1 /* Functions specific to running gdb native on IA-64 running
4 Copyright (C) 1999-2014 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
30 #include <sys/ptrace.h>
35 #include <sys/syscall.h>
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
41 /* Prototypes for supply_gregset etc. */
44 /* These must match the order of the register names.
46 Some sort of lookup table is needed because the offsets associated
47 with the registers are all over the board. */
49 static int u_offsets[] =
51 /* general registers */
52 -1, /* gr0 not available; i.e, it's always zero. */
84 /* gr32 through gr127 not directly available via the ptrace interface. */
85 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 /* Floating point registers */
92 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
219 /* Predicate registers - we don't fetch these individually. */
220 -1, -1, -1, -1, -1, -1, -1, -1,
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 /* branch registers */
237 /* Virtual frame pointer and virtual return address pointer. */
239 /* other registers */
242 PT_CR_IPSR, /* psr */
244 /* kernel registers not visible via ptrace interface (?) */
245 -1, -1, -1, -1, -1, -1, -1, -1,
247 -1, -1, -1, -1, -1, -1, -1, -1,
253 -1, /* Not available: FCR, IA32 floating control register. */
255 -1, /* Not available: EFLAG */
256 -1, /* Not available: CSD */
257 -1, /* Not available: SSD */
258 -1, /* Not available: CFLG */
259 -1, /* Not available: FSR */
260 -1, /* Not available: FIR */
261 -1, /* Not available: FDR */
269 -1, /* Not available: ITC */
270 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1, -1,
275 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 /* nat bits - not fetched directly; instead we obtain these bits from
283 either rnat or unat or from memory. */
284 -1, -1, -1, -1, -1, -1, -1, -1,
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
303 ia64_register_addr (struct gdbarch *gdbarch, int regno)
307 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
308 error (_("Invalid register number %d."), regno);
310 if (u_offsets[regno] == -1)
313 addr = (CORE_ADDR) u_offsets[regno];
319 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
322 || regno >= gdbarch_num_regs (gdbarch)
323 || u_offsets[regno] == -1;
327 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
329 /* Rationale behind not permitting stores to bspstore...
331 The IA-64 architecture provides bspstore and bsp which refer
332 memory locations in the RSE's backing store. bspstore is the
333 next location which will be written when the RSE needs to write
334 to memory. bsp is the address at which r32 in the current frame
335 would be found if it were written to the backing store.
337 The IA-64 architecture provides read-only access to bsp and
338 read/write access to bspstore (but only when the RSE is in
339 the enforced lazy mode). It should be noted that stores
340 to bspstore also affect the value of bsp. Changing bspstore
341 does not affect the number of dirty entries between bspstore
342 and bsp, so changing bspstore by N words will also cause bsp
343 to be changed by (roughly) N as well. (It could be N-1 or N+1
344 depending upon where the NaT collection bits fall.)
346 OTOH, the Linux kernel provides read/write access to bsp (and
347 currently read/write access to bspstore as well). But it
348 is definitely the case that if you change one, the other
349 will change at the same time. It is more useful to gdb to
350 be able to change bsp. So in order to prevent strange and
351 undesirable things from happening when a dummy stack frame
352 is popped (after calling an inferior function), we allow
353 bspstore to be read, but not written. (Note that popping
354 a (generic) dummy stack frame causes all registers that
355 were previously read from the inferior process to be written
359 || regno >= gdbarch_num_regs (gdbarch)
360 || u_offsets[regno] == -1
361 || regno == IA64_BSPSTORE_REGNUM;
365 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
368 const greg_t *regp = (const greg_t *) gregsetp;
370 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
372 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
375 /* FIXME: NAT collection bits are at index 32; gotta deal with these
378 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
380 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
382 regcache_raw_supply (regcache, regi,
383 regp + 34 + (regi - IA64_BR0_REGNUM));
386 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
387 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
388 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
389 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
390 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
391 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
392 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
393 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
394 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
395 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
396 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
397 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
398 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
402 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
405 greg_t *regp = (greg_t *) gregsetp;
407 #define COPY_REG(_idx_,_regi_) \
408 if ((regno == -1) || regno == _regi_) \
409 regcache_raw_collect (regcache, _regi_, regp + _idx_)
411 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
413 COPY_REG (regi - IA64_GR0_REGNUM, regi);
416 /* FIXME: NAT collection bits at index 32? */
418 COPY_REG (33, IA64_PR_REGNUM);
420 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
422 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
425 COPY_REG (42, IA64_IP_REGNUM);
426 COPY_REG (43, IA64_CFM_REGNUM);
427 COPY_REG (44, IA64_PSR_REGNUM);
428 COPY_REG (45, IA64_RSC_REGNUM);
429 COPY_REG (46, IA64_BSP_REGNUM);
430 COPY_REG (47, IA64_BSPSTORE_REGNUM);
431 COPY_REG (48, IA64_RNAT_REGNUM);
432 COPY_REG (49, IA64_CCV_REGNUM);
433 COPY_REG (50, IA64_UNAT_REGNUM);
434 COPY_REG (51, IA64_FPSR_REGNUM);
435 COPY_REG (52, IA64_PFS_REGNUM);
436 COPY_REG (53, IA64_LC_REGNUM);
437 COPY_REG (54, IA64_EC_REGNUM);
440 /* Given a pointer to a floating point register set in /proc format
441 (fpregset_t *), unpack the register contents and supply them as gdb's
442 idea of the current floating point register values. */
445 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
449 const gdb_byte f_zero[16] = { 0 };
450 const gdb_byte f_one[16] =
451 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
453 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
454 did the same. So ignore whatever might be recorded in fpregset_t
455 for fr0/fr1 and always supply their expected values. */
457 /* fr0 is always read as zero. */
458 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
459 /* fr1 is always read as one (1.0). */
460 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
462 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
464 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
465 regcache_raw_supply (regcache, regi, from);
469 /* Given a pointer to a floating point register set in /proc format
470 (fpregset_t *), update the register specified by REGNO from gdb's idea
471 of the current floating point register set. If REGNO is -1, update
475 fill_fpregset (const struct regcache *regcache,
476 fpregset_t *fpregsetp, int regno)
480 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
482 if ((regno == -1) || (regno == regi))
483 regcache_raw_collect (regcache, regi,
484 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
488 #define IA64_PSR_DB (1UL << 24)
489 #define IA64_PSR_DD (1UL << 39)
492 enable_watchpoints_in_psr (ptid_t ptid)
494 struct regcache *regcache = get_thread_regcache (ptid);
497 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
498 if (!(psr & IA64_PSR_DB))
500 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
501 watchpoints and breakpoints. */
502 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
506 static long debug_registers[8];
509 store_debug_register (ptid_t ptid, int idx, long val)
513 tid = ptid_get_lwp (ptid);
515 tid = ptid_get_pid (ptid);
517 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
521 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
525 store_debug_register (ptid, 2 * idx, *dbr_addr);
527 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
531 is_power_of_2 (int val)
536 for (i = 0; i < 8 * sizeof (val); i++)
540 return onecount <= 1;
544 ia64_linux_insert_watchpoint (struct target_ops *self,
545 CORE_ADDR addr, int len, int rw,
546 struct expression *cond)
550 long dbr_addr, dbr_mask;
551 int max_watchpoints = 4;
553 if (len <= 0 || !is_power_of_2 (len))
556 for (idx = 0; idx < max_watchpoints; idx++)
558 dbr_mask = debug_registers[idx * 2 + 1];
559 if ((dbr_mask & (0x3UL << 62)) == 0)
561 /* Exit loop if both r and w bits clear. */
566 if (idx == max_watchpoints)
569 dbr_addr = (long) addr;
570 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
571 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
575 dbr_mask |= (1L << 62); /* Set w bit */
578 dbr_mask |= (1L << 63); /* Set r bit */
581 dbr_mask |= (3L << 62); /* Set both r and w bits */
587 debug_registers[2 * idx] = dbr_addr;
588 debug_registers[2 * idx + 1] = dbr_mask;
591 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
592 enable_watchpoints_in_psr (lp->ptid);
599 ia64_linux_remove_watchpoint (struct target_ops *self,
600 CORE_ADDR addr, int len, int type,
601 struct expression *cond)
604 long dbr_addr, dbr_mask;
605 int max_watchpoints = 4;
607 if (len <= 0 || !is_power_of_2 (len))
610 for (idx = 0; idx < max_watchpoints; idx++)
612 dbr_addr = debug_registers[2 * idx];
613 dbr_mask = debug_registers[2 * idx + 1];
614 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
618 debug_registers[2 * idx] = 0;
619 debug_registers[2 * idx + 1] = 0;
624 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
633 ia64_linux_new_thread (struct lwp_info *lp)
638 for (i = 0; i < 8; i++)
640 if (debug_registers[i] != 0)
642 store_debug_register (lp->ptid, i, debug_registers[i]);
646 enable_watchpoints_in_psr (lp->ptid);
650 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
654 struct regcache *regcache = get_current_regcache ();
656 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
659 if (siginfo.si_signo != SIGTRAP
660 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
663 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
664 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
665 for the next instruction. */
666 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
668 *addr_p = (CORE_ADDR) siginfo.si_addr;
673 ia64_linux_stopped_by_watchpoint (struct target_ops *ops)
676 return ia64_linux_stopped_data_address (ops, &addr);
680 ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
681 int type, int cnt, int othertype)
687 /* Fetch register REGNUM from the inferior. */
690 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
695 PTRACE_TYPE_RET *buf;
698 /* r0 cannot be fetched but is always zero. */
699 if (regnum == IA64_GR0_REGNUM)
701 const gdb_byte zero[8] = { 0 };
703 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
704 regcache_raw_supply (regcache, regnum, zero);
708 /* fr0 cannot be fetched but is always zero. */
709 if (regnum == IA64_FR0_REGNUM)
711 const gdb_byte f_zero[16] = { 0 };
713 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
714 regcache_raw_supply (regcache, regnum, f_zero);
718 /* fr1 cannot be fetched but is always one (1.0). */
719 if (regnum == IA64_FR1_REGNUM)
721 const gdb_byte f_one[16] =
722 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
724 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
725 regcache_raw_supply (regcache, regnum, f_one);
729 if (ia64_cannot_fetch_register (gdbarch, regnum))
731 regcache_raw_supply (regcache, regnum, NULL);
735 /* Cater for systems like GNU/Linux, that implement threads as
736 separate processes. */
737 pid = ptid_get_lwp (inferior_ptid);
739 pid = ptid_get_pid (inferior_ptid);
741 /* This isn't really an address, but ptrace thinks of it as one. */
742 addr = ia64_register_addr (gdbarch, regnum);
743 size = register_size (gdbarch, regnum);
745 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
748 /* Read the register contents from the inferior a chunk at a time. */
749 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
752 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
754 error (_("Couldn't read register %s (#%d): %s."),
755 gdbarch_register_name (gdbarch, regnum),
756 regnum, safe_strerror (errno));
758 addr += sizeof (PTRACE_TYPE_RET);
760 regcache_raw_supply (regcache, regnum, buf);
763 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
764 for all registers. */
767 ia64_linux_fetch_registers (struct target_ops *ops,
768 struct regcache *regcache, int regnum)
772 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
774 ia64_linux_fetch_register (regcache, regnum);
776 ia64_linux_fetch_register (regcache, regnum);
779 /* Store register REGNUM into the inferior. */
782 ia64_linux_store_register (const struct regcache *regcache, int regnum)
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
787 PTRACE_TYPE_RET *buf;
790 if (ia64_cannot_store_register (gdbarch, regnum))
793 /* Cater for systems like GNU/Linux, that implement threads as
794 separate processes. */
795 pid = ptid_get_lwp (inferior_ptid);
797 pid = ptid_get_pid (inferior_ptid);
799 /* This isn't really an address, but ptrace thinks of it as one. */
800 addr = ia64_register_addr (gdbarch, regnum);
801 size = register_size (gdbarch, regnum);
803 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
806 /* Write the register contents into the inferior a chunk at a time. */
807 regcache_raw_collect (regcache, regnum, buf);
808 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
811 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
813 error (_("Couldn't write register %s (#%d): %s."),
814 gdbarch_register_name (gdbarch, regnum),
815 regnum, safe_strerror (errno));
817 addr += sizeof (PTRACE_TYPE_RET);
821 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
822 this for all registers. */
825 ia64_linux_store_registers (struct target_ops *ops,
826 struct regcache *regcache, int regnum)
830 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
832 ia64_linux_store_register (regcache, regnum);
834 ia64_linux_store_register (regcache, regnum);
838 static target_xfer_partial_ftype *super_xfer_partial;
840 /* Implement the to_xfer_partial target_ops method. */
842 static enum target_xfer_status
843 ia64_linux_xfer_partial (struct target_ops *ops,
844 enum target_object object,
846 gdb_byte *readbuf, const gdb_byte *writebuf,
847 ULONGEST offset, ULONGEST len,
848 ULONGEST *xfered_len)
850 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
852 static long gate_table_size;
856 /* Probe for the table size once. */
857 if (gate_table_size == 0)
858 gate_table_size = syscall (__NR_getunwind, NULL, 0);
859 if (gate_table_size < 0)
860 return TARGET_XFER_E_IO;
862 if (offset >= gate_table_size)
863 return TARGET_XFER_EOF;
865 tmp_buf = alloca (gate_table_size);
866 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
868 return TARGET_XFER_E_IO;
869 gdb_assert (res == gate_table_size);
871 if (offset + len > gate_table_size)
872 len = gate_table_size - offset;
874 memcpy (readbuf, tmp_buf + offset, len);
876 return TARGET_XFER_OK;
879 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
880 offset, len, xfered_len);
883 /* For break.b instruction ia64 CPU forgets the immediate value and generates
884 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
885 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
886 difference for the signals here. */
889 ia64_linux_status_is_event (int status)
891 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
892 || WSTOPSIG (status) == SIGILL);
895 void _initialize_ia64_linux_nat (void);
898 _initialize_ia64_linux_nat (void)
900 struct target_ops *t;
902 /* Fill in the generic GNU/Linux methods. */
905 /* Override the default fetch/store register routines. */
906 t->to_fetch_registers = ia64_linux_fetch_registers;
907 t->to_store_registers = ia64_linux_store_registers;
909 /* Override the default to_xfer_partial. */
910 super_xfer_partial = t->to_xfer_partial;
911 t->to_xfer_partial = ia64_linux_xfer_partial;
913 /* Override watchpoint routines. */
915 /* The IA-64 architecture can step over a watch point (without triggering
916 it again) if the "dd" (data debug fault disable) bit in the processor
919 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
920 code there has determined that a hardware watchpoint has indeed
921 been hit. The CPU will then be able to execute one instruction
922 without triggering a watchpoint. */
924 t->to_have_steppable_watchpoint = 1;
925 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
926 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
927 t->to_stopped_data_address = ia64_linux_stopped_data_address;
928 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
929 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
931 /* Register the target. */
932 linux_nat_add_target (t);
933 linux_nat_set_new_thread (t, ia64_linux_new_thread);
934 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);