1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
29 #include <sys/syscall.h>
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
40 #include "inf-ptrace.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
52 #include "event-loop.h"
53 #include "event-top.h"
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
61 #include "linux-osdata.h"
64 #define SPUFS_MAGIC 0x23c9b64e
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
72 #endif /* HAVE_PERSONALITY */
74 /* This comment documents high-level logic of this file.
76 Waiting for events in sync mode
77 ===============================
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
100 Waiting for events in async mode
101 ================================
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
163 #define O_LARGEFILE 0
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
190 const char *, gdb_byte *,
194 static int debug_linux_nat;
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
203 static int disable_randomization = 1;
206 show_disable_randomization (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
209 #ifdef HAVE_PERSONALITY
210 fprintf_filtered (file,
211 _("Disabling randomization of debuggee's "
212 "virtual address space is %s.\n"),
214 #else /* !HAVE_PERSONALITY */
215 fputs_filtered (_("Disabling randomization of debuggee's "
216 "virtual address space is unsupported on\n"
217 "this platform.\n"), file);
218 #endif /* !HAVE_PERSONALITY */
222 set_disable_randomization (char *args, int from_tty,
223 struct cmd_list_element *c)
225 #ifndef HAVE_PERSONALITY
226 error (_("Disabling randomization of debuggee's "
227 "virtual address space is unsupported on\n"
229 #endif /* !HAVE_PERSONALITY */
232 struct simple_pid_list
236 struct simple_pid_list *next;
238 struct simple_pid_list *stopped_pids;
240 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
241 can not be used, 1 if it can. */
243 static int linux_supports_tracefork_flag = -1;
245 /* This variable is a tri-state flag: -1 for unknown, 0 if
246 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
248 static int linux_supports_tracesysgood_flag = -1;
250 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
251 PTRACE_O_TRACEVFORKDONE. */
253 static int linux_supports_tracevforkdone_flag = -1;
255 /* Stores the current used ptrace() options. */
256 static int current_ptrace_options = 0;
258 /* Async mode support. */
260 /* The read/write ends of the pipe registered as waitable file in the
262 static int linux_nat_event_pipe[2] = { -1, -1 };
264 /* Flush the event pipe. */
267 async_file_flush (void)
274 ret = read (linux_nat_event_pipe[0], &buf, 1);
276 while (ret >= 0 || (ret == -1 && errno == EINTR));
279 /* Put something (anything, doesn't matter what, or how much) in event
280 pipe, so that the select/poll in the event-loop realizes we have
281 something to process. */
284 async_file_mark (void)
288 /* It doesn't really matter what the pipe contains, as long we end
289 up with something in it. Might as well flush the previous
295 ret = write (linux_nat_event_pipe[1], "+", 1);
297 while (ret == -1 && errno == EINTR);
299 /* Ignore EAGAIN. If the pipe is full, the event loop will already
300 be awakened anyway. */
303 static void linux_nat_async (void (*callback)
304 (enum inferior_event_type event_type,
307 static int kill_lwp (int lwpid, int signo);
309 static int stop_callback (struct lwp_info *lp, void *data);
311 static void block_child_signals (sigset_t *prev_mask);
312 static void restore_child_signals_mask (sigset_t *prev_mask);
315 static struct lwp_info *add_lwp (ptid_t ptid);
316 static void purge_lwp_list (int pid);
317 static struct lwp_info *find_lwp_pid (ptid_t ptid);
320 /* Trivial list manipulation functions to keep track of a list of
321 new stopped processes. */
323 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
325 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
328 new_pid->status = status;
329 new_pid->next = *listp;
334 in_pid_list_p (struct simple_pid_list *list, int pid)
336 struct simple_pid_list *p;
338 for (p = list; p != NULL; p = p->next)
345 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
347 struct simple_pid_list **p;
349 for (p = listp; *p != NULL; p = &(*p)->next)
350 if ((*p)->pid == pid)
352 struct simple_pid_list *next = (*p)->next;
354 *statusp = (*p)->status;
363 /* A helper function for linux_test_for_tracefork, called after fork (). */
366 linux_tracefork_child (void)
368 ptrace (PTRACE_TRACEME, 0, 0, 0);
369 kill (getpid (), SIGSTOP);
374 /* Wrapper function for waitpid which handles EINTR. */
377 my_waitpid (int pid, int *statusp, int flags)
383 ret = waitpid (pid, statusp, flags);
385 while (ret == -1 && errno == EINTR);
390 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
392 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
393 we know that the feature is not available. This may change the tracing
394 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
396 However, if it succeeds, we don't know for sure that the feature is
397 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
398 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
399 fork tracing, and let it fork. If the process exits, we assume that we
400 can't use TRACEFORK; if we get the fork notification, and we can extract
401 the new child's PID, then we assume that we can. */
404 linux_test_for_tracefork (int original_pid)
406 int child_pid, ret, status;
410 /* We don't want those ptrace calls to be interrupted. */
411 block_child_signals (&prev_mask);
413 linux_supports_tracefork_flag = 0;
414 linux_supports_tracevforkdone_flag = 0;
416 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
419 restore_child_signals_mask (&prev_mask);
425 perror_with_name (("fork"));
428 linux_tracefork_child ();
430 ret = my_waitpid (child_pid, &status, 0);
432 perror_with_name (("waitpid"));
433 else if (ret != child_pid)
434 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
435 if (! WIFSTOPPED (status))
436 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
439 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
442 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
445 warning (_("linux_test_for_tracefork: failed to kill child"));
446 restore_child_signals_mask (&prev_mask);
450 ret = my_waitpid (child_pid, &status, 0);
451 if (ret != child_pid)
452 warning (_("linux_test_for_tracefork: failed "
453 "to wait for killed child"));
454 else if (!WIFSIGNALED (status))
455 warning (_("linux_test_for_tracefork: unexpected "
456 "wait status 0x%x from killed child"), status);
458 restore_child_signals_mask (&prev_mask);
462 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
463 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
464 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
465 linux_supports_tracevforkdone_flag = (ret == 0);
467 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
469 warning (_("linux_test_for_tracefork: failed to resume child"));
471 ret = my_waitpid (child_pid, &status, 0);
473 if (ret == child_pid && WIFSTOPPED (status)
474 && status >> 16 == PTRACE_EVENT_FORK)
477 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
478 if (ret == 0 && second_pid != 0)
482 linux_supports_tracefork_flag = 1;
483 my_waitpid (second_pid, &second_status, 0);
484 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
486 warning (_("linux_test_for_tracefork: "
487 "failed to kill second child"));
488 my_waitpid (second_pid, &status, 0);
492 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
493 "(%d, status 0x%x)"), ret, status);
495 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
497 warning (_("linux_test_for_tracefork: failed to kill child"));
498 my_waitpid (child_pid, &status, 0);
500 restore_child_signals_mask (&prev_mask);
503 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
505 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
506 we know that the feature is not available. This may change the tracing
507 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
510 linux_test_for_tracesysgood (int original_pid)
515 /* We don't want those ptrace calls to be interrupted. */
516 block_child_signals (&prev_mask);
518 linux_supports_tracesysgood_flag = 0;
520 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
524 linux_supports_tracesysgood_flag = 1;
526 restore_child_signals_mask (&prev_mask);
529 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
530 This function also sets linux_supports_tracesysgood_flag. */
533 linux_supports_tracesysgood (int pid)
535 if (linux_supports_tracesysgood_flag == -1)
536 linux_test_for_tracesysgood (pid);
537 return linux_supports_tracesysgood_flag;
540 /* Return non-zero iff we have tracefork functionality available.
541 This function also sets linux_supports_tracefork_flag. */
544 linux_supports_tracefork (int pid)
546 if (linux_supports_tracefork_flag == -1)
547 linux_test_for_tracefork (pid);
548 return linux_supports_tracefork_flag;
552 linux_supports_tracevforkdone (int pid)
554 if (linux_supports_tracefork_flag == -1)
555 linux_test_for_tracefork (pid);
556 return linux_supports_tracevforkdone_flag;
560 linux_enable_tracesysgood (ptid_t ptid)
562 int pid = ptid_get_lwp (ptid);
565 pid = ptid_get_pid (ptid);
567 if (linux_supports_tracesysgood (pid) == 0)
570 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
572 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
577 linux_enable_event_reporting (ptid_t ptid)
579 int pid = ptid_get_lwp (ptid);
582 pid = ptid_get_pid (ptid);
584 if (! linux_supports_tracefork (pid))
587 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
588 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
590 if (linux_supports_tracevforkdone (pid))
591 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
593 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
594 read-only process state. */
596 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
600 linux_child_post_attach (int pid)
602 linux_enable_event_reporting (pid_to_ptid (pid));
603 check_for_thread_db ();
604 linux_enable_tracesysgood (pid_to_ptid (pid));
608 linux_child_post_startup_inferior (ptid_t ptid)
610 linux_enable_event_reporting (ptid);
611 check_for_thread_db ();
612 linux_enable_tracesysgood (ptid);
616 linux_child_follow_fork (struct target_ops *ops, int follow_child)
620 int parent_pid, child_pid;
622 block_child_signals (&prev_mask);
624 has_vforked = (inferior_thread ()->pending_follow.kind
625 == TARGET_WAITKIND_VFORKED);
626 parent_pid = ptid_get_lwp (inferior_ptid);
628 parent_pid = ptid_get_pid (inferior_ptid);
629 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
632 linux_enable_event_reporting (pid_to_ptid (child_pid));
635 && !non_stop /* Non-stop always resumes both branches. */
636 && (!target_is_async_p () || sync_execution)
637 && !(follow_child || detach_fork || sched_multi))
639 /* The parent stays blocked inside the vfork syscall until the
640 child execs or exits. If we don't let the child run, then
641 the parent stays blocked. If we're telling the parent to run
642 in the foreground, the user will not be able to ctrl-c to get
643 back the terminal, effectively hanging the debug session. */
644 fprintf_filtered (gdb_stderr, _("\
645 Can not resume the parent process over vfork in the foreground while\n\
646 holding the child stopped. Try \"set detach-on-fork\" or \
647 \"set schedule-multiple\".\n"));
648 /* FIXME output string > 80 columns. */
654 struct lwp_info *child_lp = NULL;
656 /* We're already attached to the parent, by default. */
658 /* Detach new forked process? */
661 /* Before detaching from the child, remove all breakpoints
662 from it. If we forked, then this has already been taken
663 care of by infrun.c. If we vforked however, any
664 breakpoint inserted in the parent is visible in the
665 child, even those added while stopped in a vfork
666 catchpoint. This will remove the breakpoints from the
667 parent also, but they'll be reinserted below. */
670 /* keep breakpoints list in sync. */
671 remove_breakpoints_pid (GET_PID (inferior_ptid));
674 if (info_verbose || debug_linux_nat)
676 target_terminal_ours ();
677 fprintf_filtered (gdb_stdlog,
678 "Detaching after fork from "
679 "child process %d.\n",
683 ptrace (PTRACE_DETACH, child_pid, 0, 0);
687 struct inferior *parent_inf, *child_inf;
688 struct cleanup *old_chain;
690 /* Add process to GDB's tables. */
691 child_inf = add_inferior (child_pid);
693 parent_inf = current_inferior ();
694 child_inf->attach_flag = parent_inf->attach_flag;
695 copy_terminal_info (child_inf, parent_inf);
697 old_chain = save_inferior_ptid ();
698 save_current_program_space ();
700 inferior_ptid = ptid_build (child_pid, child_pid, 0);
701 add_thread (inferior_ptid);
702 child_lp = add_lwp (inferior_ptid);
703 child_lp->stopped = 1;
704 child_lp->last_resume_kind = resume_stop;
706 /* If this is a vfork child, then the address-space is
707 shared with the parent. */
710 child_inf->pspace = parent_inf->pspace;
711 child_inf->aspace = parent_inf->aspace;
713 /* The parent will be frozen until the child is done
714 with the shared region. Keep track of the
716 child_inf->vfork_parent = parent_inf;
717 child_inf->pending_detach = 0;
718 parent_inf->vfork_child = child_inf;
719 parent_inf->pending_detach = 0;
723 child_inf->aspace = new_address_space ();
724 child_inf->pspace = add_program_space (child_inf->aspace);
725 child_inf->removable = 1;
726 set_current_program_space (child_inf->pspace);
727 clone_program_space (child_inf->pspace, parent_inf->pspace);
729 /* Let the shared library layer (solib-svr4) learn about
730 this new process, relocate the cloned exec, pull in
731 shared libraries, and install the solib event
732 breakpoint. If a "cloned-VM" event was propagated
733 better throughout the core, this wouldn't be
735 solib_create_inferior_hook (0);
738 /* Let the thread_db layer learn about this new process. */
739 check_for_thread_db ();
741 do_cleanups (old_chain);
746 struct lwp_info *parent_lp;
747 struct inferior *parent_inf;
749 parent_inf = current_inferior ();
751 /* If we detached from the child, then we have to be careful
752 to not insert breakpoints in the parent until the child
753 is done with the shared memory region. However, if we're
754 staying attached to the child, then we can and should
755 insert breakpoints, so that we can debug it. A
756 subsequent child exec or exit is enough to know when does
757 the child stops using the parent's address space. */
758 parent_inf->waiting_for_vfork_done = detach_fork;
759 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
761 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
762 gdb_assert (linux_supports_tracefork_flag >= 0);
764 if (linux_supports_tracevforkdone (0))
767 fprintf_unfiltered (gdb_stdlog,
768 "LCFF: waiting for VFORK_DONE on %d\n",
770 parent_lp->stopped = 1;
772 /* We'll handle the VFORK_DONE event like any other
773 event, in target_wait. */
777 /* We can't insert breakpoints until the child has
778 finished with the shared memory region. We need to
779 wait until that happens. Ideal would be to just
781 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
782 - waitpid (parent_pid, &status, __WALL);
783 However, most architectures can't handle a syscall
784 being traced on the way out if it wasn't traced on
787 We might also think to loop, continuing the child
788 until it exits or gets a SIGTRAP. One problem is
789 that the child might call ptrace with PTRACE_TRACEME.
791 There's no simple and reliable way to figure out when
792 the vforked child will be done with its copy of the
793 shared memory. We could step it out of the syscall,
794 two instructions, let it go, and then single-step the
795 parent once. When we have hardware single-step, this
796 would work; with software single-step it could still
797 be made to work but we'd have to be able to insert
798 single-step breakpoints in the child, and we'd have
799 to insert -just- the single-step breakpoint in the
800 parent. Very awkward.
802 In the end, the best we can do is to make sure it
803 runs for a little while. Hopefully it will be out of
804 range of any breakpoints we reinsert. Usually this
805 is only the single-step breakpoint at vfork's return
809 fprintf_unfiltered (gdb_stdlog,
810 "LCFF: no VFORK_DONE "
811 "support, sleeping a bit\n");
815 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
816 and leave it pending. The next linux_nat_resume call
817 will notice a pending event, and bypasses actually
818 resuming the inferior. */
819 parent_lp->status = 0;
820 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
821 parent_lp->stopped = 1;
823 /* If we're in async mode, need to tell the event loop
824 there's something here to process. */
825 if (target_can_async_p ())
832 struct inferior *parent_inf, *child_inf;
833 struct lwp_info *child_lp;
834 struct program_space *parent_pspace;
836 if (info_verbose || debug_linux_nat)
838 target_terminal_ours ();
840 fprintf_filtered (gdb_stdlog,
841 _("Attaching after process %d "
842 "vfork to child process %d.\n"),
843 parent_pid, child_pid);
845 fprintf_filtered (gdb_stdlog,
846 _("Attaching after process %d "
847 "fork to child process %d.\n"),
848 parent_pid, child_pid);
851 /* Add the new inferior first, so that the target_detach below
852 doesn't unpush the target. */
854 child_inf = add_inferior (child_pid);
856 parent_inf = current_inferior ();
857 child_inf->attach_flag = parent_inf->attach_flag;
858 copy_terminal_info (child_inf, parent_inf);
860 parent_pspace = parent_inf->pspace;
862 /* If we're vforking, we want to hold on to the parent until the
863 child exits or execs. At child exec or exit time we can
864 remove the old breakpoints from the parent and detach or
865 resume debugging it. Otherwise, detach the parent now; we'll
866 want to reuse it's program/address spaces, but we can't set
867 them to the child before removing breakpoints from the
868 parent, otherwise, the breakpoints module could decide to
869 remove breakpoints from the wrong process (since they'd be
870 assigned to the same address space). */
874 gdb_assert (child_inf->vfork_parent == NULL);
875 gdb_assert (parent_inf->vfork_child == NULL);
876 child_inf->vfork_parent = parent_inf;
877 child_inf->pending_detach = 0;
878 parent_inf->vfork_child = child_inf;
879 parent_inf->pending_detach = detach_fork;
880 parent_inf->waiting_for_vfork_done = 0;
882 else if (detach_fork)
883 target_detach (NULL, 0);
885 /* Note that the detach above makes PARENT_INF dangling. */
887 /* Add the child thread to the appropriate lists, and switch to
888 this new thread, before cloning the program space, and
889 informing the solib layer about this new process. */
891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
892 add_thread (inferior_ptid);
893 child_lp = add_lwp (inferior_ptid);
894 child_lp->stopped = 1;
895 child_lp->last_resume_kind = resume_stop;
897 /* If this is a vfork child, then the address-space is shared
898 with the parent. If we detached from the parent, then we can
899 reuse the parent's program/address spaces. */
900 if (has_vforked || detach_fork)
902 child_inf->pspace = parent_pspace;
903 child_inf->aspace = child_inf->pspace->aspace;
907 child_inf->aspace = new_address_space ();
908 child_inf->pspace = add_program_space (child_inf->aspace);
909 child_inf->removable = 1;
910 set_current_program_space (child_inf->pspace);
911 clone_program_space (child_inf->pspace, parent_pspace);
913 /* Let the shared library layer (solib-svr4) learn about
914 this new process, relocate the cloned exec, pull in
915 shared libraries, and install the solib event breakpoint.
916 If a "cloned-VM" event was propagated better throughout
917 the core, this wouldn't be required. */
918 solib_create_inferior_hook (0);
921 /* Let the thread_db layer learn about this new process. */
922 check_for_thread_db ();
925 restore_child_signals_mask (&prev_mask);
931 linux_child_insert_fork_catchpoint (int pid)
933 return !linux_supports_tracefork (pid);
937 linux_child_remove_fork_catchpoint (int pid)
943 linux_child_insert_vfork_catchpoint (int pid)
945 return !linux_supports_tracefork (pid);
949 linux_child_remove_vfork_catchpoint (int pid)
955 linux_child_insert_exec_catchpoint (int pid)
957 return !linux_supports_tracefork (pid);
961 linux_child_remove_exec_catchpoint (int pid)
967 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
968 int table_size, int *table)
970 if (!linux_supports_tracesysgood (pid))
973 /* On GNU/Linux, we ignore the arguments. It means that we only
974 enable the syscall catchpoints, but do not disable them.
976 Also, we do not use the `table' information because we do not
977 filter system calls here. We let GDB do the logic for us. */
981 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
982 are processes sharing the same VM space. A multi-threaded process
983 is basically a group of such processes. However, such a grouping
984 is almost entirely a user-space issue; the kernel doesn't enforce
985 such a grouping at all (this might change in the future). In
986 general, we'll rely on the threads library (i.e. the GNU/Linux
987 Threads library) to provide such a grouping.
989 It is perfectly well possible to write a multi-threaded application
990 without the assistance of a threads library, by using the clone
991 system call directly. This module should be able to give some
992 rudimentary support for debugging such applications if developers
993 specify the CLONE_PTRACE flag in the clone system call, and are
994 using the Linux kernel 2.4 or above.
996 Note that there are some peculiarities in GNU/Linux that affect
999 - In general one should specify the __WCLONE flag to waitpid in
1000 order to make it report events for any of the cloned processes
1001 (and leave it out for the initial process). However, if a cloned
1002 process has exited the exit status is only reported if the
1003 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1004 we cannot use it since GDB must work on older systems too.
1006 - When a traced, cloned process exits and is waited for by the
1007 debugger, the kernel reassigns it to the original parent and
1008 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1009 library doesn't notice this, which leads to the "zombie problem":
1010 When debugged a multi-threaded process that spawns a lot of
1011 threads will run out of processes, even if the threads exit,
1012 because the "zombies" stay around. */
1014 /* List of known LWPs. */
1015 struct lwp_info *lwp_list;
1018 /* Original signal mask. */
1019 static sigset_t normal_mask;
1021 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1022 _initialize_linux_nat. */
1023 static sigset_t suspend_mask;
1025 /* Signals to block to make that sigsuspend work. */
1026 static sigset_t blocked_mask;
1028 /* SIGCHLD action. */
1029 struct sigaction sigchld_action;
1031 /* Block child signals (SIGCHLD and linux threads signals), and store
1032 the previous mask in PREV_MASK. */
1035 block_child_signals (sigset_t *prev_mask)
1037 /* Make sure SIGCHLD is blocked. */
1038 if (!sigismember (&blocked_mask, SIGCHLD))
1039 sigaddset (&blocked_mask, SIGCHLD);
1041 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1044 /* Restore child signals mask, previously returned by
1045 block_child_signals. */
1048 restore_child_signals_mask (sigset_t *prev_mask)
1050 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1053 /* Mask of signals to pass directly to the inferior. */
1054 static sigset_t pass_mask;
1056 /* Update signals to pass to the inferior. */
1058 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1062 sigemptyset (&pass_mask);
1064 for (signo = 1; signo < NSIG; signo++)
1066 int target_signo = target_signal_from_host (signo);
1067 if (target_signo < numsigs && pass_signals[target_signo])
1068 sigaddset (&pass_mask, signo);
1074 /* Prototypes for local functions. */
1075 static int stop_wait_callback (struct lwp_info *lp, void *data);
1076 static int linux_thread_alive (ptid_t ptid);
1077 static char *linux_child_pid_to_exec_file (int pid);
1080 /* Convert wait status STATUS to a string. Used for printing debug
1084 status_to_str (int status)
1086 static char buf[64];
1088 if (WIFSTOPPED (status))
1090 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1091 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1092 strsignal (SIGTRAP));
1094 snprintf (buf, sizeof (buf), "%s (stopped)",
1095 strsignal (WSTOPSIG (status)));
1097 else if (WIFSIGNALED (status))
1098 snprintf (buf, sizeof (buf), "%s (terminated)",
1099 strsignal (WTERMSIG (status)));
1101 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1106 /* Remove all LWPs belong to PID from the lwp list. */
1109 purge_lwp_list (int pid)
1111 struct lwp_info *lp, *lpprev, *lpnext;
1115 for (lp = lwp_list; lp; lp = lpnext)
1119 if (ptid_get_pid (lp->ptid) == pid)
1122 lwp_list = lp->next;
1124 lpprev->next = lp->next;
1133 /* Return the number of known LWPs in the tgid given by PID. */
1139 struct lwp_info *lp;
1141 for (lp = lwp_list; lp; lp = lp->next)
1142 if (ptid_get_pid (lp->ptid) == pid)
1148 /* Add the LWP specified by PID to the list. Return a pointer to the
1149 structure describing the new LWP. The LWP should already be stopped
1150 (with an exception for the very first LWP). */
1152 static struct lwp_info *
1153 add_lwp (ptid_t ptid)
1155 struct lwp_info *lp;
1157 gdb_assert (is_lwp (ptid));
1159 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1161 memset (lp, 0, sizeof (struct lwp_info));
1163 lp->last_resume_kind = resume_continue;
1164 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1169 lp->next = lwp_list;
1172 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1173 linux_nat_new_thread (ptid);
1178 /* Remove the LWP specified by PID from the list. */
1181 delete_lwp (ptid_t ptid)
1183 struct lwp_info *lp, *lpprev;
1187 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1188 if (ptid_equal (lp->ptid, ptid))
1195 lpprev->next = lp->next;
1197 lwp_list = lp->next;
1202 /* Return a pointer to the structure describing the LWP corresponding
1203 to PID. If no corresponding LWP could be found, return NULL. */
1205 static struct lwp_info *
1206 find_lwp_pid (ptid_t ptid)
1208 struct lwp_info *lp;
1212 lwp = GET_LWP (ptid);
1214 lwp = GET_PID (ptid);
1216 for (lp = lwp_list; lp; lp = lp->next)
1217 if (lwp == GET_LWP (lp->ptid))
1223 /* Call CALLBACK with its second argument set to DATA for every LWP in
1224 the list. If CALLBACK returns 1 for a particular LWP, return a
1225 pointer to the structure describing that LWP immediately.
1226 Otherwise return NULL. */
1229 iterate_over_lwps (ptid_t filter,
1230 int (*callback) (struct lwp_info *, void *),
1233 struct lwp_info *lp, *lpnext;
1235 for (lp = lwp_list; lp; lp = lpnext)
1239 if (ptid_match (lp->ptid, filter))
1241 if ((*callback) (lp, data))
1249 /* Update our internal state when changing from one checkpoint to
1250 another indicated by NEW_PTID. We can only switch single-threaded
1251 applications, so we only create one new LWP, and the previous list
1255 linux_nat_switch_fork (ptid_t new_ptid)
1257 struct lwp_info *lp;
1259 purge_lwp_list (GET_PID (inferior_ptid));
1261 lp = add_lwp (new_ptid);
1264 /* This changes the thread's ptid while preserving the gdb thread
1265 num. Also changes the inferior pid, while preserving the
1267 thread_change_ptid (inferior_ptid, new_ptid);
1269 /* We've just told GDB core that the thread changed target id, but,
1270 in fact, it really is a different thread, with different register
1272 registers_changed ();
1275 /* Handle the exit of a single thread LP. */
1278 exit_lwp (struct lwp_info *lp)
1280 struct thread_info *th = find_thread_ptid (lp->ptid);
1284 if (print_thread_events)
1285 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1287 delete_thread (lp->ptid);
1290 delete_lwp (lp->ptid);
1293 /* Detect `T (stopped)' in `/proc/PID/status'.
1294 Other states including `T (tracing stop)' are reported as false. */
1297 pid_is_stopped (pid_t pid)
1303 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1304 status_file = fopen (buf, "r");
1305 if (status_file != NULL)
1309 while (fgets (buf, sizeof (buf), status_file))
1311 if (strncmp (buf, "State:", 6) == 0)
1317 if (have_state && strstr (buf, "T (stopped)") != NULL)
1319 fclose (status_file);
1324 /* Wait for the LWP specified by LP, which we have just attached to.
1325 Returns a wait status for that LWP, to cache. */
1328 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1331 pid_t new_pid, pid = GET_LWP (ptid);
1334 if (pid_is_stopped (pid))
1336 if (debug_linux_nat)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "LNPAW: Attaching to a stopped process\n");
1340 /* The process is definitely stopped. It is in a job control
1341 stop, unless the kernel predates the TASK_STOPPED /
1342 TASK_TRACED distinction, in which case it might be in a
1343 ptrace stop. Make sure it is in a ptrace stop; from there we
1344 can kill it, signal it, et cetera.
1346 First make sure there is a pending SIGSTOP. Since we are
1347 already attached, the process can not transition from stopped
1348 to running without a PTRACE_CONT; so we know this signal will
1349 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1350 probably already in the queue (unless this kernel is old
1351 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1352 is not an RT signal, it can only be queued once. */
1353 kill_lwp (pid, SIGSTOP);
1355 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1356 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1357 ptrace (PTRACE_CONT, pid, 0, 0);
1360 /* Make sure the initial process is stopped. The user-level threads
1361 layer might want to poke around in the inferior, and that won't
1362 work if things haven't stabilized yet. */
1363 new_pid = my_waitpid (pid, &status, 0);
1364 if (new_pid == -1 && errno == ECHILD)
1367 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1369 /* Try again with __WCLONE to check cloned processes. */
1370 new_pid = my_waitpid (pid, &status, __WCLONE);
1374 gdb_assert (pid == new_pid);
1376 if (!WIFSTOPPED (status))
1378 /* The pid we tried to attach has apparently just exited. */
1379 if (debug_linux_nat)
1380 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1381 pid, status_to_str (status));
1385 if (WSTOPSIG (status) != SIGSTOP)
1388 if (debug_linux_nat)
1389 fprintf_unfiltered (gdb_stdlog,
1390 "LNPAW: Received %s after attaching\n",
1391 status_to_str (status));
1397 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1398 the new LWP could not be attached, or 1 if we're already auto
1399 attached to this thread, but haven't processed the
1400 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1401 its existance, without considering it an error. */
1404 lin_lwp_attach_lwp (ptid_t ptid)
1406 struct lwp_info *lp;
1410 gdb_assert (is_lwp (ptid));
1412 block_child_signals (&prev_mask);
1414 lp = find_lwp_pid (ptid);
1415 lwpid = GET_LWP (ptid);
1417 /* We assume that we're already attached to any LWP that has an id
1418 equal to the overall process id, and to any LWP that is already
1419 in our list of LWPs. If we're not seeing exit events from threads
1420 and we've had PID wraparound since we last tried to stop all threads,
1421 this assumption might be wrong; fortunately, this is very unlikely
1423 if (lwpid != GET_PID (ptid) && lp == NULL)
1425 int status, cloned = 0, signalled = 0;
1427 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1429 if (linux_supports_tracefork_flag)
1431 /* If we haven't stopped all threads when we get here,
1432 we may have seen a thread listed in thread_db's list,
1433 but not processed the PTRACE_EVENT_CLONE yet. If
1434 that's the case, ignore this new thread, and let
1435 normal event handling discover it later. */
1436 if (in_pid_list_p (stopped_pids, lwpid))
1438 /* We've already seen this thread stop, but we
1439 haven't seen the PTRACE_EVENT_CLONE extended
1441 restore_child_signals_mask (&prev_mask);
1449 /* See if we've got a stop for this new child
1450 pending. If so, we're already attached. */
1451 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1452 if (new_pid == -1 && errno == ECHILD)
1453 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1456 if (WIFSTOPPED (status))
1457 add_to_pid_list (&stopped_pids, lwpid, status);
1459 restore_child_signals_mask (&prev_mask);
1465 /* If we fail to attach to the thread, issue a warning,
1466 but continue. One way this can happen is if thread
1467 creation is interrupted; as of Linux kernel 2.6.19, a
1468 bug may place threads in the thread list and then fail
1470 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1471 safe_strerror (errno));
1472 restore_child_signals_mask (&prev_mask);
1476 if (debug_linux_nat)
1477 fprintf_unfiltered (gdb_stdlog,
1478 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1479 target_pid_to_str (ptid));
1481 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1482 if (!WIFSTOPPED (status))
1484 restore_child_signals_mask (&prev_mask);
1488 lp = add_lwp (ptid);
1490 lp->cloned = cloned;
1491 lp->signalled = signalled;
1492 if (WSTOPSIG (status) != SIGSTOP)
1495 lp->status = status;
1498 target_post_attach (GET_LWP (lp->ptid));
1500 if (debug_linux_nat)
1502 fprintf_unfiltered (gdb_stdlog,
1503 "LLAL: waitpid %s received %s\n",
1504 target_pid_to_str (ptid),
1505 status_to_str (status));
1510 /* We assume that the LWP representing the original process is
1511 already stopped. Mark it as stopped in the data structure
1512 that the GNU/linux ptrace layer uses to keep track of
1513 threads. Note that this won't have already been done since
1514 the main thread will have, we assume, been stopped by an
1515 attach from a different layer. */
1517 lp = add_lwp (ptid);
1521 lp->last_resume_kind = resume_stop;
1522 restore_child_signals_mask (&prev_mask);
1527 linux_nat_create_inferior (struct target_ops *ops,
1528 char *exec_file, char *allargs, char **env,
1531 #ifdef HAVE_PERSONALITY
1532 int personality_orig = 0, personality_set = 0;
1533 #endif /* HAVE_PERSONALITY */
1535 /* The fork_child mechanism is synchronous and calls target_wait, so
1536 we have to mask the async mode. */
1538 #ifdef HAVE_PERSONALITY
1539 if (disable_randomization)
1542 personality_orig = personality (0xffffffff);
1543 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1545 personality_set = 1;
1546 personality (personality_orig | ADDR_NO_RANDOMIZE);
1548 if (errno != 0 || (personality_set
1549 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1550 warning (_("Error disabling address space randomization: %s"),
1551 safe_strerror (errno));
1553 #endif /* HAVE_PERSONALITY */
1555 /* Make sure we report all signals during startup. */
1556 linux_nat_pass_signals (0, NULL);
1558 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1560 #ifdef HAVE_PERSONALITY
1561 if (personality_set)
1564 personality (personality_orig);
1566 warning (_("Error restoring address space randomization: %s"),
1567 safe_strerror (errno));
1569 #endif /* HAVE_PERSONALITY */
1573 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1575 struct lwp_info *lp;
1579 /* Make sure we report all signals during attach. */
1580 linux_nat_pass_signals (0, NULL);
1582 linux_ops->to_attach (ops, args, from_tty);
1584 /* The ptrace base target adds the main thread with (pid,0,0)
1585 format. Decorate it with lwp info. */
1586 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1587 thread_change_ptid (inferior_ptid, ptid);
1589 /* Add the initial process as the first LWP to the list. */
1590 lp = add_lwp (ptid);
1592 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1594 if (!WIFSTOPPED (status))
1596 if (WIFEXITED (status))
1598 int exit_code = WEXITSTATUS (status);
1600 target_terminal_ours ();
1601 target_mourn_inferior ();
1603 error (_("Unable to attach: program exited normally."));
1605 error (_("Unable to attach: program exited with code %d."),
1608 else if (WIFSIGNALED (status))
1610 enum target_signal signo;
1612 target_terminal_ours ();
1613 target_mourn_inferior ();
1615 signo = target_signal_from_host (WTERMSIG (status));
1616 error (_("Unable to attach: program terminated with signal "
1618 target_signal_to_name (signo),
1619 target_signal_to_string (signo));
1622 internal_error (__FILE__, __LINE__,
1623 _("unexpected status %d for PID %ld"),
1624 status, (long) GET_LWP (ptid));
1629 /* Save the wait status to report later. */
1631 if (debug_linux_nat)
1632 fprintf_unfiltered (gdb_stdlog,
1633 "LNA: waitpid %ld, saving status %s\n",
1634 (long) GET_PID (lp->ptid), status_to_str (status));
1636 lp->status = status;
1638 if (target_can_async_p ())
1639 target_async (inferior_event_handler, 0);
1642 /* Get pending status of LP. */
1644 get_pending_status (struct lwp_info *lp, int *status)
1646 enum target_signal signo = TARGET_SIGNAL_0;
1648 /* If we paused threads momentarily, we may have stored pending
1649 events in lp->status or lp->waitstatus (see stop_wait_callback),
1650 and GDB core hasn't seen any signal for those threads.
1651 Otherwise, the last signal reported to the core is found in the
1652 thread object's stop_signal.
1654 There's a corner case that isn't handled here at present. Only
1655 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1656 stop_signal make sense as a real signal to pass to the inferior.
1657 Some catchpoint related events, like
1658 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1659 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1660 those traps are debug API (ptrace in our case) related and
1661 induced; the inferior wouldn't see them if it wasn't being
1662 traced. Hence, we should never pass them to the inferior, even
1663 when set to pass state. Since this corner case isn't handled by
1664 infrun.c when proceeding with a signal, for consistency, neither
1665 do we handle it here (or elsewhere in the file we check for
1666 signal pass state). Normally SIGTRAP isn't set to pass state, so
1667 this is really a corner case. */
1669 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1670 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1671 else if (lp->status)
1672 signo = target_signal_from_host (WSTOPSIG (lp->status));
1673 else if (non_stop && !is_executing (lp->ptid))
1675 struct thread_info *tp = find_thread_ptid (lp->ptid);
1677 signo = tp->suspend.stop_signal;
1681 struct target_waitstatus last;
1684 get_last_target_status (&last_ptid, &last);
1686 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1688 struct thread_info *tp = find_thread_ptid (lp->ptid);
1690 signo = tp->suspend.stop_signal;
1696 if (signo == TARGET_SIGNAL_0)
1698 if (debug_linux_nat)
1699 fprintf_unfiltered (gdb_stdlog,
1700 "GPT: lwp %s has no pending signal\n",
1701 target_pid_to_str (lp->ptid));
1703 else if (!signal_pass_state (signo))
1705 if (debug_linux_nat)
1706 fprintf_unfiltered (gdb_stdlog,
1707 "GPT: lwp %s had signal %s, "
1708 "but it is in no pass state\n",
1709 target_pid_to_str (lp->ptid),
1710 target_signal_to_string (signo));
1714 *status = W_STOPCODE (target_signal_to_host (signo));
1716 if (debug_linux_nat)
1717 fprintf_unfiltered (gdb_stdlog,
1718 "GPT: lwp %s has pending signal %s\n",
1719 target_pid_to_str (lp->ptid),
1720 target_signal_to_string (signo));
1727 detach_callback (struct lwp_info *lp, void *data)
1729 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1731 if (debug_linux_nat && lp->status)
1732 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1733 strsignal (WSTOPSIG (lp->status)),
1734 target_pid_to_str (lp->ptid));
1736 /* If there is a pending SIGSTOP, get rid of it. */
1739 if (debug_linux_nat)
1740 fprintf_unfiltered (gdb_stdlog,
1741 "DC: Sending SIGCONT to %s\n",
1742 target_pid_to_str (lp->ptid));
1744 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1748 /* We don't actually detach from the LWP that has an id equal to the
1749 overall process id just yet. */
1750 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1754 /* Pass on any pending signal for this LWP. */
1755 get_pending_status (lp, &status);
1758 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1759 WSTOPSIG (status)) < 0)
1760 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1761 safe_strerror (errno));
1763 if (debug_linux_nat)
1764 fprintf_unfiltered (gdb_stdlog,
1765 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1766 target_pid_to_str (lp->ptid),
1767 strsignal (WSTOPSIG (status)));
1769 delete_lwp (lp->ptid);
1776 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1780 struct lwp_info *main_lwp;
1782 pid = GET_PID (inferior_ptid);
1784 if (target_can_async_p ())
1785 linux_nat_async (NULL, 0);
1787 /* Stop all threads before detaching. ptrace requires that the
1788 thread is stopped to sucessfully detach. */
1789 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1790 /* ... and wait until all of them have reported back that
1791 they're no longer running. */
1792 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1794 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1796 /* Only the initial process should be left right now. */
1797 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1799 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1801 /* Pass on any pending signal for the last LWP. */
1802 if ((args == NULL || *args == '\0')
1803 && get_pending_status (main_lwp, &status) != -1
1804 && WIFSTOPPED (status))
1806 /* Put the signal number in ARGS so that inf_ptrace_detach will
1807 pass it along with PTRACE_DETACH. */
1809 sprintf (args, "%d", (int) WSTOPSIG (status));
1810 if (debug_linux_nat)
1811 fprintf_unfiltered (gdb_stdlog,
1812 "LND: Sending signal %s to %s\n",
1814 target_pid_to_str (main_lwp->ptid));
1817 delete_lwp (main_lwp->ptid);
1819 if (forks_exist_p ())
1821 /* Multi-fork case. The current inferior_ptid is being detached
1822 from, but there are other viable forks to debug. Detach from
1823 the current fork, and context-switch to the first
1825 linux_fork_detach (args, from_tty);
1827 if (non_stop && target_can_async_p ())
1828 target_async (inferior_event_handler, 0);
1831 linux_ops->to_detach (ops, args, from_tty);
1837 resume_lwp (struct lwp_info *lp, int step)
1841 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1843 if (inf->vfork_child != NULL)
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming %s (vfork parent)\n",
1848 target_pid_to_str (lp->ptid));
1850 else if (lp->status == 0
1851 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1853 if (debug_linux_nat)
1854 fprintf_unfiltered (gdb_stdlog,
1855 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1856 target_pid_to_str (lp->ptid));
1858 linux_ops->to_resume (linux_ops,
1859 pid_to_ptid (GET_LWP (lp->ptid)),
1860 step, TARGET_SIGNAL_0);
1861 if (debug_linux_nat)
1862 fprintf_unfiltered (gdb_stdlog,
1863 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1864 target_pid_to_str (lp->ptid));
1867 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1868 lp->stopped_by_watchpoint = 0;
1872 if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog,
1874 "RC: Not resuming sibling %s (has pending)\n",
1875 target_pid_to_str (lp->ptid));
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "RC: Not resuming sibling %s (not stopped)\n",
1883 target_pid_to_str (lp->ptid));
1888 resume_callback (struct lwp_info *lp, void *data)
1895 resume_clear_callback (struct lwp_info *lp, void *data)
1898 lp->last_resume_kind = resume_stop;
1903 resume_set_callback (struct lwp_info *lp, void *data)
1906 lp->last_resume_kind = resume_continue;
1911 linux_nat_resume (struct target_ops *ops,
1912 ptid_t ptid, int step, enum target_signal signo)
1915 struct lwp_info *lp;
1918 if (debug_linux_nat)
1919 fprintf_unfiltered (gdb_stdlog,
1920 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1921 step ? "step" : "resume",
1922 target_pid_to_str (ptid),
1923 (signo != TARGET_SIGNAL_0
1924 ? strsignal (target_signal_to_host (signo)) : "0"),
1925 target_pid_to_str (inferior_ptid));
1927 block_child_signals (&prev_mask);
1929 /* A specific PTID means `step only this process id'. */
1930 resume_many = (ptid_equal (minus_one_ptid, ptid)
1931 || ptid_is_pid (ptid));
1933 /* Mark the lwps we're resuming as resumed. */
1934 iterate_over_lwps (ptid, resume_set_callback, NULL);
1936 /* See if it's the current inferior that should be handled
1939 lp = find_lwp_pid (inferior_ptid);
1941 lp = find_lwp_pid (ptid);
1942 gdb_assert (lp != NULL);
1944 /* Remember if we're stepping. */
1946 lp->last_resume_kind = step ? resume_step : resume_continue;
1948 /* If we have a pending wait status for this thread, there is no
1949 point in resuming the process. But first make sure that
1950 linux_nat_wait won't preemptively handle the event - we
1951 should never take this short-circuit if we are going to
1952 leave LP running, since we have skipped resuming all the
1953 other threads. This bit of code needs to be synchronized
1954 with linux_nat_wait. */
1956 if (lp->status && WIFSTOPPED (lp->status))
1959 && WSTOPSIG (lp->status)
1960 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1962 if (debug_linux_nat)
1963 fprintf_unfiltered (gdb_stdlog,
1964 "LLR: Not short circuiting for ignored "
1965 "status 0x%x\n", lp->status);
1967 /* FIXME: What should we do if we are supposed to continue
1968 this thread with a signal? */
1969 gdb_assert (signo == TARGET_SIGNAL_0);
1970 signo = target_signal_from_host (WSTOPSIG (lp->status));
1975 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1977 /* FIXME: What should we do if we are supposed to continue
1978 this thread with a signal? */
1979 gdb_assert (signo == TARGET_SIGNAL_0);
1981 if (debug_linux_nat)
1982 fprintf_unfiltered (gdb_stdlog,
1983 "LLR: Short circuiting for status 0x%x\n",
1986 restore_child_signals_mask (&prev_mask);
1987 if (target_can_async_p ())
1989 target_async (inferior_event_handler, 0);
1990 /* Tell the event loop we have something to process. */
1996 /* Mark LWP as not stopped to prevent it from being continued by
2001 iterate_over_lwps (ptid, resume_callback, NULL);
2003 /* Convert to something the lower layer understands. */
2004 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2006 linux_ops->to_resume (linux_ops, ptid, step, signo);
2007 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2008 lp->stopped_by_watchpoint = 0;
2010 if (debug_linux_nat)
2011 fprintf_unfiltered (gdb_stdlog,
2012 "LLR: %s %s, %s (resume event thread)\n",
2013 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2014 target_pid_to_str (ptid),
2015 (signo != TARGET_SIGNAL_0
2016 ? strsignal (target_signal_to_host (signo)) : "0"));
2018 restore_child_signals_mask (&prev_mask);
2019 if (target_can_async_p ())
2020 target_async (inferior_event_handler, 0);
2023 /* Send a signal to an LWP. */
2026 kill_lwp (int lwpid, int signo)
2028 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2029 fails, then we are not using nptl threads and we should be using kill. */
2031 #ifdef HAVE_TKILL_SYSCALL
2033 static int tkill_failed;
2040 ret = syscall (__NR_tkill, lwpid, signo);
2041 if (errno != ENOSYS)
2048 return kill (lwpid, signo);
2051 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2052 event, check if the core is interested in it: if not, ignore the
2053 event, and keep waiting; otherwise, we need to toggle the LWP's
2054 syscall entry/exit status, since the ptrace event itself doesn't
2055 indicate it, and report the trap to higher layers. */
2058 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2060 struct target_waitstatus *ourstatus = &lp->waitstatus;
2061 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2062 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2066 /* If we're stopping threads, there's a SIGSTOP pending, which
2067 makes it so that the LWP reports an immediate syscall return,
2068 followed by the SIGSTOP. Skip seeing that "return" using
2069 PTRACE_CONT directly, and let stop_wait_callback collect the
2070 SIGSTOP. Later when the thread is resumed, a new syscall
2071 entry event. If we didn't do this (and returned 0), we'd
2072 leave a syscall entry pending, and our caller, by using
2073 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2074 itself. Later, when the user re-resumes this LWP, we'd see
2075 another syscall entry event and we'd mistake it for a return.
2077 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2078 (leaving immediately with LWP->signalled set, without issuing
2079 a PTRACE_CONT), it would still be problematic to leave this
2080 syscall enter pending, as later when the thread is resumed,
2081 it would then see the same syscall exit mentioned above,
2082 followed by the delayed SIGSTOP, while the syscall didn't
2083 actually get to execute. It seems it would be even more
2084 confusing to the user. */
2086 if (debug_linux_nat)
2087 fprintf_unfiltered (gdb_stdlog,
2088 "LHST: ignoring syscall %d "
2089 "for LWP %ld (stopping threads), "
2090 "resuming with PTRACE_CONT for SIGSTOP\n",
2092 GET_LWP (lp->ptid));
2094 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2095 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2099 if (catch_syscall_enabled ())
2101 /* Always update the entry/return state, even if this particular
2102 syscall isn't interesting to the core now. In async mode,
2103 the user could install a new catchpoint for this syscall
2104 between syscall enter/return, and we'll need to know to
2105 report a syscall return if that happens. */
2106 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2107 ? TARGET_WAITKIND_SYSCALL_RETURN
2108 : TARGET_WAITKIND_SYSCALL_ENTRY);
2110 if (catching_syscall_number (syscall_number))
2112 /* Alright, an event to report. */
2113 ourstatus->kind = lp->syscall_state;
2114 ourstatus->value.syscall_number = syscall_number;
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHST: stopping for %s of syscall %d"
2121 == TARGET_WAITKIND_SYSCALL_ENTRY
2122 ? "entry" : "return",
2124 GET_LWP (lp->ptid));
2128 if (debug_linux_nat)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "LHST: ignoring %s of syscall %d "
2132 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2133 ? "entry" : "return",
2135 GET_LWP (lp->ptid));
2139 /* If we had been syscall tracing, and hence used PT_SYSCALL
2140 before on this LWP, it could happen that the user removes all
2141 syscall catchpoints before we get to process this event.
2142 There are two noteworthy issues here:
2144 - When stopped at a syscall entry event, resuming with
2145 PT_STEP still resumes executing the syscall and reports a
2148 - Only PT_SYSCALL catches syscall enters. If we last
2149 single-stepped this thread, then this event can't be a
2150 syscall enter. If we last single-stepped this thread, this
2151 has to be a syscall exit.
2153 The points above mean that the next resume, be it PT_STEP or
2154 PT_CONTINUE, can not trigger a syscall trace event. */
2155 if (debug_linux_nat)
2156 fprintf_unfiltered (gdb_stdlog,
2157 "LHST: caught syscall event "
2158 "with no syscall catchpoints."
2159 " %d for LWP %ld, ignoring\n",
2161 GET_LWP (lp->ptid));
2162 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2165 /* The core isn't interested in this event. For efficiency, avoid
2166 stopping all threads only to have the core resume them all again.
2167 Since we're not stopping threads, if we're still syscall tracing
2168 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2169 subsequent syscall. Simply resume using the inf-ptrace layer,
2170 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2172 /* Note that gdbarch_get_syscall_number may access registers, hence
2174 registers_changed ();
2175 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2176 lp->step, TARGET_SIGNAL_0);
2180 /* Handle a GNU/Linux extended wait response. If we see a clone
2181 event, we need to add the new LWP to our list (and not report the
2182 trap to higher layers). This function returns non-zero if the
2183 event should be ignored and we should wait again. If STOPPING is
2184 true, the new LWP remains stopped, otherwise it is continued. */
2187 linux_handle_extended_wait (struct lwp_info *lp, int status,
2190 int pid = GET_LWP (lp->ptid);
2191 struct target_waitstatus *ourstatus = &lp->waitstatus;
2192 int event = status >> 16;
2194 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2195 || event == PTRACE_EVENT_CLONE)
2197 unsigned long new_pid;
2200 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2202 /* If we haven't already seen the new PID stop, wait for it now. */
2203 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2205 /* The new child has a pending SIGSTOP. We can't affect it until it
2206 hits the SIGSTOP, but we're already attached. */
2207 ret = my_waitpid (new_pid, &status,
2208 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2210 perror_with_name (_("waiting for new child"));
2211 else if (ret != new_pid)
2212 internal_error (__FILE__, __LINE__,
2213 _("wait returned unexpected PID %d"), ret);
2214 else if (!WIFSTOPPED (status))
2215 internal_error (__FILE__, __LINE__,
2216 _("wait returned unexpected status 0x%x"), status);
2219 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2221 if (event == PTRACE_EVENT_FORK
2222 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2224 /* Handle checkpointing by linux-fork.c here as a special
2225 case. We don't want the follow-fork-mode or 'catch fork'
2226 to interfere with this. */
2228 /* This won't actually modify the breakpoint list, but will
2229 physically remove the breakpoints from the child. */
2230 detach_breakpoints (new_pid);
2232 /* Retain child fork in ptrace (stopped) state. */
2233 if (!find_fork_pid (new_pid))
2236 /* Report as spurious, so that infrun doesn't want to follow
2237 this fork. We're actually doing an infcall in
2239 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2240 linux_enable_event_reporting (pid_to_ptid (new_pid));
2242 /* Report the stop to the core. */
2246 if (event == PTRACE_EVENT_FORK)
2247 ourstatus->kind = TARGET_WAITKIND_FORKED;
2248 else if (event == PTRACE_EVENT_VFORK)
2249 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2252 struct lwp_info *new_lp;
2254 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2256 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2258 new_lp->stopped = 1;
2260 if (WSTOPSIG (status) != SIGSTOP)
2262 /* This can happen if someone starts sending signals to
2263 the new thread before it gets a chance to run, which
2264 have a lower number than SIGSTOP (e.g. SIGUSR1).
2265 This is an unlikely case, and harder to handle for
2266 fork / vfork than for clone, so we do not try - but
2267 we handle it for clone events here. We'll send
2268 the other signal on to the thread below. */
2270 new_lp->signalled = 1;
2277 /* Add the new thread to GDB's lists as soon as possible
2280 1) the frontend doesn't have to wait for a stop to
2283 2) we tag it with the correct running state. */
2285 /* If the thread_db layer is active, let it know about
2286 this new thread, and add it to GDB's list. */
2287 if (!thread_db_attach_lwp (new_lp->ptid))
2289 /* We're not using thread_db. Add it to GDB's
2291 target_post_attach (GET_LWP (new_lp->ptid));
2292 add_thread (new_lp->ptid);
2297 set_running (new_lp->ptid, 1);
2298 set_executing (new_lp->ptid, 1);
2302 /* Note the need to use the low target ops to resume, to
2303 handle resuming with PT_SYSCALL if we have syscall
2307 enum target_signal signo;
2309 new_lp->stopped = 0;
2310 new_lp->resumed = 1;
2311 new_lp->last_resume_kind = resume_continue;
2314 ? target_signal_from_host (WSTOPSIG (status))
2317 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2324 /* We created NEW_LP so it cannot yet contain STATUS. */
2325 gdb_assert (new_lp->status == 0);
2327 /* Save the wait status to report later. */
2328 if (debug_linux_nat)
2329 fprintf_unfiltered (gdb_stdlog,
2330 "LHEW: waitpid of new LWP %ld, "
2331 "saving status %s\n",
2332 (long) GET_LWP (new_lp->ptid),
2333 status_to_str (status));
2334 new_lp->status = status;
2338 if (debug_linux_nat)
2339 fprintf_unfiltered (gdb_stdlog,
2340 "LHEW: Got clone event "
2341 "from LWP %ld, resuming\n",
2342 GET_LWP (lp->ptid));
2343 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2344 0, TARGET_SIGNAL_0);
2352 if (event == PTRACE_EVENT_EXEC)
2354 if (debug_linux_nat)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "LHEW: Got exec event from LWP %ld\n",
2357 GET_LWP (lp->ptid));
2359 ourstatus->kind = TARGET_WAITKIND_EXECD;
2360 ourstatus->value.execd_pathname
2361 = xstrdup (linux_child_pid_to_exec_file (pid));
2366 if (event == PTRACE_EVENT_VFORK_DONE)
2368 if (current_inferior ()->waiting_for_vfork_done)
2370 if (debug_linux_nat)
2371 fprintf_unfiltered (gdb_stdlog,
2372 "LHEW: Got expected PTRACE_EVENT_"
2373 "VFORK_DONE from LWP %ld: stopping\n",
2374 GET_LWP (lp->ptid));
2376 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2380 if (debug_linux_nat)
2381 fprintf_unfiltered (gdb_stdlog,
2382 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2383 "from LWP %ld: resuming\n",
2384 GET_LWP (lp->ptid));
2385 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2389 internal_error (__FILE__, __LINE__,
2390 _("unknown ptrace event %d"), event);
2393 /* Return non-zero if LWP is a zombie. */
2396 linux_lwp_is_zombie (long lwp)
2398 char buffer[MAXPATHLEN];
2402 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2403 procfile = fopen (buffer, "r");
2404 if (procfile == NULL)
2406 warning (_("unable to open /proc file '%s'"), buffer);
2409 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2410 if (strcmp (buffer, "State:\tZ (zombie)\n") == 0)
2420 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2424 wait_lwp (struct lwp_info *lp)
2428 int thread_dead = 0;
2431 gdb_assert (!lp->stopped);
2432 gdb_assert (lp->status == 0);
2434 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2435 block_child_signals (&prev_mask);
2439 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2440 was right and we should just call sigsuspend. */
2442 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2443 if (pid == -1 && errno == ECHILD)
2444 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2445 if (pid == -1 && errno == ECHILD)
2447 /* The thread has previously exited. We need to delete it
2448 now because, for some vendor 2.4 kernels with NPTL
2449 support backported, there won't be an exit event unless
2450 it is the main thread. 2.6 kernels will report an exit
2451 event for each thread that exits, as expected. */
2453 if (debug_linux_nat)
2454 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2455 target_pid_to_str (lp->ptid));
2460 /* Bugs 10970, 12702.
2461 Thread group leader may have exited in which case we'll lock up in
2462 waitpid if there are other threads, even if they are all zombies too.
2463 Basically, we're not supposed to use waitpid this way.
2464 __WCLONE is not applicable for the leader so we can't use that.
2465 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2466 process; it gets ESRCH both for the zombie and for running processes.
2468 As a workaround, check if we're waiting for the thread group leader and
2469 if it's a zombie, and avoid calling waitpid if it is.
2471 This is racy, what if the tgl becomes a zombie right after we check?
2472 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2473 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2475 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2476 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2479 if (debug_linux_nat)
2480 fprintf_unfiltered (gdb_stdlog,
2481 "WL: Thread group leader %s vanished.\n",
2482 target_pid_to_str (lp->ptid));
2486 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2487 get invoked despite our caller had them intentionally blocked by
2488 block_child_signals. This is sensitive only to the loop of
2489 linux_nat_wait_1 and there if we get called my_waitpid gets called
2490 again before it gets to sigsuspend so we can safely let the handlers
2491 get executed here. */
2493 sigsuspend (&suspend_mask);
2496 restore_child_signals_mask (&prev_mask);
2500 gdb_assert (pid == GET_LWP (lp->ptid));
2502 if (debug_linux_nat)
2504 fprintf_unfiltered (gdb_stdlog,
2505 "WL: waitpid %s received %s\n",
2506 target_pid_to_str (lp->ptid),
2507 status_to_str (status));
2510 /* Check if the thread has exited. */
2511 if (WIFEXITED (status) || WIFSIGNALED (status))
2514 if (debug_linux_nat)
2515 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2516 target_pid_to_str (lp->ptid));
2526 gdb_assert (WIFSTOPPED (status));
2528 /* Handle GNU/Linux's syscall SIGTRAPs. */
2529 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2531 /* No longer need the sysgood bit. The ptrace event ends up
2532 recorded in lp->waitstatus if we care for it. We can carry
2533 on handling the event like a regular SIGTRAP from here
2535 status = W_STOPCODE (SIGTRAP);
2536 if (linux_handle_syscall_trap (lp, 1))
2537 return wait_lwp (lp);
2540 /* Handle GNU/Linux's extended waitstatus for trace events. */
2541 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2543 if (debug_linux_nat)
2544 fprintf_unfiltered (gdb_stdlog,
2545 "WL: Handling extended status 0x%06x\n",
2547 if (linux_handle_extended_wait (lp, status, 1))
2548 return wait_lwp (lp);
2554 /* Save the most recent siginfo for LP. This is currently only called
2555 for SIGTRAP; some ports use the si_addr field for
2556 target_stopped_data_address. In the future, it may also be used to
2557 restore the siginfo of requeued signals. */
2560 save_siginfo (struct lwp_info *lp)
2563 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2564 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2567 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2570 /* Send a SIGSTOP to LP. */
2573 stop_callback (struct lwp_info *lp, void *data)
2575 if (!lp->stopped && !lp->signalled)
2579 if (debug_linux_nat)
2581 fprintf_unfiltered (gdb_stdlog,
2582 "SC: kill %s **<SIGSTOP>**\n",
2583 target_pid_to_str (lp->ptid));
2586 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2587 if (debug_linux_nat)
2589 fprintf_unfiltered (gdb_stdlog,
2590 "SC: lwp kill %d %s\n",
2592 errno ? safe_strerror (errno) : "ERRNO-OK");
2596 gdb_assert (lp->status == 0);
2602 /* Return non-zero if LWP PID has a pending SIGINT. */
2605 linux_nat_has_pending_sigint (int pid)
2607 sigset_t pending, blocked, ignored;
2609 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2611 if (sigismember (&pending, SIGINT)
2612 && !sigismember (&ignored, SIGINT))
2618 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2621 set_ignore_sigint (struct lwp_info *lp, void *data)
2623 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2624 flag to consume the next one. */
2625 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2626 && WSTOPSIG (lp->status) == SIGINT)
2629 lp->ignore_sigint = 1;
2634 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2635 This function is called after we know the LWP has stopped; if the LWP
2636 stopped before the expected SIGINT was delivered, then it will never have
2637 arrived. Also, if the signal was delivered to a shared queue and consumed
2638 by a different thread, it will never be delivered to this LWP. */
2641 maybe_clear_ignore_sigint (struct lwp_info *lp)
2643 if (!lp->ignore_sigint)
2646 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2648 if (debug_linux_nat)
2649 fprintf_unfiltered (gdb_stdlog,
2650 "MCIS: Clearing bogus flag for %s\n",
2651 target_pid_to_str (lp->ptid));
2652 lp->ignore_sigint = 0;
2656 /* Fetch the possible triggered data watchpoint info and store it in
2659 On some archs, like x86, that use debug registers to set
2660 watchpoints, it's possible that the way to know which watched
2661 address trapped, is to check the register that is used to select
2662 which address to watch. Problem is, between setting the watchpoint
2663 and reading back which data address trapped, the user may change
2664 the set of watchpoints, and, as a consequence, GDB changes the
2665 debug registers in the inferior. To avoid reading back a stale
2666 stopped-data-address when that happens, we cache in LP the fact
2667 that a watchpoint trapped, and the corresponding data address, as
2668 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2669 registers meanwhile, we have the cached data we can rely on. */
2672 save_sigtrap (struct lwp_info *lp)
2674 struct cleanup *old_chain;
2676 if (linux_ops->to_stopped_by_watchpoint == NULL)
2678 lp->stopped_by_watchpoint = 0;
2682 old_chain = save_inferior_ptid ();
2683 inferior_ptid = lp->ptid;
2685 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2687 if (lp->stopped_by_watchpoint)
2689 if (linux_ops->to_stopped_data_address != NULL)
2690 lp->stopped_data_address_p =
2691 linux_ops->to_stopped_data_address (¤t_target,
2692 &lp->stopped_data_address);
2694 lp->stopped_data_address_p = 0;
2697 do_cleanups (old_chain);
2700 /* See save_sigtrap. */
2703 linux_nat_stopped_by_watchpoint (void)
2705 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2707 gdb_assert (lp != NULL);
2709 return lp->stopped_by_watchpoint;
2713 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2715 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2717 gdb_assert (lp != NULL);
2719 *addr_p = lp->stopped_data_address;
2721 return lp->stopped_data_address_p;
2724 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2727 sigtrap_is_event (int status)
2729 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2732 /* SIGTRAP-like events recognizer. */
2734 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2736 /* Check for SIGTRAP-like events in LP. */
2739 linux_nat_lp_status_is_event (struct lwp_info *lp)
2741 /* We check for lp->waitstatus in addition to lp->status, because we can
2742 have pending process exits recorded in lp->status
2743 and W_EXITCODE(0,0) == 0. We should probably have an additional
2744 lp->status_p flag. */
2746 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2747 && linux_nat_status_is_event (lp->status));
2750 /* Set alternative SIGTRAP-like events recognizer. If
2751 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2755 linux_nat_set_status_is_event (struct target_ops *t,
2756 int (*status_is_event) (int status))
2758 linux_nat_status_is_event = status_is_event;
2761 /* Wait until LP is stopped. */
2764 stop_wait_callback (struct lwp_info *lp, void *data)
2766 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2768 /* If this is a vfork parent, bail out, it is not going to report
2769 any SIGSTOP until the vfork is done with. */
2770 if (inf->vfork_child != NULL)
2777 status = wait_lwp (lp);
2781 if (lp->ignore_sigint && WIFSTOPPED (status)
2782 && WSTOPSIG (status) == SIGINT)
2784 lp->ignore_sigint = 0;
2787 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2788 if (debug_linux_nat)
2789 fprintf_unfiltered (gdb_stdlog,
2790 "PTRACE_CONT %s, 0, 0 (%s) "
2791 "(discarding SIGINT)\n",
2792 target_pid_to_str (lp->ptid),
2793 errno ? safe_strerror (errno) : "OK");
2795 return stop_wait_callback (lp, NULL);
2798 maybe_clear_ignore_sigint (lp);
2800 if (WSTOPSIG (status) != SIGSTOP)
2802 if (linux_nat_status_is_event (status))
2804 /* If a LWP other than the LWP that we're reporting an
2805 event for has hit a GDB breakpoint (as opposed to
2806 some random trap signal), then just arrange for it to
2807 hit it again later. We don't keep the SIGTRAP status
2808 and don't forward the SIGTRAP signal to the LWP. We
2809 will handle the current event, eventually we will
2810 resume all LWPs, and this one will get its breakpoint
2813 If we do not do this, then we run the risk that the
2814 user will delete or disable the breakpoint, but the
2815 thread will have already tripped on it. */
2817 /* Save the trap's siginfo in case we need it later. */
2822 /* Now resume this LWP and get the SIGSTOP event. */
2824 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2825 if (debug_linux_nat)
2827 fprintf_unfiltered (gdb_stdlog,
2828 "PTRACE_CONT %s, 0, 0 (%s)\n",
2829 target_pid_to_str (lp->ptid),
2830 errno ? safe_strerror (errno) : "OK");
2832 fprintf_unfiltered (gdb_stdlog,
2833 "SWC: Candidate SIGTRAP event in %s\n",
2834 target_pid_to_str (lp->ptid));
2836 /* Hold this event/waitstatus while we check to see if
2837 there are any more (we still want to get that SIGSTOP). */
2838 stop_wait_callback (lp, NULL);
2840 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2841 there's another event, throw it back into the
2845 if (debug_linux_nat)
2846 fprintf_unfiltered (gdb_stdlog,
2847 "SWC: kill %s, %s\n",
2848 target_pid_to_str (lp->ptid),
2849 status_to_str ((int) status));
2850 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2853 /* Save the sigtrap event. */
2854 lp->status = status;
2859 /* The thread was stopped with a signal other than
2860 SIGSTOP, and didn't accidentally trip a breakpoint. */
2862 if (debug_linux_nat)
2864 fprintf_unfiltered (gdb_stdlog,
2865 "SWC: Pending event %s in %s\n",
2866 status_to_str ((int) status),
2867 target_pid_to_str (lp->ptid));
2869 /* Now resume this LWP and get the SIGSTOP event. */
2871 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2872 if (debug_linux_nat)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2875 target_pid_to_str (lp->ptid),
2876 errno ? safe_strerror (errno) : "OK");
2878 /* Hold this event/waitstatus while we check to see if
2879 there are any more (we still want to get that SIGSTOP). */
2880 stop_wait_callback (lp, NULL);
2882 /* If the lp->status field is still empty, use it to
2883 hold this event. If not, then this event must be
2884 returned to the event queue of the LWP. */
2887 if (debug_linux_nat)
2889 fprintf_unfiltered (gdb_stdlog,
2890 "SWC: kill %s, %s\n",
2891 target_pid_to_str (lp->ptid),
2892 status_to_str ((int) status));
2894 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2897 lp->status = status;
2903 /* We caught the SIGSTOP that we intended to catch, so
2904 there's no SIGSTOP pending. */
2913 /* Return non-zero if LP has a wait status pending. */
2916 status_callback (struct lwp_info *lp, void *data)
2918 /* Only report a pending wait status if we pretend that this has
2919 indeed been resumed. */
2923 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2925 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2926 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2927 0', so a clean process exit can not be stored pending in
2928 lp->status, it is indistinguishable from
2929 no-pending-status. */
2933 if (lp->status != 0)
2939 /* Return non-zero if LP isn't stopped. */
2942 running_callback (struct lwp_info *lp, void *data)
2944 return (!lp->stopped
2945 || ((lp->status != 0
2946 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2950 /* Count the LWP's that have had events. */
2953 count_events_callback (struct lwp_info *lp, void *data)
2957 gdb_assert (count != NULL);
2959 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2960 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2966 /* Select the LWP (if any) that is currently being single-stepped. */
2969 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2971 if (lp->last_resume_kind == resume_step
2978 /* Select the Nth LWP that has had a SIGTRAP event. */
2981 select_event_lwp_callback (struct lwp_info *lp, void *data)
2983 int *selector = data;
2985 gdb_assert (selector != NULL);
2987 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2988 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2989 if ((*selector)-- == 0)
2996 cancel_breakpoint (struct lwp_info *lp)
2998 /* Arrange for a breakpoint to be hit again later. We don't keep
2999 the SIGTRAP status and don't forward the SIGTRAP signal to the
3000 LWP. We will handle the current event, eventually we will resume
3001 this LWP, and this breakpoint will trap again.
3003 If we do not do this, then we run the risk that the user will
3004 delete or disable the breakpoint, but the LWP will have already
3007 struct regcache *regcache = get_thread_regcache (lp->ptid);
3008 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3011 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3012 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3014 if (debug_linux_nat)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "CB: Push back breakpoint for %s\n",
3017 target_pid_to_str (lp->ptid));
3019 /* Back up the PC if necessary. */
3020 if (gdbarch_decr_pc_after_break (gdbarch))
3021 regcache_write_pc (regcache, pc);
3029 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3031 struct lwp_info *event_lp = data;
3033 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3037 /* If a LWP other than the LWP that we're reporting an event for has
3038 hit a GDB breakpoint (as opposed to some random trap signal),
3039 then just arrange for it to hit it again later. We don't keep
3040 the SIGTRAP status and don't forward the SIGTRAP signal to the
3041 LWP. We will handle the current event, eventually we will resume
3042 all LWPs, and this one will get its breakpoint trap again.
3044 If we do not do this, then we run the risk that the user will
3045 delete or disable the breakpoint, but the LWP will have already
3048 if (linux_nat_lp_status_is_event (lp)
3049 && cancel_breakpoint (lp))
3050 /* Throw away the SIGTRAP. */
3056 /* Select one LWP out of those that have events pending. */
3059 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3062 int random_selector;
3063 struct lwp_info *event_lp;
3065 /* Record the wait status for the original LWP. */
3066 (*orig_lp)->status = *status;
3068 /* Give preference to any LWP that is being single-stepped. */
3069 event_lp = iterate_over_lwps (filter,
3070 select_singlestep_lwp_callback, NULL);
3071 if (event_lp != NULL)
3073 if (debug_linux_nat)
3074 fprintf_unfiltered (gdb_stdlog,
3075 "SEL: Select single-step %s\n",
3076 target_pid_to_str (event_lp->ptid));
3080 /* No single-stepping LWP. Select one at random, out of those
3081 which have had SIGTRAP events. */
3083 /* First see how many SIGTRAP events we have. */
3084 iterate_over_lwps (filter, count_events_callback, &num_events);
3086 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3087 random_selector = (int)
3088 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3090 if (debug_linux_nat && num_events > 1)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3093 num_events, random_selector);
3095 event_lp = iterate_over_lwps (filter,
3096 select_event_lwp_callback,
3100 if (event_lp != NULL)
3102 /* Switch the event LWP. */
3103 *orig_lp = event_lp;
3104 *status = event_lp->status;
3107 /* Flush the wait status for the event LWP. */
3108 (*orig_lp)->status = 0;
3111 /* Return non-zero if LP has been resumed. */
3114 resumed_callback (struct lwp_info *lp, void *data)
3119 /* Stop an active thread, verify it still exists, then resume it. */
3122 stop_and_resume_callback (struct lwp_info *lp, void *data)
3126 enum resume_kind last_resume_kind = lp->last_resume_kind;
3127 ptid_t ptid = lp->ptid;
3129 stop_callback (lp, NULL);
3130 stop_wait_callback (lp, NULL);
3132 /* Resume if the lwp still exists, and the core wanted it
3134 if (last_resume_kind != resume_stop)
3136 lp = find_lwp_pid (ptid);
3138 resume_lwp (lp, lp->step);
3144 /* Check if we should go on and pass this event to common code.
3145 Return the affected lwp if we are, or NULL otherwise. */
3146 static struct lwp_info *
3147 linux_nat_filter_event (int lwpid, int status, int options)
3149 struct lwp_info *lp;
3151 lp = find_lwp_pid (pid_to_ptid (lwpid));
3153 /* Check for stop events reported by a process we didn't already
3154 know about - anything not already in our LWP list.
3156 If we're expecting to receive stopped processes after
3157 fork, vfork, and clone events, then we'll just add the
3158 new one to our list and go back to waiting for the event
3159 to be reported - the stopped process might be returned
3160 from waitpid before or after the event is. */
3161 if (WIFSTOPPED (status) && !lp)
3163 add_to_pid_list (&stopped_pids, lwpid, status);
3167 /* Make sure we don't report an event for the exit of an LWP not in
3168 our list, i.e. not part of the current process. This can happen
3169 if we detach from a program we originally forked and then it
3171 if (!WIFSTOPPED (status) && !lp)
3174 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3175 CLONE_PTRACE processes which do not use the thread library -
3176 otherwise we wouldn't find the new LWP this way. That doesn't
3177 currently work, and the following code is currently unreachable
3178 due to the two blocks above. If it's fixed some day, this code
3179 should be broken out into a function so that we can also pick up
3180 LWPs from the new interface. */
3183 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3184 if (options & __WCLONE)
3187 gdb_assert (WIFSTOPPED (status)
3188 && WSTOPSIG (status) == SIGSTOP);
3191 if (!in_thread_list (inferior_ptid))
3193 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3194 GET_PID (inferior_ptid));
3195 add_thread (inferior_ptid);
3198 add_thread (lp->ptid);
3201 /* Handle GNU/Linux's syscall SIGTRAPs. */
3202 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3204 /* No longer need the sysgood bit. The ptrace event ends up
3205 recorded in lp->waitstatus if we care for it. We can carry
3206 on handling the event like a regular SIGTRAP from here
3208 status = W_STOPCODE (SIGTRAP);
3209 if (linux_handle_syscall_trap (lp, 0))
3213 /* Handle GNU/Linux's extended waitstatus for trace events. */
3214 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3216 if (debug_linux_nat)
3217 fprintf_unfiltered (gdb_stdlog,
3218 "LLW: Handling extended status 0x%06x\n",
3220 if (linux_handle_extended_wait (lp, status, 0))
3224 if (linux_nat_status_is_event (status))
3226 /* Save the trap's siginfo in case we need it later. */
3232 /* Check if the thread has exited. */
3233 if ((WIFEXITED (status) || WIFSIGNALED (status))
3234 && num_lwps (GET_PID (lp->ptid)) > 1)
3236 /* If this is the main thread, we must stop all threads and verify
3237 if they are still alive. This is because in the nptl thread model
3238 on Linux 2.4, there is no signal issued for exiting LWPs
3239 other than the main thread. We only get the main thread exit
3240 signal once all child threads have already exited. If we
3241 stop all the threads and use the stop_wait_callback to check
3242 if they have exited we can determine whether this signal
3243 should be ignored or whether it means the end of the debugged
3244 application, regardless of which threading model is being
3246 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3249 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3250 stop_and_resume_callback, NULL);
3253 if (debug_linux_nat)
3254 fprintf_unfiltered (gdb_stdlog,
3255 "LLW: %s exited.\n",
3256 target_pid_to_str (lp->ptid));
3258 if (num_lwps (GET_PID (lp->ptid)) > 1)
3260 /* If there is at least one more LWP, then the exit signal
3261 was not the end of the debugged application and should be
3268 /* Check if the current LWP has previously exited. In the nptl
3269 thread model, LWPs other than the main thread do not issue
3270 signals when they exit so we must check whenever the thread has
3271 stopped. A similar check is made in stop_wait_callback(). */
3272 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3274 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3276 if (debug_linux_nat)
3277 fprintf_unfiltered (gdb_stdlog,
3278 "LLW: %s exited.\n",
3279 target_pid_to_str (lp->ptid));
3283 /* Make sure there is at least one thread running. */
3284 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3286 /* Discard the event. */
3290 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3291 an attempt to stop an LWP. */
3293 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3295 if (debug_linux_nat)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "LLW: Delayed SIGSTOP caught for %s.\n",
3298 target_pid_to_str (lp->ptid));
3302 if (lp->last_resume_kind != resume_stop)
3304 /* This is a delayed SIGSTOP. */
3306 registers_changed ();
3308 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3309 lp->step, TARGET_SIGNAL_0);
3310 if (debug_linux_nat)
3311 fprintf_unfiltered (gdb_stdlog,
3312 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3314 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3315 target_pid_to_str (lp->ptid));
3318 gdb_assert (lp->resumed);
3320 /* Discard the event. */
3325 /* Make sure we don't report a SIGINT that we have already displayed
3326 for another thread. */
3327 if (lp->ignore_sigint
3328 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3330 if (debug_linux_nat)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "LLW: Delayed SIGINT caught for %s.\n",
3333 target_pid_to_str (lp->ptid));
3335 /* This is a delayed SIGINT. */
3336 lp->ignore_sigint = 0;
3338 registers_changed ();
3339 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3340 lp->step, TARGET_SIGNAL_0);
3341 if (debug_linux_nat)
3342 fprintf_unfiltered (gdb_stdlog,
3343 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3345 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3346 target_pid_to_str (lp->ptid));
3349 gdb_assert (lp->resumed);
3351 /* Discard the event. */
3355 /* An interesting event. */
3357 lp->status = status;
3362 linux_nat_wait_1 (struct target_ops *ops,
3363 ptid_t ptid, struct target_waitstatus *ourstatus,
3366 static sigset_t prev_mask;
3367 struct lwp_info *lp = NULL;
3372 if (debug_linux_nat)
3373 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3375 /* The first time we get here after starting a new inferior, we may
3376 not have added it to the LWP list yet - this is the earliest
3377 moment at which we know its PID. */
3378 if (ptid_is_pid (inferior_ptid))
3380 /* Upgrade the main thread's ptid. */
3381 thread_change_ptid (inferior_ptid,
3382 BUILD_LWP (GET_PID (inferior_ptid),
3383 GET_PID (inferior_ptid)));
3385 lp = add_lwp (inferior_ptid);
3389 /* Make sure SIGCHLD is blocked. */
3390 block_child_signals (&prev_mask);
3392 if (ptid_equal (ptid, minus_one_ptid))
3394 else if (ptid_is_pid (ptid))
3395 /* A request to wait for a specific tgid. This is not possible
3396 with waitpid, so instead, we wait for any child, and leave
3397 children we're not interested in right now with a pending
3398 status to report later. */
3401 pid = GET_LWP (ptid);
3407 /* Make sure that of those LWPs we want to get an event from, there
3408 is at least one LWP that has been resumed. If there's none, just
3409 bail out. The core may just be flushing asynchronously all
3411 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3413 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3415 if (debug_linux_nat)
3416 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3418 restore_child_signals_mask (&prev_mask);
3419 return minus_one_ptid;
3422 /* First check if there is a LWP with a wait status pending. */
3425 /* Any LWP that's been resumed will do. */
3426 lp = iterate_over_lwps (ptid, status_callback, NULL);
3429 if (debug_linux_nat && lp->status)
3430 fprintf_unfiltered (gdb_stdlog,
3431 "LLW: Using pending wait status %s for %s.\n",
3432 status_to_str (lp->status),
3433 target_pid_to_str (lp->ptid));
3436 /* But if we don't find one, we'll have to wait, and check both
3437 cloned and uncloned processes. We start with the cloned
3439 options = __WCLONE | WNOHANG;
3441 else if (is_lwp (ptid))
3443 if (debug_linux_nat)
3444 fprintf_unfiltered (gdb_stdlog,
3445 "LLW: Waiting for specific LWP %s.\n",
3446 target_pid_to_str (ptid));
3448 /* We have a specific LWP to check. */
3449 lp = find_lwp_pid (ptid);
3452 if (debug_linux_nat && lp->status)
3453 fprintf_unfiltered (gdb_stdlog,
3454 "LLW: Using pending wait status %s for %s.\n",
3455 status_to_str (lp->status),
3456 target_pid_to_str (lp->ptid));
3458 /* If we have to wait, take into account whether PID is a cloned
3459 process or not. And we have to convert it to something that
3460 the layer beneath us can understand. */
3461 options = lp->cloned ? __WCLONE : 0;
3462 pid = GET_LWP (ptid);
3464 /* We check for lp->waitstatus in addition to lp->status,
3465 because we can have pending process exits recorded in
3466 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3467 an additional lp->status_p flag. */
3468 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3472 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3474 /* A pending SIGSTOP may interfere with the normal stream of
3475 events. In a typical case where interference is a problem,
3476 we have a SIGSTOP signal pending for LWP A while
3477 single-stepping it, encounter an event in LWP B, and take the
3478 pending SIGSTOP while trying to stop LWP A. After processing
3479 the event in LWP B, LWP A is continued, and we'll never see
3480 the SIGTRAP associated with the last time we were
3481 single-stepping LWP A. */
3483 /* Resume the thread. It should halt immediately returning the
3485 registers_changed ();
3486 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3487 lp->step, TARGET_SIGNAL_0);
3488 if (debug_linux_nat)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3491 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3492 target_pid_to_str (lp->ptid));
3494 gdb_assert (lp->resumed);
3496 /* Catch the pending SIGSTOP. */
3497 status = lp->status;
3500 stop_wait_callback (lp, NULL);
3502 /* If the lp->status field isn't empty, we caught another signal
3503 while flushing the SIGSTOP. Return it back to the event
3504 queue of the LWP, as we already have an event to handle. */
3507 if (debug_linux_nat)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "LLW: kill %s, %s\n",
3510 target_pid_to_str (lp->ptid),
3511 status_to_str (lp->status));
3512 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3515 lp->status = status;
3518 if (!target_can_async_p ())
3520 /* Causes SIGINT to be passed on to the attached process. */
3524 /* Translate generic target_wait options into waitpid options. */
3525 if (target_options & TARGET_WNOHANG)
3532 lwpid = my_waitpid (pid, &status, options);
3536 gdb_assert (pid == -1 || lwpid == pid);
3538 if (debug_linux_nat)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "LLW: waitpid %ld received %s\n",
3542 (long) lwpid, status_to_str (status));
3545 lp = linux_nat_filter_event (lwpid, status, options);
3547 /* STATUS is now no longer valid, use LP->STATUS instead. */
3551 && ptid_is_pid (ptid)
3552 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3554 gdb_assert (lp->resumed);
3556 if (debug_linux_nat)
3558 "LWP %ld got an event %06x, leaving pending.\n",
3559 ptid_get_lwp (lp->ptid), lp->status);
3561 if (WIFSTOPPED (lp->status))
3563 if (WSTOPSIG (lp->status) != SIGSTOP)
3565 /* Cancel breakpoint hits. The breakpoint may
3566 be removed before we fetch events from this
3567 process to report to the core. It is best
3568 not to assume the moribund breakpoints
3569 heuristic always handles these cases --- it
3570 could be too many events go through to the
3571 core before this one is handled. All-stop
3572 always cancels breakpoint hits in all
3575 && linux_nat_lp_status_is_event (lp)
3576 && cancel_breakpoint (lp))
3578 /* Throw away the SIGTRAP. */
3581 if (debug_linux_nat)
3583 "LLW: LWP %ld hit a breakpoint while"
3584 " waiting for another process;"
3586 ptid_get_lwp (lp->ptid));
3596 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3598 if (debug_linux_nat)
3600 "Process %ld exited while stopping LWPs\n",
3601 ptid_get_lwp (lp->ptid));
3603 /* This was the last lwp in the process. Since
3604 events are serialized to GDB core, and we can't
3605 report this one right now, but GDB core and the
3606 other target layers will want to be notified
3607 about the exit code/signal, leave the status
3608 pending for the next time we're able to report
3611 /* Prevent trying to stop this thread again. We'll
3612 never try to resume it because it has a pending
3616 /* Dead LWP's aren't expected to reported a pending
3620 /* Store the pending event in the waitstatus as
3621 well, because W_EXITCODE(0,0) == 0. */
3622 store_waitstatus (&lp->waitstatus, lp->status);
3636 /* waitpid did return something. Restart over. */
3637 options |= __WCLONE;
3645 /* Alternate between checking cloned and uncloned processes. */
3646 options ^= __WCLONE;
3648 /* And every time we have checked both:
3649 In async mode, return to event loop;
3650 In sync mode, suspend waiting for a SIGCHLD signal. */
3651 if (options & __WCLONE)
3653 if (target_options & TARGET_WNOHANG)
3655 /* No interesting event. */
3656 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3658 if (debug_linux_nat)
3659 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3661 restore_child_signals_mask (&prev_mask);
3662 return minus_one_ptid;
3665 sigsuspend (&suspend_mask);
3668 else if (target_options & TARGET_WNOHANG)
3670 /* No interesting event for PID yet. */
3671 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3673 if (debug_linux_nat)
3674 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3676 restore_child_signals_mask (&prev_mask);
3677 return minus_one_ptid;
3680 /* We shouldn't end up here unless we want to try again. */
3681 gdb_assert (lp == NULL);
3684 if (!target_can_async_p ())
3685 clear_sigint_trap ();
3689 status = lp->status;
3692 /* Don't report signals that GDB isn't interested in, such as
3693 signals that are neither printed nor stopped upon. Stopping all
3694 threads can be a bit time-consuming so if we want decent
3695 performance with heavily multi-threaded programs, especially when
3696 they're using a high frequency timer, we'd better avoid it if we
3699 if (WIFSTOPPED (status))
3701 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3703 /* When using hardware single-step, we need to report every signal.
3704 Otherwise, signals in pass_mask may be short-circuited. */
3706 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3708 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3709 here? It is not clear we should. GDB may not expect
3710 other threads to run. On the other hand, not resuming
3711 newly attached threads may cause an unwanted delay in
3712 getting them running. */
3713 registers_changed ();
3714 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3716 if (debug_linux_nat)
3717 fprintf_unfiltered (gdb_stdlog,
3718 "LLW: %s %s, %s (preempt 'handle')\n",
3720 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3721 target_pid_to_str (lp->ptid),
3722 (signo != TARGET_SIGNAL_0
3723 ? strsignal (target_signal_to_host (signo))
3731 /* Only do the below in all-stop, as we currently use SIGINT
3732 to implement target_stop (see linux_nat_stop) in
3734 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3736 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3737 forwarded to the entire process group, that is, all LWPs
3738 will receive it - unless they're using CLONE_THREAD to
3739 share signals. Since we only want to report it once, we
3740 mark it as ignored for all LWPs except this one. */
3741 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3742 set_ignore_sigint, NULL);
3743 lp->ignore_sigint = 0;
3746 maybe_clear_ignore_sigint (lp);
3750 /* This LWP is stopped now. */
3753 if (debug_linux_nat)
3754 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3755 status_to_str (status), target_pid_to_str (lp->ptid));
3759 /* Now stop all other LWP's ... */
3760 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3762 /* ... and wait until all of them have reported back that
3763 they're no longer running. */
3764 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3766 /* If we're not waiting for a specific LWP, choose an event LWP
3767 from among those that have had events. Giving equal priority
3768 to all LWPs that have had events helps prevent
3771 select_event_lwp (ptid, &lp, &status);
3773 /* Now that we've selected our final event LWP, cancel any
3774 breakpoints in other LWPs that have hit a GDB breakpoint.
3775 See the comment in cancel_breakpoints_callback to find out
3777 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3779 /* In all-stop, from the core's perspective, all LWPs are now
3780 stopped until a new resume action is sent over. */
3781 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3786 lp->last_resume_kind = resume_stop;
3789 if (linux_nat_status_is_event (status))
3791 if (debug_linux_nat)
3792 fprintf_unfiltered (gdb_stdlog,
3793 "LLW: trap ptid is %s.\n",
3794 target_pid_to_str (lp->ptid));
3797 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3799 *ourstatus = lp->waitstatus;
3800 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3803 store_waitstatus (ourstatus, status);
3805 if (debug_linux_nat)
3806 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3808 restore_child_signals_mask (&prev_mask);
3810 if (lp->last_resume_kind == resume_stop
3811 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3812 && WSTOPSIG (status) == SIGSTOP)
3814 /* A thread that has been requested to stop by GDB with
3815 target_stop, and it stopped cleanly, so report as SIG0. The
3816 use of SIGSTOP is an implementation detail. */
3817 ourstatus->value.sig = TARGET_SIGNAL_0;
3820 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3821 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3824 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3829 /* Resume LWPs that are currently stopped without any pending status
3830 to report, but are resumed from the core's perspective. */
3833 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3835 ptid_t *wait_ptid_p = data;
3840 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3842 gdb_assert (is_executing (lp->ptid));
3844 /* Don't bother if there's a breakpoint at PC that we'd hit
3845 immediately, and we're not waiting for this LWP. */
3846 if (!ptid_match (lp->ptid, *wait_ptid_p))
3848 struct regcache *regcache = get_thread_regcache (lp->ptid);
3849 CORE_ADDR pc = regcache_read_pc (regcache);
3851 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3855 if (debug_linux_nat)
3856 fprintf_unfiltered (gdb_stdlog,
3857 "RSRL: resuming stopped-resumed LWP %s\n",
3858 target_pid_to_str (lp->ptid));
3860 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3861 lp->step, TARGET_SIGNAL_0);
3863 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3864 lp->stopped_by_watchpoint = 0;
3871 linux_nat_wait (struct target_ops *ops,
3872 ptid_t ptid, struct target_waitstatus *ourstatus,
3877 if (debug_linux_nat)
3878 fprintf_unfiltered (gdb_stdlog,
3879 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3881 /* Flush the async file first. */
3882 if (target_can_async_p ())
3883 async_file_flush ();
3885 /* Resume LWPs that are currently stopped without any pending status
3886 to report, but are resumed from the core's perspective. LWPs get
3887 in this state if we find them stopping at a time we're not
3888 interested in reporting the event (target_wait on a
3889 specific_process, for example, see linux_nat_wait_1), and
3890 meanwhile the event became uninteresting. Don't bother resuming
3891 LWPs we're not going to wait for if they'd stop immediately. */
3893 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3895 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3897 /* If we requested any event, and something came out, assume there
3898 may be more. If we requested a specific lwp or process, also
3899 assume there may be more. */
3900 if (target_can_async_p ()
3901 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3902 || !ptid_equal (ptid, minus_one_ptid)))
3905 /* Get ready for the next event. */
3906 if (target_can_async_p ())
3907 target_async (inferior_event_handler, 0);
3913 kill_callback (struct lwp_info *lp, void *data)
3915 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3918 kill (GET_LWP (lp->ptid), SIGKILL);
3919 if (debug_linux_nat)
3920 fprintf_unfiltered (gdb_stdlog,
3921 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3922 target_pid_to_str (lp->ptid),
3923 errno ? safe_strerror (errno) : "OK");
3925 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3928 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3929 if (debug_linux_nat)
3930 fprintf_unfiltered (gdb_stdlog,
3931 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3932 target_pid_to_str (lp->ptid),
3933 errno ? safe_strerror (errno) : "OK");
3939 kill_wait_callback (struct lwp_info *lp, void *data)
3943 /* We must make sure that there are no pending events (delayed
3944 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3945 program doesn't interfere with any following debugging session. */
3947 /* For cloned processes we must check both with __WCLONE and
3948 without, since the exit status of a cloned process isn't reported
3954 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3955 if (pid != (pid_t) -1)
3957 if (debug_linux_nat)
3958 fprintf_unfiltered (gdb_stdlog,
3959 "KWC: wait %s received unknown.\n",
3960 target_pid_to_str (lp->ptid));
3961 /* The Linux kernel sometimes fails to kill a thread
3962 completely after PTRACE_KILL; that goes from the stop
3963 point in do_fork out to the one in
3964 get_signal_to_deliever and waits again. So kill it
3966 kill_callback (lp, NULL);
3969 while (pid == GET_LWP (lp->ptid));
3971 gdb_assert (pid == -1 && errno == ECHILD);
3976 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3977 if (pid != (pid_t) -1)
3979 if (debug_linux_nat)
3980 fprintf_unfiltered (gdb_stdlog,
3981 "KWC: wait %s received unk.\n",
3982 target_pid_to_str (lp->ptid));
3983 /* See the call to kill_callback above. */
3984 kill_callback (lp, NULL);
3987 while (pid == GET_LWP (lp->ptid));
3989 gdb_assert (pid == -1 && errno == ECHILD);
3994 linux_nat_kill (struct target_ops *ops)
3996 struct target_waitstatus last;
4000 /* If we're stopped while forking and we haven't followed yet,
4001 kill the other task. We need to do this first because the
4002 parent will be sleeping if this is a vfork. */
4004 get_last_target_status (&last_ptid, &last);
4006 if (last.kind == TARGET_WAITKIND_FORKED
4007 || last.kind == TARGET_WAITKIND_VFORKED)
4009 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4013 if (forks_exist_p ())
4014 linux_fork_killall ();
4017 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4019 /* Stop all threads before killing them, since ptrace requires
4020 that the thread is stopped to sucessfully PTRACE_KILL. */
4021 iterate_over_lwps (ptid, stop_callback, NULL);
4022 /* ... and wait until all of them have reported back that
4023 they're no longer running. */
4024 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4026 /* Kill all LWP's ... */
4027 iterate_over_lwps (ptid, kill_callback, NULL);
4029 /* ... and wait until we've flushed all events. */
4030 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4033 target_mourn_inferior ();
4037 linux_nat_mourn_inferior (struct target_ops *ops)
4039 purge_lwp_list (ptid_get_pid (inferior_ptid));
4041 if (! forks_exist_p ())
4042 /* Normal case, no other forks available. */
4043 linux_ops->to_mourn_inferior (ops);
4045 /* Multi-fork case. The current inferior_ptid has exited, but
4046 there are other viable forks to debug. Delete the exiting
4047 one and context-switch to the first available. */
4048 linux_fork_mourn_inferior ();
4051 /* Convert a native/host siginfo object, into/from the siginfo in the
4052 layout of the inferiors' architecture. */
4055 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4059 if (linux_nat_siginfo_fixup != NULL)
4060 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4062 /* If there was no callback, or the callback didn't do anything,
4063 then just do a straight memcpy. */
4067 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4069 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4074 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4075 const char *annex, gdb_byte *readbuf,
4076 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4079 struct siginfo siginfo;
4080 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4082 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4083 gdb_assert (readbuf || writebuf);
4085 pid = GET_LWP (inferior_ptid);
4087 pid = GET_PID (inferior_ptid);
4089 if (offset > sizeof (siginfo))
4093 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4097 /* When GDB is built as a 64-bit application, ptrace writes into
4098 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4099 inferior with a 64-bit GDB should look the same as debugging it
4100 with a 32-bit GDB, we need to convert it. GDB core always sees
4101 the converted layout, so any read/write will have to be done
4103 siginfo_fixup (&siginfo, inf_siginfo, 0);
4105 if (offset + len > sizeof (siginfo))
4106 len = sizeof (siginfo) - offset;
4108 if (readbuf != NULL)
4109 memcpy (readbuf, inf_siginfo + offset, len);
4112 memcpy (inf_siginfo + offset, writebuf, len);
4114 /* Convert back to ptrace layout before flushing it out. */
4115 siginfo_fixup (&siginfo, inf_siginfo, 1);
4118 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4127 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4128 const char *annex, gdb_byte *readbuf,
4129 const gdb_byte *writebuf,
4130 ULONGEST offset, LONGEST len)
4132 struct cleanup *old_chain;
4135 if (object == TARGET_OBJECT_SIGNAL_INFO)
4136 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4139 /* The target is connected but no live inferior is selected. Pass
4140 this request down to a lower stratum (e.g., the executable
4142 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4145 old_chain = save_inferior_ptid ();
4147 if (is_lwp (inferior_ptid))
4148 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4150 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4153 do_cleanups (old_chain);
4158 linux_thread_alive (ptid_t ptid)
4162 gdb_assert (is_lwp (ptid));
4164 /* Send signal 0 instead of anything ptrace, because ptracing a
4165 running thread errors out claiming that the thread doesn't
4167 err = kill_lwp (GET_LWP (ptid), 0);
4169 if (debug_linux_nat)
4170 fprintf_unfiltered (gdb_stdlog,
4171 "LLTA: KILL(SIG0) %s (%s)\n",
4172 target_pid_to_str (ptid),
4173 err ? safe_strerror (tmp_errno) : "OK");
4182 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4184 return linux_thread_alive (ptid);
4188 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4190 static char buf[64];
4193 && (GET_PID (ptid) != GET_LWP (ptid)
4194 || num_lwps (GET_PID (ptid)) > 1))
4196 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4200 return normal_pid_to_str (ptid);
4204 linux_nat_thread_name (struct thread_info *thr)
4206 int pid = ptid_get_pid (thr->ptid);
4207 long lwp = ptid_get_lwp (thr->ptid);
4208 #define FORMAT "/proc/%d/task/%ld/comm"
4209 char buf[sizeof (FORMAT) + 30];
4211 char *result = NULL;
4213 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4214 comm_file = fopen (buf, "r");
4217 /* Not exported by the kernel, so we define it here. */
4219 static char line[COMM_LEN + 1];
4221 if (fgets (line, sizeof (line), comm_file))
4223 char *nl = strchr (line, '\n');
4240 /* Accepts an integer PID; Returns a string representing a file that
4241 can be opened to get the symbols for the child process. */
4244 linux_child_pid_to_exec_file (int pid)
4246 char *name1, *name2;
4248 name1 = xmalloc (MAXPATHLEN);
4249 name2 = xmalloc (MAXPATHLEN);
4250 make_cleanup (xfree, name1);
4251 make_cleanup (xfree, name2);
4252 memset (name2, 0, MAXPATHLEN);
4254 sprintf (name1, "/proc/%d/exe", pid);
4255 if (readlink (name1, name2, MAXPATHLEN) > 0)
4261 /* Service function for corefiles and info proc. */
4264 read_mapping (FILE *mapfile,
4269 char *device, long long *inode, char *filename)
4271 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4272 addr, endaddr, permissions, offset, device, inode);
4275 if (ret > 0 && ret != EOF)
4277 /* Eat everything up to EOL for the filename. This will prevent
4278 weird filenames (such as one with embedded whitespace) from
4279 confusing this code. It also makes this code more robust in
4280 respect to annotations the kernel may add after the filename.
4282 Note the filename is used for informational purposes
4284 ret += fscanf (mapfile, "%[^\n]\n", filename);
4287 return (ret != 0 && ret != EOF);
4290 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4291 regions in the inferior for a corefile. */
4294 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4296 int pid = PIDGET (inferior_ptid);
4297 char mapsfilename[MAXPATHLEN];
4299 long long addr, endaddr, size, offset, inode;
4300 char permissions[8], device[8], filename[MAXPATHLEN];
4301 int read, write, exec;
4302 struct cleanup *cleanup;
4304 /* Compose the filename for the /proc memory map, and open it. */
4305 sprintf (mapsfilename, "/proc/%d/maps", pid);
4306 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4307 error (_("Could not open %s."), mapsfilename);
4308 cleanup = make_cleanup_fclose (mapsfile);
4311 fprintf_filtered (gdb_stdout,
4312 "Reading memory regions from %s\n", mapsfilename);
4314 /* Now iterate until end-of-file. */
4315 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4316 &offset, &device[0], &inode, &filename[0]))
4318 size = endaddr - addr;
4320 /* Get the segment's permissions. */
4321 read = (strchr (permissions, 'r') != 0);
4322 write = (strchr (permissions, 'w') != 0);
4323 exec = (strchr (permissions, 'x') != 0);
4327 fprintf_filtered (gdb_stdout,
4328 "Save segment, %s bytes at %s (%c%c%c)",
4329 plongest (size), paddress (target_gdbarch, addr),
4331 write ? 'w' : ' ', exec ? 'x' : ' ');
4333 fprintf_filtered (gdb_stdout, " for %s", filename);
4334 fprintf_filtered (gdb_stdout, "\n");
4337 /* Invoke the callback function to create the corefile
4339 func (addr, size, read, write, exec, obfd);
4341 do_cleanups (cleanup);
4346 find_signalled_thread (struct thread_info *info, void *data)
4348 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4349 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4355 static enum target_signal
4356 find_stop_signal (void)
4358 struct thread_info *info =
4359 iterate_over_threads (find_signalled_thread, NULL);
4362 return info->suspend.stop_signal;
4364 return TARGET_SIGNAL_0;
4367 /* Records the thread's register state for the corefile note
4371 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4372 char *note_data, int *note_size,
4373 enum target_signal stop_signal)
4375 unsigned long lwp = ptid_get_lwp (ptid);
4376 struct gdbarch *gdbarch = target_gdbarch;
4377 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4378 const struct regset *regset;
4380 struct cleanup *old_chain;
4381 struct core_regset_section *sect_list;
4384 old_chain = save_inferior_ptid ();
4385 inferior_ptid = ptid;
4386 target_fetch_registers (regcache, -1);
4387 do_cleanups (old_chain);
4389 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4390 sect_list = gdbarch_core_regset_sections (gdbarch);
4392 /* The loop below uses the new struct core_regset_section, which stores
4393 the supported section names and sizes for the core file. Note that
4394 note PRSTATUS needs to be treated specially. But the other notes are
4395 structurally the same, so they can benefit from the new struct. */
4396 if (core_regset_p && sect_list != NULL)
4397 while (sect_list->sect_name != NULL)
4399 regset = gdbarch_regset_from_core_section (gdbarch,
4400 sect_list->sect_name,
4402 gdb_assert (regset && regset->collect_regset);
4403 gdb_regset = xmalloc (sect_list->size);
4404 regset->collect_regset (regset, regcache, -1,
4405 gdb_regset, sect_list->size);
4407 if (strcmp (sect_list->sect_name, ".reg") == 0)
4408 note_data = (char *) elfcore_write_prstatus
4409 (obfd, note_data, note_size,
4410 lwp, target_signal_to_host (stop_signal),
4413 note_data = (char *) elfcore_write_register_note
4414 (obfd, note_data, note_size,
4415 sect_list->sect_name, gdb_regset,
4421 /* For architectures that does not have the struct core_regset_section
4422 implemented, we use the old method. When all the architectures have
4423 the new support, the code below should be deleted. */
4426 gdb_gregset_t gregs;
4427 gdb_fpregset_t fpregs;
4430 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4432 != NULL && regset->collect_regset != NULL)
4433 regset->collect_regset (regset, regcache, -1,
4434 &gregs, sizeof (gregs));
4436 fill_gregset (regcache, &gregs, -1);
4438 note_data = (char *) elfcore_write_prstatus
4439 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4443 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4445 != NULL && regset->collect_regset != NULL)
4446 regset->collect_regset (regset, regcache, -1,
4447 &fpregs, sizeof (fpregs));
4449 fill_fpregset (regcache, &fpregs, -1);
4451 note_data = (char *) elfcore_write_prfpreg (obfd,
4454 &fpregs, sizeof (fpregs));
4460 struct linux_nat_corefile_thread_data
4466 enum target_signal stop_signal;
4469 /* Called by gdbthread.c once per thread. Records the thread's
4470 register state for the corefile note section. */
4473 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4475 struct linux_nat_corefile_thread_data *args = data;
4477 args->note_data = linux_nat_do_thread_registers (args->obfd,
4487 /* Enumerate spufs IDs for process PID. */
4490 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4494 struct dirent *entry;
4496 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4497 dir = opendir (path);
4502 while ((entry = readdir (dir)) != NULL)
4508 fd = atoi (entry->d_name);
4512 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4513 if (stat (path, &st) != 0)
4515 if (!S_ISDIR (st.st_mode))
4518 if (statfs (path, &stfs) != 0)
4520 if (stfs.f_type != SPUFS_MAGIC)
4523 callback (data, fd);
4529 /* Generate corefile notes for SPU contexts. */
4531 struct linux_spu_corefile_data
4539 linux_spu_corefile_callback (void *data, int fd)
4541 struct linux_spu_corefile_data *args = data;
4544 static const char *spu_files[] =
4566 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4568 char annex[32], note_name[32];
4572 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4573 spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU,
4577 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4578 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4579 args->note_size, note_name,
4580 NT_SPU, spu_data, spu_len);
4587 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4589 struct linux_spu_corefile_data args;
4592 args.note_data = note_data;
4593 args.note_size = note_size;
4595 iterate_over_spus (PIDGET (inferior_ptid),
4596 linux_spu_corefile_callback, &args);
4598 return args.note_data;
4601 /* Fills the "to_make_corefile_note" target vector. Builds the note
4602 section for a corefile, and returns it in a malloc buffer. */
4605 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4607 struct linux_nat_corefile_thread_data thread_args;
4608 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4609 char fname[16] = { '\0' };
4610 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4611 char psargs[80] = { '\0' };
4612 char *note_data = NULL;
4613 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4617 if (get_exec_file (0))
4619 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4620 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4621 if (get_inferior_args ())
4624 char *psargs_end = psargs + sizeof (psargs);
4626 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4628 string_end = memchr (psargs, 0, sizeof (psargs));
4629 if (string_end != NULL)
4631 *string_end++ = ' ';
4632 strncpy (string_end, get_inferior_args (),
4633 psargs_end - string_end);
4636 note_data = (char *) elfcore_write_prpsinfo (obfd,
4638 note_size, fname, psargs);
4641 /* Dump information for threads. */
4642 thread_args.obfd = obfd;
4643 thread_args.note_data = note_data;
4644 thread_args.note_size = note_size;
4645 thread_args.num_notes = 0;
4646 thread_args.stop_signal = find_stop_signal ();
4647 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4648 gdb_assert (thread_args.num_notes != 0);
4649 note_data = thread_args.note_data;
4651 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
4655 note_data = elfcore_write_note (obfd, note_data, note_size,
4656 "CORE", NT_AUXV, auxv, auxv_len);
4660 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4662 make_cleanup (xfree, note_data);
4666 /* Implement the "info proc" command. */
4669 linux_nat_info_proc_cmd (char *args, int from_tty)
4671 /* A long is used for pid instead of an int to avoid a loss of precision
4672 compiler warning from the output of strtoul. */
4673 long pid = PIDGET (inferior_ptid);
4676 char buffer[MAXPATHLEN];
4677 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4689 /* Break up 'args' into an argv array. */
4690 argv = gdb_buildargv (args);
4691 make_cleanup_freeargv (argv);
4693 while (argv != NULL && *argv != NULL)
4695 if (isdigit (argv[0][0]))
4697 pid = strtoul (argv[0], NULL, 10);
4699 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4703 else if (strcmp (argv[0], "status") == 0)
4707 else if (strcmp (argv[0], "stat") == 0)
4711 else if (strcmp (argv[0], "cmd") == 0)
4715 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4719 else if (strcmp (argv[0], "cwd") == 0)
4723 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4729 /* [...] (future options here). */
4734 error (_("No current process: you must name one."));
4736 sprintf (fname1, "/proc/%ld", pid);
4737 if (stat (fname1, &dummy) != 0)
4738 error (_("No /proc directory: '%s'"), fname1);
4740 printf_filtered (_("process %ld\n"), pid);
4741 if (cmdline_f || all)
4743 sprintf (fname1, "/proc/%ld/cmdline", pid);
4744 if ((procfile = fopen (fname1, "r")) != NULL)
4746 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4748 if (fgets (buffer, sizeof (buffer), procfile))
4749 printf_filtered ("cmdline = '%s'\n", buffer);
4751 warning (_("unable to read '%s'"), fname1);
4752 do_cleanups (cleanup);
4755 warning (_("unable to open /proc file '%s'"), fname1);
4759 sprintf (fname1, "/proc/%ld/cwd", pid);
4760 memset (fname2, 0, sizeof (fname2));
4761 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4762 printf_filtered ("cwd = '%s'\n", fname2);
4764 warning (_("unable to read link '%s'"), fname1);
4768 sprintf (fname1, "/proc/%ld/exe", pid);
4769 memset (fname2, 0, sizeof (fname2));
4770 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4771 printf_filtered ("exe = '%s'\n", fname2);
4773 warning (_("unable to read link '%s'"), fname1);
4775 if (mappings_f || all)
4777 sprintf (fname1, "/proc/%ld/maps", pid);
4778 if ((procfile = fopen (fname1, "r")) != NULL)
4780 long long addr, endaddr, size, offset, inode;
4781 char permissions[8], device[8], filename[MAXPATHLEN];
4782 struct cleanup *cleanup;
4784 cleanup = make_cleanup_fclose (procfile);
4785 printf_filtered (_("Mapped address spaces:\n\n"));
4786 if (gdbarch_addr_bit (target_gdbarch) == 32)
4788 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4791 " Size", " Offset", "objfile");
4795 printf_filtered (" %18s %18s %10s %10s %7s\n",
4798 " Size", " Offset", "objfile");
4801 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4802 &offset, &device[0], &inode, &filename[0]))
4804 size = endaddr - addr;
4806 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4807 calls here (and possibly above) should be abstracted
4808 out into their own functions? Andrew suggests using
4809 a generic local_address_string instead to print out
4810 the addresses; that makes sense to me, too. */
4812 if (gdbarch_addr_bit (target_gdbarch) == 32)
4814 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4815 (unsigned long) addr, /* FIXME: pr_addr */
4816 (unsigned long) endaddr,
4818 (unsigned int) offset,
4819 filename[0] ? filename : "");
4823 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4824 (unsigned long) addr, /* FIXME: pr_addr */
4825 (unsigned long) endaddr,
4827 (unsigned int) offset,
4828 filename[0] ? filename : "");
4832 do_cleanups (cleanup);
4835 warning (_("unable to open /proc file '%s'"), fname1);
4837 if (status_f || all)
4839 sprintf (fname1, "/proc/%ld/status", pid);
4840 if ((procfile = fopen (fname1, "r")) != NULL)
4842 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4844 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4845 puts_filtered (buffer);
4846 do_cleanups (cleanup);
4849 warning (_("unable to open /proc file '%s'"), fname1);
4853 sprintf (fname1, "/proc/%ld/stat", pid);
4854 if ((procfile = fopen (fname1, "r")) != NULL)
4859 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4861 if (fscanf (procfile, "%d ", &itmp) > 0)
4862 printf_filtered (_("Process: %d\n"), itmp);
4863 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4864 printf_filtered (_("Exec file: %s\n"), buffer);
4865 if (fscanf (procfile, "%c ", &ctmp) > 0)
4866 printf_filtered (_("State: %c\n"), ctmp);
4867 if (fscanf (procfile, "%d ", &itmp) > 0)
4868 printf_filtered (_("Parent process: %d\n"), itmp);
4869 if (fscanf (procfile, "%d ", &itmp) > 0)
4870 printf_filtered (_("Process group: %d\n"), itmp);
4871 if (fscanf (procfile, "%d ", &itmp) > 0)
4872 printf_filtered (_("Session id: %d\n"), itmp);
4873 if (fscanf (procfile, "%d ", &itmp) > 0)
4874 printf_filtered (_("TTY: %d\n"), itmp);
4875 if (fscanf (procfile, "%d ", &itmp) > 0)
4876 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4877 if (fscanf (procfile, "%lu ", <mp) > 0)
4878 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4879 if (fscanf (procfile, "%lu ", <mp) > 0)
4880 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4881 (unsigned long) ltmp);
4882 if (fscanf (procfile, "%lu ", <mp) > 0)
4883 printf_filtered (_("Minor faults, children: %lu\n"),
4884 (unsigned long) ltmp);
4885 if (fscanf (procfile, "%lu ", <mp) > 0)
4886 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4887 (unsigned long) ltmp);
4888 if (fscanf (procfile, "%lu ", <mp) > 0)
4889 printf_filtered (_("Major faults, children: %lu\n"),
4890 (unsigned long) ltmp);
4891 if (fscanf (procfile, "%ld ", <mp) > 0)
4892 printf_filtered (_("utime: %ld\n"), ltmp);
4893 if (fscanf (procfile, "%ld ", <mp) > 0)
4894 printf_filtered (_("stime: %ld\n"), ltmp);
4895 if (fscanf (procfile, "%ld ", <mp) > 0)
4896 printf_filtered (_("utime, children: %ld\n"), ltmp);
4897 if (fscanf (procfile, "%ld ", <mp) > 0)
4898 printf_filtered (_("stime, children: %ld\n"), ltmp);
4899 if (fscanf (procfile, "%ld ", <mp) > 0)
4900 printf_filtered (_("jiffies remaining in current "
4901 "time slice: %ld\n"), ltmp);
4902 if (fscanf (procfile, "%ld ", <mp) > 0)
4903 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4904 if (fscanf (procfile, "%lu ", <mp) > 0)
4905 printf_filtered (_("jiffies until next timeout: %lu\n"),
4906 (unsigned long) ltmp);
4907 if (fscanf (procfile, "%lu ", <mp) > 0)
4908 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4909 (unsigned long) ltmp);
4910 if (fscanf (procfile, "%ld ", <mp) > 0)
4911 printf_filtered (_("start time (jiffies since "
4912 "system boot): %ld\n"), ltmp);
4913 if (fscanf (procfile, "%lu ", <mp) > 0)
4914 printf_filtered (_("Virtual memory size: %lu\n"),
4915 (unsigned long) ltmp);
4916 if (fscanf (procfile, "%lu ", <mp) > 0)
4917 printf_filtered (_("Resident set size: %lu\n"),
4918 (unsigned long) ltmp);
4919 if (fscanf (procfile, "%lu ", <mp) > 0)
4920 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4921 if (fscanf (procfile, "%lu ", <mp) > 0)
4922 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4923 if (fscanf (procfile, "%lu ", <mp) > 0)
4924 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4925 if (fscanf (procfile, "%lu ", <mp) > 0)
4926 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4927 #if 0 /* Don't know how architecture-dependent the rest is...
4928 Anyway the signal bitmap info is available from "status". */
4929 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4930 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4931 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4932 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4933 if (fscanf (procfile, "%ld ", <mp) > 0)
4934 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4935 if (fscanf (procfile, "%ld ", <mp) > 0)
4936 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4937 if (fscanf (procfile, "%ld ", <mp) > 0)
4938 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4939 if (fscanf (procfile, "%ld ", <mp) > 0)
4940 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4941 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4942 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4944 do_cleanups (cleanup);
4947 warning (_("unable to open /proc file '%s'"), fname1);
4951 /* Implement the to_xfer_partial interface for memory reads using the /proc
4952 filesystem. Because we can use a single read() call for /proc, this
4953 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4954 but it doesn't support writes. */
4957 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4958 const char *annex, gdb_byte *readbuf,
4959 const gdb_byte *writebuf,
4960 ULONGEST offset, LONGEST len)
4966 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4969 /* Don't bother for one word. */
4970 if (len < 3 * sizeof (long))
4973 /* We could keep this file open and cache it - possibly one per
4974 thread. That requires some juggling, but is even faster. */
4975 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4976 fd = open (filename, O_RDONLY | O_LARGEFILE);
4980 /* If pread64 is available, use it. It's faster if the kernel
4981 supports it (only one syscall), and it's 64-bit safe even on
4982 32-bit platforms (for instance, SPARC debugging a SPARC64
4985 if (pread64 (fd, readbuf, len, offset) != len)
4987 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4998 /* Enumerate spufs IDs for process PID. */
5000 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
5002 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
5004 LONGEST written = 0;
5007 struct dirent *entry;
5009 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5010 dir = opendir (path);
5015 while ((entry = readdir (dir)) != NULL)
5021 fd = atoi (entry->d_name);
5025 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5026 if (stat (path, &st) != 0)
5028 if (!S_ISDIR (st.st_mode))
5031 if (statfs (path, &stfs) != 0)
5033 if (stfs.f_type != SPUFS_MAGIC)
5036 if (pos >= offset && pos + 4 <= offset + len)
5038 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5048 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5049 object type, using the /proc file system. */
5051 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5052 const char *annex, gdb_byte *readbuf,
5053 const gdb_byte *writebuf,
5054 ULONGEST offset, LONGEST len)
5059 int pid = PIDGET (inferior_ptid);
5066 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5069 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5070 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5075 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5082 ret = write (fd, writebuf, (size_t) len);
5084 ret = read (fd, readbuf, (size_t) len);
5091 /* Parse LINE as a signal set and add its set bits to SIGS. */
5094 add_line_to_sigset (const char *line, sigset_t *sigs)
5096 int len = strlen (line) - 1;
5100 if (line[len] != '\n')
5101 error (_("Could not parse signal set: %s"), line);
5109 if (*p >= '0' && *p <= '9')
5111 else if (*p >= 'a' && *p <= 'f')
5112 digit = *p - 'a' + 10;
5114 error (_("Could not parse signal set: %s"), line);
5119 sigaddset (sigs, signum + 1);
5121 sigaddset (sigs, signum + 2);
5123 sigaddset (sigs, signum + 3);
5125 sigaddset (sigs, signum + 4);
5131 /* Find process PID's pending signals from /proc/pid/status and set
5135 linux_proc_pending_signals (int pid, sigset_t *pending,
5136 sigset_t *blocked, sigset_t *ignored)
5139 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5140 struct cleanup *cleanup;
5142 sigemptyset (pending);
5143 sigemptyset (blocked);
5144 sigemptyset (ignored);
5145 sprintf (fname, "/proc/%d/status", pid);
5146 procfile = fopen (fname, "r");
5147 if (procfile == NULL)
5148 error (_("Could not open %s"), fname);
5149 cleanup = make_cleanup_fclose (procfile);
5151 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5153 /* Normal queued signals are on the SigPnd line in the status
5154 file. However, 2.6 kernels also have a "shared" pending
5155 queue for delivering signals to a thread group, so check for
5158 Unfortunately some Red Hat kernels include the shared pending
5159 queue but not the ShdPnd status field. */
5161 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5162 add_line_to_sigset (buffer + 8, pending);
5163 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5164 add_line_to_sigset (buffer + 8, pending);
5165 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5166 add_line_to_sigset (buffer + 8, blocked);
5167 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5168 add_line_to_sigset (buffer + 8, ignored);
5171 do_cleanups (cleanup);
5175 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5176 const char *annex, gdb_byte *readbuf,
5177 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5179 gdb_assert (object == TARGET_OBJECT_OSDATA);
5181 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5185 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5186 const char *annex, gdb_byte *readbuf,
5187 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5191 if (object == TARGET_OBJECT_AUXV)
5192 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5195 if (object == TARGET_OBJECT_OSDATA)
5196 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5199 if (object == TARGET_OBJECT_SPU)
5200 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5203 /* GDB calculates all the addresses in possibly larget width of the address.
5204 Address width needs to be masked before its final use - either by
5205 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5207 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5209 if (object == TARGET_OBJECT_MEMORY)
5211 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5213 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5214 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5217 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5222 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5226 /* Create a prototype generic GNU/Linux target. The client can override
5227 it with local methods. */
5230 linux_target_install_ops (struct target_ops *t)
5232 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5233 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5234 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5235 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5236 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5237 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5238 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5239 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5240 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5241 t->to_post_attach = linux_child_post_attach;
5242 t->to_follow_fork = linux_child_follow_fork;
5243 t->to_find_memory_regions = linux_nat_find_memory_regions;
5244 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5246 super_xfer_partial = t->to_xfer_partial;
5247 t->to_xfer_partial = linux_xfer_partial;
5253 struct target_ops *t;
5255 t = inf_ptrace_target ();
5256 linux_target_install_ops (t);
5262 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5264 struct target_ops *t;
5266 t = inf_ptrace_trad_target (register_u_offset);
5267 linux_target_install_ops (t);
5272 /* target_is_async_p implementation. */
5275 linux_nat_is_async_p (void)
5277 /* NOTE: palves 2008-03-21: We're only async when the user requests
5278 it explicitly with the "set target-async" command.
5279 Someday, linux will always be async. */
5280 return target_async_permitted;
5283 /* target_can_async_p implementation. */
5286 linux_nat_can_async_p (void)
5288 /* NOTE: palves 2008-03-21: We're only async when the user requests
5289 it explicitly with the "set target-async" command.
5290 Someday, linux will always be async. */
5291 return target_async_permitted;
5295 linux_nat_supports_non_stop (void)
5300 /* True if we want to support multi-process. To be removed when GDB
5301 supports multi-exec. */
5303 int linux_multi_process = 1;
5306 linux_nat_supports_multi_process (void)
5308 return linux_multi_process;
5311 static int async_terminal_is_ours = 1;
5313 /* target_terminal_inferior implementation. */
5316 linux_nat_terminal_inferior (void)
5318 if (!target_is_async_p ())
5320 /* Async mode is disabled. */
5321 terminal_inferior ();
5325 terminal_inferior ();
5327 /* Calls to target_terminal_*() are meant to be idempotent. */
5328 if (!async_terminal_is_ours)
5331 delete_file_handler (input_fd);
5332 async_terminal_is_ours = 0;
5336 /* target_terminal_ours implementation. */
5339 linux_nat_terminal_ours (void)
5341 if (!target_is_async_p ())
5343 /* Async mode is disabled. */
5348 /* GDB should never give the terminal to the inferior if the
5349 inferior is running in the background (run&, continue&, etc.),
5350 but claiming it sure should. */
5353 if (async_terminal_is_ours)
5356 clear_sigint_trap ();
5357 add_file_handler (input_fd, stdin_event_handler, 0);
5358 async_terminal_is_ours = 1;
5361 static void (*async_client_callback) (enum inferior_event_type event_type,
5363 static void *async_client_context;
5365 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5366 so we notice when any child changes state, and notify the
5367 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5368 above to wait for the arrival of a SIGCHLD. */
5371 sigchld_handler (int signo)
5373 int old_errno = errno;
5375 if (debug_linux_nat)
5376 ui_file_write_async_safe (gdb_stdlog,
5377 "sigchld\n", sizeof ("sigchld\n") - 1);
5379 if (signo == SIGCHLD
5380 && linux_nat_event_pipe[0] != -1)
5381 async_file_mark (); /* Let the event loop know that there are
5382 events to handle. */
5387 /* Callback registered with the target events file descriptor. */
5390 handle_target_event (int error, gdb_client_data client_data)
5392 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5395 /* Create/destroy the target events pipe. Returns previous state. */
5398 linux_async_pipe (int enable)
5400 int previous = (linux_nat_event_pipe[0] != -1);
5402 if (previous != enable)
5406 block_child_signals (&prev_mask);
5410 if (pipe (linux_nat_event_pipe) == -1)
5411 internal_error (__FILE__, __LINE__,
5412 "creating event pipe failed.");
5414 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5415 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5419 close (linux_nat_event_pipe[0]);
5420 close (linux_nat_event_pipe[1]);
5421 linux_nat_event_pipe[0] = -1;
5422 linux_nat_event_pipe[1] = -1;
5425 restore_child_signals_mask (&prev_mask);
5431 /* target_async implementation. */
5434 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5435 void *context), void *context)
5437 if (callback != NULL)
5439 async_client_callback = callback;
5440 async_client_context = context;
5441 if (!linux_async_pipe (1))
5443 add_file_handler (linux_nat_event_pipe[0],
5444 handle_target_event, NULL);
5445 /* There may be pending events to handle. Tell the event loop
5452 async_client_callback = callback;
5453 async_client_context = context;
5454 delete_file_handler (linux_nat_event_pipe[0]);
5455 linux_async_pipe (0);
5460 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5464 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5468 ptid_t ptid = lwp->ptid;
5470 if (debug_linux_nat)
5471 fprintf_unfiltered (gdb_stdlog,
5472 "LNSL: running -> suspending %s\n",
5473 target_pid_to_str (lwp->ptid));
5476 if (lwp->last_resume_kind == resume_stop)
5478 if (debug_linux_nat)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "linux-nat: already stopping LWP %ld at "
5482 ptid_get_lwp (lwp->ptid));
5486 stop_callback (lwp, NULL);
5487 lwp->last_resume_kind = resume_stop;
5491 /* Already known to be stopped; do nothing. */
5493 if (debug_linux_nat)
5495 if (find_thread_ptid (lwp->ptid)->stop_requested)
5496 fprintf_unfiltered (gdb_stdlog,
5497 "LNSL: already stopped/stop_requested %s\n",
5498 target_pid_to_str (lwp->ptid));
5500 fprintf_unfiltered (gdb_stdlog,
5501 "LNSL: already stopped/no "
5502 "stop_requested yet %s\n",
5503 target_pid_to_str (lwp->ptid));
5510 linux_nat_stop (ptid_t ptid)
5513 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5515 linux_ops->to_stop (ptid);
5519 linux_nat_close (int quitting)
5521 /* Unregister from the event loop. */
5522 if (target_is_async_p ())
5523 target_async (NULL, 0);
5525 if (linux_ops->to_close)
5526 linux_ops->to_close (quitting);
5529 /* When requests are passed down from the linux-nat layer to the
5530 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5531 used. The address space pointer is stored in the inferior object,
5532 but the common code that is passed such ptid can't tell whether
5533 lwpid is a "main" process id or not (it assumes so). We reverse
5534 look up the "main" process id from the lwp here. */
5536 struct address_space *
5537 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5539 struct lwp_info *lwp;
5540 struct inferior *inf;
5543 pid = GET_LWP (ptid);
5544 if (GET_LWP (ptid) == 0)
5546 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5548 lwp = find_lwp_pid (ptid);
5549 pid = GET_PID (lwp->ptid);
5553 /* A (pid,lwpid,0) ptid. */
5554 pid = GET_PID (ptid);
5557 inf = find_inferior_pid (pid);
5558 gdb_assert (inf != NULL);
5563 linux_nat_core_of_thread_1 (ptid_t ptid)
5565 struct cleanup *back_to;
5568 char *content = NULL;
5571 int content_read = 0;
5575 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5576 GET_PID (ptid), GET_LWP (ptid));
5577 back_to = make_cleanup (xfree, filename);
5579 f = fopen (filename, "r");
5582 do_cleanups (back_to);
5586 make_cleanup_fclose (f);
5592 content = xrealloc (content, content_read + 1024);
5593 n = fread (content + content_read, 1, 1024, f);
5597 content[content_read] = '\0';
5602 make_cleanup (xfree, content);
5604 p = strchr (content, '(');
5608 p = strchr (p, ')');
5612 /* If the first field after program name has index 0, then core number is
5613 the field with index 36. There's no constant for that anywhere. */
5615 p = strtok_r (p, " ", &ts);
5616 for (i = 0; p != NULL && i != 36; ++i)
5617 p = strtok_r (NULL, " ", &ts);
5619 if (p == NULL || sscanf (p, "%d", &core) == 0)
5622 do_cleanups (back_to);
5627 /* Return the cached value of the processor core for thread PTID. */
5630 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5632 struct lwp_info *info = find_lwp_pid (ptid);
5640 linux_nat_add_target (struct target_ops *t)
5642 /* Save the provided single-threaded target. We save this in a separate
5643 variable because another target we've inherited from (e.g. inf-ptrace)
5644 may have saved a pointer to T; we want to use it for the final
5645 process stratum target. */
5646 linux_ops_saved = *t;
5647 linux_ops = &linux_ops_saved;
5649 /* Override some methods for multithreading. */
5650 t->to_create_inferior = linux_nat_create_inferior;
5651 t->to_attach = linux_nat_attach;
5652 t->to_detach = linux_nat_detach;
5653 t->to_resume = linux_nat_resume;
5654 t->to_wait = linux_nat_wait;
5655 t->to_pass_signals = linux_nat_pass_signals;
5656 t->to_xfer_partial = linux_nat_xfer_partial;
5657 t->to_kill = linux_nat_kill;
5658 t->to_mourn_inferior = linux_nat_mourn_inferior;
5659 t->to_thread_alive = linux_nat_thread_alive;
5660 t->to_pid_to_str = linux_nat_pid_to_str;
5661 t->to_thread_name = linux_nat_thread_name;
5662 t->to_has_thread_control = tc_schedlock;
5663 t->to_thread_address_space = linux_nat_thread_address_space;
5664 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5665 t->to_stopped_data_address = linux_nat_stopped_data_address;
5667 t->to_can_async_p = linux_nat_can_async_p;
5668 t->to_is_async_p = linux_nat_is_async_p;
5669 t->to_supports_non_stop = linux_nat_supports_non_stop;
5670 t->to_async = linux_nat_async;
5671 t->to_terminal_inferior = linux_nat_terminal_inferior;
5672 t->to_terminal_ours = linux_nat_terminal_ours;
5673 t->to_close = linux_nat_close;
5675 /* Methods for non-stop support. */
5676 t->to_stop = linux_nat_stop;
5678 t->to_supports_multi_process = linux_nat_supports_multi_process;
5680 t->to_core_of_thread = linux_nat_core_of_thread;
5682 /* We don't change the stratum; this target will sit at
5683 process_stratum and thread_db will set at thread_stratum. This
5684 is a little strange, since this is a multi-threaded-capable
5685 target, but we want to be on the stack below thread_db, and we
5686 also want to be used for single-threaded processes. */
5691 /* Register a method to call whenever a new thread is attached. */
5693 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5695 /* Save the pointer. We only support a single registered instance
5696 of the GNU/Linux native target, so we do not need to map this to
5698 linux_nat_new_thread = new_thread;
5701 /* Register a method that converts a siginfo object between the layout
5702 that ptrace returns, and the layout in the architecture of the
5705 linux_nat_set_siginfo_fixup (struct target_ops *t,
5706 int (*siginfo_fixup) (struct siginfo *,
5710 /* Save the pointer. */
5711 linux_nat_siginfo_fixup = siginfo_fixup;
5714 /* Return the saved siginfo associated with PTID. */
5716 linux_nat_get_siginfo (ptid_t ptid)
5718 struct lwp_info *lp = find_lwp_pid (ptid);
5720 gdb_assert (lp != NULL);
5722 return &lp->siginfo;
5725 /* Provide a prototype to silence -Wmissing-prototypes. */
5726 extern initialize_file_ftype _initialize_linux_nat;
5729 _initialize_linux_nat (void)
5731 add_info ("proc", linux_nat_info_proc_cmd, _("\
5732 Show /proc process information about any running process.\n\
5733 Specify any process id, or use the program being debugged by default.\n\
5734 Specify any of the following keywords for detailed info:\n\
5735 mappings -- list of mapped memory regions.\n\
5736 stat -- list a bunch of random process info.\n\
5737 status -- list a different bunch of random process info.\n\
5738 all -- list all available /proc info."));
5740 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5741 &debug_linux_nat, _("\
5742 Set debugging of GNU/Linux lwp module."), _("\
5743 Show debugging of GNU/Linux lwp module."), _("\
5744 Enables printf debugging output."),
5746 show_debug_linux_nat,
5747 &setdebuglist, &showdebuglist);
5749 /* Save this mask as the default. */
5750 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5752 /* Install a SIGCHLD handler. */
5753 sigchld_action.sa_handler = sigchld_handler;
5754 sigemptyset (&sigchld_action.sa_mask);
5755 sigchld_action.sa_flags = SA_RESTART;
5757 /* Make it the default. */
5758 sigaction (SIGCHLD, &sigchld_action, NULL);
5760 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5761 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5762 sigdelset (&suspend_mask, SIGCHLD);
5764 sigemptyset (&blocked_mask);
5766 add_setshow_boolean_cmd ("disable-randomization", class_support,
5767 &disable_randomization, _("\
5768 Set disabling of debuggee's virtual address space randomization."), _("\
5769 Show disabling of debuggee's virtual address space randomization."), _("\
5770 When this mode is on (which is the default), randomization of the virtual\n\
5771 address space is disabled. Standalone programs run with the randomization\n\
5772 enabled by default on some platforms."),
5773 &set_disable_randomization,
5774 &show_disable_randomization,
5775 &setlist, &showlist);
5779 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5780 the GNU/Linux Threads library and therefore doesn't really belong
5783 /* Read variable NAME in the target and return its value if found.
5784 Otherwise return zero. It is assumed that the type of the variable
5788 get_signo (const char *name)
5790 struct minimal_symbol *ms;
5793 ms = lookup_minimal_symbol (name, NULL, NULL);
5797 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5798 sizeof (signo)) != 0)
5804 /* Return the set of signals used by the threads library in *SET. */
5807 lin_thread_get_thread_signals (sigset_t *set)
5809 struct sigaction action;
5810 int restart, cancel;
5812 sigemptyset (&blocked_mask);
5815 restart = get_signo ("__pthread_sig_restart");
5816 cancel = get_signo ("__pthread_sig_cancel");
5818 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5819 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5820 not provide any way for the debugger to query the signal numbers -
5821 fortunately they don't change! */
5824 restart = __SIGRTMIN;
5827 cancel = __SIGRTMIN + 1;
5829 sigaddset (set, restart);
5830 sigaddset (set, cancel);
5832 /* The GNU/Linux Threads library makes terminating threads send a
5833 special "cancel" signal instead of SIGCHLD. Make sure we catch
5834 those (to prevent them from terminating GDB itself, which is
5835 likely to be their default action) and treat them the same way as
5838 action.sa_handler = sigchld_handler;
5839 sigemptyset (&action.sa_mask);
5840 action.sa_flags = SA_RESTART;
5841 sigaction (cancel, &action, NULL);
5843 /* We block the "cancel" signal throughout this code ... */
5844 sigaddset (&blocked_mask, cancel);
5845 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5847 /* ... except during a sigsuspend. */
5848 sigdelset (&suspend_mask, cancel);