1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
50 #include "event-loop.h"
51 #include "event-top.h"
53 #include <sys/types.h>
55 #include "xml-support.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
62 #include "tracepoint.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
67 #include "nat/linux-namespaces.h"
71 #define SPUFS_MAGIC 0x23c9b64e
74 /* This comment documents high-level logic of this file.
76 Waiting for events in sync mode
77 ===============================
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
82 When waiting for an event in all threads, waitpid is not quite good:
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
93 The solution is to always use -1 and WNOHANG, together with
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
186 #define O_LARGEFILE 0
189 struct linux_nat_target *linux_target;
191 /* Does the current host support PTRACE_GETREGSET? */
192 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
194 static unsigned int debug_linux_nat;
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
203 struct simple_pid_list
207 struct simple_pid_list *next;
209 struct simple_pid_list *stopped_pids;
211 /* Whether target_thread_events is in effect. */
212 static int report_thread_events;
214 /* Async mode support. */
216 /* The read/write ends of the pipe registered as waitable file in the
218 static int linux_nat_event_pipe[2] = { -1, -1 };
220 /* True if we're currently in async mode. */
221 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
223 /* Flush the event pipe. */
226 async_file_flush (void)
233 ret = read (linux_nat_event_pipe[0], &buf, 1);
235 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 /* Put something (anything, doesn't matter what, or how much) in event
239 pipe, so that the select/poll in the event-loop realizes we have
240 something to process. */
243 async_file_mark (void)
247 /* It doesn't really matter what the pipe contains, as long we end
248 up with something in it. Might as well flush the previous
254 ret = write (linux_nat_event_pipe[1], "+", 1);
256 while (ret == -1 && errno == EINTR);
258 /* Ignore EAGAIN. If the pipe is full, the event loop will already
259 be awakened anyway. */
262 static int kill_lwp (int lwpid, int signo);
264 static int stop_callback (struct lwp_info *lp, void *data);
265 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
267 static void block_child_signals (sigset_t *prev_mask);
268 static void restore_child_signals_mask (sigset_t *prev_mask);
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void purge_lwp_list (int pid);
273 static void delete_lwp (ptid_t ptid);
274 static struct lwp_info *find_lwp_pid (ptid_t ptid);
276 static int lwp_status_pending_p (struct lwp_info *lp);
278 static void save_stop_reason (struct lwp_info *lp);
283 /* See nat/linux-nat.h. */
286 ptid_of_lwp (struct lwp_info *lwp)
291 /* See nat/linux-nat.h. */
294 lwp_set_arch_private_info (struct lwp_info *lwp,
295 struct arch_lwp_info *info)
297 lwp->arch_private = info;
300 /* See nat/linux-nat.h. */
302 struct arch_lwp_info *
303 lwp_arch_private_info (struct lwp_info *lwp)
305 return lwp->arch_private;
308 /* See nat/linux-nat.h. */
311 lwp_is_stopped (struct lwp_info *lwp)
316 /* See nat/linux-nat.h. */
318 enum target_stop_reason
319 lwp_stop_reason (struct lwp_info *lwp)
321 return lwp->stop_reason;
324 /* See nat/linux-nat.h. */
327 lwp_is_stepping (struct lwp_info *lwp)
333 /* Trivial list manipulation functions to keep track of a list of
334 new stopped processes. */
336 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
338 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
341 new_pid->status = status;
342 new_pid->next = *listp;
347 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
349 struct simple_pid_list **p;
351 for (p = listp; *p != NULL; p = &(*p)->next)
352 if ((*p)->pid == pid)
354 struct simple_pid_list *next = (*p)->next;
356 *statusp = (*p)->status;
364 /* Return the ptrace options that we want to try to enable. */
367 linux_nat_ptrace_options (int attached)
372 options |= PTRACE_O_EXITKILL;
374 options |= (PTRACE_O_TRACESYSGOOD
375 | PTRACE_O_TRACEVFORKDONE
376 | PTRACE_O_TRACEVFORK
378 | PTRACE_O_TRACEEXEC);
383 /* Initialize ptrace and procfs warnings and check for supported
384 ptrace features given PID.
386 ATTACHED should be nonzero iff we attached to the inferior. */
389 linux_init_ptrace_procfs (pid_t pid, int attached)
391 int options = linux_nat_ptrace_options (attached);
393 linux_enable_event_reporting (pid, options);
394 linux_ptrace_init_warnings ();
395 linux_proc_init_warnings ();
398 linux_nat_target::~linux_nat_target ()
402 linux_nat_target::post_attach (int pid)
404 linux_init_ptrace_procfs (pid, 1);
408 linux_nat_target::post_startup_inferior (ptid_t ptid)
410 linux_init_ptrace_procfs (ptid.pid (), 0);
413 /* Return the number of known LWPs in the tgid given by PID. */
421 for (lp = lwp_list; lp; lp = lp->next)
422 if (lp->ptid.pid () == pid)
428 /* Call delete_lwp with prototype compatible for make_cleanup. */
431 delete_lwp_cleanup (void *lp_voidp)
433 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
435 delete_lwp (lp->ptid);
438 /* Target hook for follow_fork. On entry inferior_ptid must be the
439 ptid of the followed inferior. At return, inferior_ptid will be
443 linux_nat_target::follow_fork (int follow_child, int detach_fork)
447 struct lwp_info *child_lp = NULL;
449 ptid_t parent_ptid, child_ptid;
450 int parent_pid, child_pid;
452 has_vforked = (inferior_thread ()->pending_follow.kind
453 == TARGET_WAITKIND_VFORKED);
454 parent_ptid = inferior_ptid;
455 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
456 parent_pid = parent_ptid.lwp ();
457 child_pid = child_ptid.lwp ();
459 /* We're already attached to the parent, by default. */
460 child_lp = add_lwp (child_ptid);
461 child_lp->stopped = 1;
462 child_lp->last_resume_kind = resume_stop;
464 /* Detach new forked process? */
467 int child_stop_signal = 0;
468 bool detach_child = true;
469 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
472 linux_target->low_prepare_to_resume (child_lp);
474 /* When debugging an inferior in an architecture that supports
475 hardware single stepping on a kernel without commit
476 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
477 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
478 set if the parent process had them set.
479 To work around this, single step the child process
480 once before detaching to clear the flags. */
482 /* Note that we consult the parent's architecture instead of
483 the child's because there's no inferior for the child at
485 if (!gdbarch_software_single_step_p (target_thread_architecture
490 linux_disable_event_reporting (child_pid);
491 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
492 perror_with_name (_("Couldn't do single step"));
493 if (my_waitpid (child_pid, &status, 0) < 0)
494 perror_with_name (_("Couldn't wait vfork process"));
497 detach_child = WIFSTOPPED (status);
498 child_stop_signal = WSTOPSIG (status);
504 int signo = child_stop_signal;
507 && !signal_pass_state (gdb_signal_from_host (signo)))
509 ptrace (PTRACE_DETACH, child_pid, 0, signo);
512 do_cleanups (old_chain);
516 scoped_restore save_inferior_ptid
517 = make_scoped_restore (&inferior_ptid);
518 inferior_ptid = child_ptid;
520 /* Let the thread_db layer learn about this new process. */
521 check_for_thread_db ();
526 struct lwp_info *parent_lp;
528 parent_lp = find_lwp_pid (parent_ptid);
529 gdb_assert (linux_supports_tracefork () >= 0);
531 if (linux_supports_tracevforkdone ())
534 fprintf_unfiltered (gdb_stdlog,
535 "LCFF: waiting for VFORK_DONE on %d\n",
537 parent_lp->stopped = 1;
539 /* We'll handle the VFORK_DONE event like any other
540 event, in target_wait. */
544 /* We can't insert breakpoints until the child has
545 finished with the shared memory region. We need to
546 wait until that happens. Ideal would be to just
548 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
549 - waitpid (parent_pid, &status, __WALL);
550 However, most architectures can't handle a syscall
551 being traced on the way out if it wasn't traced on
554 We might also think to loop, continuing the child
555 until it exits or gets a SIGTRAP. One problem is
556 that the child might call ptrace with PTRACE_TRACEME.
558 There's no simple and reliable way to figure out when
559 the vforked child will be done with its copy of the
560 shared memory. We could step it out of the syscall,
561 two instructions, let it go, and then single-step the
562 parent once. When we have hardware single-step, this
563 would work; with software single-step it could still
564 be made to work but we'd have to be able to insert
565 single-step breakpoints in the child, and we'd have
566 to insert -just- the single-step breakpoint in the
567 parent. Very awkward.
569 In the end, the best we can do is to make sure it
570 runs for a little while. Hopefully it will be out of
571 range of any breakpoints we reinsert. Usually this
572 is only the single-step breakpoint at vfork's return
576 fprintf_unfiltered (gdb_stdlog,
577 "LCFF: no VFORK_DONE "
578 "support, sleeping a bit\n");
582 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
583 and leave it pending. The next linux_nat_resume call
584 will notice a pending event, and bypasses actually
585 resuming the inferior. */
586 parent_lp->status = 0;
587 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
588 parent_lp->stopped = 1;
590 /* If we're in async mode, need to tell the event loop
591 there's something here to process. */
592 if (target_is_async_p ())
599 struct lwp_info *child_lp;
601 child_lp = add_lwp (inferior_ptid);
602 child_lp->stopped = 1;
603 child_lp->last_resume_kind = resume_stop;
605 /* Let the thread_db layer learn about this new process. */
606 check_for_thread_db ();
614 linux_nat_target::insert_fork_catchpoint (int pid)
616 return !linux_supports_tracefork ();
620 linux_nat_target::remove_fork_catchpoint (int pid)
626 linux_nat_target::insert_vfork_catchpoint (int pid)
628 return !linux_supports_tracefork ();
632 linux_nat_target::remove_vfork_catchpoint (int pid)
638 linux_nat_target::insert_exec_catchpoint (int pid)
640 return !linux_supports_tracefork ();
644 linux_nat_target::remove_exec_catchpoint (int pid)
650 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
651 gdb::array_view<const int> syscall_counts)
653 if (!linux_supports_tracesysgood ())
656 /* On GNU/Linux, we ignore the arguments. It means that we only
657 enable the syscall catchpoints, but do not disable them.
659 Also, we do not use the `syscall_counts' information because we do not
660 filter system calls here. We let GDB do the logic for us. */
664 /* List of known LWPs, keyed by LWP PID. This speeds up the common
665 case of mapping a PID returned from the kernel to our corresponding
666 lwp_info data structure. */
667 static htab_t lwp_lwpid_htab;
669 /* Calculate a hash from a lwp_info's LWP PID. */
672 lwp_info_hash (const void *ap)
674 const struct lwp_info *lp = (struct lwp_info *) ap;
675 pid_t pid = lp->ptid.lwp ();
677 return iterative_hash_object (pid, 0);
680 /* Equality function for the lwp_info hash table. Compares the LWP's
684 lwp_lwpid_htab_eq (const void *a, const void *b)
686 const struct lwp_info *entry = (const struct lwp_info *) a;
687 const struct lwp_info *element = (const struct lwp_info *) b;
689 return entry->ptid.lwp () == element->ptid.lwp ();
692 /* Create the lwp_lwpid_htab hash table. */
695 lwp_lwpid_htab_create (void)
697 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
700 /* Add LP to the hash table. */
703 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
707 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
708 gdb_assert (slot != NULL && *slot == NULL);
712 /* Head of doubly-linked list of known LWPs. Sorted by reverse
713 creation order. This order is assumed in some cases. E.g.,
714 reaping status after killing alls lwps of a process: the leader LWP
715 must be reaped last. */
716 struct lwp_info *lwp_list;
718 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
721 lwp_list_add (struct lwp_info *lp)
724 if (lwp_list != NULL)
729 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
733 lwp_list_remove (struct lwp_info *lp)
735 /* Remove from sorted-by-creation-order list. */
736 if (lp->next != NULL)
737 lp->next->prev = lp->prev;
738 if (lp->prev != NULL)
739 lp->prev->next = lp->next;
746 /* Original signal mask. */
747 static sigset_t normal_mask;
749 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
750 _initialize_linux_nat. */
751 static sigset_t suspend_mask;
753 /* Signals to block to make that sigsuspend work. */
754 static sigset_t blocked_mask;
756 /* SIGCHLD action. */
757 struct sigaction sigchld_action;
759 /* Block child signals (SIGCHLD and linux threads signals), and store
760 the previous mask in PREV_MASK. */
763 block_child_signals (sigset_t *prev_mask)
765 /* Make sure SIGCHLD is blocked. */
766 if (!sigismember (&blocked_mask, SIGCHLD))
767 sigaddset (&blocked_mask, SIGCHLD);
769 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
772 /* Restore child signals mask, previously returned by
773 block_child_signals. */
776 restore_child_signals_mask (sigset_t *prev_mask)
778 sigprocmask (SIG_SETMASK, prev_mask, NULL);
781 /* Mask of signals to pass directly to the inferior. */
782 static sigset_t pass_mask;
784 /* Update signals to pass to the inferior. */
786 linux_nat_target::pass_signals (int numsigs, unsigned char *pass_signals)
790 sigemptyset (&pass_mask);
792 for (signo = 1; signo < NSIG; signo++)
794 int target_signo = gdb_signal_from_host (signo);
795 if (target_signo < numsigs && pass_signals[target_signo])
796 sigaddset (&pass_mask, signo);
802 /* Prototypes for local functions. */
803 static int stop_wait_callback (struct lwp_info *lp, void *data);
804 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
805 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
809 /* Destroy and free LP. */
812 lwp_free (struct lwp_info *lp)
814 /* Let the arch specific bits release arch_lwp_info. */
815 linux_target->low_delete_thread (lp->arch_private);
820 /* Traversal function for purge_lwp_list. */
823 lwp_lwpid_htab_remove_pid (void **slot, void *info)
825 struct lwp_info *lp = (struct lwp_info *) *slot;
826 int pid = *(int *) info;
828 if (lp->ptid.pid () == pid)
830 htab_clear_slot (lwp_lwpid_htab, slot);
831 lwp_list_remove (lp);
838 /* Remove all LWPs belong to PID from the lwp list. */
841 purge_lwp_list (int pid)
843 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
846 /* Add the LWP specified by PTID to the list. PTID is the first LWP
847 in the process. Return a pointer to the structure describing the
850 This differs from add_lwp in that we don't let the arch specific
851 bits know about this new thread. Current clients of this callback
852 take the opportunity to install watchpoints in the new thread, and
853 we shouldn't do that for the first thread. If we're spawning a
854 child ("run"), the thread executes the shell wrapper first, and we
855 shouldn't touch it until it execs the program we want to debug.
856 For "attach", it'd be okay to call the callback, but it's not
857 necessary, because watchpoints can't yet have been inserted into
860 static struct lwp_info *
861 add_initial_lwp (ptid_t ptid)
865 gdb_assert (ptid.lwp_p ());
867 lp = XNEW (struct lwp_info);
869 memset (lp, 0, sizeof (struct lwp_info));
871 lp->last_resume_kind = resume_continue;
872 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
877 /* Add to sorted-by-reverse-creation-order list. */
880 /* Add to keyed-by-pid htab. */
881 lwp_lwpid_htab_add_lwp (lp);
886 /* Add the LWP specified by PID to the list. Return a pointer to the
887 structure describing the new LWP. The LWP should already be
890 static struct lwp_info *
891 add_lwp (ptid_t ptid)
895 lp = add_initial_lwp (ptid);
897 /* Let the arch specific bits know about this new thread. Current
898 clients of this callback take the opportunity to install
899 watchpoints in the new thread. We don't do this for the first
900 thread though. See add_initial_lwp. */
901 linux_target->low_new_thread (lp);
906 /* Remove the LWP specified by PID from the list. */
909 delete_lwp (ptid_t ptid)
913 struct lwp_info dummy;
916 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
920 lp = *(struct lwp_info **) slot;
921 gdb_assert (lp != NULL);
923 htab_clear_slot (lwp_lwpid_htab, slot);
925 /* Remove from sorted-by-creation-order list. */
926 lwp_list_remove (lp);
932 /* Return a pointer to the structure describing the LWP corresponding
933 to PID. If no corresponding LWP could be found, return NULL. */
935 static struct lwp_info *
936 find_lwp_pid (ptid_t ptid)
940 struct lwp_info dummy;
947 dummy.ptid = ptid_t (0, lwp, 0);
948 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
952 /* See nat/linux-nat.h. */
955 iterate_over_lwps (ptid_t filter,
956 iterate_over_lwps_ftype callback,
959 struct lwp_info *lp, *lpnext;
961 for (lp = lwp_list; lp; lp = lpnext)
965 if (lp->ptid.matches (filter))
967 if ((*callback) (lp, data) != 0)
975 /* Update our internal state when changing from one checkpoint to
976 another indicated by NEW_PTID. We can only switch single-threaded
977 applications, so we only create one new LWP, and the previous list
981 linux_nat_switch_fork (ptid_t new_ptid)
985 purge_lwp_list (inferior_ptid.pid ());
987 lp = add_lwp (new_ptid);
990 /* This changes the thread's ptid while preserving the gdb thread
991 num. Also changes the inferior pid, while preserving the
993 thread_change_ptid (inferior_ptid, new_ptid);
995 /* We've just told GDB core that the thread changed target id, but,
996 in fact, it really is a different thread, with different register
998 registers_changed ();
1001 /* Handle the exit of a single thread LP. */
1004 exit_lwp (struct lwp_info *lp)
1006 struct thread_info *th = find_thread_ptid (lp->ptid);
1010 if (print_thread_events)
1011 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1016 delete_lwp (lp->ptid);
1019 /* Wait for the LWP specified by LP, which we have just attached to.
1020 Returns a wait status for that LWP, to cache. */
1023 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1025 pid_t new_pid, pid = ptid.lwp ();
1028 if (linux_proc_pid_is_stopped (pid))
1030 if (debug_linux_nat)
1031 fprintf_unfiltered (gdb_stdlog,
1032 "LNPAW: Attaching to a stopped process\n");
1034 /* The process is definitely stopped. It is in a job control
1035 stop, unless the kernel predates the TASK_STOPPED /
1036 TASK_TRACED distinction, in which case it might be in a
1037 ptrace stop. Make sure it is in a ptrace stop; from there we
1038 can kill it, signal it, et cetera.
1040 First make sure there is a pending SIGSTOP. Since we are
1041 already attached, the process can not transition from stopped
1042 to running without a PTRACE_CONT; so we know this signal will
1043 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1044 probably already in the queue (unless this kernel is old
1045 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1046 is not an RT signal, it can only be queued once. */
1047 kill_lwp (pid, SIGSTOP);
1049 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1050 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1051 ptrace (PTRACE_CONT, pid, 0, 0);
1054 /* Make sure the initial process is stopped. The user-level threads
1055 layer might want to poke around in the inferior, and that won't
1056 work if things haven't stabilized yet. */
1057 new_pid = my_waitpid (pid, &status, __WALL);
1058 gdb_assert (pid == new_pid);
1060 if (!WIFSTOPPED (status))
1062 /* The pid we tried to attach has apparently just exited. */
1063 if (debug_linux_nat)
1064 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1065 pid, status_to_str (status));
1069 if (WSTOPSIG (status) != SIGSTOP)
1072 if (debug_linux_nat)
1073 fprintf_unfiltered (gdb_stdlog,
1074 "LNPAW: Received %s after attaching\n",
1075 status_to_str (status));
1082 linux_nat_target::create_inferior (const char *exec_file,
1083 const std::string &allargs,
1084 char **env, int from_tty)
1086 maybe_disable_address_space_randomization restore_personality
1087 (disable_randomization);
1089 /* The fork_child mechanism is synchronous and calls target_wait, so
1090 we have to mask the async mode. */
1092 /* Make sure we report all signals during startup. */
1093 pass_signals (0, NULL);
1095 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1098 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1099 already attached. Returns true if a new LWP is found, false
1103 attach_proc_task_lwp_callback (ptid_t ptid)
1105 struct lwp_info *lp;
1107 /* Ignore LWPs we're already attached to. */
1108 lp = find_lwp_pid (ptid);
1111 int lwpid = ptid.lwp ();
1113 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1117 /* Be quiet if we simply raced with the thread exiting.
1118 EPERM is returned if the thread's task still exists, and
1119 is marked as exited or zombie, as well as other
1120 conditions, so in that case, confirm the status in
1121 /proc/PID/status. */
1123 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1125 if (debug_linux_nat)
1127 fprintf_unfiltered (gdb_stdlog,
1128 "Cannot attach to lwp %d: "
1129 "thread is gone (%d: %s)\n",
1130 lwpid, err, safe_strerror (err));
1136 = linux_ptrace_attach_fail_reason_string (ptid, err);
1138 warning (_("Cannot attach to lwp %d: %s"),
1139 lwpid, reason.c_str ());
1144 if (debug_linux_nat)
1145 fprintf_unfiltered (gdb_stdlog,
1146 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1147 target_pid_to_str (ptid));
1149 lp = add_lwp (ptid);
1151 /* The next time we wait for this LWP we'll see a SIGSTOP as
1152 PTRACE_ATTACH brings it to a halt. */
1155 /* We need to wait for a stop before being able to make the
1156 next ptrace call on this LWP. */
1157 lp->must_set_ptrace_flags = 1;
1159 /* So that wait collects the SIGSTOP. */
1162 /* Also add the LWP to gdb's thread list, in case a
1163 matching libthread_db is not found (or the process uses
1165 add_thread (lp->ptid);
1166 set_running (lp->ptid, 1);
1167 set_executing (lp->ptid, 1);
1176 linux_nat_target::attach (const char *args, int from_tty)
1178 struct lwp_info *lp;
1182 /* Make sure we report all signals during attach. */
1183 pass_signals (0, NULL);
1187 inf_ptrace_target::attach (args, from_tty);
1189 CATCH (ex, RETURN_MASK_ERROR)
1191 pid_t pid = parse_pid_to_attach (args);
1192 std::string reason = linux_ptrace_attach_fail_reason (pid);
1194 if (!reason.empty ())
1195 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message);
1197 throw_error (ex.error, "%s", ex.message);
1201 /* The ptrace base target adds the main thread with (pid,0,0)
1202 format. Decorate it with lwp info. */
1203 ptid = ptid_t (inferior_ptid.pid (),
1204 inferior_ptid.pid (),
1206 thread_change_ptid (inferior_ptid, ptid);
1208 /* Add the initial process as the first LWP to the list. */
1209 lp = add_initial_lwp (ptid);
1211 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1212 if (!WIFSTOPPED (status))
1214 if (WIFEXITED (status))
1216 int exit_code = WEXITSTATUS (status);
1218 target_terminal::ours ();
1219 target_mourn_inferior (inferior_ptid);
1221 error (_("Unable to attach: program exited normally."));
1223 error (_("Unable to attach: program exited with code %d."),
1226 else if (WIFSIGNALED (status))
1228 enum gdb_signal signo;
1230 target_terminal::ours ();
1231 target_mourn_inferior (inferior_ptid);
1233 signo = gdb_signal_from_host (WTERMSIG (status));
1234 error (_("Unable to attach: program terminated with signal "
1236 gdb_signal_to_name (signo),
1237 gdb_signal_to_string (signo));
1240 internal_error (__FILE__, __LINE__,
1241 _("unexpected status %d for PID %ld"),
1242 status, (long) ptid.lwp ());
1247 /* Save the wait status to report later. */
1249 if (debug_linux_nat)
1250 fprintf_unfiltered (gdb_stdlog,
1251 "LNA: waitpid %ld, saving status %s\n",
1252 (long) lp->ptid.pid (), status_to_str (status));
1254 lp->status = status;
1256 /* We must attach to every LWP. If /proc is mounted, use that to
1257 find them now. The inferior may be using raw clone instead of
1258 using pthreads. But even if it is using pthreads, thread_db
1259 walks structures in the inferior's address space to find the list
1260 of threads/LWPs, and those structures may well be corrupted.
1261 Note that once thread_db is loaded, we'll still use it to list
1262 threads and associate pthread info with each LWP. */
1263 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1264 attach_proc_task_lwp_callback);
1266 if (target_can_async_p ())
1270 /* Get pending signal of THREAD as a host signal number, for detaching
1271 purposes. This is the signal the thread last stopped for, which we
1272 need to deliver to the thread when detaching, otherwise, it'd be
1276 get_detach_signal (struct lwp_info *lp)
1278 enum gdb_signal signo = GDB_SIGNAL_0;
1280 /* If we paused threads momentarily, we may have stored pending
1281 events in lp->status or lp->waitstatus (see stop_wait_callback),
1282 and GDB core hasn't seen any signal for those threads.
1283 Otherwise, the last signal reported to the core is found in the
1284 thread object's stop_signal.
1286 There's a corner case that isn't handled here at present. Only
1287 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1288 stop_signal make sense as a real signal to pass to the inferior.
1289 Some catchpoint related events, like
1290 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1291 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1292 those traps are debug API (ptrace in our case) related and
1293 induced; the inferior wouldn't see them if it wasn't being
1294 traced. Hence, we should never pass them to the inferior, even
1295 when set to pass state. Since this corner case isn't handled by
1296 infrun.c when proceeding with a signal, for consistency, neither
1297 do we handle it here (or elsewhere in the file we check for
1298 signal pass state). Normally SIGTRAP isn't set to pass state, so
1299 this is really a corner case. */
1301 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1302 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1303 else if (lp->status)
1304 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1307 struct thread_info *tp = find_thread_ptid (lp->ptid);
1309 if (target_is_non_stop_p () && !tp->executing)
1311 if (tp->suspend.waitstatus_pending_p)
1312 signo = tp->suspend.waitstatus.value.sig;
1314 signo = tp->suspend.stop_signal;
1316 else if (!target_is_non_stop_p ())
1318 struct target_waitstatus last;
1321 get_last_target_status (&last_ptid, &last);
1323 if (lp->ptid.lwp () == last_ptid.lwp ())
1324 signo = tp->suspend.stop_signal;
1328 if (signo == GDB_SIGNAL_0)
1330 if (debug_linux_nat)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "GPT: lwp %s has no pending signal\n",
1333 target_pid_to_str (lp->ptid));
1335 else if (!signal_pass_state (signo))
1337 if (debug_linux_nat)
1338 fprintf_unfiltered (gdb_stdlog,
1339 "GPT: lwp %s had signal %s, "
1340 "but it is in no pass state\n",
1341 target_pid_to_str (lp->ptid),
1342 gdb_signal_to_string (signo));
1346 if (debug_linux_nat)
1347 fprintf_unfiltered (gdb_stdlog,
1348 "GPT: lwp %s has pending signal %s\n",
1349 target_pid_to_str (lp->ptid),
1350 gdb_signal_to_string (signo));
1352 return gdb_signal_to_host (signo);
1358 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1359 signal number that should be passed to the LWP when detaching.
1360 Otherwise pass any pending signal the LWP may have, if any. */
1363 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1365 int lwpid = lp->ptid.lwp ();
1368 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1370 if (debug_linux_nat && lp->status)
1371 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1372 strsignal (WSTOPSIG (lp->status)),
1373 target_pid_to_str (lp->ptid));
1375 /* If there is a pending SIGSTOP, get rid of it. */
1378 if (debug_linux_nat)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "DC: Sending SIGCONT to %s\n",
1381 target_pid_to_str (lp->ptid));
1383 kill_lwp (lwpid, SIGCONT);
1387 if (signo_p == NULL)
1389 /* Pass on any pending signal for this LWP. */
1390 signo = get_detach_signal (lp);
1395 /* Preparing to resume may try to write registers, and fail if the
1396 lwp is zombie. If that happens, ignore the error. We'll handle
1397 it below, when detach fails with ESRCH. */
1400 linux_target->low_prepare_to_resume (lp);
1402 CATCH (ex, RETURN_MASK_ERROR)
1404 if (!check_ptrace_stopped_lwp_gone (lp))
1405 throw_exception (ex);
1409 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1411 int save_errno = errno;
1413 /* We know the thread exists, so ESRCH must mean the lwp is
1414 zombie. This can happen if one of the already-detached
1415 threads exits the whole thread group. In that case we're
1416 still attached, and must reap the lwp. */
1417 if (save_errno == ESRCH)
1421 ret = my_waitpid (lwpid, &status, __WALL);
1424 warning (_("Couldn't reap LWP %d while detaching: %s"),
1425 lwpid, strerror (errno));
1427 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1429 warning (_("Reaping LWP %d while detaching "
1430 "returned unexpected status 0x%x"),
1436 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1437 safe_strerror (save_errno));
1440 else if (debug_linux_nat)
1442 fprintf_unfiltered (gdb_stdlog,
1443 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1444 target_pid_to_str (lp->ptid),
1448 delete_lwp (lp->ptid);
1452 detach_callback (struct lwp_info *lp, void *data)
1454 /* We don't actually detach from the thread group leader just yet.
1455 If the thread group exits, we must reap the zombie clone lwps
1456 before we're able to reap the leader. */
1457 if (lp->ptid.lwp () != lp->ptid.pid ())
1458 detach_one_lwp (lp, NULL);
1463 linux_nat_target::detach (inferior *inf, int from_tty)
1465 struct lwp_info *main_lwp;
1468 /* Don't unregister from the event loop, as there may be other
1469 inferiors running. */
1471 /* Stop all threads before detaching. ptrace requires that the
1472 thread is stopped to sucessfully detach. */
1473 iterate_over_lwps (ptid_t (pid), stop_callback, NULL);
1474 /* ... and wait until all of them have reported back that
1475 they're no longer running. */
1476 iterate_over_lwps (ptid_t (pid), stop_wait_callback, NULL);
1478 iterate_over_lwps (ptid_t (pid), detach_callback, NULL);
1480 /* Only the initial process should be left right now. */
1481 gdb_assert (num_lwps (pid) == 1);
1483 main_lwp = find_lwp_pid (ptid_t (pid));
1485 if (forks_exist_p ())
1487 /* Multi-fork case. The current inferior_ptid is being detached
1488 from, but there are other viable forks to debug. Detach from
1489 the current fork, and context-switch to the first
1491 linux_fork_detach (from_tty);
1495 target_announce_detach (from_tty);
1497 /* Pass on any pending signal for the last LWP. */
1498 int signo = get_detach_signal (main_lwp);
1500 detach_one_lwp (main_lwp, &signo);
1502 detach_success (inf);
1506 /* Resume execution of the inferior process. If STEP is nonzero,
1507 single-step it. If SIGNAL is nonzero, give it that signal. */
1510 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1511 enum gdb_signal signo)
1515 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1516 We only presently need that if the LWP is stepped though (to
1517 handle the case of stepping a breakpoint instruction). */
1520 struct regcache *regcache = get_thread_regcache (lp->ptid);
1522 lp->stop_pc = regcache_read_pc (regcache);
1527 linux_target->low_prepare_to_resume (lp);
1528 linux_target->low_resume (lp->ptid, step, signo);
1530 /* Successfully resumed. Clear state that no longer makes sense,
1531 and mark the LWP as running. Must not do this before resuming
1532 otherwise if that fails other code will be confused. E.g., we'd
1533 later try to stop the LWP and hang forever waiting for a stop
1534 status. Note that we must not throw after this is cleared,
1535 otherwise handle_zombie_lwp_error would get confused. */
1538 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1539 registers_changed_ptid (lp->ptid);
1542 /* Called when we try to resume a stopped LWP and that errors out. If
1543 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1544 or about to become), discard the error, clear any pending status
1545 the LWP may have, and return true (we'll collect the exit status
1546 soon enough). Otherwise, return false. */
1549 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1551 /* If we get an error after resuming the LWP successfully, we'd
1552 confuse !T state for the LWP being gone. */
1553 gdb_assert (lp->stopped);
1555 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1556 because even if ptrace failed with ESRCH, the tracee may be "not
1557 yet fully dead", but already refusing ptrace requests. In that
1558 case the tracee has 'R (Running)' state for a little bit
1559 (observed in Linux 3.18). See also the note on ESRCH in the
1560 ptrace(2) man page. Instead, check whether the LWP has any state
1561 other than ptrace-stopped. */
1563 /* Don't assume anything if /proc/PID/status can't be read. */
1564 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1566 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1568 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1574 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1575 disappears while we try to resume it. */
1578 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1582 linux_resume_one_lwp_throw (lp, step, signo);
1584 CATCH (ex, RETURN_MASK_ERROR)
1586 if (!check_ptrace_stopped_lwp_gone (lp))
1587 throw_exception (ex);
1595 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1599 struct inferior *inf = find_inferior_ptid (lp->ptid);
1601 if (inf->vfork_child != NULL)
1603 if (debug_linux_nat)
1604 fprintf_unfiltered (gdb_stdlog,
1605 "RC: Not resuming %s (vfork parent)\n",
1606 target_pid_to_str (lp->ptid));
1608 else if (!lwp_status_pending_p (lp))
1610 if (debug_linux_nat)
1611 fprintf_unfiltered (gdb_stdlog,
1612 "RC: Resuming sibling %s, %s, %s\n",
1613 target_pid_to_str (lp->ptid),
1614 (signo != GDB_SIGNAL_0
1615 ? strsignal (gdb_signal_to_host (signo))
1617 step ? "step" : "resume");
1619 linux_resume_one_lwp (lp, step, signo);
1623 if (debug_linux_nat)
1624 fprintf_unfiltered (gdb_stdlog,
1625 "RC: Not resuming sibling %s (has pending)\n",
1626 target_pid_to_str (lp->ptid));
1631 if (debug_linux_nat)
1632 fprintf_unfiltered (gdb_stdlog,
1633 "RC: Not resuming sibling %s (not stopped)\n",
1634 target_pid_to_str (lp->ptid));
1638 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1639 Resume LWP with the last stop signal, if it is in pass state. */
1642 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1644 enum gdb_signal signo = GDB_SIGNAL_0;
1651 struct thread_info *thread;
1653 thread = find_thread_ptid (lp->ptid);
1656 signo = thread->suspend.stop_signal;
1657 thread->suspend.stop_signal = GDB_SIGNAL_0;
1661 resume_lwp (lp, 0, signo);
1666 resume_clear_callback (struct lwp_info *lp, void *data)
1669 lp->last_resume_kind = resume_stop;
1674 resume_set_callback (struct lwp_info *lp, void *data)
1677 lp->last_resume_kind = resume_continue;
1682 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1684 struct lwp_info *lp;
1687 if (debug_linux_nat)
1688 fprintf_unfiltered (gdb_stdlog,
1689 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1690 step ? "step" : "resume",
1691 target_pid_to_str (ptid),
1692 (signo != GDB_SIGNAL_0
1693 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1694 target_pid_to_str (inferior_ptid));
1696 /* A specific PTID means `step only this process id'. */
1697 resume_many = (minus_one_ptid == ptid
1700 /* Mark the lwps we're resuming as resumed. */
1701 iterate_over_lwps (ptid, resume_set_callback, NULL);
1703 /* See if it's the current inferior that should be handled
1706 lp = find_lwp_pid (inferior_ptid);
1708 lp = find_lwp_pid (ptid);
1709 gdb_assert (lp != NULL);
1711 /* Remember if we're stepping. */
1712 lp->last_resume_kind = step ? resume_step : resume_continue;
1714 /* If we have a pending wait status for this thread, there is no
1715 point in resuming the process. But first make sure that
1716 linux_nat_wait won't preemptively handle the event - we
1717 should never take this short-circuit if we are going to
1718 leave LP running, since we have skipped resuming all the
1719 other threads. This bit of code needs to be synchronized
1720 with linux_nat_wait. */
1722 if (lp->status && WIFSTOPPED (lp->status))
1725 && WSTOPSIG (lp->status)
1726 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1728 if (debug_linux_nat)
1729 fprintf_unfiltered (gdb_stdlog,
1730 "LLR: Not short circuiting for ignored "
1731 "status 0x%x\n", lp->status);
1733 /* FIXME: What should we do if we are supposed to continue
1734 this thread with a signal? */
1735 gdb_assert (signo == GDB_SIGNAL_0);
1736 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1741 if (lwp_status_pending_p (lp))
1743 /* FIXME: What should we do if we are supposed to continue
1744 this thread with a signal? */
1745 gdb_assert (signo == GDB_SIGNAL_0);
1747 if (debug_linux_nat)
1748 fprintf_unfiltered (gdb_stdlog,
1749 "LLR: Short circuiting for status 0x%x\n",
1752 if (target_can_async_p ())
1755 /* Tell the event loop we have something to process. */
1762 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1764 if (debug_linux_nat)
1765 fprintf_unfiltered (gdb_stdlog,
1766 "LLR: %s %s, %s (resume event thread)\n",
1767 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1768 target_pid_to_str (lp->ptid),
1769 (signo != GDB_SIGNAL_0
1770 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1772 linux_resume_one_lwp (lp, step, signo);
1774 if (target_can_async_p ())
1778 /* Send a signal to an LWP. */
1781 kill_lwp (int lwpid, int signo)
1786 ret = syscall (__NR_tkill, lwpid, signo);
1787 if (errno == ENOSYS)
1789 /* If tkill fails, then we are not using nptl threads, a
1790 configuration we no longer support. */
1791 perror_with_name (("tkill"));
1796 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1797 event, check if the core is interested in it: if not, ignore the
1798 event, and keep waiting; otherwise, we need to toggle the LWP's
1799 syscall entry/exit status, since the ptrace event itself doesn't
1800 indicate it, and report the trap to higher layers. */
1803 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1805 struct target_waitstatus *ourstatus = &lp->waitstatus;
1806 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1807 thread_info *thread = find_thread_ptid (lp->ptid);
1808 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1812 /* If we're stopping threads, there's a SIGSTOP pending, which
1813 makes it so that the LWP reports an immediate syscall return,
1814 followed by the SIGSTOP. Skip seeing that "return" using
1815 PTRACE_CONT directly, and let stop_wait_callback collect the
1816 SIGSTOP. Later when the thread is resumed, a new syscall
1817 entry event. If we didn't do this (and returned 0), we'd
1818 leave a syscall entry pending, and our caller, by using
1819 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1820 itself. Later, when the user re-resumes this LWP, we'd see
1821 another syscall entry event and we'd mistake it for a return.
1823 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1824 (leaving immediately with LWP->signalled set, without issuing
1825 a PTRACE_CONT), it would still be problematic to leave this
1826 syscall enter pending, as later when the thread is resumed,
1827 it would then see the same syscall exit mentioned above,
1828 followed by the delayed SIGSTOP, while the syscall didn't
1829 actually get to execute. It seems it would be even more
1830 confusing to the user. */
1832 if (debug_linux_nat)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "LHST: ignoring syscall %d "
1835 "for LWP %ld (stopping threads), "
1836 "resuming with PTRACE_CONT for SIGSTOP\n",
1840 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1841 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1846 /* Always update the entry/return state, even if this particular
1847 syscall isn't interesting to the core now. In async mode,
1848 the user could install a new catchpoint for this syscall
1849 between syscall enter/return, and we'll need to know to
1850 report a syscall return if that happens. */
1851 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1852 ? TARGET_WAITKIND_SYSCALL_RETURN
1853 : TARGET_WAITKIND_SYSCALL_ENTRY);
1855 if (catch_syscall_enabled ())
1857 if (catching_syscall_number (syscall_number))
1859 /* Alright, an event to report. */
1860 ourstatus->kind = lp->syscall_state;
1861 ourstatus->value.syscall_number = syscall_number;
1863 if (debug_linux_nat)
1864 fprintf_unfiltered (gdb_stdlog,
1865 "LHST: stopping for %s of syscall %d"
1868 == TARGET_WAITKIND_SYSCALL_ENTRY
1869 ? "entry" : "return",
1875 if (debug_linux_nat)
1876 fprintf_unfiltered (gdb_stdlog,
1877 "LHST: ignoring %s of syscall %d "
1879 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1880 ? "entry" : "return",
1886 /* If we had been syscall tracing, and hence used PT_SYSCALL
1887 before on this LWP, it could happen that the user removes all
1888 syscall catchpoints before we get to process this event.
1889 There are two noteworthy issues here:
1891 - When stopped at a syscall entry event, resuming with
1892 PT_STEP still resumes executing the syscall and reports a
1895 - Only PT_SYSCALL catches syscall enters. If we last
1896 single-stepped this thread, then this event can't be a
1897 syscall enter. If we last single-stepped this thread, this
1898 has to be a syscall exit.
1900 The points above mean that the next resume, be it PT_STEP or
1901 PT_CONTINUE, can not trigger a syscall trace event. */
1902 if (debug_linux_nat)
1903 fprintf_unfiltered (gdb_stdlog,
1904 "LHST: caught syscall event "
1905 "with no syscall catchpoints."
1906 " %d for LWP %ld, ignoring\n",
1909 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1912 /* The core isn't interested in this event. For efficiency, avoid
1913 stopping all threads only to have the core resume them all again.
1914 Since we're not stopping threads, if we're still syscall tracing
1915 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1916 subsequent syscall. Simply resume using the inf-ptrace layer,
1917 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1919 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1923 /* Handle a GNU/Linux extended wait response. If we see a clone
1924 event, we need to add the new LWP to our list (and not report the
1925 trap to higher layers). This function returns non-zero if the
1926 event should be ignored and we should wait again. If STOPPING is
1927 true, the new LWP remains stopped, otherwise it is continued. */
1930 linux_handle_extended_wait (struct lwp_info *lp, int status)
1932 int pid = lp->ptid.lwp ();
1933 struct target_waitstatus *ourstatus = &lp->waitstatus;
1934 int event = linux_ptrace_get_extended_event (status);
1936 /* All extended events we currently use are mid-syscall. Only
1937 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1938 you have to be using PTRACE_SEIZE to get that. */
1939 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1941 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1942 || event == PTRACE_EVENT_CLONE)
1944 unsigned long new_pid;
1947 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1949 /* If we haven't already seen the new PID stop, wait for it now. */
1950 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1952 /* The new child has a pending SIGSTOP. We can't affect it until it
1953 hits the SIGSTOP, but we're already attached. */
1954 ret = my_waitpid (new_pid, &status, __WALL);
1956 perror_with_name (_("waiting for new child"));
1957 else if (ret != new_pid)
1958 internal_error (__FILE__, __LINE__,
1959 _("wait returned unexpected PID %d"), ret);
1960 else if (!WIFSTOPPED (status))
1961 internal_error (__FILE__, __LINE__,
1962 _("wait returned unexpected status 0x%x"), status);
1965 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1967 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1969 /* The arch-specific native code may need to know about new
1970 forks even if those end up never mapped to an
1972 linux_target->low_new_fork (lp, new_pid);
1975 if (event == PTRACE_EVENT_FORK
1976 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1978 /* Handle checkpointing by linux-fork.c here as a special
1979 case. We don't want the follow-fork-mode or 'catch fork'
1980 to interfere with this. */
1982 /* This won't actually modify the breakpoint list, but will
1983 physically remove the breakpoints from the child. */
1984 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1986 /* Retain child fork in ptrace (stopped) state. */
1987 if (!find_fork_pid (new_pid))
1990 /* Report as spurious, so that infrun doesn't want to follow
1991 this fork. We're actually doing an infcall in
1993 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1995 /* Report the stop to the core. */
1999 if (event == PTRACE_EVENT_FORK)
2000 ourstatus->kind = TARGET_WAITKIND_FORKED;
2001 else if (event == PTRACE_EVENT_VFORK)
2002 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2003 else if (event == PTRACE_EVENT_CLONE)
2005 struct lwp_info *new_lp;
2007 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2009 if (debug_linux_nat)
2010 fprintf_unfiltered (gdb_stdlog,
2011 "LHEW: Got clone event "
2012 "from LWP %d, new child is LWP %ld\n",
2015 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2016 new_lp->stopped = 1;
2017 new_lp->resumed = 1;
2019 /* If the thread_db layer is active, let it record the user
2020 level thread id and status, and add the thread to GDB's
2022 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2024 /* The process is not using thread_db. Add the LWP to
2026 target_post_attach (new_lp->ptid.lwp ());
2027 add_thread (new_lp->ptid);
2030 /* Even if we're stopping the thread for some reason
2031 internal to this module, from the perspective of infrun
2032 and the user/frontend, this new thread is running until
2033 it next reports a stop. */
2034 set_running (new_lp->ptid, 1);
2035 set_executing (new_lp->ptid, 1);
2037 if (WSTOPSIG (status) != SIGSTOP)
2039 /* This can happen if someone starts sending signals to
2040 the new thread before it gets a chance to run, which
2041 have a lower number than SIGSTOP (e.g. SIGUSR1).
2042 This is an unlikely case, and harder to handle for
2043 fork / vfork than for clone, so we do not try - but
2044 we handle it for clone events here. */
2046 new_lp->signalled = 1;
2048 /* We created NEW_LP so it cannot yet contain STATUS. */
2049 gdb_assert (new_lp->status == 0);
2051 /* Save the wait status to report later. */
2052 if (debug_linux_nat)
2053 fprintf_unfiltered (gdb_stdlog,
2054 "LHEW: waitpid of new LWP %ld, "
2055 "saving status %s\n",
2056 (long) new_lp->ptid.lwp (),
2057 status_to_str (status));
2058 new_lp->status = status;
2060 else if (report_thread_events)
2062 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2063 new_lp->status = status;
2072 if (event == PTRACE_EVENT_EXEC)
2074 if (debug_linux_nat)
2075 fprintf_unfiltered (gdb_stdlog,
2076 "LHEW: Got exec event from LWP %ld\n",
2079 ourstatus->kind = TARGET_WAITKIND_EXECD;
2080 ourstatus->value.execd_pathname
2081 = xstrdup (linux_proc_pid_to_exec_file (pid));
2083 /* The thread that execed must have been resumed, but, when a
2084 thread execs, it changes its tid to the tgid, and the old
2085 tgid thread might have not been resumed. */
2090 if (event == PTRACE_EVENT_VFORK_DONE)
2092 if (current_inferior ()->waiting_for_vfork_done)
2094 if (debug_linux_nat)
2095 fprintf_unfiltered (gdb_stdlog,
2096 "LHEW: Got expected PTRACE_EVENT_"
2097 "VFORK_DONE from LWP %ld: stopping\n",
2100 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2104 if (debug_linux_nat)
2105 fprintf_unfiltered (gdb_stdlog,
2106 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2107 "from LWP %ld: ignoring\n",
2112 internal_error (__FILE__, __LINE__,
2113 _("unknown ptrace event %d"), event);
2116 /* Suspend waiting for a signal. We're mostly interested in
2122 if (debug_linux_nat)
2123 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2124 sigsuspend (&suspend_mask);
2126 /* If the quit flag is set, it means that the user pressed Ctrl-C
2127 and we're debugging a process that is running on a separate
2128 terminal, so we must forward the Ctrl-C to the inferior. (If the
2129 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2130 inferior directly.) We must do this here because functions that
2131 need to block waiting for a signal loop forever until there's an
2132 event to report before returning back to the event loop. */
2133 if (!target_terminal::is_ours ())
2135 if (check_quit_flag ())
2136 target_pass_ctrlc ();
2140 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2144 wait_lwp (struct lwp_info *lp)
2148 int thread_dead = 0;
2151 gdb_assert (!lp->stopped);
2152 gdb_assert (lp->status == 0);
2154 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2155 block_child_signals (&prev_mask);
2159 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2160 if (pid == -1 && errno == ECHILD)
2162 /* The thread has previously exited. We need to delete it
2163 now because if this was a non-leader thread execing, we
2164 won't get an exit event. See comments on exec events at
2165 the top of the file. */
2167 if (debug_linux_nat)
2168 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2169 target_pid_to_str (lp->ptid));
2174 /* Bugs 10970, 12702.
2175 Thread group leader may have exited in which case we'll lock up in
2176 waitpid if there are other threads, even if they are all zombies too.
2177 Basically, we're not supposed to use waitpid this way.
2178 tkill(pid,0) cannot be used here as it gets ESRCH for both
2179 for zombie and running processes.
2181 As a workaround, check if we're waiting for the thread group leader and
2182 if it's a zombie, and avoid calling waitpid if it is.
2184 This is racy, what if the tgl becomes a zombie right after we check?
2185 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2186 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2188 if (lp->ptid.pid () == lp->ptid.lwp ()
2189 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2192 if (debug_linux_nat)
2193 fprintf_unfiltered (gdb_stdlog,
2194 "WL: Thread group leader %s vanished.\n",
2195 target_pid_to_str (lp->ptid));
2199 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2200 get invoked despite our caller had them intentionally blocked by
2201 block_child_signals. This is sensitive only to the loop of
2202 linux_nat_wait_1 and there if we get called my_waitpid gets called
2203 again before it gets to sigsuspend so we can safely let the handlers
2204 get executed here. */
2208 restore_child_signals_mask (&prev_mask);
2212 gdb_assert (pid == lp->ptid.lwp ());
2214 if (debug_linux_nat)
2216 fprintf_unfiltered (gdb_stdlog,
2217 "WL: waitpid %s received %s\n",
2218 target_pid_to_str (lp->ptid),
2219 status_to_str (status));
2222 /* Check if the thread has exited. */
2223 if (WIFEXITED (status) || WIFSIGNALED (status))
2225 if (report_thread_events
2226 || lp->ptid.pid () == lp->ptid.lwp ())
2228 if (debug_linux_nat)
2229 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2232 /* If this is the leader exiting, it means the whole
2233 process is gone. Store the status to report to the
2234 core. Store it in lp->waitstatus, because lp->status
2235 would be ambiguous (W_EXITCODE(0,0) == 0). */
2236 store_waitstatus (&lp->waitstatus, status);
2241 if (debug_linux_nat)
2242 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2243 target_pid_to_str (lp->ptid));
2253 gdb_assert (WIFSTOPPED (status));
2256 if (lp->must_set_ptrace_flags)
2258 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2259 int options = linux_nat_ptrace_options (inf->attach_flag);
2261 linux_enable_event_reporting (lp->ptid.lwp (), options);
2262 lp->must_set_ptrace_flags = 0;
2265 /* Handle GNU/Linux's syscall SIGTRAPs. */
2266 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2268 /* No longer need the sysgood bit. The ptrace event ends up
2269 recorded in lp->waitstatus if we care for it. We can carry
2270 on handling the event like a regular SIGTRAP from here
2272 status = W_STOPCODE (SIGTRAP);
2273 if (linux_handle_syscall_trap (lp, 1))
2274 return wait_lwp (lp);
2278 /* Almost all other ptrace-stops are known to be outside of system
2279 calls, with further exceptions in linux_handle_extended_wait. */
2280 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2283 /* Handle GNU/Linux's extended waitstatus for trace events. */
2284 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2285 && linux_is_extended_waitstatus (status))
2287 if (debug_linux_nat)
2288 fprintf_unfiltered (gdb_stdlog,
2289 "WL: Handling extended status 0x%06x\n",
2291 linux_handle_extended_wait (lp, status);
2298 /* Send a SIGSTOP to LP. */
2301 stop_callback (struct lwp_info *lp, void *data)
2303 if (!lp->stopped && !lp->signalled)
2307 if (debug_linux_nat)
2309 fprintf_unfiltered (gdb_stdlog,
2310 "SC: kill %s **<SIGSTOP>**\n",
2311 target_pid_to_str (lp->ptid));
2314 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2315 if (debug_linux_nat)
2317 fprintf_unfiltered (gdb_stdlog,
2318 "SC: lwp kill %d %s\n",
2320 errno ? safe_strerror (errno) : "ERRNO-OK");
2324 gdb_assert (lp->status == 0);
2330 /* Request a stop on LWP. */
2333 linux_stop_lwp (struct lwp_info *lwp)
2335 stop_callback (lwp, NULL);
2338 /* See linux-nat.h */
2341 linux_stop_and_wait_all_lwps (void)
2343 /* Stop all LWP's ... */
2344 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2346 /* ... and wait until all of them have reported back that
2347 they're no longer running. */
2348 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2351 /* See linux-nat.h */
2354 linux_unstop_all_lwps (void)
2356 iterate_over_lwps (minus_one_ptid,
2357 resume_stopped_resumed_lwps, &minus_one_ptid);
2360 /* Return non-zero if LWP PID has a pending SIGINT. */
2363 linux_nat_has_pending_sigint (int pid)
2365 sigset_t pending, blocked, ignored;
2367 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2369 if (sigismember (&pending, SIGINT)
2370 && !sigismember (&ignored, SIGINT))
2376 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2379 set_ignore_sigint (struct lwp_info *lp, void *data)
2381 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2382 flag to consume the next one. */
2383 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2384 && WSTOPSIG (lp->status) == SIGINT)
2387 lp->ignore_sigint = 1;
2392 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2393 This function is called after we know the LWP has stopped; if the LWP
2394 stopped before the expected SIGINT was delivered, then it will never have
2395 arrived. Also, if the signal was delivered to a shared queue and consumed
2396 by a different thread, it will never be delivered to this LWP. */
2399 maybe_clear_ignore_sigint (struct lwp_info *lp)
2401 if (!lp->ignore_sigint)
2404 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2406 if (debug_linux_nat)
2407 fprintf_unfiltered (gdb_stdlog,
2408 "MCIS: Clearing bogus flag for %s\n",
2409 target_pid_to_str (lp->ptid));
2410 lp->ignore_sigint = 0;
2414 /* Fetch the possible triggered data watchpoint info and store it in
2417 On some archs, like x86, that use debug registers to set
2418 watchpoints, it's possible that the way to know which watched
2419 address trapped, is to check the register that is used to select
2420 which address to watch. Problem is, between setting the watchpoint
2421 and reading back which data address trapped, the user may change
2422 the set of watchpoints, and, as a consequence, GDB changes the
2423 debug registers in the inferior. To avoid reading back a stale
2424 stopped-data-address when that happens, we cache in LP the fact
2425 that a watchpoint trapped, and the corresponding data address, as
2426 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2427 registers meanwhile, we have the cached data we can rely on. */
2430 check_stopped_by_watchpoint (struct lwp_info *lp)
2432 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2433 inferior_ptid = lp->ptid;
2435 if (linux_target->low_stopped_by_watchpoint ())
2437 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2438 lp->stopped_data_address_p
2439 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2442 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2445 /* Returns true if the LWP had stopped for a watchpoint. */
2448 linux_nat_target::stopped_by_watchpoint ()
2450 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2452 gdb_assert (lp != NULL);
2454 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2458 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2460 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2462 gdb_assert (lp != NULL);
2464 *addr_p = lp->stopped_data_address;
2466 return lp->stopped_data_address_p;
2469 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2472 linux_nat_target::low_status_is_event (int status)
2474 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2477 /* Wait until LP is stopped. */
2480 stop_wait_callback (struct lwp_info *lp, void *data)
2482 struct inferior *inf = find_inferior_ptid (lp->ptid);
2484 /* If this is a vfork parent, bail out, it is not going to report
2485 any SIGSTOP until the vfork is done with. */
2486 if (inf->vfork_child != NULL)
2493 status = wait_lwp (lp);
2497 if (lp->ignore_sigint && WIFSTOPPED (status)
2498 && WSTOPSIG (status) == SIGINT)
2500 lp->ignore_sigint = 0;
2503 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2505 if (debug_linux_nat)
2506 fprintf_unfiltered (gdb_stdlog,
2507 "PTRACE_CONT %s, 0, 0 (%s) "
2508 "(discarding SIGINT)\n",
2509 target_pid_to_str (lp->ptid),
2510 errno ? safe_strerror (errno) : "OK");
2512 return stop_wait_callback (lp, NULL);
2515 maybe_clear_ignore_sigint (lp);
2517 if (WSTOPSIG (status) != SIGSTOP)
2519 /* The thread was stopped with a signal other than SIGSTOP. */
2521 if (debug_linux_nat)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "SWC: Pending event %s in %s\n",
2524 status_to_str ((int) status),
2525 target_pid_to_str (lp->ptid));
2527 /* Save the sigtrap event. */
2528 lp->status = status;
2529 gdb_assert (lp->signalled);
2530 save_stop_reason (lp);
2534 /* We caught the SIGSTOP that we intended to catch. */
2536 if (debug_linux_nat)
2537 fprintf_unfiltered (gdb_stdlog,
2538 "SWC: Expected SIGSTOP caught for %s.\n",
2539 target_pid_to_str (lp->ptid));
2543 /* If we are waiting for this stop so we can report the thread
2544 stopped then we need to record this status. Otherwise, we can
2545 now discard this stop event. */
2546 if (lp->last_resume_kind == resume_stop)
2548 lp->status = status;
2549 save_stop_reason (lp);
2557 /* Return non-zero if LP has a wait status pending. Discard the
2558 pending event and resume the LWP if the event that originally
2559 caused the stop became uninteresting. */
2562 status_callback (struct lwp_info *lp, void *data)
2564 /* Only report a pending wait status if we pretend that this has
2565 indeed been resumed. */
2569 if (!lwp_status_pending_p (lp))
2572 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2573 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2575 struct regcache *regcache = get_thread_regcache (lp->ptid);
2579 pc = regcache_read_pc (regcache);
2581 if (pc != lp->stop_pc)
2583 if (debug_linux_nat)
2584 fprintf_unfiltered (gdb_stdlog,
2585 "SC: PC of %s changed. was=%s, now=%s\n",
2586 target_pid_to_str (lp->ptid),
2587 paddress (target_gdbarch (), lp->stop_pc),
2588 paddress (target_gdbarch (), pc));
2592 #if !USE_SIGTRAP_SIGINFO
2593 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2595 if (debug_linux_nat)
2596 fprintf_unfiltered (gdb_stdlog,
2597 "SC: previous breakpoint of %s, at %s gone\n",
2598 target_pid_to_str (lp->ptid),
2599 paddress (target_gdbarch (), lp->stop_pc));
2607 if (debug_linux_nat)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "SC: pending event of %s cancelled.\n",
2610 target_pid_to_str (lp->ptid));
2613 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2621 /* Count the LWP's that have had events. */
2624 count_events_callback (struct lwp_info *lp, void *data)
2626 int *count = (int *) data;
2628 gdb_assert (count != NULL);
2630 /* Select only resumed LWPs that have an event pending. */
2631 if (lp->resumed && lwp_status_pending_p (lp))
2637 /* Select the LWP (if any) that is currently being single-stepped. */
2640 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2642 if (lp->last_resume_kind == resume_step
2649 /* Returns true if LP has a status pending. */
2652 lwp_status_pending_p (struct lwp_info *lp)
2654 /* We check for lp->waitstatus in addition to lp->status, because we
2655 can have pending process exits recorded in lp->status and
2656 W_EXITCODE(0,0) happens to be 0. */
2657 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2660 /* Select the Nth LWP that has had an event. */
2663 select_event_lwp_callback (struct lwp_info *lp, void *data)
2665 int *selector = (int *) data;
2667 gdb_assert (selector != NULL);
2669 /* Select only resumed LWPs that have an event pending. */
2670 if (lp->resumed && lwp_status_pending_p (lp))
2671 if ((*selector)-- == 0)
2677 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2678 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2679 and save the result in the LWP's stop_reason field. If it stopped
2680 for a breakpoint, decrement the PC if necessary on the lwp's
2684 save_stop_reason (struct lwp_info *lp)
2686 struct regcache *regcache;
2687 struct gdbarch *gdbarch;
2690 #if USE_SIGTRAP_SIGINFO
2694 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2695 gdb_assert (lp->status != 0);
2697 if (!linux_target->low_status_is_event (lp->status))
2700 regcache = get_thread_regcache (lp->ptid);
2701 gdbarch = regcache->arch ();
2703 pc = regcache_read_pc (regcache);
2704 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2706 #if USE_SIGTRAP_SIGINFO
2707 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2709 if (siginfo.si_signo == SIGTRAP)
2711 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2712 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2714 /* The si_code is ambiguous on this arch -- check debug
2716 if (!check_stopped_by_watchpoint (lp))
2717 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2719 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2721 /* If we determine the LWP stopped for a SW breakpoint,
2722 trust it. Particularly don't check watchpoint
2723 registers, because at least on s390, we'd find
2724 stopped-by-watchpoint as long as there's a watchpoint
2726 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2728 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2730 /* This can indicate either a hardware breakpoint or
2731 hardware watchpoint. Check debug registers. */
2732 if (!check_stopped_by_watchpoint (lp))
2733 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2735 else if (siginfo.si_code == TRAP_TRACE)
2737 if (debug_linux_nat)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "CSBB: %s stopped by trace\n",
2740 target_pid_to_str (lp->ptid));
2742 /* We may have single stepped an instruction that
2743 triggered a watchpoint. In that case, on some
2744 architectures (such as x86), instead of TRAP_HWBKPT,
2745 si_code indicates TRAP_TRACE, and we need to check
2746 the debug registers separately. */
2747 check_stopped_by_watchpoint (lp);
2752 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2753 && software_breakpoint_inserted_here_p (regcache->aspace (),
2756 /* The LWP was either continued, or stepped a software
2757 breakpoint instruction. */
2758 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2761 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2762 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2764 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2765 check_stopped_by_watchpoint (lp);
2768 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2770 if (debug_linux_nat)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "CSBB: %s stopped by software breakpoint\n",
2773 target_pid_to_str (lp->ptid));
2775 /* Back up the PC if necessary. */
2777 regcache_write_pc (regcache, sw_bp_pc);
2779 /* Update this so we record the correct stop PC below. */
2782 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2784 if (debug_linux_nat)
2785 fprintf_unfiltered (gdb_stdlog,
2786 "CSBB: %s stopped by hardware breakpoint\n",
2787 target_pid_to_str (lp->ptid));
2789 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2791 if (debug_linux_nat)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "CSBB: %s stopped by hardware watchpoint\n",
2794 target_pid_to_str (lp->ptid));
2801 /* Returns true if the LWP had stopped for a software breakpoint. */
2804 linux_nat_target::stopped_by_sw_breakpoint ()
2806 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2808 gdb_assert (lp != NULL);
2810 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2813 /* Implement the supports_stopped_by_sw_breakpoint method. */
2816 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2818 return USE_SIGTRAP_SIGINFO;
2821 /* Returns true if the LWP had stopped for a hardware
2822 breakpoint/watchpoint. */
2825 linux_nat_target::stopped_by_hw_breakpoint ()
2827 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2829 gdb_assert (lp != NULL);
2831 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2834 /* Implement the supports_stopped_by_hw_breakpoint method. */
2837 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2839 return USE_SIGTRAP_SIGINFO;
2842 /* Select one LWP out of those that have events pending. */
2845 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2848 int random_selector;
2849 struct lwp_info *event_lp = NULL;
2851 /* Record the wait status for the original LWP. */
2852 (*orig_lp)->status = *status;
2854 /* In all-stop, give preference to the LWP that is being
2855 single-stepped. There will be at most one, and it will be the
2856 LWP that the core is most interested in. If we didn't do this,
2857 then we'd have to handle pending step SIGTRAPs somehow in case
2858 the core later continues the previously-stepped thread, as
2859 otherwise we'd report the pending SIGTRAP then, and the core, not
2860 having stepped the thread, wouldn't understand what the trap was
2861 for, and therefore would report it to the user as a random
2863 if (!target_is_non_stop_p ())
2865 event_lp = iterate_over_lwps (filter,
2866 select_singlestep_lwp_callback, NULL);
2867 if (event_lp != NULL)
2869 if (debug_linux_nat)
2870 fprintf_unfiltered (gdb_stdlog,
2871 "SEL: Select single-step %s\n",
2872 target_pid_to_str (event_lp->ptid));
2876 if (event_lp == NULL)
2878 /* Pick one at random, out of those which have had events. */
2880 /* First see how many events we have. */
2881 iterate_over_lwps (filter, count_events_callback, &num_events);
2882 gdb_assert (num_events > 0);
2884 /* Now randomly pick a LWP out of those that have had
2886 random_selector = (int)
2887 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2889 if (debug_linux_nat && num_events > 1)
2890 fprintf_unfiltered (gdb_stdlog,
2891 "SEL: Found %d events, selecting #%d\n",
2892 num_events, random_selector);
2894 event_lp = iterate_over_lwps (filter,
2895 select_event_lwp_callback,
2899 if (event_lp != NULL)
2901 /* Switch the event LWP. */
2902 *orig_lp = event_lp;
2903 *status = event_lp->status;
2906 /* Flush the wait status for the event LWP. */
2907 (*orig_lp)->status = 0;
2910 /* Return non-zero if LP has been resumed. */
2913 resumed_callback (struct lwp_info *lp, void *data)
2918 /* Check if we should go on and pass this event to common code.
2919 Return the affected lwp if we are, or NULL otherwise. */
2921 static struct lwp_info *
2922 linux_nat_filter_event (int lwpid, int status)
2924 struct lwp_info *lp;
2925 int event = linux_ptrace_get_extended_event (status);
2927 lp = find_lwp_pid (ptid_t (lwpid));
2929 /* Check for stop events reported by a process we didn't already
2930 know about - anything not already in our LWP list.
2932 If we're expecting to receive stopped processes after
2933 fork, vfork, and clone events, then we'll just add the
2934 new one to our list and go back to waiting for the event
2935 to be reported - the stopped process might be returned
2936 from waitpid before or after the event is.
2938 But note the case of a non-leader thread exec'ing after the
2939 leader having exited, and gone from our lists. The non-leader
2940 thread changes its tid to the tgid. */
2942 if (WIFSTOPPED (status) && lp == NULL
2943 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2945 /* A multi-thread exec after we had seen the leader exiting. */
2946 if (debug_linux_nat)
2947 fprintf_unfiltered (gdb_stdlog,
2948 "LLW: Re-adding thread group leader LWP %d.\n",
2951 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2954 add_thread (lp->ptid);
2957 if (WIFSTOPPED (status) && !lp)
2959 if (debug_linux_nat)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2962 (long) lwpid, status_to_str (status));
2963 add_to_pid_list (&stopped_pids, lwpid, status);
2967 /* Make sure we don't report an event for the exit of an LWP not in
2968 our list, i.e. not part of the current process. This can happen
2969 if we detach from a program we originally forked and then it
2971 if (!WIFSTOPPED (status) && !lp)
2974 /* This LWP is stopped now. (And if dead, this prevents it from
2975 ever being continued.) */
2978 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2980 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2981 int options = linux_nat_ptrace_options (inf->attach_flag);
2983 linux_enable_event_reporting (lp->ptid.lwp (), options);
2984 lp->must_set_ptrace_flags = 0;
2987 /* Handle GNU/Linux's syscall SIGTRAPs. */
2988 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2990 /* No longer need the sysgood bit. The ptrace event ends up
2991 recorded in lp->waitstatus if we care for it. We can carry
2992 on handling the event like a regular SIGTRAP from here
2994 status = W_STOPCODE (SIGTRAP);
2995 if (linux_handle_syscall_trap (lp, 0))
3000 /* Almost all other ptrace-stops are known to be outside of system
3001 calls, with further exceptions in linux_handle_extended_wait. */
3002 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3005 /* Handle GNU/Linux's extended waitstatus for trace events. */
3006 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3007 && linux_is_extended_waitstatus (status))
3009 if (debug_linux_nat)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "LLW: Handling extended status 0x%06x\n",
3013 if (linux_handle_extended_wait (lp, status))
3017 /* Check if the thread has exited. */
3018 if (WIFEXITED (status) || WIFSIGNALED (status))
3020 if (!report_thread_events
3021 && num_lwps (lp->ptid.pid ()) > 1)
3023 if (debug_linux_nat)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "LLW: %s exited.\n",
3026 target_pid_to_str (lp->ptid));
3028 /* If there is at least one more LWP, then the exit signal
3029 was not the end of the debugged application and should be
3035 /* Note that even if the leader was ptrace-stopped, it can still
3036 exit, if e.g., some other thread brings down the whole
3037 process (calls `exit'). So don't assert that the lwp is
3039 if (debug_linux_nat)
3040 fprintf_unfiltered (gdb_stdlog,
3041 "LWP %ld exited (resumed=%d)\n",
3042 lp->ptid.lwp (), lp->resumed);
3044 /* Dead LWP's aren't expected to reported a pending sigstop. */
3047 /* Store the pending event in the waitstatus, because
3048 W_EXITCODE(0,0) == 0. */
3049 store_waitstatus (&lp->waitstatus, status);
3053 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3054 an attempt to stop an LWP. */
3056 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3060 if (lp->last_resume_kind == resume_stop)
3062 if (debug_linux_nat)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "LLW: resume_stop SIGSTOP caught for %s.\n",
3065 target_pid_to_str (lp->ptid));
3069 /* This is a delayed SIGSTOP. Filter out the event. */
3071 if (debug_linux_nat)
3072 fprintf_unfiltered (gdb_stdlog,
3073 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3075 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3076 target_pid_to_str (lp->ptid));
3078 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3079 gdb_assert (lp->resumed);
3084 /* Make sure we don't report a SIGINT that we have already displayed
3085 for another thread. */
3086 if (lp->ignore_sigint
3087 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3089 if (debug_linux_nat)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "LLW: Delayed SIGINT caught for %s.\n",
3092 target_pid_to_str (lp->ptid));
3094 /* This is a delayed SIGINT. */
3095 lp->ignore_sigint = 0;
3097 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3098 if (debug_linux_nat)
3099 fprintf_unfiltered (gdb_stdlog,
3100 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3102 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3103 target_pid_to_str (lp->ptid));
3104 gdb_assert (lp->resumed);
3106 /* Discard the event. */
3110 /* Don't report signals that GDB isn't interested in, such as
3111 signals that are neither printed nor stopped upon. Stopping all
3112 threads can be a bit time-consuming so if we want decent
3113 performance with heavily multi-threaded programs, especially when
3114 they're using a high frequency timer, we'd better avoid it if we
3116 if (WIFSTOPPED (status))
3118 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3120 if (!target_is_non_stop_p ())
3122 /* Only do the below in all-stop, as we currently use SIGSTOP
3123 to implement target_stop (see linux_nat_stop) in
3125 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3127 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3128 forwarded to the entire process group, that is, all LWPs
3129 will receive it - unless they're using CLONE_THREAD to
3130 share signals. Since we only want to report it once, we
3131 mark it as ignored for all LWPs except this one. */
3132 iterate_over_lwps (ptid_t (lp->ptid.pid ()),
3133 set_ignore_sigint, NULL);
3134 lp->ignore_sigint = 0;
3137 maybe_clear_ignore_sigint (lp);
3140 /* When using hardware single-step, we need to report every signal.
3141 Otherwise, signals in pass_mask may be short-circuited
3142 except signals that might be caused by a breakpoint. */
3144 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3145 && !linux_wstatus_maybe_breakpoint (status))
3147 linux_resume_one_lwp (lp, lp->step, signo);
3148 if (debug_linux_nat)
3149 fprintf_unfiltered (gdb_stdlog,
3150 "LLW: %s %s, %s (preempt 'handle')\n",
3152 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3153 target_pid_to_str (lp->ptid),
3154 (signo != GDB_SIGNAL_0
3155 ? strsignal (gdb_signal_to_host (signo))
3161 /* An interesting event. */
3163 lp->status = status;
3164 save_stop_reason (lp);
3168 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3169 their exits until all other threads in the group have exited. */
3172 check_zombie_leaders (void)
3174 struct inferior *inf;
3178 struct lwp_info *leader_lp;
3183 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3184 if (leader_lp != NULL
3185 /* Check if there are other threads in the group, as we may
3186 have raced with the inferior simply exiting. */
3187 && num_lwps (inf->pid) > 1
3188 && linux_proc_pid_is_zombie (inf->pid))
3190 if (debug_linux_nat)
3191 fprintf_unfiltered (gdb_stdlog,
3192 "CZL: Thread group leader %d zombie "
3193 "(it exited, or another thread execd).\n",
3196 /* A leader zombie can mean one of two things:
3198 - It exited, and there's an exit status pending
3199 available, or only the leader exited (not the whole
3200 program). In the latter case, we can't waitpid the
3201 leader's exit status until all other threads are gone.
3203 - There are 3 or more threads in the group, and a thread
3204 other than the leader exec'd. See comments on exec
3205 events at the top of the file. We could try
3206 distinguishing the exit and exec cases, by waiting once
3207 more, and seeing if something comes out, but it doesn't
3208 sound useful. The previous leader _does_ go away, and
3209 we'll re-add the new one once we see the exec event
3210 (which is just the same as what would happen if the
3211 previous leader did exit voluntarily before some other
3214 if (debug_linux_nat)
3215 fprintf_unfiltered (gdb_stdlog,
3216 "CZL: Thread group leader %d vanished.\n",
3218 exit_lwp (leader_lp);
3223 /* Convenience function that is called when the kernel reports an exit
3224 event. This decides whether to report the event to GDB as a
3225 process exit event, a thread exit event, or to suppress the
3229 filter_exit_event (struct lwp_info *event_child,
3230 struct target_waitstatus *ourstatus)
3232 ptid_t ptid = event_child->ptid;
3234 if (num_lwps (ptid.pid ()) > 1)
3236 if (report_thread_events)
3237 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3239 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3241 exit_lwp (event_child);
3248 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3252 enum resume_kind last_resume_kind;
3253 struct lwp_info *lp;
3256 if (debug_linux_nat)
3257 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3259 /* The first time we get here after starting a new inferior, we may
3260 not have added it to the LWP list yet - this is the earliest
3261 moment at which we know its PID. */
3262 if (inferior_ptid.is_pid ())
3264 /* Upgrade the main thread's ptid. */
3265 thread_change_ptid (inferior_ptid,
3266 ptid_t (inferior_ptid.pid (),
3267 inferior_ptid.pid (), 0));
3269 lp = add_initial_lwp (inferior_ptid);
3273 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3274 block_child_signals (&prev_mask);
3276 /* First check if there is a LWP with a wait status pending. */
3277 lp = iterate_over_lwps (ptid, status_callback, NULL);
3280 if (debug_linux_nat)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "LLW: Using pending wait status %s for %s.\n",
3283 status_to_str (lp->status),
3284 target_pid_to_str (lp->ptid));
3287 /* But if we don't find a pending event, we'll have to wait. Always
3288 pull all events out of the kernel. We'll randomly select an
3289 event LWP out of all that have events, to prevent starvation. */
3295 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3298 - If the thread group leader exits while other threads in the
3299 thread group still exist, waitpid(TGID, ...) hangs. That
3300 waitpid won't return an exit status until the other threads
3301 in the group are reapped.
3303 - When a non-leader thread execs, that thread just vanishes
3304 without reporting an exit (so we'd hang if we waited for it
3305 explicitly in that case). The exec event is reported to
3309 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3311 if (debug_linux_nat)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "LNW: waitpid(-1, ...) returned %d, %s\n",
3314 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3318 if (debug_linux_nat)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "LLW: waitpid %ld received %s\n",
3322 (long) lwpid, status_to_str (status));
3325 linux_nat_filter_event (lwpid, status);
3326 /* Retry until nothing comes out of waitpid. A single
3327 SIGCHLD can indicate more than one child stopped. */
3331 /* Now that we've pulled all events out of the kernel, resume
3332 LWPs that don't have an interesting event to report. */
3333 iterate_over_lwps (minus_one_ptid,
3334 resume_stopped_resumed_lwps, &minus_one_ptid);
3336 /* ... and find an LWP with a status to report to the core, if
3338 lp = iterate_over_lwps (ptid, status_callback, NULL);
3342 /* Check for zombie thread group leaders. Those can't be reaped
3343 until all other threads in the thread group are. */
3344 check_zombie_leaders ();
3346 /* If there are no resumed children left, bail. We'd be stuck
3347 forever in the sigsuspend call below otherwise. */
3348 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3350 if (debug_linux_nat)
3351 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3353 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3355 restore_child_signals_mask (&prev_mask);
3356 return minus_one_ptid;
3359 /* No interesting event to report to the core. */
3361 if (target_options & TARGET_WNOHANG)
3363 if (debug_linux_nat)
3364 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3366 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3367 restore_child_signals_mask (&prev_mask);
3368 return minus_one_ptid;
3371 /* We shouldn't end up here unless we want to try again. */
3372 gdb_assert (lp == NULL);
3374 /* Block until we get an event reported with SIGCHLD. */
3380 status = lp->status;
3383 if (!target_is_non_stop_p ())
3385 /* Now stop all other LWP's ... */
3386 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3388 /* ... and wait until all of them have reported back that
3389 they're no longer running. */
3390 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3393 /* If we're not waiting for a specific LWP, choose an event LWP from
3394 among those that have had events. Giving equal priority to all
3395 LWPs that have had events helps prevent starvation. */
3396 if (ptid == minus_one_ptid || ptid.is_pid ())
3397 select_event_lwp (ptid, &lp, &status);
3399 gdb_assert (lp != NULL);
3401 /* Now that we've selected our final event LWP, un-adjust its PC if
3402 it was a software breakpoint, and we can't reliably support the
3403 "stopped by software breakpoint" stop reason. */
3404 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3405 && !USE_SIGTRAP_SIGINFO)
3407 struct regcache *regcache = get_thread_regcache (lp->ptid);
3408 struct gdbarch *gdbarch = regcache->arch ();
3409 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3415 pc = regcache_read_pc (regcache);
3416 regcache_write_pc (regcache, pc + decr_pc);
3420 /* We'll need this to determine whether to report a SIGSTOP as
3421 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3423 last_resume_kind = lp->last_resume_kind;
3425 if (!target_is_non_stop_p ())
3427 /* In all-stop, from the core's perspective, all LWPs are now
3428 stopped until a new resume action is sent over. */
3429 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3433 resume_clear_callback (lp, NULL);
3436 if (linux_target->low_status_is_event (status))
3438 if (debug_linux_nat)
3439 fprintf_unfiltered (gdb_stdlog,
3440 "LLW: trap ptid is %s.\n",
3441 target_pid_to_str (lp->ptid));
3444 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3446 *ourstatus = lp->waitstatus;
3447 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3450 store_waitstatus (ourstatus, status);
3452 if (debug_linux_nat)
3453 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3455 restore_child_signals_mask (&prev_mask);
3457 if (last_resume_kind == resume_stop
3458 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3459 && WSTOPSIG (status) == SIGSTOP)
3461 /* A thread that has been requested to stop by GDB with
3462 target_stop, and it stopped cleanly, so report as SIG0. The
3463 use of SIGSTOP is an implementation detail. */
3464 ourstatus->value.sig = GDB_SIGNAL_0;
3467 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3468 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3471 lp->core = linux_common_core_of_thread (lp->ptid);
3473 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3474 return filter_exit_event (lp, ourstatus);
3479 /* Resume LWPs that are currently stopped without any pending status
3480 to report, but are resumed from the core's perspective. */
3483 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3485 ptid_t *wait_ptid_p = (ptid_t *) data;
3489 if (debug_linux_nat)
3490 fprintf_unfiltered (gdb_stdlog,
3491 "RSRL: NOT resuming LWP %s, not stopped\n",
3492 target_pid_to_str (lp->ptid));
3494 else if (!lp->resumed)
3496 if (debug_linux_nat)
3497 fprintf_unfiltered (gdb_stdlog,
3498 "RSRL: NOT resuming LWP %s, not resumed\n",
3499 target_pid_to_str (lp->ptid));
3501 else if (lwp_status_pending_p (lp))
3503 if (debug_linux_nat)
3504 fprintf_unfiltered (gdb_stdlog,
3505 "RSRL: NOT resuming LWP %s, has pending status\n",
3506 target_pid_to_str (lp->ptid));
3510 struct regcache *regcache = get_thread_regcache (lp->ptid);
3511 struct gdbarch *gdbarch = regcache->arch ();
3515 CORE_ADDR pc = regcache_read_pc (regcache);
3516 int leave_stopped = 0;
3518 /* Don't bother if there's a breakpoint at PC that we'd hit
3519 immediately, and we're not waiting for this LWP. */
3520 if (!lp->ptid.matches (*wait_ptid_p))
3522 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3528 if (debug_linux_nat)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "RSRL: resuming stopped-resumed LWP %s at "
3532 target_pid_to_str (lp->ptid),
3533 paddress (gdbarch, pc),
3536 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3539 CATCH (ex, RETURN_MASK_ERROR)
3541 if (!check_ptrace_stopped_lwp_gone (lp))
3542 throw_exception (ex);
3551 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3556 if (debug_linux_nat)
3558 std::string options_string = target_options_to_string (target_options);
3559 fprintf_unfiltered (gdb_stdlog,
3560 "linux_nat_wait: [%s], [%s]\n",
3561 target_pid_to_str (ptid),
3562 options_string.c_str ());
3565 /* Flush the async file first. */
3566 if (target_is_async_p ())
3567 async_file_flush ();
3569 /* Resume LWPs that are currently stopped without any pending status
3570 to report, but are resumed from the core's perspective. LWPs get
3571 in this state if we find them stopping at a time we're not
3572 interested in reporting the event (target_wait on a
3573 specific_process, for example, see linux_nat_wait_1), and
3574 meanwhile the event became uninteresting. Don't bother resuming
3575 LWPs we're not going to wait for if they'd stop immediately. */
3576 if (target_is_non_stop_p ())
3577 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3579 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3581 /* If we requested any event, and something came out, assume there
3582 may be more. If we requested a specific lwp or process, also
3583 assume there may be more. */
3584 if (target_is_async_p ()
3585 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3586 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3587 || ptid != minus_one_ptid))
3596 kill_one_lwp (pid_t pid)
3598 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3601 kill_lwp (pid, SIGKILL);
3602 if (debug_linux_nat)
3604 int save_errno = errno;
3606 fprintf_unfiltered (gdb_stdlog,
3607 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3608 save_errno ? safe_strerror (save_errno) : "OK");
3611 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3614 ptrace (PTRACE_KILL, pid, 0, 0);
3615 if (debug_linux_nat)
3617 int save_errno = errno;
3619 fprintf_unfiltered (gdb_stdlog,
3620 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3621 save_errno ? safe_strerror (save_errno) : "OK");
3625 /* Wait for an LWP to die. */
3628 kill_wait_one_lwp (pid_t pid)
3632 /* We must make sure that there are no pending events (delayed
3633 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3634 program doesn't interfere with any following debugging session. */
3638 res = my_waitpid (pid, NULL, __WALL);
3639 if (res != (pid_t) -1)
3641 if (debug_linux_nat)
3642 fprintf_unfiltered (gdb_stdlog,
3643 "KWC: wait %ld received unknown.\n",
3645 /* The Linux kernel sometimes fails to kill a thread
3646 completely after PTRACE_KILL; that goes from the stop
3647 point in do_fork out to the one in get_signal_to_deliver
3648 and waits again. So kill it again. */
3654 gdb_assert (res == -1 && errno == ECHILD);
3657 /* Callback for iterate_over_lwps. */
3660 kill_callback (struct lwp_info *lp, void *data)
3662 kill_one_lwp (lp->ptid.lwp ());
3666 /* Callback for iterate_over_lwps. */
3669 kill_wait_callback (struct lwp_info *lp, void *data)
3671 kill_wait_one_lwp (lp->ptid.lwp ());
3675 /* Kill the fork children of any threads of inferior INF that are
3676 stopped at a fork event. */
3679 kill_unfollowed_fork_children (struct inferior *inf)
3681 struct thread_info *thread;
3683 ALL_NON_EXITED_THREADS (thread)
3684 if (thread->inf == inf)
3686 struct target_waitstatus *ws = &thread->pending_follow;
3688 if (ws->kind == TARGET_WAITKIND_FORKED
3689 || ws->kind == TARGET_WAITKIND_VFORKED)
3691 ptid_t child_ptid = ws->value.related_pid;
3692 int child_pid = child_ptid.pid ();
3693 int child_lwp = child_ptid.lwp ();
3695 kill_one_lwp (child_lwp);
3696 kill_wait_one_lwp (child_lwp);
3698 /* Let the arch-specific native code know this process is
3700 linux_target->low_forget_process (child_pid);
3706 linux_nat_target::kill ()
3708 /* If we're stopped while forking and we haven't followed yet,
3709 kill the other task. We need to do this first because the
3710 parent will be sleeping if this is a vfork. */
3711 kill_unfollowed_fork_children (current_inferior ());
3713 if (forks_exist_p ())
3714 linux_fork_killall ();
3717 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3719 /* Stop all threads before killing them, since ptrace requires
3720 that the thread is stopped to sucessfully PTRACE_KILL. */
3721 iterate_over_lwps (ptid, stop_callback, NULL);
3722 /* ... and wait until all of them have reported back that
3723 they're no longer running. */
3724 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3726 /* Kill all LWP's ... */
3727 iterate_over_lwps (ptid, kill_callback, NULL);
3729 /* ... and wait until we've flushed all events. */
3730 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3733 target_mourn_inferior (inferior_ptid);
3737 linux_nat_target::mourn_inferior ()
3739 int pid = inferior_ptid.pid ();
3741 purge_lwp_list (pid);
3743 if (! forks_exist_p ())
3744 /* Normal case, no other forks available. */
3745 inf_ptrace_target::mourn_inferior ();
3747 /* Multi-fork case. The current inferior_ptid has exited, but
3748 there are other viable forks to debug. Delete the exiting
3749 one and context-switch to the first available. */
3750 linux_fork_mourn_inferior ();
3752 /* Let the arch-specific native code know this process is gone. */
3753 linux_target->low_forget_process (pid);
3756 /* Convert a native/host siginfo object, into/from the siginfo in the
3757 layout of the inferiors' architecture. */
3760 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3762 /* If the low target didn't do anything, then just do a straight
3764 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3767 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3769 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3773 static enum target_xfer_status
3774 linux_xfer_siginfo (enum target_object object,
3775 const char *annex, gdb_byte *readbuf,
3776 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3777 ULONGEST *xfered_len)
3781 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3783 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3784 gdb_assert (readbuf || writebuf);
3786 pid = inferior_ptid.lwp ();
3788 pid = inferior_ptid.pid ();
3790 if (offset > sizeof (siginfo))
3791 return TARGET_XFER_E_IO;
3794 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3796 return TARGET_XFER_E_IO;
3798 /* When GDB is built as a 64-bit application, ptrace writes into
3799 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3800 inferior with a 64-bit GDB should look the same as debugging it
3801 with a 32-bit GDB, we need to convert it. GDB core always sees
3802 the converted layout, so any read/write will have to be done
3804 siginfo_fixup (&siginfo, inf_siginfo, 0);
3806 if (offset + len > sizeof (siginfo))
3807 len = sizeof (siginfo) - offset;
3809 if (readbuf != NULL)
3810 memcpy (readbuf, inf_siginfo + offset, len);
3813 memcpy (inf_siginfo + offset, writebuf, len);
3815 /* Convert back to ptrace layout before flushing it out. */
3816 siginfo_fixup (&siginfo, inf_siginfo, 1);
3819 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3821 return TARGET_XFER_E_IO;
3825 return TARGET_XFER_OK;
3828 static enum target_xfer_status
3829 linux_nat_xfer_osdata (enum target_object object,
3830 const char *annex, gdb_byte *readbuf,
3831 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3832 ULONGEST *xfered_len);
3834 static enum target_xfer_status
3835 linux_proc_xfer_spu (enum target_object object,
3836 const char *annex, gdb_byte *readbuf,
3837 const gdb_byte *writebuf,
3838 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3840 static enum target_xfer_status
3841 linux_proc_xfer_partial (enum target_object object,
3842 const char *annex, gdb_byte *readbuf,
3843 const gdb_byte *writebuf,
3844 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3846 enum target_xfer_status
3847 linux_nat_target::xfer_partial (enum target_object object,
3848 const char *annex, gdb_byte *readbuf,
3849 const gdb_byte *writebuf,
3850 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3852 enum target_xfer_status xfer;
3854 if (object == TARGET_OBJECT_SIGNAL_INFO)
3855 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3856 offset, len, xfered_len);
3858 /* The target is connected but no live inferior is selected. Pass
3859 this request down to a lower stratum (e.g., the executable
3861 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3862 return TARGET_XFER_EOF;
3864 if (object == TARGET_OBJECT_AUXV)
3865 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3866 offset, len, xfered_len);
3868 if (object == TARGET_OBJECT_OSDATA)
3869 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3870 offset, len, xfered_len);
3872 if (object == TARGET_OBJECT_SPU)
3873 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3874 offset, len, xfered_len);
3876 /* GDB calculates all addresses in the largest possible address
3878 The address width must be masked before its final use - either by
3879 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3881 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3883 if (object == TARGET_OBJECT_MEMORY)
3885 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3887 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3888 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3891 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3892 offset, len, xfered_len);
3893 if (xfer != TARGET_XFER_EOF)
3896 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3897 offset, len, xfered_len);
3901 linux_nat_target::thread_alive (ptid_t ptid)
3903 /* As long as a PTID is in lwp list, consider it alive. */
3904 return find_lwp_pid (ptid) != NULL;
3907 /* Implement the to_update_thread_list target method for this
3911 linux_nat_target::update_thread_list ()
3913 struct lwp_info *lwp;
3915 /* We add/delete threads from the list as clone/exit events are
3916 processed, so just try deleting exited threads still in the
3918 delete_exited_threads ();
3920 /* Update the processor core that each lwp/thread was last seen
3924 /* Avoid accessing /proc if the thread hasn't run since we last
3925 time we fetched the thread's core. Accessing /proc becomes
3926 noticeably expensive when we have thousands of LWPs. */
3927 if (lwp->core == -1)
3928 lwp->core = linux_common_core_of_thread (lwp->ptid);
3933 linux_nat_target::pid_to_str (ptid_t ptid)
3935 static char buf[64];
3938 && (ptid.pid () != ptid.lwp ()
3939 || num_lwps (ptid.pid ()) > 1))
3941 snprintf (buf, sizeof (buf), "LWP %ld", ptid.lwp ());
3945 return normal_pid_to_str (ptid);
3949 linux_nat_target::thread_name (struct thread_info *thr)
3951 return linux_proc_tid_get_name (thr->ptid);
3954 /* Accepts an integer PID; Returns a string representing a file that
3955 can be opened to get the symbols for the child process. */
3958 linux_nat_target::pid_to_exec_file (int pid)
3960 return linux_proc_pid_to_exec_file (pid);
3963 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3964 Because we can use a single read/write call, this can be much more
3965 efficient than banging away at PTRACE_PEEKTEXT. */
3967 static enum target_xfer_status
3968 linux_proc_xfer_partial (enum target_object object,
3969 const char *annex, gdb_byte *readbuf,
3970 const gdb_byte *writebuf,
3971 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3977 if (object != TARGET_OBJECT_MEMORY)
3978 return TARGET_XFER_EOF;
3980 /* Don't bother for one word. */
3981 if (len < 3 * sizeof (long))
3982 return TARGET_XFER_EOF;
3984 /* We could keep this file open and cache it - possibly one per
3985 thread. That requires some juggling, but is even faster. */
3986 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3987 inferior_ptid.lwp ());
3988 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3991 return TARGET_XFER_EOF;
3993 /* Use pread64/pwrite64 if available, since they save a syscall and can
3994 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3995 debugging a SPARC64 application). */
3997 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3998 : pwrite64 (fd, writebuf, len, offset));
4000 ret = lseek (fd, offset, SEEK_SET);
4002 ret = (readbuf ? read (fd, readbuf, len)
4003 : write (fd, writebuf, len));
4008 if (ret == -1 || ret == 0)
4009 return TARGET_XFER_EOF;
4013 return TARGET_XFER_OK;
4018 /* Enumerate spufs IDs for process PID. */
4020 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4022 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4024 LONGEST written = 0;
4027 struct dirent *entry;
4029 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4030 dir = opendir (path);
4035 while ((entry = readdir (dir)) != NULL)
4041 fd = atoi (entry->d_name);
4045 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4046 if (stat (path, &st) != 0)
4048 if (!S_ISDIR (st.st_mode))
4051 if (statfs (path, &stfs) != 0)
4053 if (stfs.f_type != SPUFS_MAGIC)
4056 if (pos >= offset && pos + 4 <= offset + len)
4058 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4068 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4069 object type, using the /proc file system. */
4071 static enum target_xfer_status
4072 linux_proc_xfer_spu (enum target_object object,
4073 const char *annex, gdb_byte *readbuf,
4074 const gdb_byte *writebuf,
4075 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4080 int pid = inferior_ptid.lwp ();
4085 return TARGET_XFER_E_IO;
4088 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4091 return TARGET_XFER_E_IO;
4093 return TARGET_XFER_EOF;
4096 *xfered_len = (ULONGEST) l;
4097 return TARGET_XFER_OK;
4102 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4103 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4105 return TARGET_XFER_E_IO;
4108 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4111 return TARGET_XFER_EOF;
4115 ret = write (fd, writebuf, (size_t) len);
4117 ret = read (fd, readbuf, (size_t) len);
4122 return TARGET_XFER_E_IO;
4124 return TARGET_XFER_EOF;
4127 *xfered_len = (ULONGEST) ret;
4128 return TARGET_XFER_OK;
4133 /* Parse LINE as a signal set and add its set bits to SIGS. */
4136 add_line_to_sigset (const char *line, sigset_t *sigs)
4138 int len = strlen (line) - 1;
4142 if (line[len] != '\n')
4143 error (_("Could not parse signal set: %s"), line);
4151 if (*p >= '0' && *p <= '9')
4153 else if (*p >= 'a' && *p <= 'f')
4154 digit = *p - 'a' + 10;
4156 error (_("Could not parse signal set: %s"), line);
4161 sigaddset (sigs, signum + 1);
4163 sigaddset (sigs, signum + 2);
4165 sigaddset (sigs, signum + 3);
4167 sigaddset (sigs, signum + 4);
4173 /* Find process PID's pending signals from /proc/pid/status and set
4177 linux_proc_pending_signals (int pid, sigset_t *pending,
4178 sigset_t *blocked, sigset_t *ignored)
4180 char buffer[PATH_MAX], fname[PATH_MAX];
4182 sigemptyset (pending);
4183 sigemptyset (blocked);
4184 sigemptyset (ignored);
4185 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4186 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4187 if (procfile == NULL)
4188 error (_("Could not open %s"), fname);
4190 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4192 /* Normal queued signals are on the SigPnd line in the status
4193 file. However, 2.6 kernels also have a "shared" pending
4194 queue for delivering signals to a thread group, so check for
4197 Unfortunately some Red Hat kernels include the shared pending
4198 queue but not the ShdPnd status field. */
4200 if (startswith (buffer, "SigPnd:\t"))
4201 add_line_to_sigset (buffer + 8, pending);
4202 else if (startswith (buffer, "ShdPnd:\t"))
4203 add_line_to_sigset (buffer + 8, pending);
4204 else if (startswith (buffer, "SigBlk:\t"))
4205 add_line_to_sigset (buffer + 8, blocked);
4206 else if (startswith (buffer, "SigIgn:\t"))
4207 add_line_to_sigset (buffer + 8, ignored);
4211 static enum target_xfer_status
4212 linux_nat_xfer_osdata (enum target_object object,
4213 const char *annex, gdb_byte *readbuf,
4214 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4215 ULONGEST *xfered_len)
4217 gdb_assert (object == TARGET_OBJECT_OSDATA);
4219 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4220 if (*xfered_len == 0)
4221 return TARGET_XFER_EOF;
4223 return TARGET_XFER_OK;
4227 cleanup_target_stop (void *arg)
4229 ptid_t *ptid = (ptid_t *) arg;
4231 gdb_assert (arg != NULL);
4234 target_continue_no_signal (*ptid);
4237 std::vector<static_tracepoint_marker>
4238 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4240 char s[IPA_CMD_BUF_SIZE];
4241 struct cleanup *old_chain;
4242 int pid = inferior_ptid.pid ();
4243 std::vector<static_tracepoint_marker> markers;
4245 ptid_t ptid = ptid_t (pid, 0, 0);
4246 static_tracepoint_marker marker;
4251 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4252 s[sizeof ("qTfSTM")] = 0;
4254 agent_run_command (pid, s, strlen (s) + 1);
4256 old_chain = make_cleanup (cleanup_target_stop, &ptid);
4262 parse_static_tracepoint_marker_definition (p, &p, &marker);
4264 if (strid == NULL || marker.str_id == strid)
4265 markers.push_back (std::move (marker));
4267 while (*p++ == ','); /* comma-separated list */
4269 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4270 s[sizeof ("qTsSTM")] = 0;
4271 agent_run_command (pid, s, strlen (s) + 1);
4275 do_cleanups (old_chain);
4280 /* target_is_async_p implementation. */
4283 linux_nat_target::is_async_p ()
4285 return linux_is_async_p ();
4288 /* target_can_async_p implementation. */
4291 linux_nat_target::can_async_p ()
4293 /* We're always async, unless the user explicitly prevented it with the
4294 "maint set target-async" command. */
4295 return target_async_permitted;
4299 linux_nat_target::supports_non_stop ()
4304 /* to_always_non_stop_p implementation. */
4307 linux_nat_target::always_non_stop_p ()
4312 /* True if we want to support multi-process. To be removed when GDB
4313 supports multi-exec. */
4315 int linux_multi_process = 1;
4318 linux_nat_target::supports_multi_process ()
4320 return linux_multi_process;
4324 linux_nat_target::supports_disable_randomization ()
4326 #ifdef HAVE_PERSONALITY
4333 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4334 so we notice when any child changes state, and notify the
4335 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4336 above to wait for the arrival of a SIGCHLD. */
4339 sigchld_handler (int signo)
4341 int old_errno = errno;
4343 if (debug_linux_nat)
4344 ui_file_write_async_safe (gdb_stdlog,
4345 "sigchld\n", sizeof ("sigchld\n") - 1);
4347 if (signo == SIGCHLD
4348 && linux_nat_event_pipe[0] != -1)
4349 async_file_mark (); /* Let the event loop know that there are
4350 events to handle. */
4355 /* Callback registered with the target events file descriptor. */
4358 handle_target_event (int error, gdb_client_data client_data)
4360 inferior_event_handler (INF_REG_EVENT, NULL);
4363 /* Create/destroy the target events pipe. Returns previous state. */
4366 linux_async_pipe (int enable)
4368 int previous = linux_is_async_p ();
4370 if (previous != enable)
4374 /* Block child signals while we create/destroy the pipe, as
4375 their handler writes to it. */
4376 block_child_signals (&prev_mask);
4380 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4381 internal_error (__FILE__, __LINE__,
4382 "creating event pipe failed.");
4384 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4385 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4389 close (linux_nat_event_pipe[0]);
4390 close (linux_nat_event_pipe[1]);
4391 linux_nat_event_pipe[0] = -1;
4392 linux_nat_event_pipe[1] = -1;
4395 restore_child_signals_mask (&prev_mask);
4401 /* target_async implementation. */
4404 linux_nat_target::async (int enable)
4408 if (!linux_async_pipe (1))
4410 add_file_handler (linux_nat_event_pipe[0],
4411 handle_target_event, NULL);
4412 /* There may be pending events to handle. Tell the event loop
4419 delete_file_handler (linux_nat_event_pipe[0]);
4420 linux_async_pipe (0);
4425 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4429 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4433 if (debug_linux_nat)
4434 fprintf_unfiltered (gdb_stdlog,
4435 "LNSL: running -> suspending %s\n",
4436 target_pid_to_str (lwp->ptid));
4439 if (lwp->last_resume_kind == resume_stop)
4441 if (debug_linux_nat)
4442 fprintf_unfiltered (gdb_stdlog,
4443 "linux-nat: already stopping LWP %ld at "
4449 stop_callback (lwp, NULL);
4450 lwp->last_resume_kind = resume_stop;
4454 /* Already known to be stopped; do nothing. */
4456 if (debug_linux_nat)
4458 if (find_thread_ptid (lwp->ptid)->stop_requested)
4459 fprintf_unfiltered (gdb_stdlog,
4460 "LNSL: already stopped/stop_requested %s\n",
4461 target_pid_to_str (lwp->ptid));
4463 fprintf_unfiltered (gdb_stdlog,
4464 "LNSL: already stopped/no "
4465 "stop_requested yet %s\n",
4466 target_pid_to_str (lwp->ptid));
4473 linux_nat_target::stop (ptid_t ptid)
4475 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4479 linux_nat_target::close ()
4481 /* Unregister from the event loop. */
4485 inf_ptrace_target::close ();
4488 /* When requests are passed down from the linux-nat layer to the
4489 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4490 used. The address space pointer is stored in the inferior object,
4491 but the common code that is passed such ptid can't tell whether
4492 lwpid is a "main" process id or not (it assumes so). We reverse
4493 look up the "main" process id from the lwp here. */
4495 struct address_space *
4496 linux_nat_target::thread_address_space (ptid_t ptid)
4498 struct lwp_info *lwp;
4499 struct inferior *inf;
4502 if (ptid.lwp () == 0)
4504 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4506 lwp = find_lwp_pid (ptid);
4507 pid = lwp->ptid.pid ();
4511 /* A (pid,lwpid,0) ptid. */
4515 inf = find_inferior_pid (pid);
4516 gdb_assert (inf != NULL);
4520 /* Return the cached value of the processor core for thread PTID. */
4523 linux_nat_target::core_of_thread (ptid_t ptid)
4525 struct lwp_info *info = find_lwp_pid (ptid);
4532 /* Implementation of to_filesystem_is_local. */
4535 linux_nat_target::filesystem_is_local ()
4537 struct inferior *inf = current_inferior ();
4539 if (inf->fake_pid_p || inf->pid == 0)
4542 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4545 /* Convert the INF argument passed to a to_fileio_* method
4546 to a process ID suitable for passing to its corresponding
4547 linux_mntns_* function. If INF is non-NULL then the
4548 caller is requesting the filesystem seen by INF. If INF
4549 is NULL then the caller is requesting the filesystem seen
4550 by the GDB. We fall back to GDB's filesystem in the case
4551 that INF is non-NULL but its PID is unknown. */
4554 linux_nat_fileio_pid_of (struct inferior *inf)
4556 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4562 /* Implementation of to_fileio_open. */
4565 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4566 int flags, int mode, int warn_if_slow,
4573 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4574 || fileio_to_host_mode (mode, &nat_mode) == -1)
4576 *target_errno = FILEIO_EINVAL;
4580 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4581 filename, nat_flags, nat_mode);
4583 *target_errno = host_to_fileio_error (errno);
4588 /* Implementation of to_fileio_readlink. */
4590 gdb::optional<std::string>
4591 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4597 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4598 filename, buf, sizeof (buf));
4601 *target_errno = host_to_fileio_error (errno);
4605 return std::string (buf, len);
4608 /* Implementation of to_fileio_unlink. */
4611 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4616 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4619 *target_errno = host_to_fileio_error (errno);
4624 /* Implementation of the to_thread_events method. */
4627 linux_nat_target::thread_events (int enable)
4629 report_thread_events = enable;
4632 linux_nat_target::linux_nat_target ()
4634 /* We don't change the stratum; this target will sit at
4635 process_stratum and thread_db will set at thread_stratum. This
4636 is a little strange, since this is a multi-threaded-capable
4637 target, but we want to be on the stack below thread_db, and we
4638 also want to be used for single-threaded processes. */
4641 /* See linux-nat.h. */
4644 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4653 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4656 memset (siginfo, 0, sizeof (*siginfo));
4662 /* See nat/linux-nat.h. */
4665 current_lwp_ptid (void)
4667 gdb_assert (inferior_ptid.lwp_p ());
4668 return inferior_ptid;
4672 _initialize_linux_nat (void)
4674 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4675 &debug_linux_nat, _("\
4676 Set debugging of GNU/Linux lwp module."), _("\
4677 Show debugging of GNU/Linux lwp module."), _("\
4678 Enables printf debugging output."),
4680 show_debug_linux_nat,
4681 &setdebuglist, &showdebuglist);
4683 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4684 &debug_linux_namespaces, _("\
4685 Set debugging of GNU/Linux namespaces module."), _("\
4686 Show debugging of GNU/Linux namespaces module."), _("\
4687 Enables printf debugging output."),
4690 &setdebuglist, &showdebuglist);
4692 /* Save this mask as the default. */
4693 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4695 /* Install a SIGCHLD handler. */
4696 sigchld_action.sa_handler = sigchld_handler;
4697 sigemptyset (&sigchld_action.sa_mask);
4698 sigchld_action.sa_flags = SA_RESTART;
4700 /* Make it the default. */
4701 sigaction (SIGCHLD, &sigchld_action, NULL);
4703 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4704 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4705 sigdelset (&suspend_mask, SIGCHLD);
4707 sigemptyset (&blocked_mask);
4709 lwp_lwpid_htab_create ();
4713 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4714 the GNU/Linux Threads library and therefore doesn't really belong
4717 /* Return the set of signals used by the threads library in *SET. */
4720 lin_thread_get_thread_signals (sigset_t *set)
4724 /* NPTL reserves the first two RT signals, but does not provide any
4725 way for the debugger to query the signal numbers - fortunately
4726 they don't change. */
4727 sigaddset (set, __SIGRTMIN);
4728 sigaddset (set, __SIGRTMIN + 1);