1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
29 #include <sys/syscall.h>
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
38 #include "inf-ptrace.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
61 #define SPUFS_MAGIC 0x23c9b64e
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
69 #endif /* HAVE_PERSONALITY */
71 /* This comment documents high-level logic of this file.
73 Waiting for events in sync mode
74 ===============================
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
96 Waiting for events in async mode
97 ================================
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
159 #define O_LARGEFILE 0
162 /* If the system headers did not provide the constants, hard-code the normal
164 #ifndef PTRACE_EVENT_FORK
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
186 #endif /* PTRACE_EVENT_FORK */
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
197 #define __WALL 0x40000000 /* Wait for any child. */
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
224 const char *, gdb_byte *,
228 static int debug_linux_nat;
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
237 static int debug_linux_nat_async = 0;
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
246 static int disable_randomization = 1;
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
256 #else /* !HAVE_PERSONALITY */
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
266 #ifndef HAVE_PERSONALITY
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
270 #endif /* !HAVE_PERSONALITY */
273 struct simple_pid_list
277 struct simple_pid_list *next;
279 struct simple_pid_list *stopped_pids;
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
284 static int linux_supports_tracefork_flag = -1;
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
289 static int linux_supports_tracesysgood_flag = -1;
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
294 static int linux_supports_tracevforkdone_flag = -1;
296 /* Async mode support */
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
305 /* The read/write ends of the pipe registered as waitable file in the
307 static int linux_nat_event_pipe[2] = { -1, -1 };
309 /* Flush the event pipe. */
312 async_file_flush (void)
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
329 async_file_mark (void)
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
340 ret = write (linux_nat_event_pipe[1], "+", 1);
342 while (ret == -1 && errno == EINTR);
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
354 static int stop_callback (struct lwp_info *lp, void *data);
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->status = status;
374 new_pid->next = *listp;
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 struct simple_pid_list **p;
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
386 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
397 linux_record_stopped_pid (int pid, int status)
399 add_to_pid_list (&stopped_pids, pid, status);
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
406 linux_tracefork_child (void)
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
414 /* Wrapper function for waitpid which handles EINTR. */
417 my_waitpid (int pid, int *status, int flags)
423 ret = waitpid (pid, status, flags);
425 while (ret == -1 && errno == EINTR);
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
444 linux_test_for_tracefork (int original_pid)
446 int child_pid, ret, status;
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 restore_child_signals_mask (&prev_mask);
465 perror_with_name (("fork"));
468 linux_tracefork_child ();
470 ret = my_waitpid (child_pid, &status, 0);
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
496 restore_child_signals_mask (&prev_mask);
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
507 warning (_("linux_test_for_tracefork: failed to resume child"));
509 ret = my_waitpid (child_pid, &status, 0);
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
537 restore_child_signals_mask (&prev_mask);
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547 linux_test_for_tracesysgood (int original_pid)
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
555 linux_supports_tracesysgood_flag = 0;
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
561 linux_supports_tracesysgood_flag = 1;
563 restore_child_signals_mask (&prev_mask);
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
570 linux_supports_tracesysgood (int pid)
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
581 linux_supports_tracefork (int pid)
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
589 linux_supports_tracevforkdone (int pid)
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
597 linux_enable_tracesysgood (ptid_t ptid)
599 int pid = ptid_get_lwp (ptid);
602 pid = ptid_get_pid (ptid);
604 if (linux_supports_tracesysgood (pid) == 0)
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
614 linux_enable_event_reporting (ptid_t ptid)
616 int pid = ptid_get_lwp (ptid);
619 pid = ptid_get_pid (ptid);
621 if (! linux_supports_tracefork (pid))
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
637 linux_child_post_attach (int pid)
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
645 linux_child_post_startup_inferior (ptid_t ptid)
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
657 int parent_pid, child_pid;
659 block_child_signals (&prev_mask);
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while \n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
690 struct lwp_info *child_lp = NULL;
692 /* We're already attached to the parent, by default. */
694 /* Detach new forked process? */
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 if (info_verbose || debug_linux_nat)
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
770 solib_create_inferior_hook (0);
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
776 do_cleanups (old_chain);
782 struct inferior *parent_inf;
784 parent_inf = current_inferior ();
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
868 struct inferior *parent_inf, *child_inf;
870 struct program_space *parent_pspace;
872 if (info_verbose || debug_linux_nat)
874 target_terminal_ours ();
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
888 child_inf = add_inferior (child_pid);
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
894 parent_pspace = parent_inf->pspace;
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
916 else if (detach_fork)
917 target_detach (NULL, 0);
919 /* Note that the detach above makes PARENT_INF dangling. */
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
959 restore_child_signals_mask (&prev_mask);
965 linux_child_insert_fork_catchpoint (int pid)
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
972 linux_child_insert_vfork_catchpoint (int pid)
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
979 linux_child_insert_exec_catchpoint (int pid)
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1014 Note that there are some peculiarities in GNU/Linux that affect
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1053 block_child_signals (sigset_t *prev_mask)
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1066 restore_child_signals_mask (sigset_t *prev_mask)
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076 static int cancel_breakpoint (struct lwp_info *lp);
1079 /* Convert wait status STATUS to a string. Used for printing debug
1083 status_to_str (int status)
1085 static char buf[64];
1087 if (WIFSTOPPED (status))
1089 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1090 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1091 strsignal (SIGTRAP));
1093 snprintf (buf, sizeof (buf), "%s (stopped)",
1094 strsignal (WSTOPSIG (status)));
1096 else if (WIFSIGNALED (status))
1097 snprintf (buf, sizeof (buf), "%s (terminated)",
1098 strsignal (WSTOPSIG (status)));
1100 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1105 /* Remove all LWPs belong to PID from the lwp list. */
1108 purge_lwp_list (int pid)
1110 struct lwp_info *lp, *lpprev, *lpnext;
1114 for (lp = lwp_list; lp; lp = lpnext)
1118 if (ptid_get_pid (lp->ptid) == pid)
1121 lwp_list = lp->next;
1123 lpprev->next = lp->next;
1132 /* Return the number of known LWPs in the tgid given by PID. */
1138 struct lwp_info *lp;
1140 for (lp = lwp_list; lp; lp = lp->next)
1141 if (ptid_get_pid (lp->ptid) == pid)
1147 /* Add the LWP specified by PID to the list. Return a pointer to the
1148 structure describing the new LWP. The LWP should already be stopped
1149 (with an exception for the very first LWP). */
1151 static struct lwp_info *
1152 add_lwp (ptid_t ptid)
1154 struct lwp_info *lp;
1156 gdb_assert (is_lwp (ptid));
1158 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1160 memset (lp, 0, sizeof (struct lwp_info));
1162 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1167 lp->next = lwp_list;
1170 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1171 linux_nat_new_thread (ptid);
1176 /* Remove the LWP specified by PID from the list. */
1179 delete_lwp (ptid_t ptid)
1181 struct lwp_info *lp, *lpprev;
1185 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1186 if (ptid_equal (lp->ptid, ptid))
1193 lpprev->next = lp->next;
1195 lwp_list = lp->next;
1200 /* Return a pointer to the structure describing the LWP corresponding
1201 to PID. If no corresponding LWP could be found, return NULL. */
1203 static struct lwp_info *
1204 find_lwp_pid (ptid_t ptid)
1206 struct lwp_info *lp;
1210 lwp = GET_LWP (ptid);
1212 lwp = GET_PID (ptid);
1214 for (lp = lwp_list; lp; lp = lp->next)
1215 if (lwp == GET_LWP (lp->ptid))
1221 /* Call CALLBACK with its second argument set to DATA for every LWP in
1222 the list. If CALLBACK returns 1 for a particular LWP, return a
1223 pointer to the structure describing that LWP immediately.
1224 Otherwise return NULL. */
1227 iterate_over_lwps (ptid_t filter,
1228 int (*callback) (struct lwp_info *, void *),
1231 struct lwp_info *lp, *lpnext;
1233 for (lp = lwp_list; lp; lp = lpnext)
1237 if (ptid_match (lp->ptid, filter))
1239 if ((*callback) (lp, data))
1247 /* Update our internal state when changing from one checkpoint to
1248 another indicated by NEW_PTID. We can only switch single-threaded
1249 applications, so we only create one new LWP, and the previous list
1253 linux_nat_switch_fork (ptid_t new_ptid)
1255 struct lwp_info *lp;
1257 purge_lwp_list (GET_PID (inferior_ptid));
1259 lp = add_lwp (new_ptid);
1262 /* This changes the thread's ptid while preserving the gdb thread
1263 num. Also changes the inferior pid, while preserving the
1265 thread_change_ptid (inferior_ptid, new_ptid);
1267 /* We've just told GDB core that the thread changed target id, but,
1268 in fact, it really is a different thread, with different register
1270 registers_changed ();
1273 /* Handle the exit of a single thread LP. */
1276 exit_lwp (struct lwp_info *lp)
1278 struct thread_info *th = find_thread_ptid (lp->ptid);
1282 if (print_thread_events)
1283 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1285 delete_thread (lp->ptid);
1288 delete_lwp (lp->ptid);
1291 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1294 linux_proc_get_tgid (int lwpid)
1300 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1301 status_file = fopen (buf, "r");
1302 if (status_file != NULL)
1304 while (fgets (buf, sizeof (buf), status_file))
1306 if (strncmp (buf, "Tgid:", 5) == 0)
1308 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1313 fclose (status_file);
1319 /* Detect `T (stopped)' in `/proc/PID/status'.
1320 Other states including `T (tracing stop)' are reported as false. */
1323 pid_is_stopped (pid_t pid)
1329 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1330 status_file = fopen (buf, "r");
1331 if (status_file != NULL)
1335 while (fgets (buf, sizeof (buf), status_file))
1337 if (strncmp (buf, "State:", 6) == 0)
1343 if (have_state && strstr (buf, "T (stopped)") != NULL)
1345 fclose (status_file);
1350 /* Wait for the LWP specified by LP, which we have just attached to.
1351 Returns a wait status for that LWP, to cache. */
1354 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1357 pid_t new_pid, pid = GET_LWP (ptid);
1360 if (pid_is_stopped (pid))
1362 if (debug_linux_nat)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "LNPAW: Attaching to a stopped process\n");
1366 /* The process is definitely stopped. It is in a job control
1367 stop, unless the kernel predates the TASK_STOPPED /
1368 TASK_TRACED distinction, in which case it might be in a
1369 ptrace stop. Make sure it is in a ptrace stop; from there we
1370 can kill it, signal it, et cetera.
1372 First make sure there is a pending SIGSTOP. Since we are
1373 already attached, the process can not transition from stopped
1374 to running without a PTRACE_CONT; so we know this signal will
1375 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1376 probably already in the queue (unless this kernel is old
1377 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1378 is not an RT signal, it can only be queued once. */
1379 kill_lwp (pid, SIGSTOP);
1381 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1382 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1383 ptrace (PTRACE_CONT, pid, 0, 0);
1386 /* Make sure the initial process is stopped. The user-level threads
1387 layer might want to poke around in the inferior, and that won't
1388 work if things haven't stabilized yet. */
1389 new_pid = my_waitpid (pid, &status, 0);
1390 if (new_pid == -1 && errno == ECHILD)
1393 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1395 /* Try again with __WCLONE to check cloned processes. */
1396 new_pid = my_waitpid (pid, &status, __WCLONE);
1400 gdb_assert (pid == new_pid);
1402 if (!WIFSTOPPED (status))
1404 /* The pid we tried to attach has apparently just exited. */
1405 if (debug_linux_nat)
1406 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1407 pid, status_to_str (status));
1411 if (WSTOPSIG (status) != SIGSTOP)
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "LNPAW: Received %s after attaching\n",
1417 status_to_str (status));
1423 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1424 if the new LWP could not be attached. */
1427 lin_lwp_attach_lwp (ptid_t ptid)
1429 struct lwp_info *lp;
1432 gdb_assert (is_lwp (ptid));
1434 block_child_signals (&prev_mask);
1436 lp = find_lwp_pid (ptid);
1438 /* We assume that we're already attached to any LWP that has an id
1439 equal to the overall process id, and to any LWP that is already
1440 in our list of LWPs. If we're not seeing exit events from threads
1441 and we've had PID wraparound since we last tried to stop all threads,
1442 this assumption might be wrong; fortunately, this is very unlikely
1444 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1446 int status, cloned = 0, signalled = 0;
1448 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1450 /* If we fail to attach to the thread, issue a warning,
1451 but continue. One way this can happen is if thread
1452 creation is interrupted; as of Linux kernel 2.6.19, a
1453 bug may place threads in the thread list and then fail
1455 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1456 safe_strerror (errno));
1457 restore_child_signals_mask (&prev_mask);
1461 if (debug_linux_nat)
1462 fprintf_unfiltered (gdb_stdlog,
1463 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1464 target_pid_to_str (ptid));
1466 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1467 if (!WIFSTOPPED (status))
1470 lp = add_lwp (ptid);
1472 lp->cloned = cloned;
1473 lp->signalled = signalled;
1474 if (WSTOPSIG (status) != SIGSTOP)
1477 lp->status = status;
1480 target_post_attach (GET_LWP (lp->ptid));
1482 if (debug_linux_nat)
1484 fprintf_unfiltered (gdb_stdlog,
1485 "LLAL: waitpid %s received %s\n",
1486 target_pid_to_str (ptid),
1487 status_to_str (status));
1492 /* We assume that the LWP representing the original process is
1493 already stopped. Mark it as stopped in the data structure
1494 that the GNU/linux ptrace layer uses to keep track of
1495 threads. Note that this won't have already been done since
1496 the main thread will have, we assume, been stopped by an
1497 attach from a different layer. */
1499 lp = add_lwp (ptid);
1503 restore_child_signals_mask (&prev_mask);
1508 linux_nat_create_inferior (struct target_ops *ops,
1509 char *exec_file, char *allargs, char **env,
1512 #ifdef HAVE_PERSONALITY
1513 int personality_orig = 0, personality_set = 0;
1514 #endif /* HAVE_PERSONALITY */
1516 /* The fork_child mechanism is synchronous and calls target_wait, so
1517 we have to mask the async mode. */
1519 #ifdef HAVE_PERSONALITY
1520 if (disable_randomization)
1523 personality_orig = personality (0xffffffff);
1524 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1526 personality_set = 1;
1527 personality (personality_orig | ADDR_NO_RANDOMIZE);
1529 if (errno != 0 || (personality_set
1530 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1531 warning (_("Error disabling address space randomization: %s"),
1532 safe_strerror (errno));
1534 #endif /* HAVE_PERSONALITY */
1536 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1538 #ifdef HAVE_PERSONALITY
1539 if (personality_set)
1542 personality (personality_orig);
1544 warning (_("Error restoring address space randomization: %s"),
1545 safe_strerror (errno));
1547 #endif /* HAVE_PERSONALITY */
1551 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1553 struct lwp_info *lp;
1557 linux_ops->to_attach (ops, args, from_tty);
1559 /* The ptrace base target adds the main thread with (pid,0,0)
1560 format. Decorate it with lwp info. */
1561 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1562 thread_change_ptid (inferior_ptid, ptid);
1564 /* Add the initial process as the first LWP to the list. */
1565 lp = add_lwp (ptid);
1567 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1569 if (!WIFSTOPPED (status))
1571 if (WIFEXITED (status))
1573 int exit_code = WEXITSTATUS (status);
1575 target_terminal_ours ();
1576 target_mourn_inferior ();
1578 error (_("Unable to attach: program exited normally."));
1580 error (_("Unable to attach: program exited with code %d."),
1583 else if (WIFSIGNALED (status))
1585 enum target_signal signo;
1587 target_terminal_ours ();
1588 target_mourn_inferior ();
1590 signo = target_signal_from_host (WTERMSIG (status));
1591 error (_("Unable to attach: program terminated with signal "
1593 target_signal_to_name (signo),
1594 target_signal_to_string (signo));
1597 internal_error (__FILE__, __LINE__,
1598 _("unexpected status %d for PID %ld"),
1599 status, (long) GET_LWP (ptid));
1604 /* Save the wait status to report later. */
1606 if (debug_linux_nat)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "LNA: waitpid %ld, saving status %s\n",
1609 (long) GET_PID (lp->ptid), status_to_str (status));
1611 lp->status = status;
1613 if (target_can_async_p ())
1614 target_async (inferior_event_handler, 0);
1617 /* Get pending status of LP. */
1619 get_pending_status (struct lwp_info *lp, int *status)
1621 enum target_signal signo = TARGET_SIGNAL_0;
1623 /* If we paused threads momentarily, we may have stored pending
1624 events in lp->status or lp->waitstatus (see stop_wait_callback),
1625 and GDB core hasn't seen any signal for those threads.
1626 Otherwise, the last signal reported to the core is found in the
1627 thread object's stop_signal.
1629 There's a corner case that isn't handled here at present. Only
1630 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1631 stop_signal make sense as a real signal to pass to the inferior.
1632 Some catchpoint related events, like
1633 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1634 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1635 those traps are debug API (ptrace in our case) related and
1636 induced; the inferior wouldn't see them if it wasn't being
1637 traced. Hence, we should never pass them to the inferior, even
1638 when set to pass state. Since this corner case isn't handled by
1639 infrun.c when proceeding with a signal, for consistency, neither
1640 do we handle it here (or elsewhere in the file we check for
1641 signal pass state). Normally SIGTRAP isn't set to pass state, so
1642 this is really a corner case. */
1644 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1645 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1646 else if (lp->status)
1647 signo = target_signal_from_host (WSTOPSIG (lp->status));
1648 else if (non_stop && !is_executing (lp->ptid))
1650 struct thread_info *tp = find_thread_ptid (lp->ptid);
1652 signo = tp->stop_signal;
1656 struct target_waitstatus last;
1659 get_last_target_status (&last_ptid, &last);
1661 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1663 struct thread_info *tp = find_thread_ptid (lp->ptid);
1665 signo = tp->stop_signal;
1671 if (signo == TARGET_SIGNAL_0)
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "GPT: lwp %s has no pending signal\n",
1676 target_pid_to_str (lp->ptid));
1678 else if (!signal_pass_state (signo))
1680 if (debug_linux_nat)
1681 fprintf_unfiltered (gdb_stdlog, "\
1682 GPT: lwp %s had signal %s, but it is in no pass state\n",
1683 target_pid_to_str (lp->ptid),
1684 target_signal_to_string (signo));
1688 *status = W_STOPCODE (target_signal_to_host (signo));
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s has pending signal %s\n",
1693 target_pid_to_str (lp->ptid),
1694 target_signal_to_string (signo));
1701 detach_callback (struct lwp_info *lp, void *data)
1703 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1705 if (debug_linux_nat && lp->status)
1706 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1707 strsignal (WSTOPSIG (lp->status)),
1708 target_pid_to_str (lp->ptid));
1710 /* If there is a pending SIGSTOP, get rid of it. */
1713 if (debug_linux_nat)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "DC: Sending SIGCONT to %s\n",
1716 target_pid_to_str (lp->ptid));
1718 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1722 /* We don't actually detach from the LWP that has an id equal to the
1723 overall process id just yet. */
1724 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1728 /* Pass on any pending signal for this LWP. */
1729 get_pending_status (lp, &status);
1732 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1733 WSTOPSIG (status)) < 0)
1734 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1735 safe_strerror (errno));
1737 if (debug_linux_nat)
1738 fprintf_unfiltered (gdb_stdlog,
1739 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1740 target_pid_to_str (lp->ptid),
1741 strsignal (WSTOPSIG (status)));
1743 delete_lwp (lp->ptid);
1750 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1754 struct lwp_info *main_lwp;
1756 pid = GET_PID (inferior_ptid);
1758 if (target_can_async_p ())
1759 linux_nat_async (NULL, 0);
1761 /* Stop all threads before detaching. ptrace requires that the
1762 thread is stopped to sucessfully detach. */
1763 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1764 /* ... and wait until all of them have reported back that
1765 they're no longer running. */
1766 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1768 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1770 /* Only the initial process should be left right now. */
1771 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1773 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1775 /* Pass on any pending signal for the last LWP. */
1776 if ((args == NULL || *args == '\0')
1777 && get_pending_status (main_lwp, &status) != -1
1778 && WIFSTOPPED (status))
1780 /* Put the signal number in ARGS so that inf_ptrace_detach will
1781 pass it along with PTRACE_DETACH. */
1783 sprintf (args, "%d", (int) WSTOPSIG (status));
1784 if (debug_linux_nat)
1785 fprintf_unfiltered (gdb_stdlog,
1786 "LND: Sending signal %s to %s\n",
1788 target_pid_to_str (main_lwp->ptid));
1791 delete_lwp (main_lwp->ptid);
1793 if (forks_exist_p ())
1795 /* Multi-fork case. The current inferior_ptid is being detached
1796 from, but there are other viable forks to debug. Detach from
1797 the current fork, and context-switch to the first
1799 linux_fork_detach (args, from_tty);
1801 if (non_stop && target_can_async_p ())
1802 target_async (inferior_event_handler, 0);
1805 linux_ops->to_detach (ops, args, from_tty);
1811 resume_callback (struct lwp_info *lp, void *data)
1813 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1815 if (lp->stopped && inf->vfork_child != NULL)
1817 if (debug_linux_nat)
1818 fprintf_unfiltered (gdb_stdlog,
1819 "RC: Not resuming %s (vfork parent)\n",
1820 target_pid_to_str (lp->ptid));
1822 else if (lp->stopped && lp->status == 0)
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1827 target_pid_to_str (lp->ptid));
1829 linux_ops->to_resume (linux_ops,
1830 pid_to_ptid (GET_LWP (lp->ptid)),
1831 0, TARGET_SIGNAL_0);
1832 if (debug_linux_nat)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1835 target_pid_to_str (lp->ptid));
1838 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1839 lp->stopped_by_watchpoint = 0;
1841 else if (lp->stopped && debug_linux_nat)
1842 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1843 target_pid_to_str (lp->ptid));
1844 else if (debug_linux_nat)
1845 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1846 target_pid_to_str (lp->ptid));
1852 resume_clear_callback (struct lwp_info *lp, void *data)
1859 resume_set_callback (struct lwp_info *lp, void *data)
1866 linux_nat_resume (struct target_ops *ops,
1867 ptid_t ptid, int step, enum target_signal signo)
1870 struct lwp_info *lp;
1873 if (debug_linux_nat)
1874 fprintf_unfiltered (gdb_stdlog,
1875 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1876 step ? "step" : "resume",
1877 target_pid_to_str (ptid),
1878 signo ? strsignal (signo) : "0",
1879 target_pid_to_str (inferior_ptid));
1881 block_child_signals (&prev_mask);
1883 /* A specific PTID means `step only this process id'. */
1884 resume_many = (ptid_equal (minus_one_ptid, ptid)
1885 || ptid_is_pid (ptid));
1887 /* Mark the lwps we're resuming as resumed. */
1888 iterate_over_lwps (ptid, resume_set_callback, NULL);
1890 /* See if it's the current inferior that should be handled
1893 lp = find_lwp_pid (inferior_ptid);
1895 lp = find_lwp_pid (ptid);
1896 gdb_assert (lp != NULL);
1898 /* Remember if we're stepping. */
1901 /* If we have a pending wait status for this thread, there is no
1902 point in resuming the process. But first make sure that
1903 linux_nat_wait won't preemptively handle the event - we
1904 should never take this short-circuit if we are going to
1905 leave LP running, since we have skipped resuming all the
1906 other threads. This bit of code needs to be synchronized
1907 with linux_nat_wait. */
1909 if (lp->status && WIFSTOPPED (lp->status))
1912 struct inferior *inf;
1914 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1916 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1918 /* Defer to common code if we're gaining control of the
1920 if (inf->stop_soon == NO_STOP_QUIETLY
1921 && signal_stop_state (saved_signo) == 0
1922 && signal_print_state (saved_signo) == 0
1923 && signal_pass_state (saved_signo) == 1)
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "LLR: Not short circuiting for ignored "
1928 "status 0x%x\n", lp->status);
1930 /* FIXME: What should we do if we are supposed to continue
1931 this thread with a signal? */
1932 gdb_assert (signo == TARGET_SIGNAL_0);
1933 signo = saved_signo;
1938 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1940 /* FIXME: What should we do if we are supposed to continue
1941 this thread with a signal? */
1942 gdb_assert (signo == TARGET_SIGNAL_0);
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "LLR: Short circuiting for status 0x%x\n",
1949 restore_child_signals_mask (&prev_mask);
1950 if (target_can_async_p ())
1952 target_async (inferior_event_handler, 0);
1953 /* Tell the event loop we have something to process. */
1959 /* Mark LWP as not stopped to prevent it from being continued by
1964 iterate_over_lwps (ptid, resume_callback, NULL);
1966 /* Convert to something the lower layer understands. */
1967 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1969 linux_ops->to_resume (linux_ops, ptid, step, signo);
1970 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1971 lp->stopped_by_watchpoint = 0;
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "LLR: %s %s, %s (resume event thread)\n",
1976 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1977 target_pid_to_str (ptid),
1978 signo ? strsignal (signo) : "0");
1980 restore_child_signals_mask (&prev_mask);
1981 if (target_can_async_p ())
1982 target_async (inferior_event_handler, 0);
1985 /* Send a signal to an LWP. */
1988 kill_lwp (int lwpid, int signo)
1990 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1991 fails, then we are not using nptl threads and we should be using kill. */
1993 #ifdef HAVE_TKILL_SYSCALL
1995 static int tkill_failed;
2002 ret = syscall (__NR_tkill, lwpid, signo);
2003 if (errno != ENOSYS)
2010 return kill (lwpid, signo);
2013 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2014 event, check if the core is interested in it: if not, ignore the
2015 event, and keep waiting; otherwise, we need to toggle the LWP's
2016 syscall entry/exit status, since the ptrace event itself doesn't
2017 indicate it, and report the trap to higher layers. */
2020 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2022 struct target_waitstatus *ourstatus = &lp->waitstatus;
2023 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2024 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2028 /* If we're stopping threads, there's a SIGSTOP pending, which
2029 makes it so that the LWP reports an immediate syscall return,
2030 followed by the SIGSTOP. Skip seeing that "return" using
2031 PTRACE_CONT directly, and let stop_wait_callback collect the
2032 SIGSTOP. Later when the thread is resumed, a new syscall
2033 entry event. If we didn't do this (and returned 0), we'd
2034 leave a syscall entry pending, and our caller, by using
2035 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2036 itself. Later, when the user re-resumes this LWP, we'd see
2037 another syscall entry event and we'd mistake it for a return.
2039 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2040 (leaving immediately with LWP->signalled set, without issuing
2041 a PTRACE_CONT), it would still be problematic to leave this
2042 syscall enter pending, as later when the thread is resumed,
2043 it would then see the same syscall exit mentioned above,
2044 followed by the delayed SIGSTOP, while the syscall didn't
2045 actually get to execute. It seems it would be even more
2046 confusing to the user. */
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHST: ignoring syscall %d "
2051 "for LWP %ld (stopping threads), "
2052 "resuming with PTRACE_CONT for SIGSTOP\n",
2054 GET_LWP (lp->ptid));
2056 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2057 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2061 if (catch_syscall_enabled ())
2063 /* Always update the entry/return state, even if this particular
2064 syscall isn't interesting to the core now. In async mode,
2065 the user could install a new catchpoint for this syscall
2066 between syscall enter/return, and we'll need to know to
2067 report a syscall return if that happens. */
2068 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2069 ? TARGET_WAITKIND_SYSCALL_RETURN
2070 : TARGET_WAITKIND_SYSCALL_ENTRY);
2072 if (catching_syscall_number (syscall_number))
2074 /* Alright, an event to report. */
2075 ourstatus->kind = lp->syscall_state;
2076 ourstatus->value.syscall_number = syscall_number;
2078 if (debug_linux_nat)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "LHST: stopping for %s of syscall %d"
2082 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2083 ? "entry" : "return",
2085 GET_LWP (lp->ptid));
2089 if (debug_linux_nat)
2090 fprintf_unfiltered (gdb_stdlog,
2091 "LHST: ignoring %s of syscall %d "
2093 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2094 ? "entry" : "return",
2096 GET_LWP (lp->ptid));
2100 /* If we had been syscall tracing, and hence used PT_SYSCALL
2101 before on this LWP, it could happen that the user removes all
2102 syscall catchpoints before we get to process this event.
2103 There are two noteworthy issues here:
2105 - When stopped at a syscall entry event, resuming with
2106 PT_STEP still resumes executing the syscall and reports a
2109 - Only PT_SYSCALL catches syscall enters. If we last
2110 single-stepped this thread, then this event can't be a
2111 syscall enter. If we last single-stepped this thread, this
2112 has to be a syscall exit.
2114 The points above mean that the next resume, be it PT_STEP or
2115 PT_CONTINUE, can not trigger a syscall trace event. */
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHST: caught syscall event with no syscall catchpoints."
2119 " %d for LWP %ld, ignoring\n",
2121 GET_LWP (lp->ptid));
2122 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2125 /* The core isn't interested in this event. For efficiency, avoid
2126 stopping all threads only to have the core resume them all again.
2127 Since we're not stopping threads, if we're still syscall tracing
2128 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2129 subsequent syscall. Simply resume using the inf-ptrace layer,
2130 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2132 /* Note that gdbarch_get_syscall_number may access registers, hence
2134 registers_changed ();
2135 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2136 lp->step, TARGET_SIGNAL_0);
2140 /* Handle a GNU/Linux extended wait response. If we see a clone
2141 event, we need to add the new LWP to our list (and not report the
2142 trap to higher layers). This function returns non-zero if the
2143 event should be ignored and we should wait again. If STOPPING is
2144 true, the new LWP remains stopped, otherwise it is continued. */
2147 linux_handle_extended_wait (struct lwp_info *lp, int status,
2150 int pid = GET_LWP (lp->ptid);
2151 struct target_waitstatus *ourstatus = &lp->waitstatus;
2152 struct lwp_info *new_lp = NULL;
2153 int event = status >> 16;
2155 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2156 || event == PTRACE_EVENT_CLONE)
2158 unsigned long new_pid;
2161 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2163 /* If we haven't already seen the new PID stop, wait for it now. */
2164 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2166 /* The new child has a pending SIGSTOP. We can't affect it until it
2167 hits the SIGSTOP, but we're already attached. */
2168 ret = my_waitpid (new_pid, &status,
2169 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2171 perror_with_name (_("waiting for new child"));
2172 else if (ret != new_pid)
2173 internal_error (__FILE__, __LINE__,
2174 _("wait returned unexpected PID %d"), ret);
2175 else if (!WIFSTOPPED (status))
2176 internal_error (__FILE__, __LINE__,
2177 _("wait returned unexpected status 0x%x"), status);
2180 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2182 if (event == PTRACE_EVENT_FORK
2183 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2185 struct fork_info *fp;
2187 /* Handle checkpointing by linux-fork.c here as a special
2188 case. We don't want the follow-fork-mode or 'catch fork'
2189 to interfere with this. */
2191 /* This won't actually modify the breakpoint list, but will
2192 physically remove the breakpoints from the child. */
2193 detach_breakpoints (new_pid);
2195 /* Retain child fork in ptrace (stopped) state. */
2196 fp = find_fork_pid (new_pid);
2198 fp = add_fork (new_pid);
2200 /* Report as spurious, so that infrun doesn't want to follow
2201 this fork. We're actually doing an infcall in
2203 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2204 linux_enable_event_reporting (pid_to_ptid (new_pid));
2206 /* Report the stop to the core. */
2210 if (event == PTRACE_EVENT_FORK)
2211 ourstatus->kind = TARGET_WAITKIND_FORKED;
2212 else if (event == PTRACE_EVENT_VFORK)
2213 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2216 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2217 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2219 new_lp->stopped = 1;
2221 if (WSTOPSIG (status) != SIGSTOP)
2223 /* This can happen if someone starts sending signals to
2224 the new thread before it gets a chance to run, which
2225 have a lower number than SIGSTOP (e.g. SIGUSR1).
2226 This is an unlikely case, and harder to handle for
2227 fork / vfork than for clone, so we do not try - but
2228 we handle it for clone events here. We'll send
2229 the other signal on to the thread below. */
2231 new_lp->signalled = 1;
2238 /* Add the new thread to GDB's lists as soon as possible
2241 1) the frontend doesn't have to wait for a stop to
2244 2) we tag it with the correct running state. */
2246 /* If the thread_db layer is active, let it know about
2247 this new thread, and add it to GDB's list. */
2248 if (!thread_db_attach_lwp (new_lp->ptid))
2250 /* We're not using thread_db. Add it to GDB's
2252 target_post_attach (GET_LWP (new_lp->ptid));
2253 add_thread (new_lp->ptid);
2258 set_running (new_lp->ptid, 1);
2259 set_executing (new_lp->ptid, 1);
2263 /* Note the need to use the low target ops to resume, to
2264 handle resuming with PT_SYSCALL if we have syscall
2270 new_lp->stopped = 0;
2271 new_lp->resumed = 1;
2274 ? target_signal_from_host (WSTOPSIG (status))
2277 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2281 if (debug_linux_nat)
2282 fprintf_unfiltered (gdb_stdlog,
2283 "LHEW: Got clone event from LWP %ld, resuming\n",
2284 GET_LWP (lp->ptid));
2285 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2286 0, TARGET_SIGNAL_0);
2294 if (event == PTRACE_EVENT_EXEC)
2296 if (debug_linux_nat)
2297 fprintf_unfiltered (gdb_stdlog,
2298 "LHEW: Got exec event from LWP %ld\n",
2299 GET_LWP (lp->ptid));
2301 ourstatus->kind = TARGET_WAITKIND_EXECD;
2302 ourstatus->value.execd_pathname
2303 = xstrdup (linux_child_pid_to_exec_file (pid));
2308 if (event == PTRACE_EVENT_VFORK_DONE)
2310 if (current_inferior ()->waiting_for_vfork_done)
2312 if (debug_linux_nat)
2313 fprintf_unfiltered (gdb_stdlog, "\
2314 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2315 GET_LWP (lp->ptid));
2317 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2321 if (debug_linux_nat)
2322 fprintf_unfiltered (gdb_stdlog, "\
2323 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2324 GET_LWP (lp->ptid));
2325 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2329 internal_error (__FILE__, __LINE__,
2330 _("unknown ptrace event %d"), event);
2333 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2337 wait_lwp (struct lwp_info *lp)
2341 int thread_dead = 0;
2343 gdb_assert (!lp->stopped);
2344 gdb_assert (lp->status == 0);
2346 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2347 if (pid == -1 && errno == ECHILD)
2349 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2350 if (pid == -1 && errno == ECHILD)
2352 /* The thread has previously exited. We need to delete it
2353 now because, for some vendor 2.4 kernels with NPTL
2354 support backported, there won't be an exit event unless
2355 it is the main thread. 2.6 kernels will report an exit
2356 event for each thread that exits, as expected. */
2358 if (debug_linux_nat)
2359 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2360 target_pid_to_str (lp->ptid));
2366 gdb_assert (pid == GET_LWP (lp->ptid));
2368 if (debug_linux_nat)
2370 fprintf_unfiltered (gdb_stdlog,
2371 "WL: waitpid %s received %s\n",
2372 target_pid_to_str (lp->ptid),
2373 status_to_str (status));
2377 /* Check if the thread has exited. */
2378 if (WIFEXITED (status) || WIFSIGNALED (status))
2381 if (debug_linux_nat)
2382 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2383 target_pid_to_str (lp->ptid));
2392 gdb_assert (WIFSTOPPED (status));
2394 /* Handle GNU/Linux's syscall SIGTRAPs. */
2395 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2397 /* No longer need the sysgood bit. The ptrace event ends up
2398 recorded in lp->waitstatus if we care for it. We can carry
2399 on handling the event like a regular SIGTRAP from here
2401 status = W_STOPCODE (SIGTRAP);
2402 if (linux_handle_syscall_trap (lp, 1))
2403 return wait_lwp (lp);
2406 /* Handle GNU/Linux's extended waitstatus for trace events. */
2407 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2409 if (debug_linux_nat)
2410 fprintf_unfiltered (gdb_stdlog,
2411 "WL: Handling extended status 0x%06x\n",
2413 if (linux_handle_extended_wait (lp, status, 1))
2414 return wait_lwp (lp);
2420 /* Save the most recent siginfo for LP. This is currently only called
2421 for SIGTRAP; some ports use the si_addr field for
2422 target_stopped_data_address. In the future, it may also be used to
2423 restore the siginfo of requeued signals. */
2426 save_siginfo (struct lwp_info *lp)
2429 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2430 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2433 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2436 /* Send a SIGSTOP to LP. */
2439 stop_callback (struct lwp_info *lp, void *data)
2441 if (!lp->stopped && !lp->signalled)
2445 if (debug_linux_nat)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "SC: kill %s **<SIGSTOP>**\n",
2449 target_pid_to_str (lp->ptid));
2452 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2453 if (debug_linux_nat)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "SC: lwp kill %d %s\n",
2458 errno ? safe_strerror (errno) : "ERRNO-OK");
2462 gdb_assert (lp->status == 0);
2468 /* Return non-zero if LWP PID has a pending SIGINT. */
2471 linux_nat_has_pending_sigint (int pid)
2473 sigset_t pending, blocked, ignored;
2475 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2477 if (sigismember (&pending, SIGINT)
2478 && !sigismember (&ignored, SIGINT))
2484 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2487 set_ignore_sigint (struct lwp_info *lp, void *data)
2489 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2490 flag to consume the next one. */
2491 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2492 && WSTOPSIG (lp->status) == SIGINT)
2495 lp->ignore_sigint = 1;
2500 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2501 This function is called after we know the LWP has stopped; if the LWP
2502 stopped before the expected SIGINT was delivered, then it will never have
2503 arrived. Also, if the signal was delivered to a shared queue and consumed
2504 by a different thread, it will never be delivered to this LWP. */
2507 maybe_clear_ignore_sigint (struct lwp_info *lp)
2509 if (!lp->ignore_sigint)
2512 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2514 if (debug_linux_nat)
2515 fprintf_unfiltered (gdb_stdlog,
2516 "MCIS: Clearing bogus flag for %s\n",
2517 target_pid_to_str (lp->ptid));
2518 lp->ignore_sigint = 0;
2522 /* Fetch the possible triggered data watchpoint info and store it in
2525 On some archs, like x86, that use debug registers to set
2526 watchpoints, it's possible that the way to know which watched
2527 address trapped, is to check the register that is used to select
2528 which address to watch. Problem is, between setting the watchpoint
2529 and reading back which data address trapped, the user may change
2530 the set of watchpoints, and, as a consequence, GDB changes the
2531 debug registers in the inferior. To avoid reading back a stale
2532 stopped-data-address when that happens, we cache in LP the fact
2533 that a watchpoint trapped, and the corresponding data address, as
2534 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2535 registers meanwhile, we have the cached data we can rely on. */
2538 save_sigtrap (struct lwp_info *lp)
2540 struct cleanup *old_chain;
2542 if (linux_ops->to_stopped_by_watchpoint == NULL)
2544 lp->stopped_by_watchpoint = 0;
2548 old_chain = save_inferior_ptid ();
2549 inferior_ptid = lp->ptid;
2551 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2553 if (lp->stopped_by_watchpoint)
2555 if (linux_ops->to_stopped_data_address != NULL)
2556 lp->stopped_data_address_p =
2557 linux_ops->to_stopped_data_address (¤t_target,
2558 &lp->stopped_data_address);
2560 lp->stopped_data_address_p = 0;
2563 do_cleanups (old_chain);
2566 /* See save_sigtrap. */
2569 linux_nat_stopped_by_watchpoint (void)
2571 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2573 gdb_assert (lp != NULL);
2575 return lp->stopped_by_watchpoint;
2579 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2581 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2583 gdb_assert (lp != NULL);
2585 *addr_p = lp->stopped_data_address;
2587 return lp->stopped_data_address_p;
2590 /* Wait until LP is stopped. */
2593 stop_wait_callback (struct lwp_info *lp, void *data)
2595 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2597 /* If this is a vfork parent, bail out, it is not going to report
2598 any SIGSTOP until the vfork is done with. */
2599 if (inf->vfork_child != NULL)
2606 status = wait_lwp (lp);
2610 if (lp->ignore_sigint && WIFSTOPPED (status)
2611 && WSTOPSIG (status) == SIGINT)
2613 lp->ignore_sigint = 0;
2616 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2617 if (debug_linux_nat)
2618 fprintf_unfiltered (gdb_stdlog,
2619 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2620 target_pid_to_str (lp->ptid),
2621 errno ? safe_strerror (errno) : "OK");
2623 return stop_wait_callback (lp, NULL);
2626 maybe_clear_ignore_sigint (lp);
2628 if (WSTOPSIG (status) != SIGSTOP)
2630 if (WSTOPSIG (status) == SIGTRAP)
2632 /* If a LWP other than the LWP that we're reporting an
2633 event for has hit a GDB breakpoint (as opposed to
2634 some random trap signal), then just arrange for it to
2635 hit it again later. We don't keep the SIGTRAP status
2636 and don't forward the SIGTRAP signal to the LWP. We
2637 will handle the current event, eventually we will
2638 resume all LWPs, and this one will get its breakpoint
2641 If we do not do this, then we run the risk that the
2642 user will delete or disable the breakpoint, but the
2643 thread will have already tripped on it. */
2645 /* Save the trap's siginfo in case we need it later. */
2650 /* Now resume this LWP and get the SIGSTOP event. */
2652 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2653 if (debug_linux_nat)
2655 fprintf_unfiltered (gdb_stdlog,
2656 "PTRACE_CONT %s, 0, 0 (%s)\n",
2657 target_pid_to_str (lp->ptid),
2658 errno ? safe_strerror (errno) : "OK");
2660 fprintf_unfiltered (gdb_stdlog,
2661 "SWC: Candidate SIGTRAP event in %s\n",
2662 target_pid_to_str (lp->ptid));
2664 /* Hold this event/waitstatus while we check to see if
2665 there are any more (we still want to get that SIGSTOP). */
2666 stop_wait_callback (lp, NULL);
2668 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2669 there's another event, throw it back into the
2673 if (debug_linux_nat)
2674 fprintf_unfiltered (gdb_stdlog,
2675 "SWC: kill %s, %s\n",
2676 target_pid_to_str (lp->ptid),
2677 status_to_str ((int) status));
2678 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2681 /* Save the sigtrap event. */
2682 lp->status = status;
2687 /* The thread was stopped with a signal other than
2688 SIGSTOP, and didn't accidentally trip a breakpoint. */
2690 if (debug_linux_nat)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "SWC: Pending event %s in %s\n",
2694 status_to_str ((int) status),
2695 target_pid_to_str (lp->ptid));
2697 /* Now resume this LWP and get the SIGSTOP event. */
2699 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2700 if (debug_linux_nat)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2703 target_pid_to_str (lp->ptid),
2704 errno ? safe_strerror (errno) : "OK");
2706 /* Hold this event/waitstatus while we check to see if
2707 there are any more (we still want to get that SIGSTOP). */
2708 stop_wait_callback (lp, NULL);
2710 /* If the lp->status field is still empty, use it to
2711 hold this event. If not, then this event must be
2712 returned to the event queue of the LWP. */
2715 if (debug_linux_nat)
2717 fprintf_unfiltered (gdb_stdlog,
2718 "SWC: kill %s, %s\n",
2719 target_pid_to_str (lp->ptid),
2720 status_to_str ((int) status));
2722 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2725 lp->status = status;
2731 /* We caught the SIGSTOP that we intended to catch, so
2732 there's no SIGSTOP pending. */
2741 /* Return non-zero if LP has a wait status pending. */
2744 status_callback (struct lwp_info *lp, void *data)
2746 /* Only report a pending wait status if we pretend that this has
2747 indeed been resumed. */
2751 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2753 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2754 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2755 0', so a clean process exit can not be stored pending in
2756 lp->status, it is indistinguishable from
2757 no-pending-status. */
2761 if (lp->status != 0)
2767 /* Return non-zero if LP isn't stopped. */
2770 running_callback (struct lwp_info *lp, void *data)
2772 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2775 /* Count the LWP's that have had events. */
2778 count_events_callback (struct lwp_info *lp, void *data)
2782 gdb_assert (count != NULL);
2784 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2785 if (lp->status != 0 && lp->resumed
2786 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2792 /* Select the LWP (if any) that is currently being single-stepped. */
2795 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2797 if (lp->step && lp->status != 0)
2803 /* Select the Nth LWP that has had a SIGTRAP event. */
2806 select_event_lwp_callback (struct lwp_info *lp, void *data)
2808 int *selector = data;
2810 gdb_assert (selector != NULL);
2812 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2813 if (lp->status != 0 && lp->resumed
2814 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2815 if ((*selector)-- == 0)
2822 cancel_breakpoint (struct lwp_info *lp)
2824 /* Arrange for a breakpoint to be hit again later. We don't keep
2825 the SIGTRAP status and don't forward the SIGTRAP signal to the
2826 LWP. We will handle the current event, eventually we will resume
2827 this LWP, and this breakpoint will trap again.
2829 If we do not do this, then we run the risk that the user will
2830 delete or disable the breakpoint, but the LWP will have already
2833 struct regcache *regcache = get_thread_regcache (lp->ptid);
2834 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2837 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2838 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2840 if (debug_linux_nat)
2841 fprintf_unfiltered (gdb_stdlog,
2842 "CB: Push back breakpoint for %s\n",
2843 target_pid_to_str (lp->ptid));
2845 /* Back up the PC if necessary. */
2846 if (gdbarch_decr_pc_after_break (gdbarch))
2847 regcache_write_pc (regcache, pc);
2855 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2857 struct lwp_info *event_lp = data;
2859 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2863 /* If a LWP other than the LWP that we're reporting an event for has
2864 hit a GDB breakpoint (as opposed to some random trap signal),
2865 then just arrange for it to hit it again later. We don't keep
2866 the SIGTRAP status and don't forward the SIGTRAP signal to the
2867 LWP. We will handle the current event, eventually we will resume
2868 all LWPs, and this one will get its breakpoint trap again.
2870 If we do not do this, then we run the risk that the user will
2871 delete or disable the breakpoint, but the LWP will have already
2874 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2876 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2877 && cancel_breakpoint (lp))
2878 /* Throw away the SIGTRAP. */
2884 /* Select one LWP out of those that have events pending. */
2887 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2890 int random_selector;
2891 struct lwp_info *event_lp;
2893 /* Record the wait status for the original LWP. */
2894 (*orig_lp)->status = *status;
2896 /* Give preference to any LWP that is being single-stepped. */
2897 event_lp = iterate_over_lwps (filter,
2898 select_singlestep_lwp_callback, NULL);
2899 if (event_lp != NULL)
2901 if (debug_linux_nat)
2902 fprintf_unfiltered (gdb_stdlog,
2903 "SEL: Select single-step %s\n",
2904 target_pid_to_str (event_lp->ptid));
2908 /* No single-stepping LWP. Select one at random, out of those
2909 which have had SIGTRAP events. */
2911 /* First see how many SIGTRAP events we have. */
2912 iterate_over_lwps (filter, count_events_callback, &num_events);
2914 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2915 random_selector = (int)
2916 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2918 if (debug_linux_nat && num_events > 1)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2921 num_events, random_selector);
2923 event_lp = iterate_over_lwps (filter,
2924 select_event_lwp_callback,
2928 if (event_lp != NULL)
2930 /* Switch the event LWP. */
2931 *orig_lp = event_lp;
2932 *status = event_lp->status;
2935 /* Flush the wait status for the event LWP. */
2936 (*orig_lp)->status = 0;
2939 /* Return non-zero if LP has been resumed. */
2942 resumed_callback (struct lwp_info *lp, void *data)
2947 /* Stop an active thread, verify it still exists, then resume it. */
2950 stop_and_resume_callback (struct lwp_info *lp, void *data)
2952 struct lwp_info *ptr;
2954 if (!lp->stopped && !lp->signalled)
2956 stop_callback (lp, NULL);
2957 stop_wait_callback (lp, NULL);
2958 /* Resume if the lwp still exists. */
2959 for (ptr = lwp_list; ptr; ptr = ptr->next)
2962 resume_callback (lp, NULL);
2963 resume_set_callback (lp, NULL);
2969 /* Check if we should go on and pass this event to common code.
2970 Return the affected lwp if we are, or NULL otherwise. */
2971 static struct lwp_info *
2972 linux_nat_filter_event (int lwpid, int status, int options)
2974 struct lwp_info *lp;
2976 lp = find_lwp_pid (pid_to_ptid (lwpid));
2978 /* Check for stop events reported by a process we didn't already
2979 know about - anything not already in our LWP list.
2981 If we're expecting to receive stopped processes after
2982 fork, vfork, and clone events, then we'll just add the
2983 new one to our list and go back to waiting for the event
2984 to be reported - the stopped process might be returned
2985 from waitpid before or after the event is. */
2986 if (WIFSTOPPED (status) && !lp)
2988 linux_record_stopped_pid (lwpid, status);
2992 /* Make sure we don't report an event for the exit of an LWP not in
2993 our list, i.e. not part of the current process. This can happen
2994 if we detach from a program we original forked and then it
2996 if (!WIFSTOPPED (status) && !lp)
2999 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3000 CLONE_PTRACE processes which do not use the thread library -
3001 otherwise we wouldn't find the new LWP this way. That doesn't
3002 currently work, and the following code is currently unreachable
3003 due to the two blocks above. If it's fixed some day, this code
3004 should be broken out into a function so that we can also pick up
3005 LWPs from the new interface. */
3008 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3009 if (options & __WCLONE)
3012 gdb_assert (WIFSTOPPED (status)
3013 && WSTOPSIG (status) == SIGSTOP);
3016 if (!in_thread_list (inferior_ptid))
3018 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3019 GET_PID (inferior_ptid));
3020 add_thread (inferior_ptid);
3023 add_thread (lp->ptid);
3026 /* Handle GNU/Linux's syscall SIGTRAPs. */
3027 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3029 /* No longer need the sysgood bit. The ptrace event ends up
3030 recorded in lp->waitstatus if we care for it. We can carry
3031 on handling the event like a regular SIGTRAP from here
3033 status = W_STOPCODE (SIGTRAP);
3034 if (linux_handle_syscall_trap (lp, 0))
3038 /* Handle GNU/Linux's extended waitstatus for trace events. */
3039 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3041 if (debug_linux_nat)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "LLW: Handling extended status 0x%06x\n",
3045 if (linux_handle_extended_wait (lp, status, 0))
3049 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3051 /* Save the trap's siginfo in case we need it later. */
3057 /* Check if the thread has exited. */
3058 if ((WIFEXITED (status) || WIFSIGNALED (status))
3059 && num_lwps (GET_PID (lp->ptid)) > 1)
3061 /* If this is the main thread, we must stop all threads and verify
3062 if they are still alive. This is because in the nptl thread model
3063 on Linux 2.4, there is no signal issued for exiting LWPs
3064 other than the main thread. We only get the main thread exit
3065 signal once all child threads have already exited. If we
3066 stop all the threads and use the stop_wait_callback to check
3067 if they have exited we can determine whether this signal
3068 should be ignored or whether it means the end of the debugged
3069 application, regardless of which threading model is being
3071 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3074 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3075 stop_and_resume_callback, NULL);
3078 if (debug_linux_nat)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "LLW: %s exited.\n",
3081 target_pid_to_str (lp->ptid));
3083 if (num_lwps (GET_PID (lp->ptid)) > 1)
3085 /* If there is at least one more LWP, then the exit signal
3086 was not the end of the debugged application and should be
3093 /* Check if the current LWP has previously exited. In the nptl
3094 thread model, LWPs other than the main thread do not issue
3095 signals when they exit so we must check whenever the thread has
3096 stopped. A similar check is made in stop_wait_callback(). */
3097 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3099 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3101 if (debug_linux_nat)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "LLW: %s exited.\n",
3104 target_pid_to_str (lp->ptid));
3108 /* Make sure there is at least one thread running. */
3109 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3111 /* Discard the event. */
3115 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3116 an attempt to stop an LWP. */
3118 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3120 if (debug_linux_nat)
3121 fprintf_unfiltered (gdb_stdlog,
3122 "LLW: Delayed SIGSTOP caught for %s.\n",
3123 target_pid_to_str (lp->ptid));
3125 /* This is a delayed SIGSTOP. */
3128 registers_changed ();
3130 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3131 lp->step, TARGET_SIGNAL_0);
3132 if (debug_linux_nat)
3133 fprintf_unfiltered (gdb_stdlog,
3134 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3136 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3137 target_pid_to_str (lp->ptid));
3140 gdb_assert (lp->resumed);
3142 /* Discard the event. */
3146 /* Make sure we don't report a SIGINT that we have already displayed
3147 for another thread. */
3148 if (lp->ignore_sigint
3149 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: Delayed SIGINT caught for %s.\n",
3154 target_pid_to_str (lp->ptid));
3156 /* This is a delayed SIGINT. */
3157 lp->ignore_sigint = 0;
3159 registers_changed ();
3160 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3161 lp->step, TARGET_SIGNAL_0);
3162 if (debug_linux_nat)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3166 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3167 target_pid_to_str (lp->ptid));
3170 gdb_assert (lp->resumed);
3172 /* Discard the event. */
3176 /* An interesting event. */
3178 lp->status = status;
3183 linux_nat_wait_1 (struct target_ops *ops,
3184 ptid_t ptid, struct target_waitstatus *ourstatus,
3187 static sigset_t prev_mask;
3188 struct lwp_info *lp = NULL;
3193 if (debug_linux_nat_async)
3194 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3196 /* The first time we get here after starting a new inferior, we may
3197 not have added it to the LWP list yet - this is the earliest
3198 moment at which we know its PID. */
3199 if (ptid_is_pid (inferior_ptid))
3201 /* Upgrade the main thread's ptid. */
3202 thread_change_ptid (inferior_ptid,
3203 BUILD_LWP (GET_PID (inferior_ptid),
3204 GET_PID (inferior_ptid)));
3206 lp = add_lwp (inferior_ptid);
3210 /* Make sure SIGCHLD is blocked. */
3211 block_child_signals (&prev_mask);
3213 if (ptid_equal (ptid, minus_one_ptid))
3215 else if (ptid_is_pid (ptid))
3216 /* A request to wait for a specific tgid. This is not possible
3217 with waitpid, so instead, we wait for any child, and leave
3218 children we're not interested in right now with a pending
3219 status to report later. */
3222 pid = GET_LWP (ptid);
3228 /* Make sure that of those LWPs we want to get an event from, there
3229 is at least one LWP that has been resumed. If there's none, just
3230 bail out. The core may just be flushing asynchronously all
3232 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3234 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3236 if (debug_linux_nat_async)
3237 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3239 restore_child_signals_mask (&prev_mask);
3240 return minus_one_ptid;
3243 /* First check if there is a LWP with a wait status pending. */
3246 /* Any LWP that's been resumed will do. */
3247 lp = iterate_over_lwps (ptid, status_callback, NULL);
3250 if (debug_linux_nat && lp->status)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "LLW: Using pending wait status %s for %s.\n",
3253 status_to_str (lp->status),
3254 target_pid_to_str (lp->ptid));
3257 /* But if we don't find one, we'll have to wait, and check both
3258 cloned and uncloned processes. We start with the cloned
3260 options = __WCLONE | WNOHANG;
3262 else if (is_lwp (ptid))
3264 if (debug_linux_nat)
3265 fprintf_unfiltered (gdb_stdlog,
3266 "LLW: Waiting for specific LWP %s.\n",
3267 target_pid_to_str (ptid));
3269 /* We have a specific LWP to check. */
3270 lp = find_lwp_pid (ptid);
3273 if (debug_linux_nat && lp->status)
3274 fprintf_unfiltered (gdb_stdlog,
3275 "LLW: Using pending wait status %s for %s.\n",
3276 status_to_str (lp->status),
3277 target_pid_to_str (lp->ptid));
3279 /* If we have to wait, take into account whether PID is a cloned
3280 process or not. And we have to convert it to something that
3281 the layer beneath us can understand. */
3282 options = lp->cloned ? __WCLONE : 0;
3283 pid = GET_LWP (ptid);
3285 /* We check for lp->waitstatus in addition to lp->status,
3286 because we can have pending process exits recorded in
3287 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3288 an additional lp->status_p flag. */
3289 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3293 if (lp && lp->signalled)
3295 /* A pending SIGSTOP may interfere with the normal stream of
3296 events. In a typical case where interference is a problem,
3297 we have a SIGSTOP signal pending for LWP A while
3298 single-stepping it, encounter an event in LWP B, and take the
3299 pending SIGSTOP while trying to stop LWP A. After processing
3300 the event in LWP B, LWP A is continued, and we'll never see
3301 the SIGTRAP associated with the last time we were
3302 single-stepping LWP A. */
3304 /* Resume the thread. It should halt immediately returning the
3306 registers_changed ();
3307 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3308 lp->step, TARGET_SIGNAL_0);
3309 if (debug_linux_nat)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3312 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3313 target_pid_to_str (lp->ptid));
3315 gdb_assert (lp->resumed);
3317 /* Catch the pending SIGSTOP. */
3318 status = lp->status;
3321 stop_wait_callback (lp, NULL);
3323 /* If the lp->status field isn't empty, we caught another signal
3324 while flushing the SIGSTOP. Return it back to the event
3325 queue of the LWP, as we already have an event to handle. */
3328 if (debug_linux_nat)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "LLW: kill %s, %s\n",
3331 target_pid_to_str (lp->ptid),
3332 status_to_str (lp->status));
3333 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3336 lp->status = status;
3339 if (!target_can_async_p ())
3341 /* Causes SIGINT to be passed on to the attached process. */
3345 /* Translate generic target_wait options into waitpid options. */
3346 if (target_options & TARGET_WNOHANG)
3353 lwpid = my_waitpid (pid, &status, options);
3357 gdb_assert (pid == -1 || lwpid == pid);
3359 if (debug_linux_nat)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "LLW: waitpid %ld received %s\n",
3363 (long) lwpid, status_to_str (status));
3366 lp = linux_nat_filter_event (lwpid, status, options);
3369 && ptid_is_pid (ptid)
3370 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3372 gdb_assert (lp->resumed);
3374 if (debug_linux_nat)
3375 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3376 ptid_get_lwp (lp->ptid), status);
3378 if (WIFSTOPPED (lp->status))
3380 if (WSTOPSIG (lp->status) != SIGSTOP)
3382 /* Cancel breakpoint hits. The breakpoint may
3383 be removed before we fetch events from this
3384 process to report to the core. It is best
3385 not to assume the moribund breakpoints
3386 heuristic always handles these cases --- it
3387 could be too many events go through to the
3388 core before this one is handled. All-stop
3389 always cancels breakpoint hits in all
3392 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3393 && WSTOPSIG (lp->status) == SIGTRAP
3394 && cancel_breakpoint (lp))
3396 /* Throw away the SIGTRAP. */
3399 if (debug_linux_nat)
3401 "LLW: LWP %ld hit a breakpoint while waiting "
3402 "for another process; cancelled it\n",
3403 ptid_get_lwp (lp->ptid));
3413 else if (WIFEXITED (status) || WIFSIGNALED (status))
3415 if (debug_linux_nat)
3416 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3417 ptid_get_lwp (lp->ptid));
3419 /* This was the last lwp in the process. Since
3420 events are serialized to GDB core, and we can't
3421 report this one right now, but GDB core and the
3422 other target layers will want to be notified
3423 about the exit code/signal, leave the status
3424 pending for the next time we're able to report
3427 /* Prevent trying to stop this thread again. We'll
3428 never try to resume it because it has a pending
3432 /* Dead LWP's aren't expected to reported a pending
3436 /* Store the pending event in the waitstatus as
3437 well, because W_EXITCODE(0,0) == 0. */
3438 store_waitstatus (&lp->waitstatus, lp->status);
3452 /* waitpid did return something. Restart over. */
3453 options |= __WCLONE;
3461 /* Alternate between checking cloned and uncloned processes. */
3462 options ^= __WCLONE;
3464 /* And every time we have checked both:
3465 In async mode, return to event loop;
3466 In sync mode, suspend waiting for a SIGCHLD signal. */
3467 if (options & __WCLONE)
3469 if (target_options & TARGET_WNOHANG)
3471 /* No interesting event. */
3472 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3474 if (debug_linux_nat_async)
3475 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3477 restore_child_signals_mask (&prev_mask);
3478 return minus_one_ptid;
3481 sigsuspend (&suspend_mask);
3484 else if (target_options & TARGET_WNOHANG)
3486 /* No interesting event for PID yet. */
3487 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3489 if (debug_linux_nat_async)
3490 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3492 restore_child_signals_mask (&prev_mask);
3493 return minus_one_ptid;
3496 /* We shouldn't end up here unless we want to try again. */
3497 gdb_assert (lp == NULL);
3500 if (!target_can_async_p ())
3501 clear_sigint_trap ();
3505 status = lp->status;
3508 /* Don't report signals that GDB isn't interested in, such as
3509 signals that are neither printed nor stopped upon. Stopping all
3510 threads can be a bit time-consuming so if we want decent
3511 performance with heavily multi-threaded programs, especially when
3512 they're using a high frequency timer, we'd better avoid it if we
3515 if (WIFSTOPPED (status))
3517 int signo = target_signal_from_host (WSTOPSIG (status));
3518 struct inferior *inf;
3520 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3523 /* Defer to common code if we get a signal while
3524 single-stepping, since that may need special care, e.g. to
3525 skip the signal handler, or, if we're gaining control of the
3528 && inf->stop_soon == NO_STOP_QUIETLY
3529 && signal_stop_state (signo) == 0
3530 && signal_print_state (signo) == 0
3531 && signal_pass_state (signo) == 1)
3533 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3534 here? It is not clear we should. GDB may not expect
3535 other threads to run. On the other hand, not resuming
3536 newly attached threads may cause an unwanted delay in
3537 getting them running. */
3538 registers_changed ();
3539 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3541 if (debug_linux_nat)
3542 fprintf_unfiltered (gdb_stdlog,
3543 "LLW: %s %s, %s (preempt 'handle')\n",
3545 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3546 target_pid_to_str (lp->ptid),
3547 signo ? strsignal (signo) : "0");
3554 /* Only do the below in all-stop, as we currently use SIGINT
3555 to implement target_stop (see linux_nat_stop) in
3557 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3559 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3560 forwarded to the entire process group, that is, all LWPs
3561 will receive it - unless they're using CLONE_THREAD to
3562 share signals. Since we only want to report it once, we
3563 mark it as ignored for all LWPs except this one. */
3564 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3565 set_ignore_sigint, NULL);
3566 lp->ignore_sigint = 0;
3569 maybe_clear_ignore_sigint (lp);
3573 /* This LWP is stopped now. */
3576 if (debug_linux_nat)
3577 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3578 status_to_str (status), target_pid_to_str (lp->ptid));
3582 /* Now stop all other LWP's ... */
3583 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3585 /* ... and wait until all of them have reported back that
3586 they're no longer running. */
3587 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3589 /* If we're not waiting for a specific LWP, choose an event LWP
3590 from among those that have had events. Giving equal priority
3591 to all LWPs that have had events helps prevent
3594 select_event_lwp (ptid, &lp, &status);
3596 /* Now that we've selected our final event LWP, cancel any
3597 breakpoints in other LWPs that have hit a GDB breakpoint.
3598 See the comment in cancel_breakpoints_callback to find out
3600 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3602 /* In all-stop, from the core's perspective, all LWPs are now
3603 stopped until a new resume action is sent over. */
3604 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3609 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3611 if (debug_linux_nat)
3612 fprintf_unfiltered (gdb_stdlog,
3613 "LLW: trap ptid is %s.\n",
3614 target_pid_to_str (lp->ptid));
3617 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3619 *ourstatus = lp->waitstatus;
3620 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3623 store_waitstatus (ourstatus, status);
3625 if (debug_linux_nat_async)
3626 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3628 restore_child_signals_mask (&prev_mask);
3630 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3631 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3634 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3639 /* Resume LWPs that are currently stopped without any pending status
3640 to report, but are resumed from the core's perspective. */
3643 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3645 ptid_t *wait_ptid_p = data;
3650 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3652 gdb_assert (is_executing (lp->ptid));
3654 /* Don't bother if there's a breakpoint at PC that we'd hit
3655 immediately, and we're not waiting for this LWP. */
3656 if (!ptid_match (lp->ptid, *wait_ptid_p))
3658 struct regcache *regcache = get_thread_regcache (lp->ptid);
3659 CORE_ADDR pc = regcache_read_pc (regcache);
3661 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3665 if (debug_linux_nat)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "RSRL: resuming stopped-resumed LWP %s\n",
3668 target_pid_to_str (lp->ptid));
3670 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3671 lp->step, TARGET_SIGNAL_0);
3673 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3674 lp->stopped_by_watchpoint = 0;
3681 linux_nat_wait (struct target_ops *ops,
3682 ptid_t ptid, struct target_waitstatus *ourstatus,
3687 if (debug_linux_nat)
3688 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3690 /* Flush the async file first. */
3691 if (target_can_async_p ())
3692 async_file_flush ();
3694 /* Resume LWPs that are currently stopped without any pending status
3695 to report, but are resumed from the core's perspective. LWPs get
3696 in this state if we find them stopping at a time we're not
3697 interested in reporting the event (target_wait on a
3698 specific_process, for example, see linux_nat_wait_1), and
3699 meanwhile the event became uninteresting. Don't bother resuming
3700 LWPs we're not going to wait for if they'd stop immediately. */
3702 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3704 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3706 /* If we requested any event, and something came out, assume there
3707 may be more. If we requested a specific lwp or process, also
3708 assume there may be more. */
3709 if (target_can_async_p ()
3710 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3711 || !ptid_equal (ptid, minus_one_ptid)))
3714 /* Get ready for the next event. */
3715 if (target_can_async_p ())
3716 target_async (inferior_event_handler, 0);
3722 kill_callback (struct lwp_info *lp, void *data)
3725 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3726 if (debug_linux_nat)
3727 fprintf_unfiltered (gdb_stdlog,
3728 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3729 target_pid_to_str (lp->ptid),
3730 errno ? safe_strerror (errno) : "OK");
3736 kill_wait_callback (struct lwp_info *lp, void *data)
3740 /* We must make sure that there are no pending events (delayed
3741 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3742 program doesn't interfere with any following debugging session. */
3744 /* For cloned processes we must check both with __WCLONE and
3745 without, since the exit status of a cloned process isn't reported
3751 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3752 if (pid != (pid_t) -1)
3754 if (debug_linux_nat)
3755 fprintf_unfiltered (gdb_stdlog,
3756 "KWC: wait %s received unknown.\n",
3757 target_pid_to_str (lp->ptid));
3758 /* The Linux kernel sometimes fails to kill a thread
3759 completely after PTRACE_KILL; that goes from the stop
3760 point in do_fork out to the one in
3761 get_signal_to_deliever and waits again. So kill it
3763 kill_callback (lp, NULL);
3766 while (pid == GET_LWP (lp->ptid));
3768 gdb_assert (pid == -1 && errno == ECHILD);
3773 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3774 if (pid != (pid_t) -1)
3776 if (debug_linux_nat)
3777 fprintf_unfiltered (gdb_stdlog,
3778 "KWC: wait %s received unk.\n",
3779 target_pid_to_str (lp->ptid));
3780 /* See the call to kill_callback above. */
3781 kill_callback (lp, NULL);
3784 while (pid == GET_LWP (lp->ptid));
3786 gdb_assert (pid == -1 && errno == ECHILD);
3791 linux_nat_kill (struct target_ops *ops)
3793 struct target_waitstatus last;
3797 /* If we're stopped while forking and we haven't followed yet,
3798 kill the other task. We need to do this first because the
3799 parent will be sleeping if this is a vfork. */
3801 get_last_target_status (&last_ptid, &last);
3803 if (last.kind == TARGET_WAITKIND_FORKED
3804 || last.kind == TARGET_WAITKIND_VFORKED)
3806 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3810 if (forks_exist_p ())
3811 linux_fork_killall ();
3814 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3816 /* Stop all threads before killing them, since ptrace requires
3817 that the thread is stopped to sucessfully PTRACE_KILL. */
3818 iterate_over_lwps (ptid, stop_callback, NULL);
3819 /* ... and wait until all of them have reported back that
3820 they're no longer running. */
3821 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3823 /* Kill all LWP's ... */
3824 iterate_over_lwps (ptid, kill_callback, NULL);
3826 /* ... and wait until we've flushed all events. */
3827 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3830 target_mourn_inferior ();
3834 linux_nat_mourn_inferior (struct target_ops *ops)
3836 purge_lwp_list (ptid_get_pid (inferior_ptid));
3838 if (! forks_exist_p ())
3839 /* Normal case, no other forks available. */
3840 linux_ops->to_mourn_inferior (ops);
3842 /* Multi-fork case. The current inferior_ptid has exited, but
3843 there are other viable forks to debug. Delete the exiting
3844 one and context-switch to the first available. */
3845 linux_fork_mourn_inferior ();
3848 /* Convert a native/host siginfo object, into/from the siginfo in the
3849 layout of the inferiors' architecture. */
3852 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3856 if (linux_nat_siginfo_fixup != NULL)
3857 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3859 /* If there was no callback, or the callback didn't do anything,
3860 then just do a straight memcpy. */
3864 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3866 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3871 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3872 const char *annex, gdb_byte *readbuf,
3873 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3876 struct siginfo siginfo;
3877 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3879 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3880 gdb_assert (readbuf || writebuf);
3882 pid = GET_LWP (inferior_ptid);
3884 pid = GET_PID (inferior_ptid);
3886 if (offset > sizeof (siginfo))
3890 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3894 /* When GDB is built as a 64-bit application, ptrace writes into
3895 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3896 inferior with a 64-bit GDB should look the same as debugging it
3897 with a 32-bit GDB, we need to convert it. GDB core always sees
3898 the converted layout, so any read/write will have to be done
3900 siginfo_fixup (&siginfo, inf_siginfo, 0);
3902 if (offset + len > sizeof (siginfo))
3903 len = sizeof (siginfo) - offset;
3905 if (readbuf != NULL)
3906 memcpy (readbuf, inf_siginfo + offset, len);
3909 memcpy (inf_siginfo + offset, writebuf, len);
3911 /* Convert back to ptrace layout before flushing it out. */
3912 siginfo_fixup (&siginfo, inf_siginfo, 1);
3915 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3924 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3925 const char *annex, gdb_byte *readbuf,
3926 const gdb_byte *writebuf,
3927 ULONGEST offset, LONGEST len)
3929 struct cleanup *old_chain;
3932 if (object == TARGET_OBJECT_SIGNAL_INFO)
3933 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3936 /* The target is connected but no live inferior is selected. Pass
3937 this request down to a lower stratum (e.g., the executable
3939 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3942 old_chain = save_inferior_ptid ();
3944 if (is_lwp (inferior_ptid))
3945 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3947 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3950 do_cleanups (old_chain);
3955 linux_thread_alive (ptid_t ptid)
3959 gdb_assert (is_lwp (ptid));
3961 /* Send signal 0 instead of anything ptrace, because ptracing a
3962 running thread errors out claiming that the thread doesn't
3964 err = kill_lwp (GET_LWP (ptid), 0);
3966 if (debug_linux_nat)
3967 fprintf_unfiltered (gdb_stdlog,
3968 "LLTA: KILL(SIG0) %s (%s)\n",
3969 target_pid_to_str (ptid),
3970 err ? safe_strerror (err) : "OK");
3979 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3981 return linux_thread_alive (ptid);
3985 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3987 static char buf[64];
3990 && (GET_PID (ptid) != GET_LWP (ptid)
3991 || num_lwps (GET_PID (ptid)) > 1))
3993 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3997 return normal_pid_to_str (ptid);
4000 /* Accepts an integer PID; Returns a string representing a file that
4001 can be opened to get the symbols for the child process. */
4004 linux_child_pid_to_exec_file (int pid)
4006 char *name1, *name2;
4008 name1 = xmalloc (MAXPATHLEN);
4009 name2 = xmalloc (MAXPATHLEN);
4010 make_cleanup (xfree, name1);
4011 make_cleanup (xfree, name2);
4012 memset (name2, 0, MAXPATHLEN);
4014 sprintf (name1, "/proc/%d/exe", pid);
4015 if (readlink (name1, name2, MAXPATHLEN) > 0)
4021 /* Service function for corefiles and info proc. */
4024 read_mapping (FILE *mapfile,
4029 char *device, long long *inode, char *filename)
4031 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4032 addr, endaddr, permissions, offset, device, inode);
4035 if (ret > 0 && ret != EOF)
4037 /* Eat everything up to EOL for the filename. This will prevent
4038 weird filenames (such as one with embedded whitespace) from
4039 confusing this code. It also makes this code more robust in
4040 respect to annotations the kernel may add after the filename.
4042 Note the filename is used for informational purposes
4044 ret += fscanf (mapfile, "%[^\n]\n", filename);
4047 return (ret != 0 && ret != EOF);
4050 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4051 regions in the inferior for a corefile. */
4054 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4056 int, int, int, void *), void *obfd)
4058 int pid = PIDGET (inferior_ptid);
4059 char mapsfilename[MAXPATHLEN];
4061 long long addr, endaddr, size, offset, inode;
4062 char permissions[8], device[8], filename[MAXPATHLEN];
4063 int read, write, exec;
4064 struct cleanup *cleanup;
4066 /* Compose the filename for the /proc memory map, and open it. */
4067 sprintf (mapsfilename, "/proc/%d/maps", pid);
4068 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4069 error (_("Could not open %s."), mapsfilename);
4070 cleanup = make_cleanup_fclose (mapsfile);
4073 fprintf_filtered (gdb_stdout,
4074 "Reading memory regions from %s\n", mapsfilename);
4076 /* Now iterate until end-of-file. */
4077 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4078 &offset, &device[0], &inode, &filename[0]))
4080 size = endaddr - addr;
4082 /* Get the segment's permissions. */
4083 read = (strchr (permissions, 'r') != 0);
4084 write = (strchr (permissions, 'w') != 0);
4085 exec = (strchr (permissions, 'x') != 0);
4089 fprintf_filtered (gdb_stdout,
4090 "Save segment, %s bytes at %s (%c%c%c)",
4091 plongest (size), paddress (target_gdbarch, addr),
4093 write ? 'w' : ' ', exec ? 'x' : ' ');
4095 fprintf_filtered (gdb_stdout, " for %s", filename);
4096 fprintf_filtered (gdb_stdout, "\n");
4099 /* Invoke the callback function to create the corefile
4101 func (addr, size, read, write, exec, obfd);
4103 do_cleanups (cleanup);
4108 find_signalled_thread (struct thread_info *info, void *data)
4110 if (info->stop_signal != TARGET_SIGNAL_0
4111 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4117 static enum target_signal
4118 find_stop_signal (void)
4120 struct thread_info *info =
4121 iterate_over_threads (find_signalled_thread, NULL);
4124 return info->stop_signal;
4126 return TARGET_SIGNAL_0;
4129 /* Records the thread's register state for the corefile note
4133 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4134 char *note_data, int *note_size,
4135 enum target_signal stop_signal)
4137 gdb_gregset_t gregs;
4138 gdb_fpregset_t fpregs;
4139 unsigned long lwp = ptid_get_lwp (ptid);
4140 struct gdbarch *gdbarch = target_gdbarch;
4141 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4142 const struct regset *regset;
4144 struct cleanup *old_chain;
4145 struct core_regset_section *sect_list;
4148 old_chain = save_inferior_ptid ();
4149 inferior_ptid = ptid;
4150 target_fetch_registers (regcache, -1);
4151 do_cleanups (old_chain);
4153 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4154 sect_list = gdbarch_core_regset_sections (gdbarch);
4157 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4158 sizeof (gregs))) != NULL
4159 && regset->collect_regset != NULL)
4160 regset->collect_regset (regset, regcache, -1,
4161 &gregs, sizeof (gregs));
4163 fill_gregset (regcache, &gregs, -1);
4165 note_data = (char *) elfcore_write_prstatus (obfd,
4169 stop_signal, &gregs);
4171 /* The loop below uses the new struct core_regset_section, which stores
4172 the supported section names and sizes for the core file. Note that
4173 note PRSTATUS needs to be treated specially. But the other notes are
4174 structurally the same, so they can benefit from the new struct. */
4175 if (core_regset_p && sect_list != NULL)
4176 while (sect_list->sect_name != NULL)
4178 /* .reg was already handled above. */
4179 if (strcmp (sect_list->sect_name, ".reg") == 0)
4184 regset = gdbarch_regset_from_core_section (gdbarch,
4185 sect_list->sect_name,
4187 gdb_assert (regset && regset->collect_regset);
4188 gdb_regset = xmalloc (sect_list->size);
4189 regset->collect_regset (regset, regcache, -1,
4190 gdb_regset, sect_list->size);
4191 note_data = (char *) elfcore_write_register_note (obfd,
4194 sect_list->sect_name,
4201 /* For architectures that does not have the struct core_regset_section
4202 implemented, we use the old method. When all the architectures have
4203 the new support, the code below should be deleted. */
4207 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4208 sizeof (fpregs))) != NULL
4209 && regset->collect_regset != NULL)
4210 regset->collect_regset (regset, regcache, -1,
4211 &fpregs, sizeof (fpregs));
4213 fill_fpregset (regcache, &fpregs, -1);
4215 note_data = (char *) elfcore_write_prfpreg (obfd,
4218 &fpregs, sizeof (fpregs));
4224 struct linux_nat_corefile_thread_data
4230 enum target_signal stop_signal;
4233 /* Called by gdbthread.c once per thread. Records the thread's
4234 register state for the corefile note section. */
4237 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4239 struct linux_nat_corefile_thread_data *args = data;
4241 args->note_data = linux_nat_do_thread_registers (args->obfd,
4251 /* Enumerate spufs IDs for process PID. */
4254 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4258 struct dirent *entry;
4260 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4261 dir = opendir (path);
4266 while ((entry = readdir (dir)) != NULL)
4272 fd = atoi (entry->d_name);
4276 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4277 if (stat (path, &st) != 0)
4279 if (!S_ISDIR (st.st_mode))
4282 if (statfs (path, &stfs) != 0)
4284 if (stfs.f_type != SPUFS_MAGIC)
4287 callback (data, fd);
4293 /* Generate corefile notes for SPU contexts. */
4295 struct linux_spu_corefile_data
4303 linux_spu_corefile_callback (void *data, int fd)
4305 struct linux_spu_corefile_data *args = data;
4308 static const char *spu_files[] =
4330 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4332 char annex[32], note_name[32];
4336 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4337 spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU,
4341 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4342 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4343 args->note_size, note_name,
4344 NT_SPU, spu_data, spu_len);
4351 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4353 struct linux_spu_corefile_data args;
4356 args.note_data = note_data;
4357 args.note_size = note_size;
4359 iterate_over_spus (PIDGET (inferior_ptid),
4360 linux_spu_corefile_callback, &args);
4362 return args.note_data;
4365 /* Fills the "to_make_corefile_note" target vector. Builds the note
4366 section for a corefile, and returns it in a malloc buffer. */
4369 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4371 struct linux_nat_corefile_thread_data thread_args;
4372 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4373 char fname[16] = { '\0' };
4374 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4375 char psargs[80] = { '\0' };
4376 char *note_data = NULL;
4377 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4381 if (get_exec_file (0))
4383 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4384 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4385 if (get_inferior_args ())
4388 char *psargs_end = psargs + sizeof (psargs);
4390 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4392 string_end = memchr (psargs, 0, sizeof (psargs));
4393 if (string_end != NULL)
4395 *string_end++ = ' ';
4396 strncpy (string_end, get_inferior_args (),
4397 psargs_end - string_end);
4400 note_data = (char *) elfcore_write_prpsinfo (obfd,
4402 note_size, fname, psargs);
4405 /* Dump information for threads. */
4406 thread_args.obfd = obfd;
4407 thread_args.note_data = note_data;
4408 thread_args.note_size = note_size;
4409 thread_args.num_notes = 0;
4410 thread_args.stop_signal = find_stop_signal ();
4411 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4412 gdb_assert (thread_args.num_notes != 0);
4413 note_data = thread_args.note_data;
4415 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
4419 note_data = elfcore_write_note (obfd, note_data, note_size,
4420 "CORE", NT_AUXV, auxv, auxv_len);
4424 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4426 make_cleanup (xfree, note_data);
4430 /* Implement the "info proc" command. */
4433 linux_nat_info_proc_cmd (char *args, int from_tty)
4435 /* A long is used for pid instead of an int to avoid a loss of precision
4436 compiler warning from the output of strtoul. */
4437 long pid = PIDGET (inferior_ptid);
4440 char buffer[MAXPATHLEN];
4441 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4453 /* Break up 'args' into an argv array. */
4454 argv = gdb_buildargv (args);
4455 make_cleanup_freeargv (argv);
4457 while (argv != NULL && *argv != NULL)
4459 if (isdigit (argv[0][0]))
4461 pid = strtoul (argv[0], NULL, 10);
4463 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4467 else if (strcmp (argv[0], "status") == 0)
4471 else if (strcmp (argv[0], "stat") == 0)
4475 else if (strcmp (argv[0], "cmd") == 0)
4479 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4483 else if (strcmp (argv[0], "cwd") == 0)
4487 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4493 /* [...] (future options here) */
4498 error (_("No current process: you must name one."));
4500 sprintf (fname1, "/proc/%ld", pid);
4501 if (stat (fname1, &dummy) != 0)
4502 error (_("No /proc directory: '%s'"), fname1);
4504 printf_filtered (_("process %ld\n"), pid);
4505 if (cmdline_f || all)
4507 sprintf (fname1, "/proc/%ld/cmdline", pid);
4508 if ((procfile = fopen (fname1, "r")) != NULL)
4510 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4512 if (fgets (buffer, sizeof (buffer), procfile))
4513 printf_filtered ("cmdline = '%s'\n", buffer);
4515 warning (_("unable to read '%s'"), fname1);
4516 do_cleanups (cleanup);
4519 warning (_("unable to open /proc file '%s'"), fname1);
4523 sprintf (fname1, "/proc/%ld/cwd", pid);
4524 memset (fname2, 0, sizeof (fname2));
4525 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4526 printf_filtered ("cwd = '%s'\n", fname2);
4528 warning (_("unable to read link '%s'"), fname1);
4532 sprintf (fname1, "/proc/%ld/exe", pid);
4533 memset (fname2, 0, sizeof (fname2));
4534 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4535 printf_filtered ("exe = '%s'\n", fname2);
4537 warning (_("unable to read link '%s'"), fname1);
4539 if (mappings_f || all)
4541 sprintf (fname1, "/proc/%ld/maps", pid);
4542 if ((procfile = fopen (fname1, "r")) != NULL)
4544 long long addr, endaddr, size, offset, inode;
4545 char permissions[8], device[8], filename[MAXPATHLEN];
4546 struct cleanup *cleanup;
4548 cleanup = make_cleanup_fclose (procfile);
4549 printf_filtered (_("Mapped address spaces:\n\n"));
4550 if (gdbarch_addr_bit (target_gdbarch) == 32)
4552 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4555 " Size", " Offset", "objfile");
4559 printf_filtered (" %18s %18s %10s %10s %7s\n",
4562 " Size", " Offset", "objfile");
4565 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4566 &offset, &device[0], &inode, &filename[0]))
4568 size = endaddr - addr;
4570 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4571 calls here (and possibly above) should be abstracted
4572 out into their own functions? Andrew suggests using
4573 a generic local_address_string instead to print out
4574 the addresses; that makes sense to me, too. */
4576 if (gdbarch_addr_bit (target_gdbarch) == 32)
4578 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4579 (unsigned long) addr, /* FIXME: pr_addr */
4580 (unsigned long) endaddr,
4582 (unsigned int) offset,
4583 filename[0] ? filename : "");
4587 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4588 (unsigned long) addr, /* FIXME: pr_addr */
4589 (unsigned long) endaddr,
4591 (unsigned int) offset,
4592 filename[0] ? filename : "");
4596 do_cleanups (cleanup);
4599 warning (_("unable to open /proc file '%s'"), fname1);
4601 if (status_f || all)
4603 sprintf (fname1, "/proc/%ld/status", pid);
4604 if ((procfile = fopen (fname1, "r")) != NULL)
4606 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4608 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4609 puts_filtered (buffer);
4610 do_cleanups (cleanup);
4613 warning (_("unable to open /proc file '%s'"), fname1);
4617 sprintf (fname1, "/proc/%ld/stat", pid);
4618 if ((procfile = fopen (fname1, "r")) != NULL)
4623 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4625 if (fscanf (procfile, "%d ", &itmp) > 0)
4626 printf_filtered (_("Process: %d\n"), itmp);
4627 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4628 printf_filtered (_("Exec file: %s\n"), buffer);
4629 if (fscanf (procfile, "%c ", &ctmp) > 0)
4630 printf_filtered (_("State: %c\n"), ctmp);
4631 if (fscanf (procfile, "%d ", &itmp) > 0)
4632 printf_filtered (_("Parent process: %d\n"), itmp);
4633 if (fscanf (procfile, "%d ", &itmp) > 0)
4634 printf_filtered (_("Process group: %d\n"), itmp);
4635 if (fscanf (procfile, "%d ", &itmp) > 0)
4636 printf_filtered (_("Session id: %d\n"), itmp);
4637 if (fscanf (procfile, "%d ", &itmp) > 0)
4638 printf_filtered (_("TTY: %d\n"), itmp);
4639 if (fscanf (procfile, "%d ", &itmp) > 0)
4640 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4641 if (fscanf (procfile, "%lu ", <mp) > 0)
4642 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4643 if (fscanf (procfile, "%lu ", <mp) > 0)
4644 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4645 (unsigned long) ltmp);
4646 if (fscanf (procfile, "%lu ", <mp) > 0)
4647 printf_filtered (_("Minor faults, children: %lu\n"),
4648 (unsigned long) ltmp);
4649 if (fscanf (procfile, "%lu ", <mp) > 0)
4650 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4651 (unsigned long) ltmp);
4652 if (fscanf (procfile, "%lu ", <mp) > 0)
4653 printf_filtered (_("Major faults, children: %lu\n"),
4654 (unsigned long) ltmp);
4655 if (fscanf (procfile, "%ld ", <mp) > 0)
4656 printf_filtered (_("utime: %ld\n"), ltmp);
4657 if (fscanf (procfile, "%ld ", <mp) > 0)
4658 printf_filtered (_("stime: %ld\n"), ltmp);
4659 if (fscanf (procfile, "%ld ", <mp) > 0)
4660 printf_filtered (_("utime, children: %ld\n"), ltmp);
4661 if (fscanf (procfile, "%ld ", <mp) > 0)
4662 printf_filtered (_("stime, children: %ld\n"), ltmp);
4663 if (fscanf (procfile, "%ld ", <mp) > 0)
4664 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4666 if (fscanf (procfile, "%ld ", <mp) > 0)
4667 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4668 if (fscanf (procfile, "%lu ", <mp) > 0)
4669 printf_filtered (_("jiffies until next timeout: %lu\n"),
4670 (unsigned long) ltmp);
4671 if (fscanf (procfile, "%lu ", <mp) > 0)
4672 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4673 (unsigned long) ltmp);
4674 if (fscanf (procfile, "%ld ", <mp) > 0)
4675 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4677 if (fscanf (procfile, "%lu ", <mp) > 0)
4678 printf_filtered (_("Virtual memory size: %lu\n"),
4679 (unsigned long) ltmp);
4680 if (fscanf (procfile, "%lu ", <mp) > 0)
4681 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4682 if (fscanf (procfile, "%lu ", <mp) > 0)
4683 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4684 if (fscanf (procfile, "%lu ", <mp) > 0)
4685 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4686 if (fscanf (procfile, "%lu ", <mp) > 0)
4687 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4688 if (fscanf (procfile, "%lu ", <mp) > 0)
4689 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4690 #if 0 /* Don't know how architecture-dependent the rest is...
4691 Anyway the signal bitmap info is available from "status". */
4692 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4693 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4694 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4695 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4696 if (fscanf (procfile, "%ld ", <mp) > 0)
4697 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4698 if (fscanf (procfile, "%ld ", <mp) > 0)
4699 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4700 if (fscanf (procfile, "%ld ", <mp) > 0)
4701 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4702 if (fscanf (procfile, "%ld ", <mp) > 0)
4703 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4704 if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
4705 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4707 do_cleanups (cleanup);
4710 warning (_("unable to open /proc file '%s'"), fname1);
4714 /* Implement the to_xfer_partial interface for memory reads using the /proc
4715 filesystem. Because we can use a single read() call for /proc, this
4716 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4717 but it doesn't support writes. */
4720 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4721 const char *annex, gdb_byte *readbuf,
4722 const gdb_byte *writebuf,
4723 ULONGEST offset, LONGEST len)
4729 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4732 /* Don't bother for one word. */
4733 if (len < 3 * sizeof (long))
4736 /* We could keep this file open and cache it - possibly one per
4737 thread. That requires some juggling, but is even faster. */
4738 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4739 fd = open (filename, O_RDONLY | O_LARGEFILE);
4743 /* If pread64 is available, use it. It's faster if the kernel
4744 supports it (only one syscall), and it's 64-bit safe even on
4745 32-bit platforms (for instance, SPARC debugging a SPARC64
4748 if (pread64 (fd, readbuf, len, offset) != len)
4750 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4761 /* Enumerate spufs IDs for process PID. */
4763 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4765 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4767 LONGEST written = 0;
4770 struct dirent *entry;
4772 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4773 dir = opendir (path);
4778 while ((entry = readdir (dir)) != NULL)
4784 fd = atoi (entry->d_name);
4788 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4789 if (stat (path, &st) != 0)
4791 if (!S_ISDIR (st.st_mode))
4794 if (statfs (path, &stfs) != 0)
4796 if (stfs.f_type != SPUFS_MAGIC)
4799 if (pos >= offset && pos + 4 <= offset + len)
4801 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4811 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4812 object type, using the /proc file system. */
4814 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4815 const char *annex, gdb_byte *readbuf,
4816 const gdb_byte *writebuf,
4817 ULONGEST offset, LONGEST len)
4822 int pid = PIDGET (inferior_ptid);
4829 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4832 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4833 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4838 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4845 ret = write (fd, writebuf, (size_t) len);
4847 ret = read (fd, readbuf, (size_t) len);
4854 /* Parse LINE as a signal set and add its set bits to SIGS. */
4857 add_line_to_sigset (const char *line, sigset_t *sigs)
4859 int len = strlen (line) - 1;
4863 if (line[len] != '\n')
4864 error (_("Could not parse signal set: %s"), line);
4872 if (*p >= '0' && *p <= '9')
4874 else if (*p >= 'a' && *p <= 'f')
4875 digit = *p - 'a' + 10;
4877 error (_("Could not parse signal set: %s"), line);
4882 sigaddset (sigs, signum + 1);
4884 sigaddset (sigs, signum + 2);
4886 sigaddset (sigs, signum + 3);
4888 sigaddset (sigs, signum + 4);
4894 /* Find process PID's pending signals from /proc/pid/status and set
4898 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4901 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4902 struct cleanup *cleanup;
4904 sigemptyset (pending);
4905 sigemptyset (blocked);
4906 sigemptyset (ignored);
4907 sprintf (fname, "/proc/%d/status", pid);
4908 procfile = fopen (fname, "r");
4909 if (procfile == NULL)
4910 error (_("Could not open %s"), fname);
4911 cleanup = make_cleanup_fclose (procfile);
4913 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4915 /* Normal queued signals are on the SigPnd line in the status
4916 file. However, 2.6 kernels also have a "shared" pending
4917 queue for delivering signals to a thread group, so check for
4920 Unfortunately some Red Hat kernels include the shared pending
4921 queue but not the ShdPnd status field. */
4923 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4924 add_line_to_sigset (buffer + 8, pending);
4925 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4926 add_line_to_sigset (buffer + 8, pending);
4927 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4928 add_line_to_sigset (buffer + 8, blocked);
4929 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4930 add_line_to_sigset (buffer + 8, ignored);
4933 do_cleanups (cleanup);
4937 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4938 const char *annex, gdb_byte *readbuf,
4939 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4941 /* We make the process list snapshot when the object starts to be
4943 static const char *buf;
4944 static LONGEST len_avail = -1;
4945 static struct obstack obstack;
4949 gdb_assert (object == TARGET_OBJECT_OSDATA);
4951 if (strcmp (annex, "processes") != 0)
4954 gdb_assert (readbuf && !writebuf);
4958 if (len_avail != -1 && len_avail != 0)
4959 obstack_free (&obstack, NULL);
4962 obstack_init (&obstack);
4963 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4965 dirp = opendir ("/proc");
4970 while ((dp = readdir (dirp)) != NULL)
4972 struct stat statbuf;
4973 char procentry[sizeof ("/proc/4294967295")];
4975 if (!isdigit (dp->d_name[0])
4976 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4979 sprintf (procentry, "/proc/%s", dp->d_name);
4980 if (stat (procentry, &statbuf) == 0
4981 && S_ISDIR (statbuf.st_mode))
4985 char cmd[MAXPATHLEN + 1];
4986 struct passwd *entry;
4988 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4989 entry = getpwuid (statbuf.st_uid);
4991 if ((f = fopen (pathname, "r")) != NULL)
4993 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4999 for (i = 0; i < len; i++)
5004 obstack_xml_printf (
5007 "<column name=\"pid\">%s</column>"
5008 "<column name=\"user\">%s</column>"
5009 "<column name=\"command\">%s</column>"
5012 entry ? entry->pw_name : "?",
5025 obstack_grow_str0 (&obstack, "</osdata>\n");
5026 buf = obstack_finish (&obstack);
5027 len_avail = strlen (buf);
5030 if (offset >= len_avail)
5032 /* Done. Get rid of the obstack. */
5033 obstack_free (&obstack, NULL);
5039 if (len > len_avail - offset)
5040 len = len_avail - offset;
5041 memcpy (readbuf, buf + offset, len);
5047 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5048 const char *annex, gdb_byte *readbuf,
5049 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5053 if (object == TARGET_OBJECT_AUXV)
5054 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5057 if (object == TARGET_OBJECT_OSDATA)
5058 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5061 if (object == TARGET_OBJECT_SPU)
5062 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5065 /* GDB calculates all the addresses in possibly larget width of the address.
5066 Address width needs to be masked before its final use - either by
5067 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5069 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5071 if (object == TARGET_OBJECT_MEMORY)
5073 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5075 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5076 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5079 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5084 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5088 /* Create a prototype generic GNU/Linux target. The client can override
5089 it with local methods. */
5092 linux_target_install_ops (struct target_ops *t)
5094 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5095 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5096 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5097 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5098 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5099 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5100 t->to_post_attach = linux_child_post_attach;
5101 t->to_follow_fork = linux_child_follow_fork;
5102 t->to_find_memory_regions = linux_nat_find_memory_regions;
5103 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5105 super_xfer_partial = t->to_xfer_partial;
5106 t->to_xfer_partial = linux_xfer_partial;
5112 struct target_ops *t;
5114 t = inf_ptrace_target ();
5115 linux_target_install_ops (t);
5121 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5123 struct target_ops *t;
5125 t = inf_ptrace_trad_target (register_u_offset);
5126 linux_target_install_ops (t);
5131 /* target_is_async_p implementation. */
5134 linux_nat_is_async_p (void)
5136 /* NOTE: palves 2008-03-21: We're only async when the user requests
5137 it explicitly with the "set target-async" command.
5138 Someday, linux will always be async. */
5139 if (!target_async_permitted)
5142 /* See target.h/target_async_mask. */
5143 return linux_nat_async_mask_value;
5146 /* target_can_async_p implementation. */
5149 linux_nat_can_async_p (void)
5151 /* NOTE: palves 2008-03-21: We're only async when the user requests
5152 it explicitly with the "set target-async" command.
5153 Someday, linux will always be async. */
5154 if (!target_async_permitted)
5157 /* See target.h/target_async_mask. */
5158 return linux_nat_async_mask_value;
5162 linux_nat_supports_non_stop (void)
5167 /* True if we want to support multi-process. To be removed when GDB
5168 supports multi-exec. */
5170 int linux_multi_process = 1;
5173 linux_nat_supports_multi_process (void)
5175 return linux_multi_process;
5178 /* target_async_mask implementation. */
5181 linux_nat_async_mask (int new_mask)
5183 int curr_mask = linux_nat_async_mask_value;
5185 if (curr_mask != new_mask)
5189 linux_nat_async (NULL, 0);
5190 linux_nat_async_mask_value = new_mask;
5194 linux_nat_async_mask_value = new_mask;
5196 /* If we're going out of async-mask in all-stop, then the
5197 inferior is stopped. The next resume will call
5198 target_async. In non-stop, the target event source
5199 should be always registered in the event loop. Do so
5202 linux_nat_async (inferior_event_handler, 0);
5209 static int async_terminal_is_ours = 1;
5211 /* target_terminal_inferior implementation. */
5214 linux_nat_terminal_inferior (void)
5216 if (!target_is_async_p ())
5218 /* Async mode is disabled. */
5219 terminal_inferior ();
5223 terminal_inferior ();
5225 /* Calls to target_terminal_*() are meant to be idempotent. */
5226 if (!async_terminal_is_ours)
5229 delete_file_handler (input_fd);
5230 async_terminal_is_ours = 0;
5234 /* target_terminal_ours implementation. */
5237 linux_nat_terminal_ours (void)
5239 if (!target_is_async_p ())
5241 /* Async mode is disabled. */
5246 /* GDB should never give the terminal to the inferior if the
5247 inferior is running in the background (run&, continue&, etc.),
5248 but claiming it sure should. */
5251 if (async_terminal_is_ours)
5254 clear_sigint_trap ();
5255 add_file_handler (input_fd, stdin_event_handler, 0);
5256 async_terminal_is_ours = 1;
5259 static void (*async_client_callback) (enum inferior_event_type event_type,
5261 static void *async_client_context;
5263 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5264 so we notice when any child changes state, and notify the
5265 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5266 above to wait for the arrival of a SIGCHLD. */
5269 sigchld_handler (int signo)
5271 int old_errno = errno;
5273 if (debug_linux_nat_async)
5274 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5276 if (signo == SIGCHLD
5277 && linux_nat_event_pipe[0] != -1)
5278 async_file_mark (); /* Let the event loop know that there are
5279 events to handle. */
5284 /* Callback registered with the target events file descriptor. */
5287 handle_target_event (int error, gdb_client_data client_data)
5289 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5292 /* Create/destroy the target events pipe. Returns previous state. */
5295 linux_async_pipe (int enable)
5297 int previous = (linux_nat_event_pipe[0] != -1);
5299 if (previous != enable)
5303 block_child_signals (&prev_mask);
5307 if (pipe (linux_nat_event_pipe) == -1)
5308 internal_error (__FILE__, __LINE__,
5309 "creating event pipe failed.");
5311 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5312 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5316 close (linux_nat_event_pipe[0]);
5317 close (linux_nat_event_pipe[1]);
5318 linux_nat_event_pipe[0] = -1;
5319 linux_nat_event_pipe[1] = -1;
5322 restore_child_signals_mask (&prev_mask);
5328 /* target_async implementation. */
5331 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5332 void *context), void *context)
5334 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5335 internal_error (__FILE__, __LINE__,
5336 "Calling target_async when async is masked");
5338 if (callback != NULL)
5340 async_client_callback = callback;
5341 async_client_context = context;
5342 if (!linux_async_pipe (1))
5344 add_file_handler (linux_nat_event_pipe[0],
5345 handle_target_event, NULL);
5346 /* There may be pending events to handle. Tell the event loop
5353 async_client_callback = callback;
5354 async_client_context = context;
5355 delete_file_handler (linux_nat_event_pipe[0]);
5356 linux_async_pipe (0);
5361 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5365 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5369 ptid_t ptid = lwp->ptid;
5371 if (debug_linux_nat)
5372 fprintf_unfiltered (gdb_stdlog,
5373 "LNSL: running -> suspending %s\n",
5374 target_pid_to_str (lwp->ptid));
5377 stop_callback (lwp, NULL);
5378 stop_wait_callback (lwp, NULL);
5380 /* If the lwp exits while we try to stop it, there's nothing
5382 lwp = find_lwp_pid (ptid);
5386 /* If we didn't collect any signal other than SIGSTOP while
5387 stopping the LWP, push a SIGNAL_0 event. In either case, the
5388 event-loop will end up calling target_wait which will collect
5390 if (lwp->status == 0)
5391 lwp->status = W_STOPCODE (0);
5396 /* Already known to be stopped; do nothing. */
5398 if (debug_linux_nat)
5400 if (find_thread_ptid (lwp->ptid)->stop_requested)
5401 fprintf_unfiltered (gdb_stdlog, "\
5402 LNSL: already stopped/stop_requested %s\n",
5403 target_pid_to_str (lwp->ptid));
5405 fprintf_unfiltered (gdb_stdlog, "\
5406 LNSL: already stopped/no stop_requested yet %s\n",
5407 target_pid_to_str (lwp->ptid));
5414 linux_nat_stop (ptid_t ptid)
5417 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5419 linux_ops->to_stop (ptid);
5423 linux_nat_close (int quitting)
5425 /* Unregister from the event loop. */
5426 if (target_is_async_p ())
5427 target_async (NULL, 0);
5429 /* Reset the async_masking. */
5430 linux_nat_async_mask_value = 1;
5432 if (linux_ops->to_close)
5433 linux_ops->to_close (quitting);
5436 /* When requests are passed down from the linux-nat layer to the
5437 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5438 used. The address space pointer is stored in the inferior object,
5439 but the common code that is passed such ptid can't tell whether
5440 lwpid is a "main" process id or not (it assumes so). We reverse
5441 look up the "main" process id from the lwp here. */
5443 struct address_space *
5444 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5446 struct lwp_info *lwp;
5447 struct inferior *inf;
5450 pid = GET_LWP (ptid);
5451 if (GET_LWP (ptid) == 0)
5453 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5455 lwp = find_lwp_pid (ptid);
5456 pid = GET_PID (lwp->ptid);
5460 /* A (pid,lwpid,0) ptid. */
5461 pid = GET_PID (ptid);
5464 inf = find_inferior_pid (pid);
5465 gdb_assert (inf != NULL);
5470 linux_nat_core_of_thread_1 (ptid_t ptid)
5472 struct cleanup *back_to;
5475 char *content = NULL;
5478 int content_read = 0;
5482 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5483 GET_PID (ptid), GET_LWP (ptid));
5484 back_to = make_cleanup (xfree, filename);
5486 f = fopen (filename, "r");
5489 do_cleanups (back_to);
5493 make_cleanup_fclose (f);
5499 content = xrealloc (content, content_read + 1024);
5500 n = fread (content + content_read, 1, 1024, f);
5504 content[content_read] = '\0';
5509 make_cleanup (xfree, content);
5511 p = strchr (content, '(');
5512 p = strchr (p, ')') + 2; /* skip ")" and a whitespace. */
5514 /* If the first field after program name has index 0, then core number is
5515 the field with index 36. There's no constant for that anywhere. */
5516 p = strtok_r (p, " ", &ts);
5517 for (i = 0; i != 36; ++i)
5518 p = strtok_r (NULL, " ", &ts);
5520 if (sscanf (p, "%d", &core) == 0)
5523 do_cleanups (back_to);
5528 /* Return the cached value of the processor core for thread PTID. */
5531 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5533 struct lwp_info *info = find_lwp_pid (ptid);
5541 linux_nat_add_target (struct target_ops *t)
5543 /* Save the provided single-threaded target. We save this in a separate
5544 variable because another target we've inherited from (e.g. inf-ptrace)
5545 may have saved a pointer to T; we want to use it for the final
5546 process stratum target. */
5547 linux_ops_saved = *t;
5548 linux_ops = &linux_ops_saved;
5550 /* Override some methods for multithreading. */
5551 t->to_create_inferior = linux_nat_create_inferior;
5552 t->to_attach = linux_nat_attach;
5553 t->to_detach = linux_nat_detach;
5554 t->to_resume = linux_nat_resume;
5555 t->to_wait = linux_nat_wait;
5556 t->to_xfer_partial = linux_nat_xfer_partial;
5557 t->to_kill = linux_nat_kill;
5558 t->to_mourn_inferior = linux_nat_mourn_inferior;
5559 t->to_thread_alive = linux_nat_thread_alive;
5560 t->to_pid_to_str = linux_nat_pid_to_str;
5561 t->to_has_thread_control = tc_schedlock;
5562 t->to_thread_address_space = linux_nat_thread_address_space;
5563 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5564 t->to_stopped_data_address = linux_nat_stopped_data_address;
5566 t->to_can_async_p = linux_nat_can_async_p;
5567 t->to_is_async_p = linux_nat_is_async_p;
5568 t->to_supports_non_stop = linux_nat_supports_non_stop;
5569 t->to_async = linux_nat_async;
5570 t->to_async_mask = linux_nat_async_mask;
5571 t->to_terminal_inferior = linux_nat_terminal_inferior;
5572 t->to_terminal_ours = linux_nat_terminal_ours;
5573 t->to_close = linux_nat_close;
5575 /* Methods for non-stop support. */
5576 t->to_stop = linux_nat_stop;
5578 t->to_supports_multi_process = linux_nat_supports_multi_process;
5580 t->to_core_of_thread = linux_nat_core_of_thread;
5582 /* We don't change the stratum; this target will sit at
5583 process_stratum and thread_db will set at thread_stratum. This
5584 is a little strange, since this is a multi-threaded-capable
5585 target, but we want to be on the stack below thread_db, and we
5586 also want to be used for single-threaded processes. */
5591 /* Register a method to call whenever a new thread is attached. */
5593 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5595 /* Save the pointer. We only support a single registered instance
5596 of the GNU/Linux native target, so we do not need to map this to
5598 linux_nat_new_thread = new_thread;
5601 /* Register a method that converts a siginfo object between the layout
5602 that ptrace returns, and the layout in the architecture of the
5605 linux_nat_set_siginfo_fixup (struct target_ops *t,
5606 int (*siginfo_fixup) (struct siginfo *,
5610 /* Save the pointer. */
5611 linux_nat_siginfo_fixup = siginfo_fixup;
5614 /* Return the saved siginfo associated with PTID. */
5616 linux_nat_get_siginfo (ptid_t ptid)
5618 struct lwp_info *lp = find_lwp_pid (ptid);
5620 gdb_assert (lp != NULL);
5622 return &lp->siginfo;
5625 /* Provide a prototype to silence -Wmissing-prototypes. */
5626 extern initialize_file_ftype _initialize_linux_nat;
5629 _initialize_linux_nat (void)
5631 add_info ("proc", linux_nat_info_proc_cmd, _("\
5632 Show /proc process information about any running process.\n\
5633 Specify any process id, or use the program being debugged by default.\n\
5634 Specify any of the following keywords for detailed info:\n\
5635 mappings -- list of mapped memory regions.\n\
5636 stat -- list a bunch of random process info.\n\
5637 status -- list a different bunch of random process info.\n\
5638 all -- list all available /proc info."));
5640 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5641 &debug_linux_nat, _("\
5642 Set debugging of GNU/Linux lwp module."), _("\
5643 Show debugging of GNU/Linux lwp module."), _("\
5644 Enables printf debugging output."),
5646 show_debug_linux_nat,
5647 &setdebuglist, &showdebuglist);
5649 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5650 &debug_linux_nat_async, _("\
5651 Set debugging of GNU/Linux async lwp module."), _("\
5652 Show debugging of GNU/Linux async lwp module."), _("\
5653 Enables printf debugging output."),
5655 show_debug_linux_nat_async,
5656 &setdebuglist, &showdebuglist);
5658 /* Save this mask as the default. */
5659 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5661 /* Install a SIGCHLD handler. */
5662 sigchld_action.sa_handler = sigchld_handler;
5663 sigemptyset (&sigchld_action.sa_mask);
5664 sigchld_action.sa_flags = SA_RESTART;
5666 /* Make it the default. */
5667 sigaction (SIGCHLD, &sigchld_action, NULL);
5669 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5670 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5671 sigdelset (&suspend_mask, SIGCHLD);
5673 sigemptyset (&blocked_mask);
5675 add_setshow_boolean_cmd ("disable-randomization", class_support,
5676 &disable_randomization, _("\
5677 Set disabling of debuggee's virtual address space randomization."), _("\
5678 Show disabling of debuggee's virtual address space randomization."), _("\
5679 When this mode is on (which is the default), randomization of the virtual\n\
5680 address space is disabled. Standalone programs run with the randomization\n\
5681 enabled by default on some platforms."),
5682 &set_disable_randomization,
5683 &show_disable_randomization,
5684 &setlist, &showlist);
5688 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5689 the GNU/Linux Threads library and therefore doesn't really belong
5692 /* Read variable NAME in the target and return its value if found.
5693 Otherwise return zero. It is assumed that the type of the variable
5697 get_signo (const char *name)
5699 struct minimal_symbol *ms;
5702 ms = lookup_minimal_symbol (name, NULL, NULL);
5706 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5707 sizeof (signo)) != 0)
5713 /* Return the set of signals used by the threads library in *SET. */
5716 lin_thread_get_thread_signals (sigset_t *set)
5718 struct sigaction action;
5719 int restart, cancel;
5721 sigemptyset (&blocked_mask);
5724 restart = get_signo ("__pthread_sig_restart");
5725 cancel = get_signo ("__pthread_sig_cancel");
5727 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5728 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5729 not provide any way for the debugger to query the signal numbers -
5730 fortunately they don't change! */
5733 restart = __SIGRTMIN;
5736 cancel = __SIGRTMIN + 1;
5738 sigaddset (set, restart);
5739 sigaddset (set, cancel);
5741 /* The GNU/Linux Threads library makes terminating threads send a
5742 special "cancel" signal instead of SIGCHLD. Make sure we catch
5743 those (to prevent them from terminating GDB itself, which is
5744 likely to be their default action) and treat them the same way as
5747 action.sa_handler = sigchld_handler;
5748 sigemptyset (&action.sa_mask);
5749 action.sa_flags = SA_RESTART;
5750 sigaction (cancel, &action, NULL);
5752 /* We block the "cancel" signal throughout this code ... */
5753 sigaddset (&blocked_mask, cancel);
5754 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5756 /* ... except during a sigsuspend. */
5757 sigdelset (&suspend_mask, cancel);