Use XCNEW gdbarch_tdep
[external/binutils.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3    Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39 #include "top.h"
40 #include "interps.h"
41 #include "thread-fsm.h"
42
43 /* If we can't find a function's name from its address,
44    we print this instead.  */
45 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
46 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
47                                    + 2 * sizeof (CORE_ADDR))
48
49 /* NOTE: cagney/2003-04-16: What's the future of this code?
50
51    GDB needs an asynchronous expression evaluator, that means an
52    asynchronous inferior function call implementation, and that in
53    turn means restructuring the code so that it is event driven.  */
54
55 /* How you should pass arguments to a function depends on whether it
56    was defined in K&R style or prototype style.  If you define a
57    function using the K&R syntax that takes a `float' argument, then
58    callers must pass that argument as a `double'.  If you define the
59    function using the prototype syntax, then you must pass the
60    argument as a `float', with no promotion.
61
62    Unfortunately, on certain older platforms, the debug info doesn't
63    indicate reliably how each function was defined.  A function type's
64    TYPE_PROTOTYPED flag may be clear, even if the function was defined
65    in prototype style.  When calling a function whose TYPE_PROTOTYPED
66    flag is clear, GDB consults this flag to decide what to do.
67
68    For modern targets, it is proper to assume that, if the prototype
69    flag is clear, that can be trusted: `float' arguments should be
70    promoted to `double'.  For some older targets, if the prototype
71    flag is clear, that doesn't tell us anything.  The default is to
72    trust the debug information; the user can override this behavior
73    with "set coerce-float-to-double 0".  */
74
75 static int coerce_float_to_double_p = 1;
76 static void
77 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
78                                struct cmd_list_element *c, const char *value)
79 {
80   fprintf_filtered (file,
81                     _("Coercion of floats to doubles "
82                       "when calling functions is %s.\n"),
83                     value);
84 }
85
86 /* This boolean tells what gdb should do if a signal is received while
87    in a function called from gdb (call dummy).  If set, gdb unwinds
88    the stack and restore the context to what as it was before the
89    call.
90
91    The default is to stop in the frame where the signal was received.  */
92
93 static int unwind_on_signal_p = 0;
94 static void
95 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
96                          struct cmd_list_element *c, const char *value)
97 {
98   fprintf_filtered (file,
99                     _("Unwinding of stack if a signal is "
100                       "received while in a call dummy is %s.\n"),
101                     value);
102 }
103
104 /* This boolean tells what gdb should do if a std::terminate call is
105    made while in a function called from gdb (call dummy).
106    As the confines of a single dummy stack prohibit out-of-frame
107    handlers from handling a raised exception, and as out-of-frame
108    handlers are common in C++, this can lead to no handler being found
109    by the unwinder, and a std::terminate call.  This is a false positive.
110    If set, gdb unwinds the stack and restores the context to what it
111    was before the call.
112
113    The default is to unwind the frame if a std::terminate call is
114    made.  */
115
116 static int unwind_on_terminating_exception_p = 1;
117
118 static void
119 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
120                                         struct cmd_list_element *c,
121                                         const char *value)
122
123 {
124   fprintf_filtered (file,
125                     _("Unwind stack if a C++ exception is "
126                       "unhandled while in a call dummy is %s.\n"),
127                     value);
128 }
129
130 /* Perform the standard coercions that are specified
131    for arguments to be passed to C or Ada functions.
132
133    If PARAM_TYPE is non-NULL, it is the expected parameter type.
134    IS_PROTOTYPED is non-zero if the function declaration is prototyped.
135    SP is the stack pointer were additional data can be pushed (updating
136    its value as needed).  */
137
138 static struct value *
139 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
140                   struct type *param_type, int is_prototyped, CORE_ADDR *sp)
141 {
142   const struct builtin_type *builtin = builtin_type (gdbarch);
143   struct type *arg_type = check_typedef (value_type (arg));
144   struct type *type
145     = param_type ? check_typedef (param_type) : arg_type;
146
147   /* Perform any Ada-specific coercion first.  */
148   if (current_language->la_language == language_ada)
149     arg = ada_convert_actual (arg, type);
150
151   /* Force the value to the target if we will need its address.  At
152      this point, we could allocate arguments on the stack instead of
153      calling malloc if we knew that their addresses would not be
154      saved by the called function.  */
155   arg = value_coerce_to_target (arg);
156
157   switch (TYPE_CODE (type))
158     {
159     case TYPE_CODE_REF:
160     case TYPE_CODE_RVALUE_REF:
161       {
162         struct value *new_value;
163
164         if (TYPE_IS_REFERENCE (arg_type))
165           return value_cast_pointers (type, arg, 0);
166
167         /* Cast the value to the reference's target type, and then
168            convert it back to a reference.  This will issue an error
169            if the value was not previously in memory - in some cases
170            we should clearly be allowing this, but how?  */
171         new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
172         new_value = value_ref (new_value, TYPE_CODE (type));
173         return new_value;
174       }
175     case TYPE_CODE_INT:
176     case TYPE_CODE_CHAR:
177     case TYPE_CODE_BOOL:
178     case TYPE_CODE_ENUM:
179       /* If we don't have a prototype, coerce to integer type if necessary.  */
180       if (!is_prototyped)
181         {
182           if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
183             type = builtin->builtin_int;
184         }
185       /* Currently all target ABIs require at least the width of an integer
186          type for an argument.  We may have to conditionalize the following
187          type coercion for future targets.  */
188       if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
189         type = builtin->builtin_int;
190       break;
191     case TYPE_CODE_FLT:
192       if (!is_prototyped && coerce_float_to_double_p)
193         {
194           if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
195             type = builtin->builtin_double;
196           else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
197             type = builtin->builtin_long_double;
198         }
199       break;
200     case TYPE_CODE_FUNC:
201       type = lookup_pointer_type (type);
202       break;
203     case TYPE_CODE_ARRAY:
204       /* Arrays are coerced to pointers to their first element, unless
205          they are vectors, in which case we want to leave them alone,
206          because they are passed by value.  */
207       if (current_language->c_style_arrays)
208         if (!TYPE_VECTOR (type))
209           type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
210       break;
211     case TYPE_CODE_UNDEF:
212     case TYPE_CODE_PTR:
213     case TYPE_CODE_STRUCT:
214     case TYPE_CODE_UNION:
215     case TYPE_CODE_VOID:
216     case TYPE_CODE_SET:
217     case TYPE_CODE_RANGE:
218     case TYPE_CODE_STRING:
219     case TYPE_CODE_ERROR:
220     case TYPE_CODE_MEMBERPTR:
221     case TYPE_CODE_METHODPTR:
222     case TYPE_CODE_METHOD:
223     case TYPE_CODE_COMPLEX:
224     default:
225       break;
226     }
227
228   return value_cast (type, arg);
229 }
230
231 /* Return the return type of a function with its first instruction exactly at
232    the PC address.  Return NULL otherwise.  */
233
234 static struct type *
235 find_function_return_type (CORE_ADDR pc)
236 {
237   struct symbol *sym = find_pc_function (pc);
238
239   if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
240       && SYMBOL_TYPE (sym) != NULL)
241     return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
242
243   return NULL;
244 }
245
246 /* Determine a function's address and its return type from its value.
247    Calls error() if the function is not valid for calling.  */
248
249 CORE_ADDR
250 find_function_addr (struct value *function, struct type **retval_type)
251 {
252   struct type *ftype = check_typedef (value_type (function));
253   struct gdbarch *gdbarch = get_type_arch (ftype);
254   struct type *value_type = NULL;
255   /* Initialize it just to avoid a GCC false warning.  */
256   CORE_ADDR funaddr = 0;
257
258   /* If it's a member function, just look at the function
259      part of it.  */
260
261   /* Determine address to call.  */
262   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
263       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
264     funaddr = value_address (function);
265   else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
266     {
267       funaddr = value_as_address (function);
268       ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
269       if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
270           || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
271         funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
272                                                       &current_target);
273     }
274   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
275       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
276     {
277       value_type = TYPE_TARGET_TYPE (ftype);
278
279       if (TYPE_GNU_IFUNC (ftype))
280         {
281           funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
282
283           /* Skip querying the function symbol if no RETVAL_TYPE has been
284              asked for.  */
285           if (retval_type)
286             value_type = find_function_return_type (funaddr);
287         }
288     }
289   else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
290     {
291       /* Handle the case of functions lacking debugging info.
292          Their values are characters since their addresses are char.  */
293       if (TYPE_LENGTH (ftype) == 1)
294         funaddr = value_as_address (value_addr (function));
295       else
296         {
297           /* Handle function descriptors lacking debug info.  */
298           int found_descriptor = 0;
299
300           funaddr = 0;  /* pacify "gcc -Werror" */
301           if (VALUE_LVAL (function) == lval_memory)
302             {
303               CORE_ADDR nfunaddr;
304
305               funaddr = value_as_address (value_addr (function));
306               nfunaddr = funaddr;
307               funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
308                                                             &current_target);
309               if (funaddr != nfunaddr)
310                 found_descriptor = 1;
311             }
312           if (!found_descriptor)
313             /* Handle integer used as address of a function.  */
314             funaddr = (CORE_ADDR) value_as_long (function);
315         }
316     }
317   else
318     error (_("Invalid data type for function to be called."));
319
320   if (retval_type != NULL)
321     *retval_type = value_type;
322   return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
323 }
324
325 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
326    function returns to.  */
327
328 static CORE_ADDR
329 push_dummy_code (struct gdbarch *gdbarch,
330                  CORE_ADDR sp, CORE_ADDR funaddr,
331                  struct value **args, int nargs,
332                  struct type *value_type,
333                  CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
334                  struct regcache *regcache)
335 {
336   gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
337
338   return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
339                                   args, nargs, value_type, real_pc, bp_addr,
340                                   regcache);
341 }
342
343 /* Fetch the name of the function at FUNADDR.
344    This is used in printing an error message for call_function_by_hand.
345    BUF is used to print FUNADDR in hex if the function name cannot be
346    determined.  It must be large enough to hold formatted result of
347    RAW_FUNCTION_ADDRESS_FORMAT.  */
348
349 static const char *
350 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
351 {
352   {
353     struct symbol *symbol = find_pc_function (funaddr);
354
355     if (symbol)
356       return SYMBOL_PRINT_NAME (symbol);
357   }
358
359   {
360     /* Try the minimal symbols.  */
361     struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
362
363     if (msymbol.minsym)
364       return MSYMBOL_PRINT_NAME (msymbol.minsym);
365   }
366
367   {
368     char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
369                             hex_string (funaddr));
370
371     gdb_assert (strlen (tmp) + 1 <= buf_size);
372     strcpy (buf, tmp);
373     xfree (tmp);
374     return buf;
375   }
376 }
377
378 /* All the meta data necessary to extract the call's return value.  */
379
380 struct call_return_meta_info
381 {
382   /* The caller frame's architecture.  */
383   struct gdbarch *gdbarch;
384
385   /* The called function.  */
386   struct value *function;
387
388   /* The return value's type.  */
389   struct type *value_type;
390
391   /* Are we returning a value using a structure return or a normal
392      value return?  */
393   int struct_return_p;
394
395   /* If using a structure return, this is the structure's address.  */
396   CORE_ADDR struct_addr;
397
398   /* Whether stack temporaries are enabled.  */
399   int stack_temporaries_enabled;
400 };
401
402 /* Extract the called function's return value.  */
403
404 static struct value *
405 get_call_return_value (struct call_return_meta_info *ri)
406 {
407   struct value *retval = NULL;
408   int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
409
410   if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
411     retval = allocate_value (ri->value_type);
412   else if (ri->struct_return_p)
413     {
414       if (stack_temporaries)
415         {
416           retval = value_from_contents_and_address (ri->value_type, NULL,
417                                                     ri->struct_addr);
418           push_thread_stack_temporary (inferior_ptid, retval);
419         }
420       else
421         {
422           retval = allocate_value (ri->value_type);
423           read_value_memory (retval, 0, 1, ri->struct_addr,
424                              value_contents_raw (retval),
425                              TYPE_LENGTH (ri->value_type));
426         }
427     }
428   else
429     {
430       retval = allocate_value (ri->value_type);
431       gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
432                             get_current_regcache (),
433                             value_contents_raw (retval), NULL);
434       if (stack_temporaries && class_or_union_p (ri->value_type))
435         {
436           /* Values of class type returned in registers are copied onto
437              the stack and their lval_type set to lval_memory.  This is
438              required because further evaluation of the expression
439              could potentially invoke methods on the return value
440              requiring GDB to evaluate the "this" pointer.  To evaluate
441              the this pointer, GDB needs the memory address of the
442              value.  */
443           value_force_lval (retval, ri->struct_addr);
444           push_thread_stack_temporary (inferior_ptid, retval);
445         }
446     }
447
448   gdb_assert (retval != NULL);
449   return retval;
450 }
451
452 /* Data for the FSM that manages an infcall.  It's main job is to
453    record the called function's return value.  */
454
455 struct call_thread_fsm
456 {
457   /* The base class.  */
458   struct thread_fsm thread_fsm;
459
460   /* All the info necessary to be able to extract the return
461      value.  */
462   struct call_return_meta_info return_meta_info;
463
464   /* The called function's return value.  This is extracted from the
465      target before the dummy frame is popped.  */
466   struct value *return_value;
467
468   /* The top level that started the infcall (and is synchronously
469      waiting for it to end).  */
470   struct ui *waiting_ui;
471 };
472
473 static int call_thread_fsm_should_stop (struct thread_fsm *self,
474                                         struct thread_info *thread);
475 static int call_thread_fsm_should_notify_stop (struct thread_fsm *self);
476
477 /* call_thread_fsm's vtable.  */
478
479 static struct thread_fsm_ops call_thread_fsm_ops =
480 {
481   NULL, /*dtor */
482   NULL, /* clean_up */
483   call_thread_fsm_should_stop,
484   NULL, /* return_value */
485   NULL, /* async_reply_reason*/
486   call_thread_fsm_should_notify_stop,
487 };
488
489 /* Allocate a new call_thread_fsm object.  */
490
491 static struct call_thread_fsm *
492 new_call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
493                      struct gdbarch *gdbarch, struct value *function,
494                      struct type *value_type,
495                      int struct_return_p, CORE_ADDR struct_addr)
496 {
497   struct call_thread_fsm *sm;
498
499   sm = XCNEW (struct call_thread_fsm);
500   thread_fsm_ctor (&sm->thread_fsm, &call_thread_fsm_ops, cmd_interp);
501
502   sm->return_meta_info.gdbarch = gdbarch;
503   sm->return_meta_info.function = function;
504   sm->return_meta_info.value_type = value_type;
505   sm->return_meta_info.struct_return_p = struct_return_p;
506   sm->return_meta_info.struct_addr = struct_addr;
507
508   sm->waiting_ui = waiting_ui;
509
510   return sm;
511 }
512
513 /* Implementation of should_stop method for infcalls.  */
514
515 static int
516 call_thread_fsm_should_stop (struct thread_fsm *self,
517                              struct thread_info *thread)
518 {
519   struct call_thread_fsm *f = (struct call_thread_fsm *) self;
520
521   if (stop_stack_dummy == STOP_STACK_DUMMY)
522     {
523       /* Done.  */
524       thread_fsm_set_finished (self);
525
526       /* Stash the return value before the dummy frame is popped and
527          registers are restored to what they were before the
528          call..  */
529       f->return_value = get_call_return_value (&f->return_meta_info);
530
531       /* Break out of wait_sync_command_done.  */
532       scoped_restore save_ui = make_scoped_restore (&current_ui, f->waiting_ui);
533       target_terminal_ours ();
534       f->waiting_ui->prompt_state = PROMPT_NEEDED;
535     }
536
537   return 1;
538 }
539
540 /* Implementation of should_notify_stop method for infcalls.  */
541
542 static int
543 call_thread_fsm_should_notify_stop (struct thread_fsm *self)
544 {
545   if (thread_fsm_finished_p (self))
546     {
547       /* Infcall succeeded.  Be silent and proceed with evaluating the
548          expression.  */
549       return 0;
550     }
551
552   /* Something wrong happened.  E.g., an unexpected breakpoint
553      triggered, or a signal was intercepted.  Notify the stop.  */
554   return 1;
555 }
556
557 /* Subroutine of call_function_by_hand to simplify it.
558    Start up the inferior and wait for it to stop.
559    Return the exception if there's an error, or an exception with
560    reason >= 0 if there's no error.
561
562    This is done inside a TRY_CATCH so the caller needn't worry about
563    thrown errors.  The caller should rethrow if there's an error.  */
564
565 static struct gdb_exception
566 run_inferior_call (struct call_thread_fsm *sm,
567                    struct thread_info *call_thread, CORE_ADDR real_pc)
568 {
569   struct gdb_exception caught_error = exception_none;
570   int saved_in_infcall = call_thread->control.in_infcall;
571   ptid_t call_thread_ptid = call_thread->ptid;
572   enum prompt_state saved_prompt_state = current_ui->prompt_state;
573   int was_running = call_thread->state == THREAD_RUNNING;
574   int saved_ui_async = current_ui->async;
575
576   /* Infcalls run synchronously, in the foreground.  */
577   current_ui->prompt_state = PROMPT_BLOCKED;
578   /* So that we don't print the prompt prematurely in
579      fetch_inferior_event.  */
580   current_ui->async = 0;
581
582   delete_file_handler (current_ui->input_fd);
583
584   call_thread->control.in_infcall = 1;
585
586   clear_proceed_status (0);
587
588   /* Associate the FSM with the thread after clear_proceed_status
589      (otherwise it'd clear this FSM), and before anything throws, so
590      we don't leak it (and any resources it manages).  */
591   call_thread->thread_fsm = &sm->thread_fsm;
592
593   disable_watchpoints_before_interactive_call_start ();
594
595   /* We want to print return value, please...  */
596   call_thread->control.proceed_to_finish = 1;
597
598   TRY
599     {
600       proceed (real_pc, GDB_SIGNAL_0);
601
602       /* Inferior function calls are always synchronous, even if the
603          target supports asynchronous execution.  */
604       wait_sync_command_done ();
605     }
606   CATCH (e, RETURN_MASK_ALL)
607     {
608       caught_error = e;
609     }
610   END_CATCH
611
612   /* If GDB has the prompt blocked before, then ensure that it remains
613      so.  normal_stop calls async_enable_stdin, so reset the prompt
614      state again here.  In other cases, stdin will be re-enabled by
615      inferior_event_handler, when an exception is thrown.  */
616   current_ui->prompt_state = saved_prompt_state;
617   if (current_ui->prompt_state == PROMPT_BLOCKED)
618     delete_file_handler (current_ui->input_fd);
619   else
620     ui_register_input_event_handler (current_ui);
621   current_ui->async = saved_ui_async;
622
623   /* At this point the current thread may have changed.  Refresh
624      CALL_THREAD as it could be invalid if its thread has exited.  */
625   call_thread = find_thread_ptid (call_thread_ptid);
626
627   /* If the infcall does NOT succeed, normal_stop will have already
628      finished the thread states.  However, on success, normal_stop
629      defers here, so that we can set back the thread states to what
630      they were before the call.  Note that we must also finish the
631      state of new threads that might have spawned while the call was
632      running.  The main cases to handle are:
633
634      - "(gdb) print foo ()", or any other command that evaluates an
635      expression at the prompt.  (The thread was marked stopped before.)
636
637      - "(gdb) break foo if return_false()" or similar cases where we
638      do an infcall while handling an event (while the thread is still
639      marked running).  In this example, whether the condition
640      evaluates true and thus we'll present a user-visible stop is
641      decided elsewhere.  */
642   if (!was_running
643       && ptid_equal (call_thread_ptid, inferior_ptid)
644       && stop_stack_dummy == STOP_STACK_DUMMY)
645     finish_thread_state (user_visible_resume_ptid (0));
646
647   enable_watchpoints_after_interactive_call_stop ();
648
649   /* Call breakpoint_auto_delete on the current contents of the bpstat
650      of inferior call thread.
651      If all error()s out of proceed ended up calling normal_stop
652      (and perhaps they should; it already does in the special case
653      of error out of resume()), then we wouldn't need this.  */
654   if (caught_error.reason < 0)
655     {
656       if (call_thread != NULL)
657         breakpoint_auto_delete (call_thread->control.stop_bpstat);
658     }
659
660   if (call_thread != NULL)
661     call_thread->control.in_infcall = saved_in_infcall;
662
663   return caught_error;
664 }
665
666 /* A cleanup function that calls delete_std_terminate_breakpoint.  */
667 static void
668 cleanup_delete_std_terminate_breakpoint (void *ignore)
669 {
670   delete_std_terminate_breakpoint ();
671 }
672
673 /* See infcall.h.  */
674
675 struct value *
676 call_function_by_hand (struct value *function, int nargs, struct value **args)
677 {
678   return call_function_by_hand_dummy (function, nargs, args, NULL, NULL);
679 }
680
681 /* All this stuff with a dummy frame may seem unnecessarily complicated
682    (why not just save registers in GDB?).  The purpose of pushing a dummy
683    frame which looks just like a real frame is so that if you call a
684    function and then hit a breakpoint (get a signal, etc), "backtrace"
685    will look right.  Whether the backtrace needs to actually show the
686    stack at the time the inferior function was called is debatable, but
687    it certainly needs to not display garbage.  So if you are contemplating
688    making dummy frames be different from normal frames, consider that.  */
689
690 /* Perform a function call in the inferior.
691    ARGS is a vector of values of arguments (NARGS of them).
692    FUNCTION is a value, the function to be called.
693    Returns a value representing what the function returned.
694    May fail to return, if a breakpoint or signal is hit
695    during the execution of the function.
696
697    ARGS is modified to contain coerced values.  */
698
699 struct value *
700 call_function_by_hand_dummy (struct value *function,
701                              int nargs, struct value **args,
702                              dummy_frame_dtor_ftype *dummy_dtor,
703                              void *dummy_dtor_data)
704 {
705   CORE_ADDR sp;
706   struct type *values_type, *target_values_type;
707   unsigned char struct_return = 0, hidden_first_param_p = 0;
708   CORE_ADDR struct_addr = 0;
709   struct infcall_control_state *inf_status;
710   struct cleanup *inf_status_cleanup;
711   struct infcall_suspend_state *caller_state;
712   CORE_ADDR funaddr;
713   CORE_ADDR real_pc;
714   struct type *ftype = check_typedef (value_type (function));
715   CORE_ADDR bp_addr;
716   struct frame_id dummy_id;
717   struct cleanup *args_cleanup;
718   struct frame_info *frame;
719   struct gdbarch *gdbarch;
720   struct cleanup *terminate_bp_cleanup;
721   ptid_t call_thread_ptid;
722   struct gdb_exception e;
723   char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
724   int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
725
726   if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
727     ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
728
729   if (!target_has_execution)
730     noprocess ();
731
732   if (get_traceframe_number () >= 0)
733     error (_("May not call functions while looking at trace frames."));
734
735   if (execution_direction == EXEC_REVERSE)
736     error (_("Cannot call functions in reverse mode."));
737
738   frame = get_current_frame ();
739   gdbarch = get_frame_arch (frame);
740
741   if (!gdbarch_push_dummy_call_p (gdbarch))
742     error (_("This target does not support function calls."));
743
744   /* A cleanup for the inferior status.
745      This is only needed while we're preparing the inferior function call.  */
746   inf_status = save_infcall_control_state ();
747   inf_status_cleanup
748     = make_cleanup_restore_infcall_control_state (inf_status);
749
750   /* Save the caller's registers and other state associated with the
751      inferior itself so that they can be restored once the
752      callee returns.  To allow nested calls the registers are (further
753      down) pushed onto a dummy frame stack.  Include a cleanup (which
754      is tossed once the regcache has been pushed).  */
755   caller_state = save_infcall_suspend_state ();
756   make_cleanup_restore_infcall_suspend_state (caller_state);
757
758   /* Ensure that the initial SP is correctly aligned.  */
759   {
760     CORE_ADDR old_sp = get_frame_sp (frame);
761
762     if (gdbarch_frame_align_p (gdbarch))
763       {
764         sp = gdbarch_frame_align (gdbarch, old_sp);
765         /* NOTE: cagney/2003-08-13: Skip the "red zone".  For some
766            ABIs, a function can use memory beyond the inner most stack
767            address.  AMD64 called that region the "red zone".  Skip at
768            least the "red zone" size before allocating any space on
769            the stack.  */
770         if (gdbarch_inner_than (gdbarch, 1, 2))
771           sp -= gdbarch_frame_red_zone_size (gdbarch);
772         else
773           sp += gdbarch_frame_red_zone_size (gdbarch);
774         /* Still aligned?  */
775         gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
776         /* NOTE: cagney/2002-09-18:
777            
778            On a RISC architecture, a void parameterless generic dummy
779            frame (i.e., no parameters, no result) typically does not
780            need to push anything the stack and hence can leave SP and
781            FP.  Similarly, a frameless (possibly leaf) function does
782            not push anything on the stack and, hence, that too can
783            leave FP and SP unchanged.  As a consequence, a sequence of
784            void parameterless generic dummy frame calls to frameless
785            functions will create a sequence of effectively identical
786            frames (SP, FP and TOS and PC the same).  This, not
787            suprisingly, results in what appears to be a stack in an
788            infinite loop --- when GDB tries to find a generic dummy
789            frame on the internal dummy frame stack, it will always
790            find the first one.
791
792            To avoid this problem, the code below always grows the
793            stack.  That way, two dummy frames can never be identical.
794            It does burn a few bytes of stack but that is a small price
795            to pay :-).  */
796         if (sp == old_sp)
797           {
798             if (gdbarch_inner_than (gdbarch, 1, 2))
799               /* Stack grows down.  */
800               sp = gdbarch_frame_align (gdbarch, old_sp - 1);
801             else
802               /* Stack grows up.  */
803               sp = gdbarch_frame_align (gdbarch, old_sp + 1);
804           }
805         /* SP may have underflown address zero here from OLD_SP.  Memory access
806            functions will probably fail in such case but that is a target's
807            problem.  */
808       }
809     else
810       /* FIXME: cagney/2002-09-18: Hey, you loose!
811
812          Who knows how badly aligned the SP is!
813
814          If the generic dummy frame ends up empty (because nothing is
815          pushed) GDB won't be able to correctly perform back traces.
816          If a target is having trouble with backtraces, first thing to
817          do is add FRAME_ALIGN() to the architecture vector.  If that
818          fails, try dummy_id().
819
820          If the ABI specifies a "Red Zone" (see the doco) the code
821          below will quietly trash it.  */
822       sp = old_sp;
823
824     /* Skip over the stack temporaries that might have been generated during
825        the evaluation of an expression.  */
826     if (stack_temporaries)
827       {
828         struct value *lastval;
829
830         lastval = get_last_thread_stack_temporary (inferior_ptid);
831         if (lastval != NULL)
832           {
833             CORE_ADDR lastval_addr = value_address (lastval);
834
835             if (gdbarch_inner_than (gdbarch, 1, 2))
836               {
837                 gdb_assert (sp >= lastval_addr);
838                 sp = lastval_addr;
839               }
840             else
841               {
842                 gdb_assert (sp <= lastval_addr);
843                 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
844               }
845
846             if (gdbarch_frame_align_p (gdbarch))
847               sp = gdbarch_frame_align (gdbarch, sp);
848           }
849       }
850   }
851
852   funaddr = find_function_addr (function, &values_type);
853   if (!values_type)
854     values_type = builtin_type (gdbarch)->builtin_int;
855
856   values_type = check_typedef (values_type);
857
858   /* Are we returning a value using a structure return (passing a
859      hidden argument pointing to storage) or a normal value return?
860      There are two cases: language-mandated structure return and
861      target ABI structure return.  The variable STRUCT_RETURN only
862      describes the latter.  The language version is handled by passing
863      the return location as the first parameter to the function,
864      even preceding "this".  This is different from the target
865      ABI version, which is target-specific; for instance, on ia64
866      the first argument is passed in out0 but the hidden structure
867      return pointer would normally be passed in r8.  */
868
869   if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
870     {
871       hidden_first_param_p = 1;
872
873       /* Tell the target specific argument pushing routine not to
874          expect a value.  */
875       target_values_type = builtin_type (gdbarch)->builtin_void;
876     }
877   else
878     {
879       struct_return = using_struct_return (gdbarch, function, values_type);
880       target_values_type = values_type;
881     }
882
883   observer_notify_inferior_call_pre (inferior_ptid, funaddr);
884
885   /* Determine the location of the breakpoint (and possibly other
886      stuff) that the called function will return to.  The SPARC, for a
887      function returning a structure or union, needs to make space for
888      not just the breakpoint but also an extra word containing the
889      size (?) of the structure being passed.  */
890
891   switch (gdbarch_call_dummy_location (gdbarch))
892     {
893     case ON_STACK:
894       {
895         const gdb_byte *bp_bytes;
896         CORE_ADDR bp_addr_as_address;
897         int bp_size;
898
899         /* Be careful BP_ADDR is in inferior PC encoding while
900            BP_ADDR_AS_ADDRESS is a plain memory address.  */
901
902         sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
903                               target_values_type, &real_pc, &bp_addr,
904                               get_current_regcache ());
905
906         /* Write a legitimate instruction at the point where the infcall
907            breakpoint is going to be inserted.  While this instruction
908            is never going to be executed, a user investigating the
909            memory from GDB would see this instruction instead of random
910            uninitialized bytes.  We chose the breakpoint instruction
911            as it may look as the most logical one to the user and also
912            valgrind 3.7.0 needs it for proper vgdb inferior calls.
913
914            If software breakpoints are unsupported for this target we
915            leave the user visible memory content uninitialized.  */
916
917         bp_addr_as_address = bp_addr;
918         bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
919                                                &bp_size);
920         if (bp_bytes != NULL)
921           write_memory (bp_addr_as_address, bp_bytes, bp_size);
922       }
923       break;
924     case AT_ENTRY_POINT:
925       {
926         CORE_ADDR dummy_addr;
927
928         real_pc = funaddr;
929         dummy_addr = entry_point_address ();
930
931         /* A call dummy always consists of just a single breakpoint, so
932            its address is the same as the address of the dummy.
933
934            The actual breakpoint is inserted separatly so there is no need to
935            write that out.  */
936         bp_addr = dummy_addr;
937         break;
938       }
939     default:
940       internal_error (__FILE__, __LINE__, _("bad switch"));
941     }
942
943   if (nargs < TYPE_NFIELDS (ftype))
944     error (_("Too few arguments in function call."));
945
946   {
947     int i;
948
949     for (i = nargs - 1; i >= 0; i--)
950       {
951         int prototyped;
952         struct type *param_type;
953         
954         /* FIXME drow/2002-05-31: Should just always mark methods as
955            prototyped.  Can we respect TYPE_VARARGS?  Probably not.  */
956         if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
957           prototyped = 1;
958         else if (i < TYPE_NFIELDS (ftype))
959           prototyped = TYPE_PROTOTYPED (ftype);
960         else
961           prototyped = 0;
962
963         if (i < TYPE_NFIELDS (ftype))
964           param_type = TYPE_FIELD_TYPE (ftype, i);
965         else
966           param_type = NULL;
967
968         args[i] = value_arg_coerce (gdbarch, args[i],
969                                     param_type, prototyped, &sp);
970
971         if (param_type != NULL && language_pass_by_reference (param_type))
972           args[i] = value_addr (args[i]);
973       }
974   }
975
976   /* Reserve space for the return structure to be written on the
977      stack, if necessary.  Make certain that the value is correctly
978      aligned.
979
980      While evaluating expressions, we reserve space on the stack for
981      return values of class type even if the language ABI and the target
982      ABI do not require that the return value be passed as a hidden first
983      argument.  This is because we want to store the return value as an
984      on-stack temporary while the expression is being evaluated.  This
985      enables us to have chained function calls in expressions.
986
987      Keeping the return values as on-stack temporaries while the expression
988      is being evaluated is OK because the thread is stopped until the
989      expression is completely evaluated.  */
990
991   if (struct_return || hidden_first_param_p
992       || (stack_temporaries && class_or_union_p (values_type)))
993     {
994       if (gdbarch_inner_than (gdbarch, 1, 2))
995         {
996           /* Stack grows downward.  Align STRUCT_ADDR and SP after
997              making space for the return value.  */
998           sp -= TYPE_LENGTH (values_type);
999           if (gdbarch_frame_align_p (gdbarch))
1000             sp = gdbarch_frame_align (gdbarch, sp);
1001           struct_addr = sp;
1002         }
1003       else
1004         {
1005           /* Stack grows upward.  Align the frame, allocate space, and
1006              then again, re-align the frame???  */
1007           if (gdbarch_frame_align_p (gdbarch))
1008             sp = gdbarch_frame_align (gdbarch, sp);
1009           struct_addr = sp;
1010           sp += TYPE_LENGTH (values_type);
1011           if (gdbarch_frame_align_p (gdbarch))
1012             sp = gdbarch_frame_align (gdbarch, sp);
1013         }
1014     }
1015
1016   if (hidden_first_param_p)
1017     {
1018       struct value **new_args;
1019
1020       /* Add the new argument to the front of the argument list.  */
1021       new_args = XNEWVEC (struct value *, nargs + 1);
1022       new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
1023                                         struct_addr);
1024       memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
1025       args = new_args;
1026       nargs++;
1027       args_cleanup = make_cleanup (xfree, args);
1028     }
1029   else
1030     args_cleanup = make_cleanup (null_cleanup, NULL);
1031
1032   /* Create the dummy stack frame.  Pass in the call dummy address as,
1033      presumably, the ABI code knows where, in the call dummy, the
1034      return address should be pointed.  */
1035   sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1036                                 bp_addr, nargs, args,
1037                                 sp, struct_return, struct_addr);
1038
1039   do_cleanups (args_cleanup);
1040
1041   /* Set up a frame ID for the dummy frame so we can pass it to
1042      set_momentary_breakpoint.  We need to give the breakpoint a frame
1043      ID so that the breakpoint code can correctly re-identify the
1044      dummy breakpoint.  */
1045   /* Sanity.  The exact same SP value is returned by PUSH_DUMMY_CALL,
1046      saved as the dummy-frame TOS, and used by dummy_id to form
1047      the frame ID's stack address.  */
1048   dummy_id = frame_id_build (sp, bp_addr);
1049
1050   /* Create a momentary breakpoint at the return address of the
1051      inferior.  That way it breaks when it returns.  */
1052
1053   {
1054     struct breakpoint *bpt, *longjmp_b;
1055     struct symtab_and_line sal;
1056
1057     init_sal (&sal);            /* initialize to zeroes */
1058     sal.pspace = current_program_space;
1059     sal.pc = bp_addr;
1060     sal.section = find_pc_overlay (sal.pc);
1061     /* Sanity.  The exact same SP value is returned by
1062        PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1063        dummy_id to form the frame ID's stack address.  */
1064     bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
1065
1066     /* set_momentary_breakpoint invalidates FRAME.  */
1067     frame = NULL;
1068
1069     bpt->disposition = disp_del;
1070     gdb_assert (bpt->related_breakpoint == bpt);
1071
1072     longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1073     if (longjmp_b)
1074       {
1075         /* Link BPT into the chain of LONGJMP_B.  */
1076         bpt->related_breakpoint = longjmp_b;
1077         while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1078           longjmp_b = longjmp_b->related_breakpoint;
1079         longjmp_b->related_breakpoint = bpt;
1080       }
1081   }
1082
1083   /* Create a breakpoint in std::terminate.
1084      If a C++ exception is raised in the dummy-frame, and the
1085      exception handler is (normally, and expected to be) out-of-frame,
1086      the default C++ handler will (wrongly) be called in an inferior
1087      function call.  This is wrong, as an exception can be  normally
1088      and legally handled out-of-frame.  The confines of the dummy frame
1089      prevent the unwinder from finding the correct handler (or any
1090      handler, unless it is in-frame).  The default handler calls
1091      std::terminate.  This will kill the inferior.  Assert that
1092      terminate should never be called in an inferior function
1093      call.  Place a momentary breakpoint in the std::terminate function
1094      and if triggered in the call, rewind.  */
1095   if (unwind_on_terminating_exception_p)
1096     set_std_terminate_breakpoint ();
1097
1098   /* Discard both inf_status and caller_state cleanups.
1099      From this point on we explicitly restore the associated state
1100      or discard it.  */
1101   discard_cleanups (inf_status_cleanup);
1102
1103   /* Everything's ready, push all the info needed to restore the
1104      caller (and identify the dummy-frame) onto the dummy-frame
1105      stack.  */
1106   dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1107   if (dummy_dtor != NULL)
1108     register_dummy_frame_dtor (dummy_id, inferior_ptid,
1109                                dummy_dtor, dummy_dtor_data);
1110
1111   /* Register a clean-up for unwind_on_terminating_exception_breakpoint.  */
1112   terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1113                                        NULL);
1114
1115   /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1116      If you're looking to implement asynchronous dummy-frames, then
1117      just below is the place to chop this function in two..  */
1118
1119   /* TP is invalid after run_inferior_call returns, so enclose this
1120      in a block so that it's only in scope during the time it's valid.  */
1121   {
1122     struct thread_info *tp = inferior_thread ();
1123     struct thread_fsm *saved_sm;
1124     struct call_thread_fsm *sm;
1125
1126     /* Save the current FSM.  We'll override it.  */
1127     saved_sm = tp->thread_fsm;
1128     tp->thread_fsm = NULL;
1129
1130     /* Save this thread's ptid, we need it later but the thread
1131        may have exited.  */
1132     call_thread_ptid = tp->ptid;
1133
1134     /* Run the inferior until it stops.  */
1135
1136     /* Create the FSM used to manage the infcall.  It tells infrun to
1137        not report the stop to the user, and captures the return value
1138        before the dummy frame is popped.  run_inferior_call registers
1139        it with the thread ASAP.  */
1140     sm = new_call_thread_fsm (current_ui, command_interp (),
1141                               gdbarch, function,
1142                               values_type,
1143                               struct_return || hidden_first_param_p,
1144                               struct_addr);
1145
1146     e = run_inferior_call (sm, tp, real_pc);
1147
1148     observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1149
1150     tp = find_thread_ptid (call_thread_ptid);
1151     if (tp != NULL)
1152       {
1153         /* The FSM should still be the same.  */
1154         gdb_assert (tp->thread_fsm == &sm->thread_fsm);
1155
1156         if (thread_fsm_finished_p (tp->thread_fsm))
1157           {
1158             struct value *retval;
1159
1160             /* The inferior call is successful.  Pop the dummy frame,
1161                which runs its destructors and restores the inferior's
1162                suspend state, and restore the inferior control
1163                state.  */
1164             dummy_frame_pop (dummy_id, call_thread_ptid);
1165             restore_infcall_control_state (inf_status);
1166
1167             /* Get the return value.  */
1168             retval = sm->return_value;
1169
1170             /* Clean up / destroy the call FSM, and restore the
1171                original one.  */
1172             thread_fsm_clean_up (tp->thread_fsm, tp);
1173             thread_fsm_delete (tp->thread_fsm);
1174             tp->thread_fsm = saved_sm;
1175
1176             maybe_remove_breakpoints ();
1177
1178             do_cleanups (terminate_bp_cleanup);
1179             gdb_assert (retval != NULL);
1180             return retval;
1181           }
1182
1183         /* Didn't complete.  Restore previous state machine, and
1184            handle the error.  */
1185         tp->thread_fsm = saved_sm;
1186       }
1187   }
1188
1189   /* Rethrow an error if we got one trying to run the inferior.  */
1190
1191   if (e.reason < 0)
1192     {
1193       const char *name = get_function_name (funaddr,
1194                                             name_buf, sizeof (name_buf));
1195
1196       discard_infcall_control_state (inf_status);
1197
1198       /* We could discard the dummy frame here if the program exited,
1199          but it will get garbage collected the next time the program is
1200          run anyway.  */
1201
1202       switch (e.reason)
1203         {
1204         case RETURN_ERROR:
1205           throw_error (e.error, _("%s\n\
1206 An error occurred while in a function called from GDB.\n\
1207 Evaluation of the expression containing the function\n\
1208 (%s) will be abandoned.\n\
1209 When the function is done executing, GDB will silently stop."),
1210                        e.message, name);
1211         case RETURN_QUIT:
1212         default:
1213           throw_exception (e);
1214         }
1215     }
1216
1217   /* If the program has exited, or we stopped at a different thread,
1218      exit and inform the user.  */
1219
1220   if (! target_has_execution)
1221     {
1222       const char *name = get_function_name (funaddr,
1223                                             name_buf, sizeof (name_buf));
1224
1225       /* If we try to restore the inferior status,
1226          we'll crash as the inferior is no longer running.  */
1227       discard_infcall_control_state (inf_status);
1228
1229       /* We could discard the dummy frame here given that the program exited,
1230          but it will get garbage collected the next time the program is
1231          run anyway.  */
1232
1233       error (_("The program being debugged exited while in a function "
1234                "called from GDB.\n"
1235                "Evaluation of the expression containing the function\n"
1236                "(%s) will be abandoned."),
1237              name);
1238     }
1239
1240   if (! ptid_equal (call_thread_ptid, inferior_ptid))
1241     {
1242       const char *name = get_function_name (funaddr,
1243                                             name_buf, sizeof (name_buf));
1244
1245       /* We've switched threads.  This can happen if another thread gets a
1246          signal or breakpoint while our thread was running.
1247          There's no point in restoring the inferior status,
1248          we're in a different thread.  */
1249       discard_infcall_control_state (inf_status);
1250       /* Keep the dummy frame record, if the user switches back to the
1251          thread with the hand-call, we'll need it.  */
1252       if (stopped_by_random_signal)
1253         error (_("\
1254 The program received a signal in another thread while\n\
1255 making a function call from GDB.\n\
1256 Evaluation of the expression containing the function\n\
1257 (%s) will be abandoned.\n\
1258 When the function is done executing, GDB will silently stop."),
1259                name);
1260       else
1261         error (_("\
1262 The program stopped in another thread while making a function call from GDB.\n\
1263 Evaluation of the expression containing the function\n\
1264 (%s) will be abandoned.\n\
1265 When the function is done executing, GDB will silently stop."),
1266                name);
1267     }
1268
1269     {
1270       /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop.  */
1271       char *name = xstrdup (get_function_name (funaddr,
1272                                                name_buf, sizeof (name_buf)));
1273       make_cleanup (xfree, name);
1274
1275
1276       if (stopped_by_random_signal)
1277         {
1278           /* We stopped inside the FUNCTION because of a random
1279              signal.  Further execution of the FUNCTION is not
1280              allowed.  */
1281
1282           if (unwind_on_signal_p)
1283             {
1284               /* The user wants the context restored.  */
1285
1286               /* We must get back to the frame we were before the
1287                  dummy call.  */
1288               dummy_frame_pop (dummy_id, call_thread_ptid);
1289
1290               /* We also need to restore inferior status to that before the
1291                  dummy call.  */
1292               restore_infcall_control_state (inf_status);
1293
1294               /* FIXME: Insert a bunch of wrap_here; name can be very
1295                  long if it's a C++ name with arguments and stuff.  */
1296               error (_("\
1297 The program being debugged was signaled while in a function called from GDB.\n\
1298 GDB has restored the context to what it was before the call.\n\
1299 To change this behavior use \"set unwindonsignal off\".\n\
1300 Evaluation of the expression containing the function\n\
1301 (%s) will be abandoned."),
1302                      name);
1303             }
1304           else
1305             {
1306               /* The user wants to stay in the frame where we stopped
1307                  (default).
1308                  Discard inferior status, we're not at the same point
1309                  we started at.  */
1310               discard_infcall_control_state (inf_status);
1311
1312               /* FIXME: Insert a bunch of wrap_here; name can be very
1313                  long if it's a C++ name with arguments and stuff.  */
1314               error (_("\
1315 The program being debugged was signaled while in a function called from GDB.\n\
1316 GDB remains in the frame where the signal was received.\n\
1317 To change this behavior use \"set unwindonsignal on\".\n\
1318 Evaluation of the expression containing the function\n\
1319 (%s) will be abandoned.\n\
1320 When the function is done executing, GDB will silently stop."),
1321                      name);
1322             }
1323         }
1324
1325       if (stop_stack_dummy == STOP_STD_TERMINATE)
1326         {
1327           /* We must get back to the frame we were before the dummy
1328              call.  */
1329           dummy_frame_pop (dummy_id, call_thread_ptid);
1330
1331           /* We also need to restore inferior status to that before
1332              the dummy call.  */
1333           restore_infcall_control_state (inf_status);
1334
1335           error (_("\
1336 The program being debugged entered a std::terminate call, most likely\n\
1337 caused by an unhandled C++ exception.  GDB blocked this call in order\n\
1338 to prevent the program from being terminated, and has restored the\n\
1339 context to its original state before the call.\n\
1340 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1341 Evaluation of the expression containing the function (%s)\n\
1342 will be abandoned."),
1343                  name);
1344         }
1345       else if (stop_stack_dummy == STOP_NONE)
1346         {
1347
1348           /* We hit a breakpoint inside the FUNCTION.
1349              Keep the dummy frame, the user may want to examine its state.
1350              Discard inferior status, we're not at the same point
1351              we started at.  */
1352           discard_infcall_control_state (inf_status);
1353
1354           /* The following error message used to say "The expression
1355              which contained the function call has been discarded."
1356              It is a hard concept to explain in a few words.  Ideally,
1357              GDB would be able to resume evaluation of the expression
1358              when the function finally is done executing.  Perhaps
1359              someday this will be implemented (it would not be easy).  */
1360           /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1361              a C++ name with arguments and stuff.  */
1362           error (_("\
1363 The program being debugged stopped while in a function called from GDB.\n\
1364 Evaluation of the expression containing the function\n\
1365 (%s) will be abandoned.\n\
1366 When the function is done executing, GDB will silently stop."),
1367                  name);
1368         }
1369
1370     }
1371
1372   /* The above code errors out, so ...  */
1373   gdb_assert_not_reached ("... should not be here");
1374 }
1375 \f
1376
1377 /* Provide a prototype to silence -Wmissing-prototypes.  */
1378 void _initialize_infcall (void);
1379
1380 void
1381 _initialize_infcall (void)
1382 {
1383   add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1384                            &coerce_float_to_double_p, _("\
1385 Set coercion of floats to doubles when calling functions."), _("\
1386 Show coercion of floats to doubles when calling functions"), _("\
1387 Variables of type float should generally be converted to doubles before\n\
1388 calling an unprototyped function, and left alone when calling a prototyped\n\
1389 function.  However, some older debug info formats do not provide enough\n\
1390 information to determine that a function is prototyped.  If this flag is\n\
1391 set, GDB will perform the conversion for a function it considers\n\
1392 unprototyped.\n\
1393 The default is to perform the conversion.\n"),
1394                            NULL,
1395                            show_coerce_float_to_double_p,
1396                            &setlist, &showlist);
1397
1398   add_setshow_boolean_cmd ("unwindonsignal", no_class,
1399                            &unwind_on_signal_p, _("\
1400 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1401 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1402 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1403 is received while in a function called from gdb (call dummy).  If set, gdb\n\
1404 unwinds the stack and restore the context to what as it was before the call.\n\
1405 The default is to stop in the frame where the signal was received."),
1406                            NULL,
1407                            show_unwind_on_signal_p,
1408                            &setlist, &showlist);
1409
1410   add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1411                            &unwind_on_terminating_exception_p, _("\
1412 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1413 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1414                            _("\
1415 The unwind on terminating exception flag lets the user determine\n\
1416 what gdb should do if a std::terminate() call is made from the\n\
1417 default exception handler.  If set, gdb unwinds the stack and restores\n\
1418 the context to what it was before the call.  If unset, gdb allows the\n\
1419 std::terminate call to proceed.\n\
1420 The default is to unwind the frame."),
1421                            NULL,
1422                            show_unwind_on_terminating_exception_p,
1423                            &setlist, &showlist);
1424
1425 }