRTMIN + 1);