1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #include <sys/types.h>
55 #include "xml-support.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
62 #include "tracepoint.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
67 #include "nat/linux-namespaces.h"
71 #define SPUFS_MAGIC 0x23c9b64e
74 /* This comment documents high-level logic of this file.
76 Waiting for events in sync mode
77 ===============================
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
82 When waiting for an event in all threads, waitpid is not quite good:
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
93 The solution is to always use -1 and WNOHANG, together with
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
186 #define O_LARGEFILE 0
189 struct linux_nat_target *linux_target;
191 /* Does the current host support PTRACE_GETREGSET? */
192 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
194 /* The saved to_close method, inherited from inf-ptrace.c.
195 Called by our to_close. */
196 static void (*super_close) (struct target_ops *);
198 static unsigned int debug_linux_nat;
200 show_debug_linux_nat (struct ui_file *file, int from_tty,
201 struct cmd_list_element *c, const char *value)
203 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
207 struct simple_pid_list
211 struct simple_pid_list *next;
213 struct simple_pid_list *stopped_pids;
215 /* Whether target_thread_events is in effect. */
216 static int report_thread_events;
218 /* Async mode support. */
220 /* The read/write ends of the pipe registered as waitable file in the
222 static int linux_nat_event_pipe[2] = { -1, -1 };
224 /* True if we're currently in async mode. */
225 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
227 /* Flush the event pipe. */
230 async_file_flush (void)
237 ret = read (linux_nat_event_pipe[0], &buf, 1);
239 while (ret >= 0 || (ret == -1 && errno == EINTR));
242 /* Put something (anything, doesn't matter what, or how much) in event
243 pipe, so that the select/poll in the event-loop realizes we have
244 something to process. */
247 async_file_mark (void)
251 /* It doesn't really matter what the pipe contains, as long we end
252 up with something in it. Might as well flush the previous
258 ret = write (linux_nat_event_pipe[1], "+", 1);
260 while (ret == -1 && errno == EINTR);
262 /* Ignore EAGAIN. If the pipe is full, the event loop will already
263 be awakened anyway. */
266 static int kill_lwp (int lwpid, int signo);
268 static int stop_callback (struct lwp_info *lp, void *data);
269 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
271 static void block_child_signals (sigset_t *prev_mask);
272 static void restore_child_signals_mask (sigset_t *prev_mask);
275 static struct lwp_info *add_lwp (ptid_t ptid);
276 static void purge_lwp_list (int pid);
277 static void delete_lwp (ptid_t ptid);
278 static struct lwp_info *find_lwp_pid (ptid_t ptid);
280 static int lwp_status_pending_p (struct lwp_info *lp);
282 static void save_stop_reason (struct lwp_info *lp);
287 /* See nat/linux-nat.h. */
290 ptid_of_lwp (struct lwp_info *lwp)
295 /* See nat/linux-nat.h. */
298 lwp_set_arch_private_info (struct lwp_info *lwp,
299 struct arch_lwp_info *info)
301 lwp->arch_private = info;
304 /* See nat/linux-nat.h. */
306 struct arch_lwp_info *
307 lwp_arch_private_info (struct lwp_info *lwp)
309 return lwp->arch_private;
312 /* See nat/linux-nat.h. */
315 lwp_is_stopped (struct lwp_info *lwp)
320 /* See nat/linux-nat.h. */
322 enum target_stop_reason
323 lwp_stop_reason (struct lwp_info *lwp)
325 return lwp->stop_reason;
328 /* See nat/linux-nat.h. */
331 lwp_is_stepping (struct lwp_info *lwp)
337 /* Trivial list manipulation functions to keep track of a list of
338 new stopped processes. */
340 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
342 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
345 new_pid->status = status;
346 new_pid->next = *listp;
351 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
353 struct simple_pid_list **p;
355 for (p = listp; *p != NULL; p = &(*p)->next)
356 if ((*p)->pid == pid)
358 struct simple_pid_list *next = (*p)->next;
360 *statusp = (*p)->status;
368 /* Return the ptrace options that we want to try to enable. */
371 linux_nat_ptrace_options (int attached)
376 options |= PTRACE_O_EXITKILL;
378 options |= (PTRACE_O_TRACESYSGOOD
379 | PTRACE_O_TRACEVFORKDONE
380 | PTRACE_O_TRACEVFORK
382 | PTRACE_O_TRACEEXEC);
387 /* Initialize ptrace warnings and check for supported ptrace
390 ATTACHED should be nonzero iff we attached to the inferior. */
393 linux_init_ptrace (pid_t pid, int attached)
395 int options = linux_nat_ptrace_options (attached);
397 linux_enable_event_reporting (pid, options);
398 linux_ptrace_init_warnings ();
401 linux_nat_target::~linux_nat_target ()
405 linux_nat_target::post_attach (int pid)
407 linux_init_ptrace (pid, 1);
411 linux_nat_target::post_startup_inferior (ptid_t ptid)
413 linux_init_ptrace (ptid_get_pid (ptid), 0);
416 /* Return the number of known LWPs in the tgid given by PID. */
424 for (lp = lwp_list; lp; lp = lp->next)
425 if (ptid_get_pid (lp->ptid) == pid)
431 /* Call delete_lwp with prototype compatible for make_cleanup. */
434 delete_lwp_cleanup (void *lp_voidp)
436 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
438 delete_lwp (lp->ptid);
441 /* Target hook for follow_fork. On entry inferior_ptid must be the
442 ptid of the followed inferior. At return, inferior_ptid will be
446 linux_nat_target::follow_fork (int follow_child, int detach_fork)
450 struct lwp_info *child_lp = NULL;
451 int status = W_STOPCODE (0);
453 ptid_t parent_ptid, child_ptid;
454 int parent_pid, child_pid;
456 has_vforked = (inferior_thread ()->pending_follow.kind
457 == TARGET_WAITKIND_VFORKED);
458 parent_ptid = inferior_ptid;
459 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
460 parent_pid = ptid_get_lwp (parent_ptid);
461 child_pid = ptid_get_lwp (child_ptid);
463 /* We're already attached to the parent, by default. */
464 child_lp = add_lwp (child_ptid);
465 child_lp->stopped = 1;
466 child_lp->last_resume_kind = resume_stop;
468 /* Detach new forked process? */
471 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
474 linux_target->low_prepare_to_resume (child_lp);
476 /* When debugging an inferior in an architecture that supports
477 hardware single stepping on a kernel without commit
478 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
479 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
480 set if the parent process had them set.
481 To work around this, single step the child process
482 once before detaching to clear the flags. */
484 /* Note that we consult the parent's architecture instead of
485 the child's because there's no inferior for the child at
487 if (!gdbarch_software_single_step_p (target_thread_architecture
490 linux_disable_event_reporting (child_pid);
491 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
492 perror_with_name (_("Couldn't do single step"));
493 if (my_waitpid (child_pid, &status, 0) < 0)
494 perror_with_name (_("Couldn't wait vfork process"));
497 if (WIFSTOPPED (status))
501 signo = WSTOPSIG (status);
503 && !signal_pass_state (gdb_signal_from_host (signo)))
505 ptrace (PTRACE_DETACH, child_pid, 0, signo);
508 do_cleanups (old_chain);
512 scoped_restore save_inferior_ptid
513 = make_scoped_restore (&inferior_ptid);
514 inferior_ptid = child_ptid;
516 /* Let the thread_db layer learn about this new process. */
517 check_for_thread_db ();
522 struct lwp_info *parent_lp;
524 parent_lp = find_lwp_pid (parent_ptid);
525 gdb_assert (linux_supports_tracefork () >= 0);
527 if (linux_supports_tracevforkdone ())
530 fprintf_unfiltered (gdb_stdlog,
531 "LCFF: waiting for VFORK_DONE on %d\n",
533 parent_lp->stopped = 1;
535 /* We'll handle the VFORK_DONE event like any other
536 event, in target_wait. */
540 /* We can't insert breakpoints until the child has
541 finished with the shared memory region. We need to
542 wait until that happens. Ideal would be to just
544 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
545 - waitpid (parent_pid, &status, __WALL);
546 However, most architectures can't handle a syscall
547 being traced on the way out if it wasn't traced on
550 We might also think to loop, continuing the child
551 until it exits or gets a SIGTRAP. One problem is
552 that the child might call ptrace with PTRACE_TRACEME.
554 There's no simple and reliable way to figure out when
555 the vforked child will be done with its copy of the
556 shared memory. We could step it out of the syscall,
557 two instructions, let it go, and then single-step the
558 parent once. When we have hardware single-step, this
559 would work; with software single-step it could still
560 be made to work but we'd have to be able to insert
561 single-step breakpoints in the child, and we'd have
562 to insert -just- the single-step breakpoint in the
563 parent. Very awkward.
565 In the end, the best we can do is to make sure it
566 runs for a little while. Hopefully it will be out of
567 range of any breakpoints we reinsert. Usually this
568 is only the single-step breakpoint at vfork's return
572 fprintf_unfiltered (gdb_stdlog,
573 "LCFF: no VFORK_DONE "
574 "support, sleeping a bit\n");
578 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
579 and leave it pending. The next linux_nat_resume call
580 will notice a pending event, and bypasses actually
581 resuming the inferior. */
582 parent_lp->status = 0;
583 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
584 parent_lp->stopped = 1;
586 /* If we're in async mode, need to tell the event loop
587 there's something here to process. */
588 if (target_is_async_p ())
595 struct lwp_info *child_lp;
597 child_lp = add_lwp (inferior_ptid);
598 child_lp->stopped = 1;
599 child_lp->last_resume_kind = resume_stop;
601 /* Let the thread_db layer learn about this new process. */
602 check_for_thread_db ();
610 linux_nat_target::insert_fork_catchpoint (int pid)
612 return !linux_supports_tracefork ();
616 linux_nat_target::remove_fork_catchpoint (int pid)
622 linux_nat_target::insert_vfork_catchpoint (int pid)
624 return !linux_supports_tracefork ();
628 linux_nat_target::remove_vfork_catchpoint (int pid)
634 linux_nat_target::insert_exec_catchpoint (int pid)
636 return !linux_supports_tracefork ();
640 linux_nat_target::remove_exec_catchpoint (int pid)
646 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
647 gdb::array_view<const int> syscall_counts)
649 if (!linux_supports_tracesysgood ())
652 /* On GNU/Linux, we ignore the arguments. It means that we only
653 enable the syscall catchpoints, but do not disable them.
655 Also, we do not use the `syscall_counts' information because we do not
656 filter system calls here. We let GDB do the logic for us. */
660 /* List of known LWPs, keyed by LWP PID. This speeds up the common
661 case of mapping a PID returned from the kernel to our corresponding
662 lwp_info data structure. */
663 static htab_t lwp_lwpid_htab;
665 /* Calculate a hash from a lwp_info's LWP PID. */
668 lwp_info_hash (const void *ap)
670 const struct lwp_info *lp = (struct lwp_info *) ap;
671 pid_t pid = ptid_get_lwp (lp->ptid);
673 return iterative_hash_object (pid, 0);
676 /* Equality function for the lwp_info hash table. Compares the LWP's
680 lwp_lwpid_htab_eq (const void *a, const void *b)
682 const struct lwp_info *entry = (const struct lwp_info *) a;
683 const struct lwp_info *element = (const struct lwp_info *) b;
685 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
688 /* Create the lwp_lwpid_htab hash table. */
691 lwp_lwpid_htab_create (void)
693 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
696 /* Add LP to the hash table. */
699 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
703 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
704 gdb_assert (slot != NULL && *slot == NULL);
708 /* Head of doubly-linked list of known LWPs. Sorted by reverse
709 creation order. This order is assumed in some cases. E.g.,
710 reaping status after killing alls lwps of a process: the leader LWP
711 must be reaped last. */
712 struct lwp_info *lwp_list;
714 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
717 lwp_list_add (struct lwp_info *lp)
720 if (lwp_list != NULL)
725 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
729 lwp_list_remove (struct lwp_info *lp)
731 /* Remove from sorted-by-creation-order list. */
732 if (lp->next != NULL)
733 lp->next->prev = lp->prev;
734 if (lp->prev != NULL)
735 lp->prev->next = lp->next;
742 /* Original signal mask. */
743 static sigset_t normal_mask;
745 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
746 _initialize_linux_nat. */
747 static sigset_t suspend_mask;
749 /* Signals to block to make that sigsuspend work. */
750 static sigset_t blocked_mask;
752 /* SIGCHLD action. */
753 struct sigaction sigchld_action;
755 /* Block child signals (SIGCHLD and linux threads signals), and store
756 the previous mask in PREV_MASK. */
759 block_child_signals (sigset_t *prev_mask)
761 /* Make sure SIGCHLD is blocked. */
762 if (!sigismember (&blocked_mask, SIGCHLD))
763 sigaddset (&blocked_mask, SIGCHLD);
765 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
768 /* Restore child signals mask, previously returned by
769 block_child_signals. */
772 restore_child_signals_mask (sigset_t *prev_mask)
774 sigprocmask (SIG_SETMASK, prev_mask, NULL);
777 /* Mask of signals to pass directly to the inferior. */
778 static sigset_t pass_mask;
780 /* Update signals to pass to the inferior. */
782 linux_nat_target::pass_signals (int numsigs, unsigned char *pass_signals)
786 sigemptyset (&pass_mask);
788 for (signo = 1; signo < NSIG; signo++)
790 int target_signo = gdb_signal_from_host (signo);
791 if (target_signo < numsigs && pass_signals[target_signo])
792 sigaddset (&pass_mask, signo);
798 /* Prototypes for local functions. */
799 static int stop_wait_callback (struct lwp_info *lp, void *data);
800 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
801 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
805 /* Destroy and free LP. */
808 lwp_free (struct lwp_info *lp)
810 /* Let the arch specific bits release arch_lwp_info. */
811 linux_target->low_delete_thread (lp->arch_private);
816 /* Traversal function for purge_lwp_list. */
819 lwp_lwpid_htab_remove_pid (void **slot, void *info)
821 struct lwp_info *lp = (struct lwp_info *) *slot;
822 int pid = *(int *) info;
824 if (ptid_get_pid (lp->ptid) == pid)
826 htab_clear_slot (lwp_lwpid_htab, slot);
827 lwp_list_remove (lp);
834 /* Remove all LWPs belong to PID from the lwp list. */
837 purge_lwp_list (int pid)
839 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
842 /* Add the LWP specified by PTID to the list. PTID is the first LWP
843 in the process. Return a pointer to the structure describing the
846 This differs from add_lwp in that we don't let the arch specific
847 bits know about this new thread. Current clients of this callback
848 take the opportunity to install watchpoints in the new thread, and
849 we shouldn't do that for the first thread. If we're spawning a
850 child ("run"), the thread executes the shell wrapper first, and we
851 shouldn't touch it until it execs the program we want to debug.
852 For "attach", it'd be okay to call the callback, but it's not
853 necessary, because watchpoints can't yet have been inserted into
856 static struct lwp_info *
857 add_initial_lwp (ptid_t ptid)
861 gdb_assert (ptid_lwp_p (ptid));
863 lp = XNEW (struct lwp_info);
865 memset (lp, 0, sizeof (struct lwp_info));
867 lp->last_resume_kind = resume_continue;
868 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
873 /* Add to sorted-by-reverse-creation-order list. */
876 /* Add to keyed-by-pid htab. */
877 lwp_lwpid_htab_add_lwp (lp);
882 /* Add the LWP specified by PID to the list. Return a pointer to the
883 structure describing the new LWP. The LWP should already be
886 static struct lwp_info *
887 add_lwp (ptid_t ptid)
891 lp = add_initial_lwp (ptid);
893 /* Let the arch specific bits know about this new thread. Current
894 clients of this callback take the opportunity to install
895 watchpoints in the new thread. We don't do this for the first
896 thread though. See add_initial_lwp. */
897 linux_target->low_new_thread (lp);
902 /* Remove the LWP specified by PID from the list. */
905 delete_lwp (ptid_t ptid)
909 struct lwp_info dummy;
912 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
916 lp = *(struct lwp_info **) slot;
917 gdb_assert (lp != NULL);
919 htab_clear_slot (lwp_lwpid_htab, slot);
921 /* Remove from sorted-by-creation-order list. */
922 lwp_list_remove (lp);
928 /* Return a pointer to the structure describing the LWP corresponding
929 to PID. If no corresponding LWP could be found, return NULL. */
931 static struct lwp_info *
932 find_lwp_pid (ptid_t ptid)
936 struct lwp_info dummy;
938 if (ptid_lwp_p (ptid))
939 lwp = ptid_get_lwp (ptid);
941 lwp = ptid_get_pid (ptid);
943 dummy.ptid = ptid_build (0, lwp, 0);
944 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
948 /* See nat/linux-nat.h. */
951 iterate_over_lwps (ptid_t filter,
952 iterate_over_lwps_ftype callback,
955 struct lwp_info *lp, *lpnext;
957 for (lp = lwp_list; lp; lp = lpnext)
961 if (ptid_match (lp->ptid, filter))
963 if ((*callback) (lp, data) != 0)
971 /* Update our internal state when changing from one checkpoint to
972 another indicated by NEW_PTID. We can only switch single-threaded
973 applications, so we only create one new LWP, and the previous list
977 linux_nat_switch_fork (ptid_t new_ptid)
981 purge_lwp_list (ptid_get_pid (inferior_ptid));
983 lp = add_lwp (new_ptid);
986 /* This changes the thread's ptid while preserving the gdb thread
987 num. Also changes the inferior pid, while preserving the
989 thread_change_ptid (inferior_ptid, new_ptid);
991 /* We've just told GDB core that the thread changed target id, but,
992 in fact, it really is a different thread, with different register
994 registers_changed ();
997 /* Handle the exit of a single thread LP. */
1000 exit_lwp (struct lwp_info *lp)
1002 struct thread_info *th = find_thread_ptid (lp->ptid);
1006 if (print_thread_events)
1007 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1009 delete_thread (lp->ptid);
1012 delete_lwp (lp->ptid);
1015 /* Wait for the LWP specified by LP, which we have just attached to.
1016 Returns a wait status for that LWP, to cache. */
1019 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1021 pid_t new_pid, pid = ptid_get_lwp (ptid);
1024 if (linux_proc_pid_is_stopped (pid))
1026 if (debug_linux_nat)
1027 fprintf_unfiltered (gdb_stdlog,
1028 "LNPAW: Attaching to a stopped process\n");
1030 /* The process is definitely stopped. It is in a job control
1031 stop, unless the kernel predates the TASK_STOPPED /
1032 TASK_TRACED distinction, in which case it might be in a
1033 ptrace stop. Make sure it is in a ptrace stop; from there we
1034 can kill it, signal it, et cetera.
1036 First make sure there is a pending SIGSTOP. Since we are
1037 already attached, the process can not transition from stopped
1038 to running without a PTRACE_CONT; so we know this signal will
1039 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1040 probably already in the queue (unless this kernel is old
1041 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1042 is not an RT signal, it can only be queued once. */
1043 kill_lwp (pid, SIGSTOP);
1045 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1046 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1047 ptrace (PTRACE_CONT, pid, 0, 0);
1050 /* Make sure the initial process is stopped. The user-level threads
1051 layer might want to poke around in the inferior, and that won't
1052 work if things haven't stabilized yet. */
1053 new_pid = my_waitpid (pid, &status, __WALL);
1054 gdb_assert (pid == new_pid);
1056 if (!WIFSTOPPED (status))
1058 /* The pid we tried to attach has apparently just exited. */
1059 if (debug_linux_nat)
1060 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1061 pid, status_to_str (status));
1065 if (WSTOPSIG (status) != SIGSTOP)
1068 if (debug_linux_nat)
1069 fprintf_unfiltered (gdb_stdlog,
1070 "LNPAW: Received %s after attaching\n",
1071 status_to_str (status));
1078 linux_nat_target::create_inferior (const char *exec_file,
1079 const std::string &allargs,
1080 char **env, int from_tty)
1082 maybe_disable_address_space_randomization restore_personality
1083 (disable_randomization);
1085 /* The fork_child mechanism is synchronous and calls target_wait, so
1086 we have to mask the async mode. */
1088 /* Make sure we report all signals during startup. */
1089 pass_signals (0, NULL);
1091 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1094 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1095 already attached. Returns true if a new LWP is found, false
1099 attach_proc_task_lwp_callback (ptid_t ptid)
1101 struct lwp_info *lp;
1103 /* Ignore LWPs we're already attached to. */
1104 lp = find_lwp_pid (ptid);
1107 int lwpid = ptid_get_lwp (ptid);
1109 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1113 /* Be quiet if we simply raced with the thread exiting.
1114 EPERM is returned if the thread's task still exists, and
1115 is marked as exited or zombie, as well as other
1116 conditions, so in that case, confirm the status in
1117 /proc/PID/status. */
1119 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1121 if (debug_linux_nat)
1123 fprintf_unfiltered (gdb_stdlog,
1124 "Cannot attach to lwp %d: "
1125 "thread is gone (%d: %s)\n",
1126 lwpid, err, safe_strerror (err));
1132 = linux_ptrace_attach_fail_reason_string (ptid, err);
1134 warning (_("Cannot attach to lwp %d: %s"),
1135 lwpid, reason.c_str ());
1140 if (debug_linux_nat)
1141 fprintf_unfiltered (gdb_stdlog,
1142 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1143 target_pid_to_str (ptid));
1145 lp = add_lwp (ptid);
1147 /* The next time we wait for this LWP we'll see a SIGSTOP as
1148 PTRACE_ATTACH brings it to a halt. */
1151 /* We need to wait for a stop before being able to make the
1152 next ptrace call on this LWP. */
1153 lp->must_set_ptrace_flags = 1;
1155 /* So that wait collects the SIGSTOP. */
1158 /* Also add the LWP to gdb's thread list, in case a
1159 matching libthread_db is not found (or the process uses
1161 add_thread (lp->ptid);
1162 set_running (lp->ptid, 1);
1163 set_executing (lp->ptid, 1);
1172 linux_nat_target::attach (const char *args, int from_tty)
1174 struct lwp_info *lp;
1178 /* Make sure we report all signals during attach. */
1179 pass_signals (0, NULL);
1183 inf_ptrace_target::attach (args, from_tty);
1185 CATCH (ex, RETURN_MASK_ERROR)
1187 pid_t pid = parse_pid_to_attach (args);
1188 std::string reason = linux_ptrace_attach_fail_reason (pid);
1190 if (!reason.empty ())
1191 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message);
1193 throw_error (ex.error, "%s", ex.message);
1197 /* The ptrace base target adds the main thread with (pid,0,0)
1198 format. Decorate it with lwp info. */
1199 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1200 ptid_get_pid (inferior_ptid),
1202 thread_change_ptid (inferior_ptid, ptid);
1204 /* Add the initial process as the first LWP to the list. */
1205 lp = add_initial_lwp (ptid);
1207 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1208 if (!WIFSTOPPED (status))
1210 if (WIFEXITED (status))
1212 int exit_code = WEXITSTATUS (status);
1214 target_terminal::ours ();
1215 target_mourn_inferior (inferior_ptid);
1217 error (_("Unable to attach: program exited normally."));
1219 error (_("Unable to attach: program exited with code %d."),
1222 else if (WIFSIGNALED (status))
1224 enum gdb_signal signo;
1226 target_terminal::ours ();
1227 target_mourn_inferior (inferior_ptid);
1229 signo = gdb_signal_from_host (WTERMSIG (status));
1230 error (_("Unable to attach: program terminated with signal "
1232 gdb_signal_to_name (signo),
1233 gdb_signal_to_string (signo));
1236 internal_error (__FILE__, __LINE__,
1237 _("unexpected status %d for PID %ld"),
1238 status, (long) ptid_get_lwp (ptid));
1243 /* Save the wait status to report later. */
1245 if (debug_linux_nat)
1246 fprintf_unfiltered (gdb_stdlog,
1247 "LNA: waitpid %ld, saving status %s\n",
1248 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1250 lp->status = status;
1252 /* We must attach to every LWP. If /proc is mounted, use that to
1253 find them now. The inferior may be using raw clone instead of
1254 using pthreads. But even if it is using pthreads, thread_db
1255 walks structures in the inferior's address space to find the list
1256 of threads/LWPs, and those structures may well be corrupted.
1257 Note that once thread_db is loaded, we'll still use it to list
1258 threads and associate pthread info with each LWP. */
1259 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1260 attach_proc_task_lwp_callback);
1262 if (target_can_async_p ())
1266 /* Get pending signal of THREAD as a host signal number, for detaching
1267 purposes. This is the signal the thread last stopped for, which we
1268 need to deliver to the thread when detaching, otherwise, it'd be
1272 get_detach_signal (struct lwp_info *lp)
1274 enum gdb_signal signo = GDB_SIGNAL_0;
1276 /* If we paused threads momentarily, we may have stored pending
1277 events in lp->status or lp->waitstatus (see stop_wait_callback),
1278 and GDB core hasn't seen any signal for those threads.
1279 Otherwise, the last signal reported to the core is found in the
1280 thread object's stop_signal.
1282 There's a corner case that isn't handled here at present. Only
1283 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1284 stop_signal make sense as a real signal to pass to the inferior.
1285 Some catchpoint related events, like
1286 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1287 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1288 those traps are debug API (ptrace in our case) related and
1289 induced; the inferior wouldn't see them if it wasn't being
1290 traced. Hence, we should never pass them to the inferior, even
1291 when set to pass state. Since this corner case isn't handled by
1292 infrun.c when proceeding with a signal, for consistency, neither
1293 do we handle it here (or elsewhere in the file we check for
1294 signal pass state). Normally SIGTRAP isn't set to pass state, so
1295 this is really a corner case. */
1297 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1298 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1299 else if (lp->status)
1300 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1301 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1303 struct thread_info *tp = find_thread_ptid (lp->ptid);
1305 if (tp->suspend.waitstatus_pending_p)
1306 signo = tp->suspend.waitstatus.value.sig;
1308 signo = tp->suspend.stop_signal;
1310 else if (!target_is_non_stop_p ())
1312 struct target_waitstatus last;
1315 get_last_target_status (&last_ptid, &last);
1317 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1319 struct thread_info *tp = find_thread_ptid (lp->ptid);
1321 signo = tp->suspend.stop_signal;
1325 if (signo == GDB_SIGNAL_0)
1327 if (debug_linux_nat)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "GPT: lwp %s has no pending signal\n",
1330 target_pid_to_str (lp->ptid));
1332 else if (!signal_pass_state (signo))
1334 if (debug_linux_nat)
1335 fprintf_unfiltered (gdb_stdlog,
1336 "GPT: lwp %s had signal %s, "
1337 "but it is in no pass state\n",
1338 target_pid_to_str (lp->ptid),
1339 gdb_signal_to_string (signo));
1343 if (debug_linux_nat)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "GPT: lwp %s has pending signal %s\n",
1346 target_pid_to_str (lp->ptid),
1347 gdb_signal_to_string (signo));
1349 return gdb_signal_to_host (signo);
1355 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1356 signal number that should be passed to the LWP when detaching.
1357 Otherwise pass any pending signal the LWP may have, if any. */
1360 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1362 int lwpid = ptid_get_lwp (lp->ptid);
1365 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1367 if (debug_linux_nat && lp->status)
1368 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1369 strsignal (WSTOPSIG (lp->status)),
1370 target_pid_to_str (lp->ptid));
1372 /* If there is a pending SIGSTOP, get rid of it. */
1375 if (debug_linux_nat)
1376 fprintf_unfiltered (gdb_stdlog,
1377 "DC: Sending SIGCONT to %s\n",
1378 target_pid_to_str (lp->ptid));
1380 kill_lwp (lwpid, SIGCONT);
1384 if (signo_p == NULL)
1386 /* Pass on any pending signal for this LWP. */
1387 signo = get_detach_signal (lp);
1392 /* Preparing to resume may try to write registers, and fail if the
1393 lwp is zombie. If that happens, ignore the error. We'll handle
1394 it below, when detach fails with ESRCH. */
1397 linux_target->low_prepare_to_resume (lp);
1399 CATCH (ex, RETURN_MASK_ERROR)
1401 if (!check_ptrace_stopped_lwp_gone (lp))
1402 throw_exception (ex);
1406 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1408 int save_errno = errno;
1410 /* We know the thread exists, so ESRCH must mean the lwp is
1411 zombie. This can happen if one of the already-detached
1412 threads exits the whole thread group. In that case we're
1413 still attached, and must reap the lwp. */
1414 if (save_errno == ESRCH)
1418 ret = my_waitpid (lwpid, &status, __WALL);
1421 warning (_("Couldn't reap LWP %d while detaching: %s"),
1422 lwpid, strerror (errno));
1424 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1426 warning (_("Reaping LWP %d while detaching "
1427 "returned unexpected status 0x%x"),
1433 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1434 safe_strerror (save_errno));
1437 else if (debug_linux_nat)
1439 fprintf_unfiltered (gdb_stdlog,
1440 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1441 target_pid_to_str (lp->ptid),
1445 delete_lwp (lp->ptid);
1449 detach_callback (struct lwp_info *lp, void *data)
1451 /* We don't actually detach from the thread group leader just yet.
1452 If the thread group exits, we must reap the zombie clone lwps
1453 before we're able to reap the leader. */
1454 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1455 detach_one_lwp (lp, NULL);
1460 linux_nat_target::detach (inferior *inf, int from_tty)
1462 struct lwp_info *main_lwp;
1465 /* Don't unregister from the event loop, as there may be other
1466 inferiors running. */
1468 /* Stop all threads before detaching. ptrace requires that the
1469 thread is stopped to sucessfully detach. */
1470 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1471 /* ... and wait until all of them have reported back that
1472 they're no longer running. */
1473 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1475 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1477 /* Only the initial process should be left right now. */
1478 gdb_assert (num_lwps (pid) == 1);
1480 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1482 if (forks_exist_p ())
1484 /* Multi-fork case. The current inferior_ptid is being detached
1485 from, but there are other viable forks to debug. Detach from
1486 the current fork, and context-switch to the first
1488 linux_fork_detach (from_tty);
1492 target_announce_detach (from_tty);
1494 /* Pass on any pending signal for the last LWP. */
1495 int signo = get_detach_signal (main_lwp);
1497 detach_one_lwp (main_lwp, &signo);
1499 detach_success (inf);
1503 /* Resume execution of the inferior process. If STEP is nonzero,
1504 single-step it. If SIGNAL is nonzero, give it that signal. */
1507 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1508 enum gdb_signal signo)
1512 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1513 We only presently need that if the LWP is stepped though (to
1514 handle the case of stepping a breakpoint instruction). */
1517 struct regcache *regcache = get_thread_regcache (lp->ptid);
1519 lp->stop_pc = regcache_read_pc (regcache);
1524 linux_target->low_prepare_to_resume (lp);
1525 linux_target->low_resume (lp->ptid, step, signo);
1527 /* Successfully resumed. Clear state that no longer makes sense,
1528 and mark the LWP as running. Must not do this before resuming
1529 otherwise if that fails other code will be confused. E.g., we'd
1530 later try to stop the LWP and hang forever waiting for a stop
1531 status. Note that we must not throw after this is cleared,
1532 otherwise handle_zombie_lwp_error would get confused. */
1535 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1536 registers_changed_ptid (lp->ptid);
1539 /* Called when we try to resume a stopped LWP and that errors out. If
1540 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1541 or about to become), discard the error, clear any pending status
1542 the LWP may have, and return true (we'll collect the exit status
1543 soon enough). Otherwise, return false. */
1546 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1548 /* If we get an error after resuming the LWP successfully, we'd
1549 confuse !T state for the LWP being gone. */
1550 gdb_assert (lp->stopped);
1552 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1553 because even if ptrace failed with ESRCH, the tracee may be "not
1554 yet fully dead", but already refusing ptrace requests. In that
1555 case the tracee has 'R (Running)' state for a little bit
1556 (observed in Linux 3.18). See also the note on ESRCH in the
1557 ptrace(2) man page. Instead, check whether the LWP has any state
1558 other than ptrace-stopped. */
1560 /* Don't assume anything if /proc/PID/status can't be read. */
1561 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1563 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1565 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1571 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1572 disappears while we try to resume it. */
1575 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1579 linux_resume_one_lwp_throw (lp, step, signo);
1581 CATCH (ex, RETURN_MASK_ERROR)
1583 if (!check_ptrace_stopped_lwp_gone (lp))
1584 throw_exception (ex);
1592 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1596 struct inferior *inf = find_inferior_ptid (lp->ptid);
1598 if (inf->vfork_child != NULL)
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "RC: Not resuming %s (vfork parent)\n",
1603 target_pid_to_str (lp->ptid));
1605 else if (!lwp_status_pending_p (lp))
1607 if (debug_linux_nat)
1608 fprintf_unfiltered (gdb_stdlog,
1609 "RC: Resuming sibling %s, %s, %s\n",
1610 target_pid_to_str (lp->ptid),
1611 (signo != GDB_SIGNAL_0
1612 ? strsignal (gdb_signal_to_host (signo))
1614 step ? "step" : "resume");
1616 linux_resume_one_lwp (lp, step, signo);
1620 if (debug_linux_nat)
1621 fprintf_unfiltered (gdb_stdlog,
1622 "RC: Not resuming sibling %s (has pending)\n",
1623 target_pid_to_str (lp->ptid));
1628 if (debug_linux_nat)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "RC: Not resuming sibling %s (not stopped)\n",
1631 target_pid_to_str (lp->ptid));
1635 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1636 Resume LWP with the last stop signal, if it is in pass state. */
1639 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1641 enum gdb_signal signo = GDB_SIGNAL_0;
1648 struct thread_info *thread;
1650 thread = find_thread_ptid (lp->ptid);
1653 signo = thread->suspend.stop_signal;
1654 thread->suspend.stop_signal = GDB_SIGNAL_0;
1658 resume_lwp (lp, 0, signo);
1663 resume_clear_callback (struct lwp_info *lp, void *data)
1666 lp->last_resume_kind = resume_stop;
1671 resume_set_callback (struct lwp_info *lp, void *data)
1674 lp->last_resume_kind = resume_continue;
1679 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1681 struct lwp_info *lp;
1684 if (debug_linux_nat)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1687 step ? "step" : "resume",
1688 target_pid_to_str (ptid),
1689 (signo != GDB_SIGNAL_0
1690 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1691 target_pid_to_str (inferior_ptid));
1693 /* A specific PTID means `step only this process id'. */
1694 resume_many = (ptid_equal (minus_one_ptid, ptid)
1695 || ptid_is_pid (ptid));
1697 /* Mark the lwps we're resuming as resumed. */
1698 iterate_over_lwps (ptid, resume_set_callback, NULL);
1700 /* See if it's the current inferior that should be handled
1703 lp = find_lwp_pid (inferior_ptid);
1705 lp = find_lwp_pid (ptid);
1706 gdb_assert (lp != NULL);
1708 /* Remember if we're stepping. */
1709 lp->last_resume_kind = step ? resume_step : resume_continue;
1711 /* If we have a pending wait status for this thread, there is no
1712 point in resuming the process. But first make sure that
1713 linux_nat_wait won't preemptively handle the event - we
1714 should never take this short-circuit if we are going to
1715 leave LP running, since we have skipped resuming all the
1716 other threads. This bit of code needs to be synchronized
1717 with linux_nat_wait. */
1719 if (lp->status && WIFSTOPPED (lp->status))
1722 && WSTOPSIG (lp->status)
1723 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1725 if (debug_linux_nat)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "LLR: Not short circuiting for ignored "
1728 "status 0x%x\n", lp->status);
1730 /* FIXME: What should we do if we are supposed to continue
1731 this thread with a signal? */
1732 gdb_assert (signo == GDB_SIGNAL_0);
1733 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1738 if (lwp_status_pending_p (lp))
1740 /* FIXME: What should we do if we are supposed to continue
1741 this thread with a signal? */
1742 gdb_assert (signo == GDB_SIGNAL_0);
1744 if (debug_linux_nat)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "LLR: Short circuiting for status 0x%x\n",
1749 if (target_can_async_p ())
1752 /* Tell the event loop we have something to process. */
1759 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1761 if (debug_linux_nat)
1762 fprintf_unfiltered (gdb_stdlog,
1763 "LLR: %s %s, %s (resume event thread)\n",
1764 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1765 target_pid_to_str (lp->ptid),
1766 (signo != GDB_SIGNAL_0
1767 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1769 linux_resume_one_lwp (lp, step, signo);
1771 if (target_can_async_p ())
1775 /* Send a signal to an LWP. */
1778 kill_lwp (int lwpid, int signo)
1783 ret = syscall (__NR_tkill, lwpid, signo);
1784 if (errno == ENOSYS)
1786 /* If tkill fails, then we are not using nptl threads, a
1787 configuration we no longer support. */
1788 perror_with_name (("tkill"));
1793 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1794 event, check if the core is interested in it: if not, ignore the
1795 event, and keep waiting; otherwise, we need to toggle the LWP's
1796 syscall entry/exit status, since the ptrace event itself doesn't
1797 indicate it, and report the trap to higher layers. */
1800 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1802 struct target_waitstatus *ourstatus = &lp->waitstatus;
1803 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1804 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1808 /* If we're stopping threads, there's a SIGSTOP pending, which
1809 makes it so that the LWP reports an immediate syscall return,
1810 followed by the SIGSTOP. Skip seeing that "return" using
1811 PTRACE_CONT directly, and let stop_wait_callback collect the
1812 SIGSTOP. Later when the thread is resumed, a new syscall
1813 entry event. If we didn't do this (and returned 0), we'd
1814 leave a syscall entry pending, and our caller, by using
1815 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1816 itself. Later, when the user re-resumes this LWP, we'd see
1817 another syscall entry event and we'd mistake it for a return.
1819 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1820 (leaving immediately with LWP->signalled set, without issuing
1821 a PTRACE_CONT), it would still be problematic to leave this
1822 syscall enter pending, as later when the thread is resumed,
1823 it would then see the same syscall exit mentioned above,
1824 followed by the delayed SIGSTOP, while the syscall didn't
1825 actually get to execute. It seems it would be even more
1826 confusing to the user. */
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "LHST: ignoring syscall %d "
1831 "for LWP %ld (stopping threads), "
1832 "resuming with PTRACE_CONT for SIGSTOP\n",
1834 ptid_get_lwp (lp->ptid));
1836 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1837 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1842 /* Always update the entry/return state, even if this particular
1843 syscall isn't interesting to the core now. In async mode,
1844 the user could install a new catchpoint for this syscall
1845 between syscall enter/return, and we'll need to know to
1846 report a syscall return if that happens. */
1847 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1848 ? TARGET_WAITKIND_SYSCALL_RETURN
1849 : TARGET_WAITKIND_SYSCALL_ENTRY);
1851 if (catch_syscall_enabled ())
1853 if (catching_syscall_number (syscall_number))
1855 /* Alright, an event to report. */
1856 ourstatus->kind = lp->syscall_state;
1857 ourstatus->value.syscall_number = syscall_number;
1859 if (debug_linux_nat)
1860 fprintf_unfiltered (gdb_stdlog,
1861 "LHST: stopping for %s of syscall %d"
1864 == TARGET_WAITKIND_SYSCALL_ENTRY
1865 ? "entry" : "return",
1867 ptid_get_lwp (lp->ptid));
1871 if (debug_linux_nat)
1872 fprintf_unfiltered (gdb_stdlog,
1873 "LHST: ignoring %s of syscall %d "
1875 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1876 ? "entry" : "return",
1878 ptid_get_lwp (lp->ptid));
1882 /* If we had been syscall tracing, and hence used PT_SYSCALL
1883 before on this LWP, it could happen that the user removes all
1884 syscall catchpoints before we get to process this event.
1885 There are two noteworthy issues here:
1887 - When stopped at a syscall entry event, resuming with
1888 PT_STEP still resumes executing the syscall and reports a
1891 - Only PT_SYSCALL catches syscall enters. If we last
1892 single-stepped this thread, then this event can't be a
1893 syscall enter. If we last single-stepped this thread, this
1894 has to be a syscall exit.
1896 The points above mean that the next resume, be it PT_STEP or
1897 PT_CONTINUE, can not trigger a syscall trace event. */
1898 if (debug_linux_nat)
1899 fprintf_unfiltered (gdb_stdlog,
1900 "LHST: caught syscall event "
1901 "with no syscall catchpoints."
1902 " %d for LWP %ld, ignoring\n",
1904 ptid_get_lwp (lp->ptid));
1905 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1908 /* The core isn't interested in this event. For efficiency, avoid
1909 stopping all threads only to have the core resume them all again.
1910 Since we're not stopping threads, if we're still syscall tracing
1911 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1912 subsequent syscall. Simply resume using the inf-ptrace layer,
1913 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1915 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1919 /* Handle a GNU/Linux extended wait response. If we see a clone
1920 event, we need to add the new LWP to our list (and not report the
1921 trap to higher layers). This function returns non-zero if the
1922 event should be ignored and we should wait again. If STOPPING is
1923 true, the new LWP remains stopped, otherwise it is continued. */
1926 linux_handle_extended_wait (struct lwp_info *lp, int status)
1928 int pid = ptid_get_lwp (lp->ptid);
1929 struct target_waitstatus *ourstatus = &lp->waitstatus;
1930 int event = linux_ptrace_get_extended_event (status);
1932 /* All extended events we currently use are mid-syscall. Only
1933 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1934 you have to be using PTRACE_SEIZE to get that. */
1935 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1937 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1938 || event == PTRACE_EVENT_CLONE)
1940 unsigned long new_pid;
1943 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1945 /* If we haven't already seen the new PID stop, wait for it now. */
1946 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1948 /* The new child has a pending SIGSTOP. We can't affect it until it
1949 hits the SIGSTOP, but we're already attached. */
1950 ret = my_waitpid (new_pid, &status, __WALL);
1952 perror_with_name (_("waiting for new child"));
1953 else if (ret != new_pid)
1954 internal_error (__FILE__, __LINE__,
1955 _("wait returned unexpected PID %d"), ret);
1956 else if (!WIFSTOPPED (status))
1957 internal_error (__FILE__, __LINE__,
1958 _("wait returned unexpected status 0x%x"), status);
1961 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1963 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1965 /* The arch-specific native code may need to know about new
1966 forks even if those end up never mapped to an
1968 linux_target->low_new_fork (lp, new_pid);
1971 if (event == PTRACE_EVENT_FORK
1972 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1974 /* Handle checkpointing by linux-fork.c here as a special
1975 case. We don't want the follow-fork-mode or 'catch fork'
1976 to interfere with this. */
1978 /* This won't actually modify the breakpoint list, but will
1979 physically remove the breakpoints from the child. */
1980 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1982 /* Retain child fork in ptrace (stopped) state. */
1983 if (!find_fork_pid (new_pid))
1986 /* Report as spurious, so that infrun doesn't want to follow
1987 this fork. We're actually doing an infcall in
1989 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1991 /* Report the stop to the core. */
1995 if (event == PTRACE_EVENT_FORK)
1996 ourstatus->kind = TARGET_WAITKIND_FORKED;
1997 else if (event == PTRACE_EVENT_VFORK)
1998 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1999 else if (event == PTRACE_EVENT_CLONE)
2001 struct lwp_info *new_lp;
2003 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2005 if (debug_linux_nat)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "LHEW: Got clone event "
2008 "from LWP %d, new child is LWP %ld\n",
2011 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2012 new_lp->stopped = 1;
2013 new_lp->resumed = 1;
2015 /* If the thread_db layer is active, let it record the user
2016 level thread id and status, and add the thread to GDB's
2018 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2020 /* The process is not using thread_db. Add the LWP to
2022 target_post_attach (ptid_get_lwp (new_lp->ptid));
2023 add_thread (new_lp->ptid);
2026 /* Even if we're stopping the thread for some reason
2027 internal to this module, from the perspective of infrun
2028 and the user/frontend, this new thread is running until
2029 it next reports a stop. */
2030 set_running (new_lp->ptid, 1);
2031 set_executing (new_lp->ptid, 1);
2033 if (WSTOPSIG (status) != SIGSTOP)
2035 /* This can happen if someone starts sending signals to
2036 the new thread before it gets a chance to run, which
2037 have a lower number than SIGSTOP (e.g. SIGUSR1).
2038 This is an unlikely case, and harder to handle for
2039 fork / vfork than for clone, so we do not try - but
2040 we handle it for clone events here. */
2042 new_lp->signalled = 1;
2044 /* We created NEW_LP so it cannot yet contain STATUS. */
2045 gdb_assert (new_lp->status == 0);
2047 /* Save the wait status to report later. */
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHEW: waitpid of new LWP %ld, "
2051 "saving status %s\n",
2052 (long) ptid_get_lwp (new_lp->ptid),
2053 status_to_str (status));
2054 new_lp->status = status;
2056 else if (report_thread_events)
2058 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2059 new_lp->status = status;
2068 if (event == PTRACE_EVENT_EXEC)
2070 if (debug_linux_nat)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "LHEW: Got exec event from LWP %ld\n",
2073 ptid_get_lwp (lp->ptid));
2075 ourstatus->kind = TARGET_WAITKIND_EXECD;
2076 ourstatus->value.execd_pathname
2077 = xstrdup (linux_proc_pid_to_exec_file (pid));
2079 /* The thread that execed must have been resumed, but, when a
2080 thread execs, it changes its tid to the tgid, and the old
2081 tgid thread might have not been resumed. */
2086 if (event == PTRACE_EVENT_VFORK_DONE)
2088 if (current_inferior ()->waiting_for_vfork_done)
2090 if (debug_linux_nat)
2091 fprintf_unfiltered (gdb_stdlog,
2092 "LHEW: Got expected PTRACE_EVENT_"
2093 "VFORK_DONE from LWP %ld: stopping\n",
2094 ptid_get_lwp (lp->ptid));
2096 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2100 if (debug_linux_nat)
2101 fprintf_unfiltered (gdb_stdlog,
2102 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2103 "from LWP %ld: ignoring\n",
2104 ptid_get_lwp (lp->ptid));
2108 internal_error (__FILE__, __LINE__,
2109 _("unknown ptrace event %d"), event);
2112 /* Suspend waiting for a signal. We're mostly interested in
2118 if (debug_linux_nat)
2119 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2120 sigsuspend (&suspend_mask);
2122 /* If the quit flag is set, it means that the user pressed Ctrl-C
2123 and we're debugging a process that is running on a separate
2124 terminal, so we must forward the Ctrl-C to the inferior. (If the
2125 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2126 inferior directly.) We must do this here because functions that
2127 need to block waiting for a signal loop forever until there's an
2128 event to report before returning back to the event loop. */
2129 if (!target_terminal::is_ours ())
2131 if (check_quit_flag ())
2132 target_pass_ctrlc ();
2136 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2140 wait_lwp (struct lwp_info *lp)
2144 int thread_dead = 0;
2147 gdb_assert (!lp->stopped);
2148 gdb_assert (lp->status == 0);
2150 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2151 block_child_signals (&prev_mask);
2155 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2156 if (pid == -1 && errno == ECHILD)
2158 /* The thread has previously exited. We need to delete it
2159 now because if this was a non-leader thread execing, we
2160 won't get an exit event. See comments on exec events at
2161 the top of the file. */
2163 if (debug_linux_nat)
2164 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2165 target_pid_to_str (lp->ptid));
2170 /* Bugs 10970, 12702.
2171 Thread group leader may have exited in which case we'll lock up in
2172 waitpid if there are other threads, even if they are all zombies too.
2173 Basically, we're not supposed to use waitpid this way.
2174 tkill(pid,0) cannot be used here as it gets ESRCH for both
2175 for zombie and running processes.
2177 As a workaround, check if we're waiting for the thread group leader and
2178 if it's a zombie, and avoid calling waitpid if it is.
2180 This is racy, what if the tgl becomes a zombie right after we check?
2181 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2182 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2184 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2185 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2188 if (debug_linux_nat)
2189 fprintf_unfiltered (gdb_stdlog,
2190 "WL: Thread group leader %s vanished.\n",
2191 target_pid_to_str (lp->ptid));
2195 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2196 get invoked despite our caller had them intentionally blocked by
2197 block_child_signals. This is sensitive only to the loop of
2198 linux_nat_wait_1 and there if we get called my_waitpid gets called
2199 again before it gets to sigsuspend so we can safely let the handlers
2200 get executed here. */
2204 restore_child_signals_mask (&prev_mask);
2208 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2210 if (debug_linux_nat)
2212 fprintf_unfiltered (gdb_stdlog,
2213 "WL: waitpid %s received %s\n",
2214 target_pid_to_str (lp->ptid),
2215 status_to_str (status));
2218 /* Check if the thread has exited. */
2219 if (WIFEXITED (status) || WIFSIGNALED (status))
2221 if (report_thread_events
2222 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2224 if (debug_linux_nat)
2225 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2226 ptid_get_pid (lp->ptid));
2228 /* If this is the leader exiting, it means the whole
2229 process is gone. Store the status to report to the
2230 core. Store it in lp->waitstatus, because lp->status
2231 would be ambiguous (W_EXITCODE(0,0) == 0). */
2232 store_waitstatus (&lp->waitstatus, status);
2237 if (debug_linux_nat)
2238 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2239 target_pid_to_str (lp->ptid));
2249 gdb_assert (WIFSTOPPED (status));
2252 if (lp->must_set_ptrace_flags)
2254 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2255 int options = linux_nat_ptrace_options (inf->attach_flag);
2257 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2258 lp->must_set_ptrace_flags = 0;
2261 /* Handle GNU/Linux's syscall SIGTRAPs. */
2262 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2264 /* No longer need the sysgood bit. The ptrace event ends up
2265 recorded in lp->waitstatus if we care for it. We can carry
2266 on handling the event like a regular SIGTRAP from here
2268 status = W_STOPCODE (SIGTRAP);
2269 if (linux_handle_syscall_trap (lp, 1))
2270 return wait_lwp (lp);
2274 /* Almost all other ptrace-stops are known to be outside of system
2275 calls, with further exceptions in linux_handle_extended_wait. */
2276 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2279 /* Handle GNU/Linux's extended waitstatus for trace events. */
2280 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2281 && linux_is_extended_waitstatus (status))
2283 if (debug_linux_nat)
2284 fprintf_unfiltered (gdb_stdlog,
2285 "WL: Handling extended status 0x%06x\n",
2287 linux_handle_extended_wait (lp, status);
2294 /* Send a SIGSTOP to LP. */
2297 stop_callback (struct lwp_info *lp, void *data)
2299 if (!lp->stopped && !lp->signalled)
2303 if (debug_linux_nat)
2305 fprintf_unfiltered (gdb_stdlog,
2306 "SC: kill %s **<SIGSTOP>**\n",
2307 target_pid_to_str (lp->ptid));
2310 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2311 if (debug_linux_nat)
2313 fprintf_unfiltered (gdb_stdlog,
2314 "SC: lwp kill %d %s\n",
2316 errno ? safe_strerror (errno) : "ERRNO-OK");
2320 gdb_assert (lp->status == 0);
2326 /* Request a stop on LWP. */
2329 linux_stop_lwp (struct lwp_info *lwp)
2331 stop_callback (lwp, NULL);
2334 /* See linux-nat.h */
2337 linux_stop_and_wait_all_lwps (void)
2339 /* Stop all LWP's ... */
2340 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2342 /* ... and wait until all of them have reported back that
2343 they're no longer running. */
2344 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2347 /* See linux-nat.h */
2350 linux_unstop_all_lwps (void)
2352 iterate_over_lwps (minus_one_ptid,
2353 resume_stopped_resumed_lwps, &minus_one_ptid);
2356 /* Return non-zero if LWP PID has a pending SIGINT. */
2359 linux_nat_has_pending_sigint (int pid)
2361 sigset_t pending, blocked, ignored;
2363 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2365 if (sigismember (&pending, SIGINT)
2366 && !sigismember (&ignored, SIGINT))
2372 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2375 set_ignore_sigint (struct lwp_info *lp, void *data)
2377 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2378 flag to consume the next one. */
2379 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2380 && WSTOPSIG (lp->status) == SIGINT)
2383 lp->ignore_sigint = 1;
2388 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2389 This function is called after we know the LWP has stopped; if the LWP
2390 stopped before the expected SIGINT was delivered, then it will never have
2391 arrived. Also, if the signal was delivered to a shared queue and consumed
2392 by a different thread, it will never be delivered to this LWP. */
2395 maybe_clear_ignore_sigint (struct lwp_info *lp)
2397 if (!lp->ignore_sigint)
2400 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2402 if (debug_linux_nat)
2403 fprintf_unfiltered (gdb_stdlog,
2404 "MCIS: Clearing bogus flag for %s\n",
2405 target_pid_to_str (lp->ptid));
2406 lp->ignore_sigint = 0;
2410 /* Fetch the possible triggered data watchpoint info and store it in
2413 On some archs, like x86, that use debug registers to set
2414 watchpoints, it's possible that the way to know which watched
2415 address trapped, is to check the register that is used to select
2416 which address to watch. Problem is, between setting the watchpoint
2417 and reading back which data address trapped, the user may change
2418 the set of watchpoints, and, as a consequence, GDB changes the
2419 debug registers in the inferior. To avoid reading back a stale
2420 stopped-data-address when that happens, we cache in LP the fact
2421 that a watchpoint trapped, and the corresponding data address, as
2422 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2423 registers meanwhile, we have the cached data we can rely on. */
2426 check_stopped_by_watchpoint (struct lwp_info *lp)
2428 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2429 inferior_ptid = lp->ptid;
2431 if (linux_target->low_stopped_by_watchpoint ())
2433 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2434 lp->stopped_data_address_p
2435 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2438 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2441 /* Returns true if the LWP had stopped for a watchpoint. */
2444 linux_nat_target::stopped_by_watchpoint ()
2446 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2448 gdb_assert (lp != NULL);
2450 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2454 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2456 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2458 gdb_assert (lp != NULL);
2460 *addr_p = lp->stopped_data_address;
2462 return lp->stopped_data_address_p;
2465 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2468 linux_nat_target::low_status_is_event (int status)
2470 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2473 /* Wait until LP is stopped. */
2476 stop_wait_callback (struct lwp_info *lp, void *data)
2478 struct inferior *inf = find_inferior_ptid (lp->ptid);
2480 /* If this is a vfork parent, bail out, it is not going to report
2481 any SIGSTOP until the vfork is done with. */
2482 if (inf->vfork_child != NULL)
2489 status = wait_lwp (lp);
2493 if (lp->ignore_sigint && WIFSTOPPED (status)
2494 && WSTOPSIG (status) == SIGINT)
2496 lp->ignore_sigint = 0;
2499 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2501 if (debug_linux_nat)
2502 fprintf_unfiltered (gdb_stdlog,
2503 "PTRACE_CONT %s, 0, 0 (%s) "
2504 "(discarding SIGINT)\n",
2505 target_pid_to_str (lp->ptid),
2506 errno ? safe_strerror (errno) : "OK");
2508 return stop_wait_callback (lp, NULL);
2511 maybe_clear_ignore_sigint (lp);
2513 if (WSTOPSIG (status) != SIGSTOP)
2515 /* The thread was stopped with a signal other than SIGSTOP. */
2517 if (debug_linux_nat)
2518 fprintf_unfiltered (gdb_stdlog,
2519 "SWC: Pending event %s in %s\n",
2520 status_to_str ((int) status),
2521 target_pid_to_str (lp->ptid));
2523 /* Save the sigtrap event. */
2524 lp->status = status;
2525 gdb_assert (lp->signalled);
2526 save_stop_reason (lp);
2530 /* We caught the SIGSTOP that we intended to catch, so
2531 there's no SIGSTOP pending. */
2533 if (debug_linux_nat)
2534 fprintf_unfiltered (gdb_stdlog,
2535 "SWC: Expected SIGSTOP caught for %s.\n",
2536 target_pid_to_str (lp->ptid));
2538 /* Reset SIGNALLED only after the stop_wait_callback call
2539 above as it does gdb_assert on SIGNALLED. */
2547 /* Return non-zero if LP has a wait status pending. Discard the
2548 pending event and resume the LWP if the event that originally
2549 caused the stop became uninteresting. */
2552 status_callback (struct lwp_info *lp, void *data)
2554 /* Only report a pending wait status if we pretend that this has
2555 indeed been resumed. */
2559 if (!lwp_status_pending_p (lp))
2562 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2563 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2565 struct regcache *regcache = get_thread_regcache (lp->ptid);
2569 pc = regcache_read_pc (regcache);
2571 if (pc != lp->stop_pc)
2573 if (debug_linux_nat)
2574 fprintf_unfiltered (gdb_stdlog,
2575 "SC: PC of %s changed. was=%s, now=%s\n",
2576 target_pid_to_str (lp->ptid),
2577 paddress (target_gdbarch (), lp->stop_pc),
2578 paddress (target_gdbarch (), pc));
2582 #if !USE_SIGTRAP_SIGINFO
2583 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2585 if (debug_linux_nat)
2586 fprintf_unfiltered (gdb_stdlog,
2587 "SC: previous breakpoint of %s, at %s gone\n",
2588 target_pid_to_str (lp->ptid),
2589 paddress (target_gdbarch (), lp->stop_pc));
2597 if (debug_linux_nat)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "SC: pending event of %s cancelled.\n",
2600 target_pid_to_str (lp->ptid));
2603 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2611 /* Count the LWP's that have had events. */
2614 count_events_callback (struct lwp_info *lp, void *data)
2616 int *count = (int *) data;
2618 gdb_assert (count != NULL);
2620 /* Select only resumed LWPs that have an event pending. */
2621 if (lp->resumed && lwp_status_pending_p (lp))
2627 /* Select the LWP (if any) that is currently being single-stepped. */
2630 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2632 if (lp->last_resume_kind == resume_step
2639 /* Returns true if LP has a status pending. */
2642 lwp_status_pending_p (struct lwp_info *lp)
2644 /* We check for lp->waitstatus in addition to lp->status, because we
2645 can have pending process exits recorded in lp->status and
2646 W_EXITCODE(0,0) happens to be 0. */
2647 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2650 /* Select the Nth LWP that has had an event. */
2653 select_event_lwp_callback (struct lwp_info *lp, void *data)
2655 int *selector = (int *) data;
2657 gdb_assert (selector != NULL);
2659 /* Select only resumed LWPs that have an event pending. */
2660 if (lp->resumed && lwp_status_pending_p (lp))
2661 if ((*selector)-- == 0)
2667 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2668 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2669 and save the result in the LWP's stop_reason field. If it stopped
2670 for a breakpoint, decrement the PC if necessary on the lwp's
2674 save_stop_reason (struct lwp_info *lp)
2676 struct regcache *regcache;
2677 struct gdbarch *gdbarch;
2680 #if USE_SIGTRAP_SIGINFO
2684 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2685 gdb_assert (lp->status != 0);
2687 if (!linux_target->low_status_is_event (lp->status))
2690 regcache = get_thread_regcache (lp->ptid);
2691 gdbarch = regcache->arch ();
2693 pc = regcache_read_pc (regcache);
2694 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2696 #if USE_SIGTRAP_SIGINFO
2697 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2699 if (siginfo.si_signo == SIGTRAP)
2701 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2702 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2704 /* The si_code is ambiguous on this arch -- check debug
2706 if (!check_stopped_by_watchpoint (lp))
2707 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2709 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2711 /* If we determine the LWP stopped for a SW breakpoint,
2712 trust it. Particularly don't check watchpoint
2713 registers, because at least on s390, we'd find
2714 stopped-by-watchpoint as long as there's a watchpoint
2716 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2718 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2720 /* This can indicate either a hardware breakpoint or
2721 hardware watchpoint. Check debug registers. */
2722 if (!check_stopped_by_watchpoint (lp))
2723 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2725 else if (siginfo.si_code == TRAP_TRACE)
2727 if (debug_linux_nat)
2728 fprintf_unfiltered (gdb_stdlog,
2729 "CSBB: %s stopped by trace\n",
2730 target_pid_to_str (lp->ptid));
2732 /* We may have single stepped an instruction that
2733 triggered a watchpoint. In that case, on some
2734 architectures (such as x86), instead of TRAP_HWBKPT,
2735 si_code indicates TRAP_TRACE, and we need to check
2736 the debug registers separately. */
2737 check_stopped_by_watchpoint (lp);
2742 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2743 && software_breakpoint_inserted_here_p (regcache->aspace (),
2746 /* The LWP was either continued, or stepped a software
2747 breakpoint instruction. */
2748 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2751 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2752 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2754 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2755 check_stopped_by_watchpoint (lp);
2758 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2760 if (debug_linux_nat)
2761 fprintf_unfiltered (gdb_stdlog,
2762 "CSBB: %s stopped by software breakpoint\n",
2763 target_pid_to_str (lp->ptid));
2765 /* Back up the PC if necessary. */
2767 regcache_write_pc (regcache, sw_bp_pc);
2769 /* Update this so we record the correct stop PC below. */
2772 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2774 if (debug_linux_nat)
2775 fprintf_unfiltered (gdb_stdlog,
2776 "CSBB: %s stopped by hardware breakpoint\n",
2777 target_pid_to_str (lp->ptid));
2779 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2781 if (debug_linux_nat)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "CSBB: %s stopped by hardware watchpoint\n",
2784 target_pid_to_str (lp->ptid));
2791 /* Returns true if the LWP had stopped for a software breakpoint. */
2794 linux_nat_target::stopped_by_sw_breakpoint ()
2796 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2798 gdb_assert (lp != NULL);
2800 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2803 /* Implement the supports_stopped_by_sw_breakpoint method. */
2806 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2808 return USE_SIGTRAP_SIGINFO;
2811 /* Returns true if the LWP had stopped for a hardware
2812 breakpoint/watchpoint. */
2815 linux_nat_target::stopped_by_hw_breakpoint ()
2817 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2819 gdb_assert (lp != NULL);
2821 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2824 /* Implement the supports_stopped_by_hw_breakpoint method. */
2827 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2829 return USE_SIGTRAP_SIGINFO;
2832 /* Select one LWP out of those that have events pending. */
2835 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2838 int random_selector;
2839 struct lwp_info *event_lp = NULL;
2841 /* Record the wait status for the original LWP. */
2842 (*orig_lp)->status = *status;
2844 /* In all-stop, give preference to the LWP that is being
2845 single-stepped. There will be at most one, and it will be the
2846 LWP that the core is most interested in. If we didn't do this,
2847 then we'd have to handle pending step SIGTRAPs somehow in case
2848 the core later continues the previously-stepped thread, as
2849 otherwise we'd report the pending SIGTRAP then, and the core, not
2850 having stepped the thread, wouldn't understand what the trap was
2851 for, and therefore would report it to the user as a random
2853 if (!target_is_non_stop_p ())
2855 event_lp = iterate_over_lwps (filter,
2856 select_singlestep_lwp_callback, NULL);
2857 if (event_lp != NULL)
2859 if (debug_linux_nat)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "SEL: Select single-step %s\n",
2862 target_pid_to_str (event_lp->ptid));
2866 if (event_lp == NULL)
2868 /* Pick one at random, out of those which have had events. */
2870 /* First see how many events we have. */
2871 iterate_over_lwps (filter, count_events_callback, &num_events);
2872 gdb_assert (num_events > 0);
2874 /* Now randomly pick a LWP out of those that have had
2876 random_selector = (int)
2877 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2879 if (debug_linux_nat && num_events > 1)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "SEL: Found %d events, selecting #%d\n",
2882 num_events, random_selector);
2884 event_lp = iterate_over_lwps (filter,
2885 select_event_lwp_callback,
2889 if (event_lp != NULL)
2891 /* Switch the event LWP. */
2892 *orig_lp = event_lp;
2893 *status = event_lp->status;
2896 /* Flush the wait status for the event LWP. */
2897 (*orig_lp)->status = 0;
2900 /* Return non-zero if LP has been resumed. */
2903 resumed_callback (struct lwp_info *lp, void *data)
2908 /* Check if we should go on and pass this event to common code.
2909 Return the affected lwp if we are, or NULL otherwise. */
2911 static struct lwp_info *
2912 linux_nat_filter_event (int lwpid, int status)
2914 struct lwp_info *lp;
2915 int event = linux_ptrace_get_extended_event (status);
2917 lp = find_lwp_pid (pid_to_ptid (lwpid));
2919 /* Check for stop events reported by a process we didn't already
2920 know about - anything not already in our LWP list.
2922 If we're expecting to receive stopped processes after
2923 fork, vfork, and clone events, then we'll just add the
2924 new one to our list and go back to waiting for the event
2925 to be reported - the stopped process might be returned
2926 from waitpid before or after the event is.
2928 But note the case of a non-leader thread exec'ing after the
2929 leader having exited, and gone from our lists. The non-leader
2930 thread changes its tid to the tgid. */
2932 if (WIFSTOPPED (status) && lp == NULL
2933 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2935 /* A multi-thread exec after we had seen the leader exiting. */
2936 if (debug_linux_nat)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "LLW: Re-adding thread group leader LWP %d.\n",
2941 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2944 add_thread (lp->ptid);
2947 if (WIFSTOPPED (status) && !lp)
2949 if (debug_linux_nat)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2952 (long) lwpid, status_to_str (status));
2953 add_to_pid_list (&stopped_pids, lwpid, status);
2957 /* Make sure we don't report an event for the exit of an LWP not in
2958 our list, i.e. not part of the current process. This can happen
2959 if we detach from a program we originally forked and then it
2961 if (!WIFSTOPPED (status) && !lp)
2964 /* This LWP is stopped now. (And if dead, this prevents it from
2965 ever being continued.) */
2968 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2970 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2971 int options = linux_nat_ptrace_options (inf->attach_flag);
2973 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2974 lp->must_set_ptrace_flags = 0;
2977 /* Handle GNU/Linux's syscall SIGTRAPs. */
2978 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2980 /* No longer need the sysgood bit. The ptrace event ends up
2981 recorded in lp->waitstatus if we care for it. We can carry
2982 on handling the event like a regular SIGTRAP from here
2984 status = W_STOPCODE (SIGTRAP);
2985 if (linux_handle_syscall_trap (lp, 0))
2990 /* Almost all other ptrace-stops are known to be outside of system
2991 calls, with further exceptions in linux_handle_extended_wait. */
2992 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2995 /* Handle GNU/Linux's extended waitstatus for trace events. */
2996 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2997 && linux_is_extended_waitstatus (status))
2999 if (debug_linux_nat)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "LLW: Handling extended status 0x%06x\n",
3003 if (linux_handle_extended_wait (lp, status))
3007 /* Check if the thread has exited. */
3008 if (WIFEXITED (status) || WIFSIGNALED (status))
3010 if (!report_thread_events
3011 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3013 if (debug_linux_nat)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "LLW: %s exited.\n",
3016 target_pid_to_str (lp->ptid));
3018 /* If there is at least one more LWP, then the exit signal
3019 was not the end of the debugged application and should be
3025 /* Note that even if the leader was ptrace-stopped, it can still
3026 exit, if e.g., some other thread brings down the whole
3027 process (calls `exit'). So don't assert that the lwp is
3029 if (debug_linux_nat)
3030 fprintf_unfiltered (gdb_stdlog,
3031 "LWP %ld exited (resumed=%d)\n",
3032 ptid_get_lwp (lp->ptid), lp->resumed);
3034 /* Dead LWP's aren't expected to reported a pending sigstop. */
3037 /* Store the pending event in the waitstatus, because
3038 W_EXITCODE(0,0) == 0. */
3039 store_waitstatus (&lp->waitstatus, status);
3043 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3044 an attempt to stop an LWP. */
3046 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3050 if (lp->last_resume_kind == resume_stop)
3052 if (debug_linux_nat)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "LLW: resume_stop SIGSTOP caught for %s.\n",
3055 target_pid_to_str (lp->ptid));
3059 /* This is a delayed SIGSTOP. Filter out the event. */
3061 if (debug_linux_nat)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3065 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3066 target_pid_to_str (lp->ptid));
3068 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3069 gdb_assert (lp->resumed);
3074 /* Make sure we don't report a SIGINT that we have already displayed
3075 for another thread. */
3076 if (lp->ignore_sigint
3077 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3079 if (debug_linux_nat)
3080 fprintf_unfiltered (gdb_stdlog,
3081 "LLW: Delayed SIGINT caught for %s.\n",
3082 target_pid_to_str (lp->ptid));
3084 /* This is a delayed SIGINT. */
3085 lp->ignore_sigint = 0;
3087 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3088 if (debug_linux_nat)
3089 fprintf_unfiltered (gdb_stdlog,
3090 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3092 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3093 target_pid_to_str (lp->ptid));
3094 gdb_assert (lp->resumed);
3096 /* Discard the event. */
3100 /* Don't report signals that GDB isn't interested in, such as
3101 signals that are neither printed nor stopped upon. Stopping all
3102 threads can be a bit time-consuming so if we want decent
3103 performance with heavily multi-threaded programs, especially when
3104 they're using a high frequency timer, we'd better avoid it if we
3106 if (WIFSTOPPED (status))
3108 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3110 if (!target_is_non_stop_p ())
3112 /* Only do the below in all-stop, as we currently use SIGSTOP
3113 to implement target_stop (see linux_nat_stop) in
3115 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3117 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3118 forwarded to the entire process group, that is, all LWPs
3119 will receive it - unless they're using CLONE_THREAD to
3120 share signals. Since we only want to report it once, we
3121 mark it as ignored for all LWPs except this one. */
3122 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3123 set_ignore_sigint, NULL);
3124 lp->ignore_sigint = 0;
3127 maybe_clear_ignore_sigint (lp);
3130 /* When using hardware single-step, we need to report every signal.
3131 Otherwise, signals in pass_mask may be short-circuited
3132 except signals that might be caused by a breakpoint. */
3134 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3135 && !linux_wstatus_maybe_breakpoint (status))
3137 linux_resume_one_lwp (lp, lp->step, signo);
3138 if (debug_linux_nat)
3139 fprintf_unfiltered (gdb_stdlog,
3140 "LLW: %s %s, %s (preempt 'handle')\n",
3142 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3143 target_pid_to_str (lp->ptid),
3144 (signo != GDB_SIGNAL_0
3145 ? strsignal (gdb_signal_to_host (signo))
3151 /* An interesting event. */
3153 lp->status = status;
3154 save_stop_reason (lp);
3158 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3159 their exits until all other threads in the group have exited. */
3162 check_zombie_leaders (void)
3164 struct inferior *inf;
3168 struct lwp_info *leader_lp;
3173 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3174 if (leader_lp != NULL
3175 /* Check if there are other threads in the group, as we may
3176 have raced with the inferior simply exiting. */
3177 && num_lwps (inf->pid) > 1
3178 && linux_proc_pid_is_zombie (inf->pid))
3180 if (debug_linux_nat)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "CZL: Thread group leader %d zombie "
3183 "(it exited, or another thread execd).\n",
3186 /* A leader zombie can mean one of two things:
3188 - It exited, and there's an exit status pending
3189 available, or only the leader exited (not the whole
3190 program). In the latter case, we can't waitpid the
3191 leader's exit status until all other threads are gone.
3193 - There are 3 or more threads in the group, and a thread
3194 other than the leader exec'd. See comments on exec
3195 events at the top of the file. We could try
3196 distinguishing the exit and exec cases, by waiting once
3197 more, and seeing if something comes out, but it doesn't
3198 sound useful. The previous leader _does_ go away, and
3199 we'll re-add the new one once we see the exec event
3200 (which is just the same as what would happen if the
3201 previous leader did exit voluntarily before some other
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "CZL: Thread group leader %d vanished.\n",
3208 exit_lwp (leader_lp);
3213 /* Convenience function that is called when the kernel reports an exit
3214 event. This decides whether to report the event to GDB as a
3215 process exit event, a thread exit event, or to suppress the
3219 filter_exit_event (struct lwp_info *event_child,
3220 struct target_waitstatus *ourstatus)
3222 ptid_t ptid = event_child->ptid;
3224 if (num_lwps (ptid_get_pid (ptid)) > 1)
3226 if (report_thread_events)
3227 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3229 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3231 exit_lwp (event_child);
3238 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3242 enum resume_kind last_resume_kind;
3243 struct lwp_info *lp;
3246 if (debug_linux_nat)
3247 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3249 /* The first time we get here after starting a new inferior, we may
3250 not have added it to the LWP list yet - this is the earliest
3251 moment at which we know its PID. */
3252 if (ptid_is_pid (inferior_ptid))
3254 /* Upgrade the main thread's ptid. */
3255 thread_change_ptid (inferior_ptid,
3256 ptid_build (ptid_get_pid (inferior_ptid),
3257 ptid_get_pid (inferior_ptid), 0));
3259 lp = add_initial_lwp (inferior_ptid);
3263 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3264 block_child_signals (&prev_mask);
3266 /* First check if there is a LWP with a wait status pending. */
3267 lp = iterate_over_lwps (ptid, status_callback, NULL);
3270 if (debug_linux_nat)
3271 fprintf_unfiltered (gdb_stdlog,
3272 "LLW: Using pending wait status %s for %s.\n",
3273 status_to_str (lp->status),
3274 target_pid_to_str (lp->ptid));
3277 /* But if we don't find a pending event, we'll have to wait. Always
3278 pull all events out of the kernel. We'll randomly select an
3279 event LWP out of all that have events, to prevent starvation. */
3285 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3288 - If the thread group leader exits while other threads in the
3289 thread group still exist, waitpid(TGID, ...) hangs. That
3290 waitpid won't return an exit status until the other threads
3291 in the group are reapped.
3293 - When a non-leader thread execs, that thread just vanishes
3294 without reporting an exit (so we'd hang if we waited for it
3295 explicitly in that case). The exec event is reported to
3299 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3301 if (debug_linux_nat)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "LNW: waitpid(-1, ...) returned %d, %s\n",
3304 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3308 if (debug_linux_nat)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "LLW: waitpid %ld received %s\n",
3312 (long) lwpid, status_to_str (status));
3315 linux_nat_filter_event (lwpid, status);
3316 /* Retry until nothing comes out of waitpid. A single
3317 SIGCHLD can indicate more than one child stopped. */
3321 /* Now that we've pulled all events out of the kernel, resume
3322 LWPs that don't have an interesting event to report. */
3323 iterate_over_lwps (minus_one_ptid,
3324 resume_stopped_resumed_lwps, &minus_one_ptid);
3326 /* ... and find an LWP with a status to report to the core, if
3328 lp = iterate_over_lwps (ptid, status_callback, NULL);
3332 /* Check for zombie thread group leaders. Those can't be reaped
3333 until all other threads in the thread group are. */
3334 check_zombie_leaders ();
3336 /* If there are no resumed children left, bail. We'd be stuck
3337 forever in the sigsuspend call below otherwise. */
3338 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3340 if (debug_linux_nat)
3341 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3343 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3345 restore_child_signals_mask (&prev_mask);
3346 return minus_one_ptid;
3349 /* No interesting event to report to the core. */
3351 if (target_options & TARGET_WNOHANG)
3353 if (debug_linux_nat)
3354 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3356 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3357 restore_child_signals_mask (&prev_mask);
3358 return minus_one_ptid;
3361 /* We shouldn't end up here unless we want to try again. */
3362 gdb_assert (lp == NULL);
3364 /* Block until we get an event reported with SIGCHLD. */
3370 status = lp->status;
3373 if (!target_is_non_stop_p ())
3375 /* Now stop all other LWP's ... */
3376 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3378 /* ... and wait until all of them have reported back that
3379 they're no longer running. */
3380 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3383 /* If we're not waiting for a specific LWP, choose an event LWP from
3384 among those that have had events. Giving equal priority to all
3385 LWPs that have had events helps prevent starvation. */
3386 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3387 select_event_lwp (ptid, &lp, &status);
3389 gdb_assert (lp != NULL);
3391 /* Now that we've selected our final event LWP, un-adjust its PC if
3392 it was a software breakpoint, and we can't reliably support the
3393 "stopped by software breakpoint" stop reason. */
3394 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3395 && !USE_SIGTRAP_SIGINFO)
3397 struct regcache *regcache = get_thread_regcache (lp->ptid);
3398 struct gdbarch *gdbarch = regcache->arch ();
3399 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3405 pc = regcache_read_pc (regcache);
3406 regcache_write_pc (regcache, pc + decr_pc);
3410 /* We'll need this to determine whether to report a SIGSTOP as
3411 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3413 last_resume_kind = lp->last_resume_kind;
3415 if (!target_is_non_stop_p ())
3417 /* In all-stop, from the core's perspective, all LWPs are now
3418 stopped until a new resume action is sent over. */
3419 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3423 resume_clear_callback (lp, NULL);
3426 if (linux_target->low_status_is_event (status))
3428 if (debug_linux_nat)
3429 fprintf_unfiltered (gdb_stdlog,
3430 "LLW: trap ptid is %s.\n",
3431 target_pid_to_str (lp->ptid));
3434 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3436 *ourstatus = lp->waitstatus;
3437 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3440 store_waitstatus (ourstatus, status);
3442 if (debug_linux_nat)
3443 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3445 restore_child_signals_mask (&prev_mask);
3447 if (last_resume_kind == resume_stop
3448 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3449 && WSTOPSIG (status) == SIGSTOP)
3451 /* A thread that has been requested to stop by GDB with
3452 target_stop, and it stopped cleanly, so report as SIG0. The
3453 use of SIGSTOP is an implementation detail. */
3454 ourstatus->value.sig = GDB_SIGNAL_0;
3457 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3458 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3461 lp->core = linux_common_core_of_thread (lp->ptid);
3463 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3464 return filter_exit_event (lp, ourstatus);
3469 /* Resume LWPs that are currently stopped without any pending status
3470 to report, but are resumed from the core's perspective. */
3473 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3475 ptid_t *wait_ptid_p = (ptid_t *) data;
3479 if (debug_linux_nat)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "RSRL: NOT resuming LWP %s, not stopped\n",
3482 target_pid_to_str (lp->ptid));
3484 else if (!lp->resumed)
3486 if (debug_linux_nat)
3487 fprintf_unfiltered (gdb_stdlog,
3488 "RSRL: NOT resuming LWP %s, not resumed\n",
3489 target_pid_to_str (lp->ptid));
3491 else if (lwp_status_pending_p (lp))
3493 if (debug_linux_nat)
3494 fprintf_unfiltered (gdb_stdlog,
3495 "RSRL: NOT resuming LWP %s, has pending status\n",
3496 target_pid_to_str (lp->ptid));
3500 struct regcache *regcache = get_thread_regcache (lp->ptid);
3501 struct gdbarch *gdbarch = regcache->arch ();
3505 CORE_ADDR pc = regcache_read_pc (regcache);
3506 int leave_stopped = 0;
3508 /* Don't bother if there's a breakpoint at PC that we'd hit
3509 immediately, and we're not waiting for this LWP. */
3510 if (!ptid_match (lp->ptid, *wait_ptid_p))
3512 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3518 if (debug_linux_nat)
3519 fprintf_unfiltered (gdb_stdlog,
3520 "RSRL: resuming stopped-resumed LWP %s at "
3522 target_pid_to_str (lp->ptid),
3523 paddress (gdbarch, pc),
3526 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3529 CATCH (ex, RETURN_MASK_ERROR)
3531 if (!check_ptrace_stopped_lwp_gone (lp))
3532 throw_exception (ex);
3541 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3546 if (debug_linux_nat)
3548 char *options_string;
3550 options_string = target_options_to_string (target_options);
3551 fprintf_unfiltered (gdb_stdlog,
3552 "linux_nat_wait: [%s], [%s]\n",
3553 target_pid_to_str (ptid),
3555 xfree (options_string);
3558 /* Flush the async file first. */
3559 if (target_is_async_p ())
3560 async_file_flush ();
3562 /* Resume LWPs that are currently stopped without any pending status
3563 to report, but are resumed from the core's perspective. LWPs get
3564 in this state if we find them stopping at a time we're not
3565 interested in reporting the event (target_wait on a
3566 specific_process, for example, see linux_nat_wait_1), and
3567 meanwhile the event became uninteresting. Don't bother resuming
3568 LWPs we're not going to wait for if they'd stop immediately. */
3569 if (target_is_non_stop_p ())
3570 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3572 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3574 /* If we requested any event, and something came out, assume there
3575 may be more. If we requested a specific lwp or process, also
3576 assume there may be more. */
3577 if (target_is_async_p ()
3578 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3579 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3580 || !ptid_equal (ptid, minus_one_ptid)))
3589 kill_one_lwp (pid_t pid)
3591 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3594 kill_lwp (pid, SIGKILL);
3595 if (debug_linux_nat)
3597 int save_errno = errno;
3599 fprintf_unfiltered (gdb_stdlog,
3600 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3601 save_errno ? safe_strerror (save_errno) : "OK");
3604 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3607 ptrace (PTRACE_KILL, pid, 0, 0);
3608 if (debug_linux_nat)
3610 int save_errno = errno;
3612 fprintf_unfiltered (gdb_stdlog,
3613 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3614 save_errno ? safe_strerror (save_errno) : "OK");
3618 /* Wait for an LWP to die. */
3621 kill_wait_one_lwp (pid_t pid)
3625 /* We must make sure that there are no pending events (delayed
3626 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3627 program doesn't interfere with any following debugging session. */
3631 res = my_waitpid (pid, NULL, __WALL);
3632 if (res != (pid_t) -1)
3634 if (debug_linux_nat)
3635 fprintf_unfiltered (gdb_stdlog,
3636 "KWC: wait %ld received unknown.\n",
3638 /* The Linux kernel sometimes fails to kill a thread
3639 completely after PTRACE_KILL; that goes from the stop
3640 point in do_fork out to the one in get_signal_to_deliver
3641 and waits again. So kill it again. */
3647 gdb_assert (res == -1 && errno == ECHILD);
3650 /* Callback for iterate_over_lwps. */
3653 kill_callback (struct lwp_info *lp, void *data)
3655 kill_one_lwp (ptid_get_lwp (lp->ptid));
3659 /* Callback for iterate_over_lwps. */
3662 kill_wait_callback (struct lwp_info *lp, void *data)
3664 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3668 /* Kill the fork children of any threads of inferior INF that are
3669 stopped at a fork event. */
3672 kill_unfollowed_fork_children (struct inferior *inf)
3674 struct thread_info *thread;
3676 ALL_NON_EXITED_THREADS (thread)
3677 if (thread->inf == inf)
3679 struct target_waitstatus *ws = &thread->pending_follow;
3681 if (ws->kind == TARGET_WAITKIND_FORKED
3682 || ws->kind == TARGET_WAITKIND_VFORKED)
3684 ptid_t child_ptid = ws->value.related_pid;
3685 int child_pid = ptid_get_pid (child_ptid);
3686 int child_lwp = ptid_get_lwp (child_ptid);
3688 kill_one_lwp (child_lwp);
3689 kill_wait_one_lwp (child_lwp);
3691 /* Let the arch-specific native code know this process is
3693 linux_target->low_forget_process (child_pid);
3699 linux_nat_target::kill ()
3701 /* If we're stopped while forking and we haven't followed yet,
3702 kill the other task. We need to do this first because the
3703 parent will be sleeping if this is a vfork. */
3704 kill_unfollowed_fork_children (current_inferior ());
3706 if (forks_exist_p ())
3707 linux_fork_killall ();
3710 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3712 /* Stop all threads before killing them, since ptrace requires
3713 that the thread is stopped to sucessfully PTRACE_KILL. */
3714 iterate_over_lwps (ptid, stop_callback, NULL);
3715 /* ... and wait until all of them have reported back that
3716 they're no longer running. */
3717 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3719 /* Kill all LWP's ... */
3720 iterate_over_lwps (ptid, kill_callback, NULL);
3722 /* ... and wait until we've flushed all events. */
3723 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3726 target_mourn_inferior (inferior_ptid);
3730 linux_nat_target::mourn_inferior ()
3732 int pid = ptid_get_pid (inferior_ptid);
3734 purge_lwp_list (pid);
3736 if (! forks_exist_p ())
3737 /* Normal case, no other forks available. */
3738 inf_ptrace_target::mourn_inferior ();
3740 /* Multi-fork case. The current inferior_ptid has exited, but
3741 there are other viable forks to debug. Delete the exiting
3742 one and context-switch to the first available. */
3743 linux_fork_mourn_inferior ();
3745 /* Let the arch-specific native code know this process is gone. */
3746 linux_target->low_forget_process (pid);
3749 /* Convert a native/host siginfo object, into/from the siginfo in the
3750 layout of the inferiors' architecture. */
3753 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3755 /* If the low target didn't do anything, then just do a straight
3757 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3760 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3762 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3766 static enum target_xfer_status
3767 linux_xfer_siginfo (enum target_object object,
3768 const char *annex, gdb_byte *readbuf,
3769 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3770 ULONGEST *xfered_len)
3774 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3776 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3777 gdb_assert (readbuf || writebuf);
3779 pid = ptid_get_lwp (inferior_ptid);
3781 pid = ptid_get_pid (inferior_ptid);
3783 if (offset > sizeof (siginfo))
3784 return TARGET_XFER_E_IO;
3787 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3789 return TARGET_XFER_E_IO;
3791 /* When GDB is built as a 64-bit application, ptrace writes into
3792 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3793 inferior with a 64-bit GDB should look the same as debugging it
3794 with a 32-bit GDB, we need to convert it. GDB core always sees
3795 the converted layout, so any read/write will have to be done
3797 siginfo_fixup (&siginfo, inf_siginfo, 0);
3799 if (offset + len > sizeof (siginfo))
3800 len = sizeof (siginfo) - offset;
3802 if (readbuf != NULL)
3803 memcpy (readbuf, inf_siginfo + offset, len);
3806 memcpy (inf_siginfo + offset, writebuf, len);
3808 /* Convert back to ptrace layout before flushing it out. */
3809 siginfo_fixup (&siginfo, inf_siginfo, 1);
3812 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3814 return TARGET_XFER_E_IO;
3818 return TARGET_XFER_OK;
3821 static enum target_xfer_status
3822 linux_nat_xfer_osdata (enum target_object object,
3823 const char *annex, gdb_byte *readbuf,
3824 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3825 ULONGEST *xfered_len);
3827 static enum target_xfer_status
3828 linux_proc_xfer_spu (enum target_object object,
3829 const char *annex, gdb_byte *readbuf,
3830 const gdb_byte *writebuf,
3831 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3833 static enum target_xfer_status
3834 linux_proc_xfer_partial (enum target_object object,
3835 const char *annex, gdb_byte *readbuf,
3836 const gdb_byte *writebuf,
3837 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3839 enum target_xfer_status
3840 linux_nat_target::xfer_partial (enum target_object object,
3841 const char *annex, gdb_byte *readbuf,
3842 const gdb_byte *writebuf,
3843 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3845 enum target_xfer_status xfer;
3847 if (object == TARGET_OBJECT_SIGNAL_INFO)
3848 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3849 offset, len, xfered_len);
3851 /* The target is connected but no live inferior is selected. Pass
3852 this request down to a lower stratum (e.g., the executable
3854 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3855 return TARGET_XFER_EOF;
3857 if (object == TARGET_OBJECT_AUXV)
3858 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3859 offset, len, xfered_len);
3861 if (object == TARGET_OBJECT_OSDATA)
3862 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3863 offset, len, xfered_len);
3865 if (object == TARGET_OBJECT_SPU)
3866 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3867 offset, len, xfered_len);
3869 /* GDB calculates all addresses in the largest possible address
3871 The address width must be masked before its final use - either by
3872 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3874 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3876 if (object == TARGET_OBJECT_MEMORY)
3878 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3880 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3881 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3884 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3885 offset, len, xfered_len);
3886 if (xfer != TARGET_XFER_EOF)
3889 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3890 offset, len, xfered_len);
3894 linux_nat_target::thread_alive (ptid_t ptid)
3896 /* As long as a PTID is in lwp list, consider it alive. */
3897 return find_lwp_pid (ptid) != NULL;
3900 /* Implement the to_update_thread_list target method for this
3904 linux_nat_target::update_thread_list ()
3906 struct lwp_info *lwp;
3908 /* We add/delete threads from the list as clone/exit events are
3909 processed, so just try deleting exited threads still in the
3911 delete_exited_threads ();
3913 /* Update the processor core that each lwp/thread was last seen
3917 /* Avoid accessing /proc if the thread hasn't run since we last
3918 time we fetched the thread's core. Accessing /proc becomes
3919 noticeably expensive when we have thousands of LWPs. */
3920 if (lwp->core == -1)
3921 lwp->core = linux_common_core_of_thread (lwp->ptid);
3926 linux_nat_target::pid_to_str (ptid_t ptid)
3928 static char buf[64];
3930 if (ptid_lwp_p (ptid)
3931 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3932 || num_lwps (ptid_get_pid (ptid)) > 1))
3934 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3938 return normal_pid_to_str (ptid);
3942 linux_nat_target::thread_name (struct thread_info *thr)
3944 return linux_proc_tid_get_name (thr->ptid);
3947 /* Accepts an integer PID; Returns a string representing a file that
3948 can be opened to get the symbols for the child process. */
3951 linux_nat_target::pid_to_exec_file (int pid)
3953 return linux_proc_pid_to_exec_file (pid);
3956 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3957 Because we can use a single read/write call, this can be much more
3958 efficient than banging away at PTRACE_PEEKTEXT. */
3960 static enum target_xfer_status
3961 linux_proc_xfer_partial (enum target_object object,
3962 const char *annex, gdb_byte *readbuf,
3963 const gdb_byte *writebuf,
3964 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3970 if (object != TARGET_OBJECT_MEMORY)
3971 return TARGET_XFER_EOF;
3973 /* Don't bother for one word. */
3974 if (len < 3 * sizeof (long))
3975 return TARGET_XFER_EOF;
3977 /* We could keep this file open and cache it - possibly one per
3978 thread. That requires some juggling, but is even faster. */
3979 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3980 ptid_get_lwp (inferior_ptid));
3981 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3984 return TARGET_XFER_EOF;
3986 /* Use pread64/pwrite64 if available, since they save a syscall and can
3987 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3988 debugging a SPARC64 application). */
3990 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3991 : pwrite64 (fd, writebuf, len, offset));
3993 ret = lseek (fd, offset, SEEK_SET);
3995 ret = (readbuf ? read (fd, readbuf, len)
3996 : write (fd, writebuf, len));
4001 if (ret == -1 || ret == 0)
4002 return TARGET_XFER_EOF;
4006 return TARGET_XFER_OK;
4011 /* Enumerate spufs IDs for process PID. */
4013 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4015 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4017 LONGEST written = 0;
4020 struct dirent *entry;
4022 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4023 dir = opendir (path);
4028 while ((entry = readdir (dir)) != NULL)
4034 fd = atoi (entry->d_name);
4038 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4039 if (stat (path, &st) != 0)
4041 if (!S_ISDIR (st.st_mode))
4044 if (statfs (path, &stfs) != 0)
4046 if (stfs.f_type != SPUFS_MAGIC)
4049 if (pos >= offset && pos + 4 <= offset + len)
4051 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4061 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4062 object type, using the /proc file system. */
4064 static enum target_xfer_status
4065 linux_proc_xfer_spu (enum target_object object,
4066 const char *annex, gdb_byte *readbuf,
4067 const gdb_byte *writebuf,
4068 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4073 int pid = ptid_get_lwp (inferior_ptid);
4078 return TARGET_XFER_E_IO;
4081 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4084 return TARGET_XFER_E_IO;
4086 return TARGET_XFER_EOF;
4089 *xfered_len = (ULONGEST) l;
4090 return TARGET_XFER_OK;
4095 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4096 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4098 return TARGET_XFER_E_IO;
4101 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4104 return TARGET_XFER_EOF;
4108 ret = write (fd, writebuf, (size_t) len);
4110 ret = read (fd, readbuf, (size_t) len);
4115 return TARGET_XFER_E_IO;
4117 return TARGET_XFER_EOF;
4120 *xfered_len = (ULONGEST) ret;
4121 return TARGET_XFER_OK;
4126 /* Parse LINE as a signal set and add its set bits to SIGS. */
4129 add_line_to_sigset (const char *line, sigset_t *sigs)
4131 int len = strlen (line) - 1;
4135 if (line[len] != '\n')
4136 error (_("Could not parse signal set: %s"), line);
4144 if (*p >= '0' && *p <= '9')
4146 else if (*p >= 'a' && *p <= 'f')
4147 digit = *p - 'a' + 10;
4149 error (_("Could not parse signal set: %s"), line);
4154 sigaddset (sigs, signum + 1);
4156 sigaddset (sigs, signum + 2);
4158 sigaddset (sigs, signum + 3);
4160 sigaddset (sigs, signum + 4);
4166 /* Find process PID's pending signals from /proc/pid/status and set
4170 linux_proc_pending_signals (int pid, sigset_t *pending,
4171 sigset_t *blocked, sigset_t *ignored)
4173 char buffer[PATH_MAX], fname[PATH_MAX];
4175 sigemptyset (pending);
4176 sigemptyset (blocked);
4177 sigemptyset (ignored);
4178 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4179 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4180 if (procfile == NULL)
4181 error (_("Could not open %s"), fname);
4183 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4185 /* Normal queued signals are on the SigPnd line in the status
4186 file. However, 2.6 kernels also have a "shared" pending
4187 queue for delivering signals to a thread group, so check for
4190 Unfortunately some Red Hat kernels include the shared pending
4191 queue but not the ShdPnd status field. */
4193 if (startswith (buffer, "SigPnd:\t"))
4194 add_line_to_sigset (buffer + 8, pending);
4195 else if (startswith (buffer, "ShdPnd:\t"))
4196 add_line_to_sigset (buffer + 8, pending);
4197 else if (startswith (buffer, "SigBlk:\t"))
4198 add_line_to_sigset (buffer + 8, blocked);
4199 else if (startswith (buffer, "SigIgn:\t"))
4200 add_line_to_sigset (buffer + 8, ignored);
4204 static enum target_xfer_status
4205 linux_nat_xfer_osdata (enum target_object object,
4206 const char *annex, gdb_byte *readbuf,
4207 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4208 ULONGEST *xfered_len)
4210 gdb_assert (object == TARGET_OBJECT_OSDATA);
4212 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4213 if (*xfered_len == 0)
4214 return TARGET_XFER_EOF;
4216 return TARGET_XFER_OK;
4220 cleanup_target_stop (void *arg)
4222 ptid_t *ptid = (ptid_t *) arg;
4224 gdb_assert (arg != NULL);
4227 target_continue_no_signal (*ptid);
4230 std::vector<static_tracepoint_marker>
4231 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4233 char s[IPA_CMD_BUF_SIZE];
4234 struct cleanup *old_chain;
4235 int pid = ptid_get_pid (inferior_ptid);
4236 std::vector<static_tracepoint_marker> markers;
4238 ptid_t ptid = ptid_build (pid, 0, 0);
4239 static_tracepoint_marker marker;
4244 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4245 s[sizeof ("qTfSTM")] = 0;
4247 agent_run_command (pid, s, strlen (s) + 1);
4249 old_chain = make_cleanup (cleanup_target_stop, &ptid);
4255 parse_static_tracepoint_marker_definition (p, &p, &marker);
4257 if (strid == NULL || marker.str_id == strid)
4258 markers.push_back (std::move (marker));
4260 while (*p++ == ','); /* comma-separated list */
4262 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4263 s[sizeof ("qTsSTM")] = 0;
4264 agent_run_command (pid, s, strlen (s) + 1);
4268 do_cleanups (old_chain);
4273 /* target_is_async_p implementation. */
4276 linux_nat_target::is_async_p ()
4278 return linux_is_async_p ();
4281 /* target_can_async_p implementation. */
4284 linux_nat_target::can_async_p ()
4286 /* We're always async, unless the user explicitly prevented it with the
4287 "maint set target-async" command. */
4288 return target_async_permitted;
4292 linux_nat_target::supports_non_stop ()
4297 /* to_always_non_stop_p implementation. */
4300 linux_nat_target::always_non_stop_p ()
4305 /* True if we want to support multi-process. To be removed when GDB
4306 supports multi-exec. */
4308 int linux_multi_process = 1;
4311 linux_nat_target::supports_multi_process ()
4313 return linux_multi_process;
4317 linux_nat_target::supports_disable_randomization ()
4319 #ifdef HAVE_PERSONALITY
4326 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4327 so we notice when any child changes state, and notify the
4328 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4329 above to wait for the arrival of a SIGCHLD. */
4332 sigchld_handler (int signo)
4334 int old_errno = errno;
4336 if (debug_linux_nat)
4337 ui_file_write_async_safe (gdb_stdlog,
4338 "sigchld\n", sizeof ("sigchld\n") - 1);
4340 if (signo == SIGCHLD
4341 && linux_nat_event_pipe[0] != -1)
4342 async_file_mark (); /* Let the event loop know that there are
4343 events to handle. */
4348 /* Callback registered with the target events file descriptor. */
4351 handle_target_event (int error, gdb_client_data client_data)
4353 inferior_event_handler (INF_REG_EVENT, NULL);
4356 /* Create/destroy the target events pipe. Returns previous state. */
4359 linux_async_pipe (int enable)
4361 int previous = linux_is_async_p ();
4363 if (previous != enable)
4367 /* Block child signals while we create/destroy the pipe, as
4368 their handler writes to it. */
4369 block_child_signals (&prev_mask);
4373 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4374 internal_error (__FILE__, __LINE__,
4375 "creating event pipe failed.");
4377 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4378 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4382 close (linux_nat_event_pipe[0]);
4383 close (linux_nat_event_pipe[1]);
4384 linux_nat_event_pipe[0] = -1;
4385 linux_nat_event_pipe[1] = -1;
4388 restore_child_signals_mask (&prev_mask);
4394 /* target_async implementation. */
4397 linux_nat_target::async (int enable)
4401 if (!linux_async_pipe (1))
4403 add_file_handler (linux_nat_event_pipe[0],
4404 handle_target_event, NULL);
4405 /* There may be pending events to handle. Tell the event loop
4412 delete_file_handler (linux_nat_event_pipe[0]);
4413 linux_async_pipe (0);
4418 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4422 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4426 if (debug_linux_nat)
4427 fprintf_unfiltered (gdb_stdlog,
4428 "LNSL: running -> suspending %s\n",
4429 target_pid_to_str (lwp->ptid));
4432 if (lwp->last_resume_kind == resume_stop)
4434 if (debug_linux_nat)
4435 fprintf_unfiltered (gdb_stdlog,
4436 "linux-nat: already stopping LWP %ld at "
4438 ptid_get_lwp (lwp->ptid));
4442 stop_callback (lwp, NULL);
4443 lwp->last_resume_kind = resume_stop;
4447 /* Already known to be stopped; do nothing. */
4449 if (debug_linux_nat)
4451 if (find_thread_ptid (lwp->ptid)->stop_requested)
4452 fprintf_unfiltered (gdb_stdlog,
4453 "LNSL: already stopped/stop_requested %s\n",
4454 target_pid_to_str (lwp->ptid));
4456 fprintf_unfiltered (gdb_stdlog,
4457 "LNSL: already stopped/no "
4458 "stop_requested yet %s\n",
4459 target_pid_to_str (lwp->ptid));
4466 linux_nat_target::stop (ptid_t ptid)
4468 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4472 linux_nat_target::close ()
4474 /* Unregister from the event loop. */
4478 inf_ptrace_target::close ();
4481 /* When requests are passed down from the linux-nat layer to the
4482 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4483 used. The address space pointer is stored in the inferior object,
4484 but the common code that is passed such ptid can't tell whether
4485 lwpid is a "main" process id or not (it assumes so). We reverse
4486 look up the "main" process id from the lwp here. */
4488 struct address_space *
4489 linux_nat_target::thread_address_space (ptid_t ptid)
4491 struct lwp_info *lwp;
4492 struct inferior *inf;
4495 if (ptid_get_lwp (ptid) == 0)
4497 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4499 lwp = find_lwp_pid (ptid);
4500 pid = ptid_get_pid (lwp->ptid);
4504 /* A (pid,lwpid,0) ptid. */
4505 pid = ptid_get_pid (ptid);
4508 inf = find_inferior_pid (pid);
4509 gdb_assert (inf != NULL);
4513 /* Return the cached value of the processor core for thread PTID. */
4516 linux_nat_target::core_of_thread (ptid_t ptid)
4518 struct lwp_info *info = find_lwp_pid (ptid);
4525 /* Implementation of to_filesystem_is_local. */
4528 linux_nat_target::filesystem_is_local ()
4530 struct inferior *inf = current_inferior ();
4532 if (inf->fake_pid_p || inf->pid == 0)
4535 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4538 /* Convert the INF argument passed to a to_fileio_* method
4539 to a process ID suitable for passing to its corresponding
4540 linux_mntns_* function. If INF is non-NULL then the
4541 caller is requesting the filesystem seen by INF. If INF
4542 is NULL then the caller is requesting the filesystem seen
4543 by the GDB. We fall back to GDB's filesystem in the case
4544 that INF is non-NULL but its PID is unknown. */
4547 linux_nat_fileio_pid_of (struct inferior *inf)
4549 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4555 /* Implementation of to_fileio_open. */
4558 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4559 int flags, int mode, int warn_if_slow,
4566 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4567 || fileio_to_host_mode (mode, &nat_mode) == -1)
4569 *target_errno = FILEIO_EINVAL;
4573 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4574 filename, nat_flags, nat_mode);
4576 *target_errno = host_to_fileio_error (errno);
4581 /* Implementation of to_fileio_readlink. */
4583 gdb::optional<std::string>
4584 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4590 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4591 filename, buf, sizeof (buf));
4594 *target_errno = host_to_fileio_error (errno);
4598 return std::string (buf, len);
4601 /* Implementation of to_fileio_unlink. */
4604 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4609 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4612 *target_errno = host_to_fileio_error (errno);
4617 /* Implementation of the to_thread_events method. */
4620 linux_nat_target::thread_events (int enable)
4622 report_thread_events = enable;
4625 linux_nat_target::linux_nat_target ()
4627 /* We don't change the stratum; this target will sit at
4628 process_stratum and thread_db will set at thread_stratum. This
4629 is a little strange, since this is a multi-threaded-capable
4630 target, but we want to be on the stack below thread_db, and we
4631 also want to be used for single-threaded processes. */
4634 /* See linux-nat.h. */
4637 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4641 pid = ptid_get_lwp (ptid);
4643 pid = ptid_get_pid (ptid);
4646 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4649 memset (siginfo, 0, sizeof (*siginfo));
4655 /* See nat/linux-nat.h. */
4658 current_lwp_ptid (void)
4660 gdb_assert (ptid_lwp_p (inferior_ptid));
4661 return inferior_ptid;
4665 _initialize_linux_nat (void)
4667 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4668 &debug_linux_nat, _("\
4669 Set debugging of GNU/Linux lwp module."), _("\
4670 Show debugging of GNU/Linux lwp module."), _("\
4671 Enables printf debugging output."),
4673 show_debug_linux_nat,
4674 &setdebuglist, &showdebuglist);
4676 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4677 &debug_linux_namespaces, _("\
4678 Set debugging of GNU/Linux namespaces module."), _("\
4679 Show debugging of GNU/Linux namespaces module."), _("\
4680 Enables printf debugging output."),
4683 &setdebuglist, &showdebuglist);
4685 /* Save this mask as the default. */
4686 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4688 /* Install a SIGCHLD handler. */
4689 sigchld_action.sa_handler = sigchld_handler;
4690 sigemptyset (&sigchld_action.sa_mask);
4691 sigchld_action.sa_flags = SA_RESTART;
4693 /* Make it the default. */
4694 sigaction (SIGCHLD, &sigchld_action, NULL);
4696 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4697 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4698 sigdelset (&suspend_mask, SIGCHLD);
4700 sigemptyset (&blocked_mask);
4702 lwp_lwpid_htab_create ();
4706 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4707 the GNU/Linux Threads library and therefore doesn't really belong
4710 /* Return the set of signals used by the threads library in *SET. */
4713 lin_thread_get_thread_signals (sigset_t *set)
4717 /* NPTL reserves the first two RT signals, but does not provide any
4718 way for the debugger to query the signal numbers - fortunately
4719 they don't change. */
4720 sigaddset (set, __SIGRTMIN);
4721 sigaddset (set, __SIGRTMIN + 1);