Zero supplied stat buffers in functions that pretend to stat
[external/binutils.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3    Copyright (C) 2009-2015 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42
43 static const char *jit_reader_dir = NULL;
44
45 static const struct objfile_data *jit_objfile_data;
46
47 static const char *const jit_break_name = "__jit_debug_register_code";
48
49 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
50
51 static const struct program_space_data *jit_program_space_data = NULL;
52
53 static void jit_inferior_init (struct gdbarch *gdbarch);
54
55 /* An unwinder is registered for every gdbarch.  This key is used to
56    remember if the unwinder has been registered for a particular
57    gdbarch.  */
58
59 static struct gdbarch_data *jit_gdbarch_data;
60
61 /* Non-zero if we want to see trace of jit level stuff.  */
62
63 static unsigned int jit_debug = 0;
64
65 static void
66 show_jit_debug (struct ui_file *file, int from_tty,
67                 struct cmd_list_element *c, const char *value)
68 {
69   fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
70 }
71
72 struct target_buffer
73 {
74   CORE_ADDR base;
75   ULONGEST size;
76 };
77
78 /* Openning the file is a no-op.  */
79
80 static void *
81 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
82 {
83   return open_closure;
84 }
85
86 /* Closing the file is just freeing the base/size pair on our side.  */
87
88 static int
89 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
90 {
91   xfree (stream);
92
93   /* Zero means success.  */
94   return 0;
95 }
96
97 /* For reading the file, we just need to pass through to target_read_memory and
98    fix up the arguments and return values.  */
99
100 static file_ptr
101 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
102                      file_ptr nbytes, file_ptr offset)
103 {
104   int err;
105   struct target_buffer *buffer = (struct target_buffer *) stream;
106
107   /* If this read will read all of the file, limit it to just the rest.  */
108   if (offset + nbytes > buffer->size)
109     nbytes = buffer->size - offset;
110
111   /* If there are no more bytes left, we've reached EOF.  */
112   if (nbytes == 0)
113     return 0;
114
115   err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
116   if (err)
117     return -1;
118
119   return nbytes;
120 }
121
122 /* For statting the file, we only support the st_size attribute.  */
123
124 static int
125 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
126 {
127   struct target_buffer *buffer = (struct target_buffer*) stream;
128
129   memset (sb, 0, sizeof (struct stat));
130   sb->st_size = buffer->size;
131   return 0;
132 }
133
134 /* Open a BFD from the target's memory.  */
135
136 static struct bfd *
137 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
138 {
139   struct target_buffer *buffer = xmalloc (sizeof (struct target_buffer));
140
141   buffer->base = addr;
142   buffer->size = size;
143   return gdb_bfd_openr_iovec ("<in-memory>", target,
144                               mem_bfd_iovec_open,
145                               buffer,
146                               mem_bfd_iovec_pread,
147                               mem_bfd_iovec_close,
148                               mem_bfd_iovec_stat);
149 }
150
151 /* One reader that has been loaded successfully, and can potentially be used to
152    parse debug info.  */
153
154 static struct jit_reader
155 {
156   struct gdb_reader_funcs *functions;
157   void *handle;
158 } *loaded_jit_reader = NULL;
159
160 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
161 static const char *reader_init_fn_sym = "gdb_init_reader";
162
163 /* Try to load FILE_NAME as a JIT debug info reader.  */
164
165 static struct jit_reader *
166 jit_reader_load (const char *file_name)
167 {
168   void *so;
169   reader_init_fn_type *init_fn;
170   struct jit_reader *new_reader = NULL;
171   struct gdb_reader_funcs *funcs = NULL;
172   struct cleanup *old_cleanups;
173
174   if (jit_debug)
175     fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
176                         file_name);
177   so = gdb_dlopen (file_name);
178   old_cleanups = make_cleanup_dlclose (so);
179
180   init_fn = gdb_dlsym (so, reader_init_fn_sym);
181   if (!init_fn)
182     error (_("Could not locate initialization function: %s."),
183           reader_init_fn_sym);
184
185   if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
186     error (_("Reader not GPL compatible."));
187
188   funcs = init_fn ();
189   if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
190     error (_("Reader version does not match GDB version."));
191
192   new_reader = XCNEW (struct jit_reader);
193   new_reader->functions = funcs;
194   new_reader->handle = so;
195
196   discard_cleanups (old_cleanups);
197   return new_reader;
198 }
199
200 /* Provides the jit-reader-load command.  */
201
202 static void
203 jit_reader_load_command (char *args, int from_tty)
204 {
205   char *so_name;
206   struct cleanup *prev_cleanup;
207
208   if (args == NULL)
209     error (_("No reader name provided."));
210
211   if (loaded_jit_reader != NULL)
212     error (_("JIT reader already loaded.  Run jit-reader-unload first."));
213
214   if (IS_ABSOLUTE_PATH (args))
215     so_name = xstrdup (args);
216   else
217     so_name = xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING, args);
218   prev_cleanup = make_cleanup (xfree, so_name);
219
220   loaded_jit_reader = jit_reader_load (so_name);
221   do_cleanups (prev_cleanup);
222 }
223
224 /* Provides the jit-reader-unload command.  */
225
226 static void
227 jit_reader_unload_command (char *args, int from_tty)
228 {
229   if (!loaded_jit_reader)
230     error (_("No JIT reader loaded."));
231
232   loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
233
234   gdb_dlclose (loaded_jit_reader->handle);
235   xfree (loaded_jit_reader);
236   loaded_jit_reader = NULL;
237 }
238
239 /* Per-program space structure recording which objfile has the JIT
240    symbols.  */
241
242 struct jit_program_space_data
243 {
244   /* The objfile.  This is NULL if no objfile holds the JIT
245      symbols.  */
246
247   struct objfile *objfile;
248
249   /* If this program space has __jit_debug_register_code, this is the
250      cached address from the minimal symbol.  This is used to detect
251      relocations requiring the breakpoint to be re-created.  */
252
253   CORE_ADDR cached_code_address;
254
255   /* This is the JIT event breakpoint, or NULL if it has not been
256      set.  */
257
258   struct breakpoint *jit_breakpoint;
259 };
260
261 /* Per-objfile structure recording the addresses in the program space.
262    This object serves two purposes: for ordinary objfiles, it may
263    cache some symbols related to the JIT interface; and for
264    JIT-created objfiles, it holds some information about the
265    jit_code_entry.  */
266
267 struct jit_objfile_data
268 {
269   /* Symbol for __jit_debug_register_code.  */
270   struct minimal_symbol *register_code;
271
272   /* Symbol for __jit_debug_descriptor.  */
273   struct minimal_symbol *descriptor;
274
275   /* Address of struct jit_code_entry in this objfile.  This is only
276      non-zero for objfiles that represent code created by the JIT.  */
277   CORE_ADDR addr;
278 };
279
280 /* Fetch the jit_objfile_data associated with OBJF.  If no data exists
281    yet, make a new structure and attach it.  */
282
283 static struct jit_objfile_data *
284 get_jit_objfile_data (struct objfile *objf)
285 {
286   struct jit_objfile_data *objf_data;
287
288   objf_data = objfile_data (objf, jit_objfile_data);
289   if (objf_data == NULL)
290     {
291       objf_data = XCNEW (struct jit_objfile_data);
292       set_objfile_data (objf, jit_objfile_data, objf_data);
293     }
294
295   return objf_data;
296 }
297
298 /* Remember OBJFILE has been created for struct jit_code_entry located
299    at inferior address ENTRY.  */
300
301 static void
302 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
303 {
304   struct jit_objfile_data *objf_data;
305
306   objf_data = get_jit_objfile_data (objfile);
307   objf_data->addr = entry;
308 }
309
310 /* Return jit_program_space_data for current program space.  Allocate
311    if not already present.  */
312
313 static struct jit_program_space_data *
314 get_jit_program_space_data (void)
315 {
316   struct jit_program_space_data *ps_data;
317
318   ps_data = program_space_data (current_program_space, jit_program_space_data);
319   if (ps_data == NULL)
320     {
321       ps_data = XCNEW (struct jit_program_space_data);
322       set_program_space_data (current_program_space, jit_program_space_data,
323                               ps_data);
324     }
325
326   return ps_data;
327 }
328
329 static void
330 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
331 {
332   xfree (arg);
333 }
334
335 /* Helper function for reading the global JIT descriptor from remote
336    memory.  Returns 1 if all went well, 0 otherwise.  */
337
338 static int
339 jit_read_descriptor (struct gdbarch *gdbarch,
340                      struct jit_descriptor *descriptor,
341                      struct jit_program_space_data *ps_data)
342 {
343   int err;
344   struct type *ptr_type;
345   int ptr_size;
346   int desc_size;
347   gdb_byte *desc_buf;
348   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
349   struct jit_objfile_data *objf_data;
350
351   if (ps_data->objfile == NULL)
352     return 0;
353   objf_data = get_jit_objfile_data (ps_data->objfile);
354   if (objf_data->descriptor == NULL)
355     return 0;
356
357   if (jit_debug)
358     fprintf_unfiltered (gdb_stdlog,
359                         "jit_read_descriptor, descriptor_addr = %s\n",
360                         paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
361                                                                   objf_data->descriptor)));
362
363   /* Figure out how big the descriptor is on the remote and how to read it.  */
364   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
365   ptr_size = TYPE_LENGTH (ptr_type);
366   desc_size = 8 + 2 * ptr_size;  /* Two 32-bit ints and two pointers.  */
367   desc_buf = alloca (desc_size);
368
369   /* Read the descriptor.  */
370   err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
371                                                    objf_data->descriptor),
372                             desc_buf, desc_size);
373   if (err)
374     {
375       printf_unfiltered (_("Unable to read JIT descriptor from "
376                            "remote memory\n"));
377       return 0;
378     }
379
380   /* Fix the endianness to match the host.  */
381   descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
382   descriptor->action_flag =
383       extract_unsigned_integer (&desc_buf[4], 4, byte_order);
384   descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
385   descriptor->first_entry =
386       extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
387
388   return 1;
389 }
390
391 /* Helper function for reading a JITed code entry from remote memory.  */
392
393 static void
394 jit_read_code_entry (struct gdbarch *gdbarch,
395                      CORE_ADDR code_addr, struct jit_code_entry *code_entry)
396 {
397   int err, off;
398   struct type *ptr_type;
399   int ptr_size;
400   int entry_size;
401   int align_bytes;
402   gdb_byte *entry_buf;
403   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
404
405   /* Figure out how big the entry is on the remote and how to read it.  */
406   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
407   ptr_size = TYPE_LENGTH (ptr_type);
408
409   /* Figure out where the longlong value will be.  */
410   align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
411   off = 3 * ptr_size;
412   off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
413
414   entry_size = off + 8;  /* Three pointers and one 64-bit int.  */
415   entry_buf = alloca (entry_size);
416
417   /* Read the entry.  */
418   err = target_read_memory (code_addr, entry_buf, entry_size);
419   if (err)
420     error (_("Unable to read JIT code entry from remote memory!"));
421
422   /* Fix the endianness to match the host.  */
423   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
424   code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
425   code_entry->prev_entry =
426       extract_typed_address (&entry_buf[ptr_size], ptr_type);
427   code_entry->symfile_addr =
428       extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
429   code_entry->symfile_size =
430       extract_unsigned_integer (&entry_buf[off], 8, byte_order);
431 }
432
433 /* Proxy object for building a block.  */
434
435 struct gdb_block
436 {
437   /* gdb_blocks are linked into a tree structure.  Next points to the
438      next node at the same depth as this block and parent to the
439      parent gdb_block.  */
440   struct gdb_block *next, *parent;
441
442   /* Points to the "real" block that is being built out of this
443      instance.  This block will be added to a blockvector, which will
444      then be added to a symtab.  */
445   struct block *real_block;
446
447   /* The first and last code address corresponding to this block.  */
448   CORE_ADDR begin, end;
449
450   /* The name of this block (if any).  If this is non-NULL, the
451      FUNCTION symbol symbol is set to this value.  */
452   const char *name;
453 };
454
455 /* Proxy object for building a symtab.  */
456
457 struct gdb_symtab
458 {
459   /* The list of blocks in this symtab.  These will eventually be
460      converted to real blocks.  */
461   struct gdb_block *blocks;
462
463   /* The number of blocks inserted.  */
464   int nblocks;
465
466   /* A mapping between line numbers to PC.  */
467   struct linetable *linetable;
468
469   /* The source file for this symtab.  */
470   const char *file_name;
471   struct gdb_symtab *next;
472 };
473
474 /* Proxy object for building an object.  */
475
476 struct gdb_object
477 {
478   struct gdb_symtab *symtabs;
479 };
480
481 /* The type of the `private' data passed around by the callback
482    functions.  */
483
484 typedef CORE_ADDR jit_dbg_reader_data;
485
486 /* The reader calls into this function to read data off the targets
487    address space.  */
488
489 static enum gdb_status
490 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
491 {
492   int result = target_read_memory ((CORE_ADDR) target_mem, gdb_buf, len);
493   if (result == 0)
494     return GDB_SUCCESS;
495   else
496     return GDB_FAIL;
497 }
498
499 /* The reader calls into this function to create a new gdb_object
500    which it can then pass around to the other callbacks.  Right now,
501    all that is required is allocating the memory.  */
502
503 static struct gdb_object *
504 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
505 {
506   /* CB is not required right now, but sometime in the future we might
507      need a handle to it, and we'd like to do that without breaking
508      the ABI.  */
509   return XCNEW (struct gdb_object);
510 }
511
512 /* Readers call into this function to open a new gdb_symtab, which,
513    again, is passed around to other callbacks.  */
514
515 static struct gdb_symtab *
516 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
517                       struct gdb_object *object,
518                       const char *file_name)
519 {
520   struct gdb_symtab *ret;
521
522   /* CB stays unused.  See comment in jit_object_open_impl.  */
523
524   ret = XCNEW (struct gdb_symtab);
525   ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
526   ret->next = object->symtabs;
527   object->symtabs = ret;
528   return ret;
529 }
530
531 /* Returns true if the block corresponding to old should be placed
532    before the block corresponding to new in the final blockvector.  */
533
534 static int
535 compare_block (const struct gdb_block *const old,
536                const struct gdb_block *const newobj)
537 {
538   if (old == NULL)
539     return 1;
540   if (old->begin < newobj->begin)
541     return 1;
542   else if (old->begin == newobj->begin)
543     {
544       if (old->end > newobj->end)
545         return 1;
546       else
547         return 0;
548     }
549   else
550     return 0;
551 }
552
553 /* Called by readers to open a new gdb_block.  This function also
554    inserts the new gdb_block in the correct place in the corresponding
555    gdb_symtab.  */
556
557 static struct gdb_block *
558 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
559                      struct gdb_symtab *symtab, struct gdb_block *parent,
560                      GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
561 {
562   struct gdb_block *block = XCNEW (struct gdb_block);
563
564   block->next = symtab->blocks;
565   block->begin = (CORE_ADDR) begin;
566   block->end = (CORE_ADDR) end;
567   block->name = name ? xstrdup (name) : NULL;
568   block->parent = parent;
569
570   /* Ensure that the blocks are inserted in the correct (reverse of
571      the order expected by blockvector).  */
572   if (compare_block (symtab->blocks, block))
573     {
574       symtab->blocks = block;
575     }
576   else
577     {
578       struct gdb_block *i = symtab->blocks;
579
580       for (;; i = i->next)
581         {
582           /* Guaranteed to terminate, since compare_block (NULL, _)
583              returns 1.  */
584           if (compare_block (i->next, block))
585             {
586               block->next = i->next;
587               i->next = block;
588               break;
589             }
590         }
591     }
592   symtab->nblocks++;
593
594   return block;
595 }
596
597 /* Readers call this to add a line mapping (from PC to line number) to
598    a gdb_symtab.  */
599
600 static void
601 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
602                                   struct gdb_symtab *stab, int nlines,
603                                   struct gdb_line_mapping *map)
604 {
605   int i;
606
607   if (nlines < 1)
608     return;
609
610   stab->linetable = xmalloc (sizeof (struct linetable)
611                              + (nlines - 1) * sizeof (struct linetable_entry));
612   stab->linetable->nitems = nlines;
613   for (i = 0; i < nlines; i++)
614     {
615       stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
616       stab->linetable->item[i].line = map[i].line;
617     }
618 }
619
620 /* Called by readers to close a gdb_symtab.  Does not need to do
621    anything as of now.  */
622
623 static void
624 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
625                        struct gdb_symtab *stab)
626 {
627   /* Right now nothing needs to be done here.  We may need to do some
628      cleanup here in the future (again, without breaking the plugin
629      ABI).  */
630 }
631
632 /* Transform STAB to a proper symtab, and add it it OBJFILE.  */
633
634 static void
635 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
636 {
637   struct compunit_symtab *cust;
638   struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
639   struct block *block_iter;
640   int actual_nblocks, i;
641   size_t blockvector_size;
642   CORE_ADDR begin, end;
643   struct blockvector *bv;
644
645   actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
646
647   cust = allocate_compunit_symtab (objfile, stab->file_name);
648   allocate_symtab (cust, stab->file_name);
649   add_compunit_symtab_to_objfile (cust);
650
651   /* JIT compilers compile in memory.  */
652   COMPUNIT_DIRNAME (cust) = NULL;
653
654   /* Copy over the linetable entry if one was provided.  */
655   if (stab->linetable)
656     {
657       size_t size = ((stab->linetable->nitems - 1)
658                      * sizeof (struct linetable_entry)
659                      + sizeof (struct linetable));
660       SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
661         = obstack_alloc (&objfile->objfile_obstack, size);
662       memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
663               size);
664     }
665
666   blockvector_size = (sizeof (struct blockvector)
667                       + (actual_nblocks - 1) * sizeof (struct block *));
668   bv = obstack_alloc (&objfile->objfile_obstack, blockvector_size);
669   COMPUNIT_BLOCKVECTOR (cust) = bv;
670
671   /* (begin, end) will contain the PC range this entire blockvector
672      spans.  */
673   BLOCKVECTOR_MAP (bv) = NULL;
674   begin = stab->blocks->begin;
675   end = stab->blocks->end;
676   BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
677
678   /* First run over all the gdb_block objects, creating a real block
679      object for each.  Simultaneously, keep setting the real_block
680      fields.  */
681   for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
682        i >= FIRST_LOCAL_BLOCK;
683        i--, gdb_block_iter = gdb_block_iter->next)
684     {
685       struct block *new_block = allocate_block (&objfile->objfile_obstack);
686       struct symbol *block_name = allocate_symbol (objfile);
687       struct type *block_type = arch_type (get_objfile_arch (objfile),
688                                            TYPE_CODE_VOID,
689                                            1,
690                                            "void");
691
692       BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
693                                                    NULL);
694       /* The address range.  */
695       BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
696       BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
697
698       /* The name.  */
699       SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
700       SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
701       symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
702       SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
703       SYMBOL_BLOCK_VALUE (block_name) = new_block;
704
705       block_name->ginfo.name = obstack_copy0 (&objfile->objfile_obstack,
706                                               gdb_block_iter->name,
707                                               strlen (gdb_block_iter->name));
708
709       BLOCK_FUNCTION (new_block) = block_name;
710
711       BLOCKVECTOR_BLOCK (bv, i) = new_block;
712       if (begin > BLOCK_START (new_block))
713         begin = BLOCK_START (new_block);
714       if (end < BLOCK_END (new_block))
715         end = BLOCK_END (new_block);
716
717       gdb_block_iter->real_block = new_block;
718     }
719
720   /* Now add the special blocks.  */
721   block_iter = NULL;
722   for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
723     {
724       struct block *new_block;
725
726       new_block = (i == GLOBAL_BLOCK
727                    ? allocate_global_block (&objfile->objfile_obstack)
728                    : allocate_block (&objfile->objfile_obstack));
729       BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
730                                                    NULL);
731       BLOCK_SUPERBLOCK (new_block) = block_iter;
732       block_iter = new_block;
733
734       BLOCK_START (new_block) = (CORE_ADDR) begin;
735       BLOCK_END (new_block) = (CORE_ADDR) end;
736
737       BLOCKVECTOR_BLOCK (bv, i) = new_block;
738
739       if (i == GLOBAL_BLOCK)
740         set_block_compunit_symtab (new_block, cust);
741     }
742
743   /* Fill up the superblock fields for the real blocks, using the
744      real_block fields populated earlier.  */
745   for (gdb_block_iter = stab->blocks;
746        gdb_block_iter;
747        gdb_block_iter = gdb_block_iter->next)
748     {
749       if (gdb_block_iter->parent != NULL)
750         {
751           /* If the plugin specifically mentioned a parent block, we
752              use that.  */
753           BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
754             gdb_block_iter->parent->real_block;
755         }
756       else
757         {
758           /* And if not, we set a default parent block.  */
759           BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
760             BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
761         }
762     }
763
764   /* Free memory.  */
765   gdb_block_iter = stab->blocks;
766
767   for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
768        gdb_block_iter;
769        gdb_block_iter = gdb_block_iter_tmp)
770     {
771       xfree ((void *) gdb_block_iter->name);
772       xfree (gdb_block_iter);
773     }
774   xfree (stab->linetable);
775   xfree ((char *) stab->file_name);
776   xfree (stab);
777 }
778
779 /* Called when closing a gdb_objfile.  Converts OBJ to a proper
780    objfile.  */
781
782 static void
783 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
784                        struct gdb_object *obj)
785 {
786   struct gdb_symtab *i, *j;
787   struct objfile *objfile;
788   jit_dbg_reader_data *priv_data;
789
790   priv_data = cb->priv_data;
791
792   objfile = allocate_objfile (NULL, "<< JIT compiled code >>",
793                               OBJF_NOT_FILENAME);
794   objfile->per_bfd->gdbarch = target_gdbarch ();
795
796   terminate_minimal_symbol_table (objfile);
797
798   j = NULL;
799   for (i = obj->symtabs; i; i = j)
800     {
801       j = i->next;
802       finalize_symtab (i, objfile);
803     }
804   add_objfile_entry (objfile, *priv_data);
805   xfree (obj);
806 }
807
808 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
809    ENTRY_ADDR is the address of the struct jit_code_entry in the
810    inferior address space.  */
811
812 static int
813 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
814                             CORE_ADDR entry_addr)
815 {
816   void *gdb_mem;
817   int status;
818   jit_dbg_reader_data priv_data;
819   struct gdb_reader_funcs *funcs;
820   struct gdb_symbol_callbacks callbacks =
821     {
822       jit_object_open_impl,
823       jit_symtab_open_impl,
824       jit_block_open_impl,
825       jit_symtab_close_impl,
826       jit_object_close_impl,
827
828       jit_symtab_line_mapping_add_impl,
829       jit_target_read_impl,
830
831       &priv_data
832     };
833
834   priv_data = entry_addr;
835
836   if (!loaded_jit_reader)
837     return 0;
838
839   gdb_mem = xmalloc (code_entry->symfile_size);
840
841   status = 1;
842   TRY
843     {
844       if (target_read_memory (code_entry->symfile_addr, gdb_mem,
845                               code_entry->symfile_size))
846         status = 0;
847     }
848   CATCH (e, RETURN_MASK_ALL)
849     {
850       status = 0;
851     }
852   END_CATCH
853
854   if (status)
855     {
856       funcs = loaded_jit_reader->functions;
857       if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
858           != GDB_SUCCESS)
859         status = 0;
860     }
861
862   xfree (gdb_mem);
863   if (jit_debug && status == 0)
864     fprintf_unfiltered (gdb_stdlog,
865                         "Could not read symtab using the loaded JIT reader.\n");
866   return status;
867 }
868
869 /* Try to read CODE_ENTRY using BFD.  ENTRY_ADDR is the address of the
870    struct jit_code_entry in the inferior address space.  */
871
872 static void
873 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
874                          CORE_ADDR entry_addr,
875                          struct gdbarch *gdbarch)
876 {
877   bfd *nbfd;
878   struct section_addr_info *sai;
879   struct bfd_section *sec;
880   struct objfile *objfile;
881   struct cleanup *old_cleanups;
882   int i;
883   const struct bfd_arch_info *b;
884
885   if (jit_debug)
886     fprintf_unfiltered (gdb_stdlog,
887                         "jit_register_code, symfile_addr = %s, "
888                         "symfile_size = %s\n",
889                         paddress (gdbarch, code_entry->symfile_addr),
890                         pulongest (code_entry->symfile_size));
891
892   nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
893                                       code_entry->symfile_size, gnutarget);
894   if (nbfd == NULL)
895     {
896       puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
897       return;
898     }
899
900   /* Check the format.  NOTE: This initializes important data that GDB uses!
901      We would segfault later without this line.  */
902   if (!bfd_check_format (nbfd, bfd_object))
903     {
904       printf_unfiltered (_("\
905 JITed symbol file is not an object file, ignoring it.\n"));
906       gdb_bfd_unref (nbfd);
907       return;
908     }
909
910   /* Check bfd arch.  */
911   b = gdbarch_bfd_arch_info (gdbarch);
912   if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
913     warning (_("JITed object file architecture %s is not compatible "
914                "with target architecture %s."), bfd_get_arch_info
915              (nbfd)->printable_name, b->printable_name);
916
917   /* Read the section address information out of the symbol file.  Since the
918      file is generated by the JIT at runtime, it should all of the absolute
919      addresses that we care about.  */
920   sai = alloc_section_addr_info (bfd_count_sections (nbfd));
921   old_cleanups = make_cleanup_free_section_addr_info (sai);
922   i = 0;
923   for (sec = nbfd->sections; sec != NULL; sec = sec->next)
924     if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
925       {
926         /* We assume that these virtual addresses are absolute, and do not
927            treat them as offsets.  */
928         sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
929         sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
930         sai->other[i].sectindex = sec->index;
931         ++i;
932       }
933   sai->num_sections = i;
934
935   /* This call does not take ownership of SAI.  */
936   make_cleanup_bfd_unref (nbfd);
937   objfile = symbol_file_add_from_bfd (nbfd, bfd_get_filename (nbfd), 0, sai,
938                                       OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
939
940   do_cleanups (old_cleanups);
941   add_objfile_entry (objfile, entry_addr);
942 }
943
944 /* This function registers code associated with a JIT code entry.  It uses the
945    pointer and size pair in the entry to read the symbol file from the remote
946    and then calls symbol_file_add_from_local_memory to add it as though it were
947    a symbol file added by the user.  */
948
949 static void
950 jit_register_code (struct gdbarch *gdbarch,
951                    CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
952 {
953   int success;
954
955   if (jit_debug)
956     fprintf_unfiltered (gdb_stdlog,
957                         "jit_register_code, symfile_addr = %s, "
958                         "symfile_size = %s\n",
959                         paddress (gdbarch, code_entry->symfile_addr),
960                         pulongest (code_entry->symfile_size));
961
962   success = jit_reader_try_read_symtab (code_entry, entry_addr);
963
964   if (!success)
965     jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
966 }
967
968 /* This function unregisters JITed code and frees the corresponding
969    objfile.  */
970
971 static void
972 jit_unregister_code (struct objfile *objfile)
973 {
974   free_objfile (objfile);
975 }
976
977 /* Look up the objfile with this code entry address.  */
978
979 static struct objfile *
980 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
981 {
982   struct objfile *objf;
983
984   ALL_OBJFILES (objf)
985     {
986       struct jit_objfile_data *objf_data;
987
988       objf_data = objfile_data (objf, jit_objfile_data);
989       if (objf_data != NULL && objf_data->addr == entry_addr)
990         return objf;
991     }
992   return NULL;
993 }
994
995 /* This is called when a breakpoint is deleted.  It updates the
996    inferior's cache, if needed.  */
997
998 static void
999 jit_breakpoint_deleted (struct breakpoint *b)
1000 {
1001   struct bp_location *iter;
1002
1003   if (b->type != bp_jit_event)
1004     return;
1005
1006   for (iter = b->loc; iter != NULL; iter = iter->next)
1007     {
1008       struct jit_program_space_data *ps_data;
1009
1010       ps_data = program_space_data (iter->pspace, jit_program_space_data);
1011       if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1012         {
1013           ps_data->cached_code_address = 0;
1014           ps_data->jit_breakpoint = NULL;
1015         }
1016     }
1017 }
1018
1019 /* (Re-)Initialize the jit breakpoint if necessary.
1020    Return 0 on success.  */
1021
1022 static int
1023 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1024                                 struct jit_program_space_data *ps_data)
1025 {
1026   struct bound_minimal_symbol reg_symbol;
1027   struct bound_minimal_symbol desc_symbol;
1028   struct jit_objfile_data *objf_data;
1029   CORE_ADDR addr;
1030
1031   if (ps_data->objfile == NULL)
1032     {
1033       /* Lookup the registration symbol.  If it is missing, then we
1034          assume we are not attached to a JIT.  */
1035       reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name);
1036       if (reg_symbol.minsym == NULL
1037           || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1038         return 1;
1039
1040       desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1041                                            reg_symbol.objfile);
1042       if (desc_symbol.minsym == NULL
1043           || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1044         return 1;
1045
1046       objf_data = get_jit_objfile_data (reg_symbol.objfile);
1047       objf_data->register_code = reg_symbol.minsym;
1048       objf_data->descriptor = desc_symbol.minsym;
1049
1050       ps_data->objfile = reg_symbol.objfile;
1051     }
1052   else
1053     objf_data = get_jit_objfile_data (ps_data->objfile);
1054
1055   addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1056
1057   if (jit_debug)
1058     fprintf_unfiltered (gdb_stdlog,
1059                         "jit_breakpoint_re_set_internal, "
1060                         "breakpoint_addr = %s\n",
1061                         paddress (gdbarch, addr));
1062
1063   if (ps_data->cached_code_address == addr)
1064     return 1;
1065
1066   /* Delete the old breakpoint.  */
1067   if (ps_data->jit_breakpoint != NULL)
1068     delete_breakpoint (ps_data->jit_breakpoint);
1069
1070   /* Put a breakpoint in the registration symbol.  */
1071   ps_data->cached_code_address = addr;
1072   ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1073
1074   return 0;
1075 }
1076
1077 /* The private data passed around in the frame unwind callback
1078    functions.  */
1079
1080 struct jit_unwind_private
1081 {
1082   /* Cached register values.  See jit_frame_sniffer to see how this
1083      works.  */
1084   struct gdb_reg_value **registers;
1085
1086   /* The frame being unwound.  */
1087   struct frame_info *this_frame;
1088 };
1089
1090 /* Sets the value of a particular register in this frame.  */
1091
1092 static void
1093 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1094                          struct gdb_reg_value *value)
1095 {
1096   struct jit_unwind_private *priv;
1097   int gdb_reg;
1098
1099   priv = cb->priv_data;
1100
1101   gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1102                                           dwarf_regnum);
1103   if (gdb_reg == -1)
1104     {
1105       if (jit_debug)
1106         fprintf_unfiltered (gdb_stdlog,
1107                             _("Could not recognize DWARF regnum %d"),
1108                             dwarf_regnum);
1109       return;
1110     }
1111
1112   gdb_assert (priv->registers);
1113   priv->registers[gdb_reg] = value;
1114 }
1115
1116 static void
1117 reg_value_free_impl (struct gdb_reg_value *value)
1118 {
1119   xfree (value);
1120 }
1121
1122 /* Get the value of register REGNUM in the previous frame.  */
1123
1124 static struct gdb_reg_value *
1125 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1126 {
1127   struct jit_unwind_private *priv;
1128   struct gdb_reg_value *value;
1129   int gdb_reg, size;
1130   struct gdbarch *frame_arch;
1131
1132   priv = cb->priv_data;
1133   frame_arch = get_frame_arch (priv->this_frame);
1134
1135   gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1136   size = register_size (frame_arch, gdb_reg);
1137   value = xmalloc (sizeof (struct gdb_reg_value) + size - 1);
1138   value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1139                                                    value->value);
1140   value->size = size;
1141   value->free = reg_value_free_impl;
1142   return value;
1143 }
1144
1145 /* gdb_reg_value has a free function, which must be called on each
1146    saved register value.  */
1147
1148 static void
1149 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1150 {
1151   struct jit_unwind_private *priv_data = cache;
1152   struct gdbarch *frame_arch;
1153   int i;
1154
1155   gdb_assert (priv_data->registers);
1156   frame_arch = get_frame_arch (priv_data->this_frame);
1157
1158   for (i = 0; i < gdbarch_num_regs (frame_arch); i++)
1159     if (priv_data->registers[i] && priv_data->registers[i]->free)
1160       priv_data->registers[i]->free (priv_data->registers[i]);
1161
1162   xfree (priv_data->registers);
1163   xfree (priv_data);
1164 }
1165
1166 /* The frame sniffer for the pseudo unwinder.
1167
1168    While this is nominally a frame sniffer, in the case where the JIT
1169    reader actually recognizes the frame, it does a lot more work -- it
1170    unwinds the frame and saves the corresponding register values in
1171    the cache.  jit_frame_prev_register simply returns the saved
1172    register values.  */
1173
1174 static int
1175 jit_frame_sniffer (const struct frame_unwind *self,
1176                    struct frame_info *this_frame, void **cache)
1177 {
1178   struct jit_unwind_private *priv_data;
1179   struct gdb_unwind_callbacks callbacks;
1180   struct gdb_reader_funcs *funcs;
1181
1182   callbacks.reg_get = jit_unwind_reg_get_impl;
1183   callbacks.reg_set = jit_unwind_reg_set_impl;
1184   callbacks.target_read = jit_target_read_impl;
1185
1186   if (loaded_jit_reader == NULL)
1187     return 0;
1188
1189   funcs = loaded_jit_reader->functions;
1190
1191   gdb_assert (!*cache);
1192
1193   *cache = XCNEW (struct jit_unwind_private);
1194   priv_data = *cache;
1195   priv_data->registers =
1196     XCNEWVEC (struct gdb_reg_value *,         
1197               gdbarch_num_regs (get_frame_arch (this_frame)));
1198   priv_data->this_frame = this_frame;
1199
1200   callbacks.priv_data = priv_data;
1201
1202   /* Try to coax the provided unwinder to unwind the stack */
1203   if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1204     {
1205       if (jit_debug)
1206         fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1207                                           "JIT reader.\n"));
1208       return 1;
1209     }
1210   if (jit_debug)
1211     fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1212                                       "JIT reader.\n"));
1213
1214   jit_dealloc_cache (this_frame, *cache);
1215   *cache = NULL;
1216
1217   return 0;
1218 }
1219
1220
1221 /* The frame_id function for the pseudo unwinder.  Relays the call to
1222    the loaded plugin.  */
1223
1224 static void
1225 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1226                    struct frame_id *this_id)
1227 {
1228   struct jit_unwind_private priv;
1229   struct gdb_frame_id frame_id;
1230   struct gdb_reader_funcs *funcs;
1231   struct gdb_unwind_callbacks callbacks;
1232
1233   priv.registers = NULL;
1234   priv.this_frame = this_frame;
1235
1236   /* We don't expect the frame_id function to set any registers, so we
1237      set reg_set to NULL.  */
1238   callbacks.reg_get = jit_unwind_reg_get_impl;
1239   callbacks.reg_set = NULL;
1240   callbacks.target_read = jit_target_read_impl;
1241   callbacks.priv_data = &priv;
1242
1243   gdb_assert (loaded_jit_reader);
1244   funcs = loaded_jit_reader->functions;
1245
1246   frame_id = funcs->get_frame_id (funcs, &callbacks);
1247   *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1248 }
1249
1250 /* Pseudo unwinder function.  Reads the previously fetched value for
1251    the register from the cache.  */
1252
1253 static struct value *
1254 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1255 {
1256   struct jit_unwind_private *priv = *cache;
1257   struct gdb_reg_value *value;
1258
1259   if (priv == NULL)
1260     return frame_unwind_got_optimized (this_frame, reg);
1261
1262   gdb_assert (priv->registers);
1263   value = priv->registers[reg];
1264   if (value && value->defined)
1265     return frame_unwind_got_bytes (this_frame, reg, value->value);
1266   else
1267     return frame_unwind_got_optimized (this_frame, reg);
1268 }
1269
1270 /* Relay everything back to the unwinder registered by the JIT debug
1271    info reader.*/
1272
1273 static const struct frame_unwind jit_frame_unwind =
1274 {
1275   NORMAL_FRAME,
1276   default_frame_unwind_stop_reason,
1277   jit_frame_this_id,
1278   jit_frame_prev_register,
1279   NULL,
1280   jit_frame_sniffer,
1281   jit_dealloc_cache
1282 };
1283
1284
1285 /* This is the information that is stored at jit_gdbarch_data for each
1286    architecture.  */
1287
1288 struct jit_gdbarch_data_type
1289 {
1290   /* Has the (pseudo) unwinder been prepended? */
1291   int unwinder_registered;
1292 };
1293
1294 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed.  */
1295
1296 static void
1297 jit_prepend_unwinder (struct gdbarch *gdbarch)
1298 {
1299   struct jit_gdbarch_data_type *data;
1300
1301   data = gdbarch_data (gdbarch, jit_gdbarch_data);
1302   if (!data->unwinder_registered)
1303     {
1304       frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1305       data->unwinder_registered = 1;
1306     }
1307 }
1308
1309 /* Register any already created translations.  */
1310
1311 static void
1312 jit_inferior_init (struct gdbarch *gdbarch)
1313 {
1314   struct jit_descriptor descriptor;
1315   struct jit_code_entry cur_entry;
1316   struct jit_program_space_data *ps_data;
1317   CORE_ADDR cur_entry_addr;
1318
1319   if (jit_debug)
1320     fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1321
1322   jit_prepend_unwinder (gdbarch);
1323
1324   ps_data = get_jit_program_space_data ();
1325   if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1326     return;
1327
1328   /* Read the descriptor so we can check the version number and load
1329      any already JITed functions.  */
1330   if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1331     return;
1332
1333   /* Check that the version number agrees with that we support.  */
1334   if (descriptor.version != 1)
1335     {
1336       printf_unfiltered (_("Unsupported JIT protocol version %ld "
1337                            "in descriptor (expected 1)\n"),
1338                          (long) descriptor.version);
1339       return;
1340     }
1341
1342   /* If we've attached to a running program, we need to check the descriptor
1343      to register any functions that were already generated.  */
1344   for (cur_entry_addr = descriptor.first_entry;
1345        cur_entry_addr != 0;
1346        cur_entry_addr = cur_entry.next_entry)
1347     {
1348       jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1349
1350       /* This hook may be called many times during setup, so make sure we don't
1351          add the same symbol file twice.  */
1352       if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1353         continue;
1354
1355       jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1356     }
1357 }
1358
1359 /* Exported routine to call when an inferior has been created.  */
1360
1361 void
1362 jit_inferior_created_hook (void)
1363 {
1364   jit_inferior_init (target_gdbarch ());
1365 }
1366
1367 /* Exported routine to call to re-set the jit breakpoints,
1368    e.g. when a program is rerun.  */
1369
1370 void
1371 jit_breakpoint_re_set (void)
1372 {
1373   jit_breakpoint_re_set_internal (target_gdbarch (),
1374                                   get_jit_program_space_data ());
1375 }
1376
1377 /* This function cleans up any code entries left over when the
1378    inferior exits.  We get left over code when the inferior exits
1379    without unregistering its code, for example when it crashes.  */
1380
1381 static void
1382 jit_inferior_exit_hook (struct inferior *inf)
1383 {
1384   struct objfile *objf;
1385   struct objfile *temp;
1386
1387   ALL_OBJFILES_SAFE (objf, temp)
1388     {
1389       struct jit_objfile_data *objf_data = objfile_data (objf,
1390                                                          jit_objfile_data);
1391
1392       if (objf_data != NULL && objf_data->addr != 0)
1393         jit_unregister_code (objf);
1394     }
1395 }
1396
1397 void
1398 jit_event_handler (struct gdbarch *gdbarch)
1399 {
1400   struct jit_descriptor descriptor;
1401   struct jit_code_entry code_entry;
1402   CORE_ADDR entry_addr;
1403   struct objfile *objf;
1404
1405   /* Read the descriptor from remote memory.  */
1406   if (!jit_read_descriptor (gdbarch, &descriptor,
1407                             get_jit_program_space_data ()))
1408     return;
1409   entry_addr = descriptor.relevant_entry;
1410
1411   /* Do the corresponding action.  */
1412   switch (descriptor.action_flag)
1413     {
1414     case JIT_NOACTION:
1415       break;
1416     case JIT_REGISTER:
1417       jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1418       jit_register_code (gdbarch, entry_addr, &code_entry);
1419       break;
1420     case JIT_UNREGISTER:
1421       objf = jit_find_objf_with_entry_addr (entry_addr);
1422       if (objf == NULL)
1423         printf_unfiltered (_("Unable to find JITed code "
1424                              "entry at address: %s\n"),
1425                            paddress (gdbarch, entry_addr));
1426       else
1427         jit_unregister_code (objf);
1428
1429       break;
1430     default:
1431       error (_("Unknown action_flag value in JIT descriptor!"));
1432       break;
1433     }
1434 }
1435
1436 /* Called to free the data allocated to the jit_program_space_data slot.  */
1437
1438 static void
1439 free_objfile_data (struct objfile *objfile, void *data)
1440 {
1441   struct jit_objfile_data *objf_data = data;
1442
1443   if (objf_data->register_code != NULL)
1444     {
1445       struct jit_program_space_data *ps_data;
1446
1447       ps_data = program_space_data (objfile->pspace, jit_program_space_data);
1448       if (ps_data != NULL && ps_data->objfile == objfile)
1449         ps_data->objfile = NULL;
1450     }
1451
1452   xfree (data);
1453 }
1454
1455 /* Initialize the jit_gdbarch_data slot with an instance of struct
1456    jit_gdbarch_data_type */
1457
1458 static void *
1459 jit_gdbarch_data_init (struct obstack *obstack)
1460 {
1461   struct jit_gdbarch_data_type *data;
1462
1463   data = obstack_alloc (obstack, sizeof (struct jit_gdbarch_data_type));
1464   data->unwinder_registered = 0;
1465   return data;
1466 }
1467
1468 /* Provide a prototype to silence -Wmissing-prototypes.  */
1469
1470 extern void _initialize_jit (void);
1471
1472 void
1473 _initialize_jit (void)
1474 {
1475   jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1476                                            JIT_READER_DIR_RELOCATABLE);
1477   add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1478                              _("Set JIT debugging."),
1479                              _("Show JIT debugging."),
1480                              _("When non-zero, JIT debugging is enabled."),
1481                              NULL,
1482                              show_jit_debug,
1483                              &setdebuglist, &showdebuglist);
1484
1485   observer_attach_inferior_exit (jit_inferior_exit_hook);
1486   observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1487
1488   jit_objfile_data =
1489     register_objfile_data_with_cleanup (NULL, free_objfile_data);
1490   jit_program_space_data =
1491     register_program_space_data_with_cleanup (NULL,
1492                                               jit_program_space_data_cleanup);
1493   jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1494   if (is_dl_available ())
1495     {
1496       add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1497 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1498 Usage: jit-reader-load FILE\n\
1499 Try to load file FILE as a debug info reader (and unwinder) for\n\
1500 JIT compiled code.  The file is loaded from " JIT_READER_DIR ",\n\
1501 relocated relative to the GDB executable if required."));
1502       add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1503 Unload the currently loaded JIT debug info reader.\n\
1504 Usage: jit-reader-unload FILE\n\n\
1505 Do \"help jit-reader-load\" for info on loading debug info readers."));
1506     }
1507 }