1 /* Functions specific to running gdb native on IA-64 running
4 Copyright (C) 1999-2018 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
30 #include "nat/gdb_ptrace.h"
35 #include <sys/syscall.h>
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
41 /* Prototypes for supply_gregset etc. */
44 #include "inf-ptrace.h"
46 class ia64_linux_nat_target final : public linux_nat_target
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
53 enum target_xfer_status xfer_partial (enum target_object object,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
60 const struct target_desc *read_description () override;
62 /* Override watchpoint routines. */
64 /* The IA-64 architecture can step over a watch point (without
65 triggering it again) if the "dd" (data debug fault disable) bit
66 in the processor status word is set.
68 This PSR bit is set in
69 ia64_linux_nat_target::stopped_by_watchpoint when the code there
70 has determined that a hardware watchpoint has indeed been hit.
71 The CPU will then be able to execute one instruction without
72 triggering a watchpoint. */
73 bool have_steppable_watchpoint () { return 1; }
75 int can_use_hw_breakpoint (enum bptype, int, int) override;
76 bool stopped_by_watchpoint () override;
77 bool stopped_data_address (CORE_ADDR *) override;
78 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
80 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
81 struct expression *) override;
82 /* Override linux_nat_target low methods. */
83 void low_new_thread (struct lwp_info *lp) override;
84 bool low_status_is_event (int status) override;
87 static ia64_linux_nat_target the_ia64_linux_nat_target;
89 /* These must match the order of the register names.
91 Some sort of lookup table is needed because the offsets associated
92 with the registers are all over the board. */
94 static int u_offsets[] =
96 /* general registers */
97 -1, /* gr0 not available; i.e, it's always zero. */
129 /* gr32 through gr127 not directly available via the ptrace interface. */
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Floating point registers */
137 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
264 /* Predicate registers - we don't fetch these individually. */
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 /* branch registers */
282 /* Virtual frame pointer and virtual return address pointer. */
284 /* other registers */
287 PT_CR_IPSR, /* psr */
289 /* kernel registers not visible via ptrace interface (?) */
290 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, /* Not available: FCR, IA32 floating control register. */
300 -1, /* Not available: EFLAG */
301 -1, /* Not available: CSD */
302 -1, /* Not available: SSD */
303 -1, /* Not available: CFLG */
304 -1, /* Not available: FSR */
305 -1, /* Not available: FIR */
306 -1, /* Not available: FDR */
314 -1, /* Not available: ITC */
315 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
316 -1, -1, -1, -1, -1, -1, -1, -1, -1,
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
327 /* nat bits - not fetched directly; instead we obtain these bits from
328 either rnat or unat or from memory. */
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
348 ia64_register_addr (struct gdbarch *gdbarch, int regno)
352 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
353 error (_("Invalid register number %d."), regno);
355 if (u_offsets[regno] == -1)
358 addr = (CORE_ADDR) u_offsets[regno];
364 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
367 || regno >= gdbarch_num_regs (gdbarch)
368 || u_offsets[regno] == -1;
372 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
374 /* Rationale behind not permitting stores to bspstore...
376 The IA-64 architecture provides bspstore and bsp which refer
377 memory locations in the RSE's backing store. bspstore is the
378 next location which will be written when the RSE needs to write
379 to memory. bsp is the address at which r32 in the current frame
380 would be found if it were written to the backing store.
382 The IA-64 architecture provides read-only access to bsp and
383 read/write access to bspstore (but only when the RSE is in
384 the enforced lazy mode). It should be noted that stores
385 to bspstore also affect the value of bsp. Changing bspstore
386 does not affect the number of dirty entries between bspstore
387 and bsp, so changing bspstore by N words will also cause bsp
388 to be changed by (roughly) N as well. (It could be N-1 or N+1
389 depending upon where the NaT collection bits fall.)
391 OTOH, the Linux kernel provides read/write access to bsp (and
392 currently read/write access to bspstore as well). But it
393 is definitely the case that if you change one, the other
394 will change at the same time. It is more useful to gdb to
395 be able to change bsp. So in order to prevent strange and
396 undesirable things from happening when a dummy stack frame
397 is popped (after calling an inferior function), we allow
398 bspstore to be read, but not written. (Note that popping
399 a (generic) dummy stack frame causes all registers that
400 were previously read from the inferior process to be written
404 || regno >= gdbarch_num_regs (gdbarch)
405 || u_offsets[regno] == -1
406 || regno == IA64_BSPSTORE_REGNUM;
410 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
413 const greg_t *regp = (const greg_t *) gregsetp;
415 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
417 regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
420 /* FIXME: NAT collection bits are at index 32; gotta deal with these
423 regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
425 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
427 regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
430 regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
431 regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
432 regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
433 regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
434 regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
435 regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
436 regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
437 regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
438 regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
439 regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
440 regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
441 regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
442 regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
446 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
449 greg_t *regp = (greg_t *) gregsetp;
451 #define COPY_REG(_idx_,_regi_) \
452 if ((regno == -1) || regno == _regi_) \
453 regcache->raw_collect (_regi_, regp + _idx_)
455 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
457 COPY_REG (regi - IA64_GR0_REGNUM, regi);
460 /* FIXME: NAT collection bits at index 32? */
462 COPY_REG (33, IA64_PR_REGNUM);
464 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
466 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
469 COPY_REG (42, IA64_IP_REGNUM);
470 COPY_REG (43, IA64_CFM_REGNUM);
471 COPY_REG (44, IA64_PSR_REGNUM);
472 COPY_REG (45, IA64_RSC_REGNUM);
473 COPY_REG (46, IA64_BSP_REGNUM);
474 COPY_REG (47, IA64_BSPSTORE_REGNUM);
475 COPY_REG (48, IA64_RNAT_REGNUM);
476 COPY_REG (49, IA64_CCV_REGNUM);
477 COPY_REG (50, IA64_UNAT_REGNUM);
478 COPY_REG (51, IA64_FPSR_REGNUM);
479 COPY_REG (52, IA64_PFS_REGNUM);
480 COPY_REG (53, IA64_LC_REGNUM);
481 COPY_REG (54, IA64_EC_REGNUM);
484 /* Given a pointer to a floating point register set in /proc format
485 (fpregset_t *), unpack the register contents and supply them as gdb's
486 idea of the current floating point register values. */
489 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
493 const gdb_byte f_zero[16] = { 0 };
494 const gdb_byte f_one[16] =
495 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
497 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
498 did the same. So ignore whatever might be recorded in fpregset_t
499 for fr0/fr1 and always supply their expected values. */
501 /* fr0 is always read as zero. */
502 regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
503 /* fr1 is always read as one (1.0). */
504 regcache->raw_supply (IA64_FR1_REGNUM, f_one);
506 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
508 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
509 regcache->raw_supply (regi, from);
513 /* Given a pointer to a floating point register set in /proc format
514 (fpregset_t *), update the register specified by REGNO from gdb's idea
515 of the current floating point register set. If REGNO is -1, update
519 fill_fpregset (const struct regcache *regcache,
520 fpregset_t *fpregsetp, int regno)
524 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
526 if ((regno == -1) || (regno == regi))
527 regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
531 #define IA64_PSR_DB (1UL << 24)
532 #define IA64_PSR_DD (1UL << 39)
535 enable_watchpoints_in_psr (ptid_t ptid)
537 struct regcache *regcache = get_thread_regcache (ptid);
540 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
541 if (!(psr & IA64_PSR_DB))
543 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
544 watchpoints and breakpoints. */
545 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
549 static long debug_registers[8];
552 store_debug_register (ptid_t ptid, int idx, long val)
556 tid = ptid_get_lwp (ptid);
558 tid = ptid_get_pid (ptid);
560 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
564 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
568 store_debug_register (ptid, 2 * idx, *dbr_addr);
570 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
574 is_power_of_2 (int val)
579 for (i = 0; i < 8 * sizeof (val); i++)
583 return onecount <= 1;
587 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
588 enum target_hw_bp_type type,
589 struct expression *cond)
593 long dbr_addr, dbr_mask;
594 int max_watchpoints = 4;
596 if (len <= 0 || !is_power_of_2 (len))
599 for (idx = 0; idx < max_watchpoints; idx++)
601 dbr_mask = debug_registers[idx * 2 + 1];
602 if ((dbr_mask & (0x3UL << 62)) == 0)
604 /* Exit loop if both r and w bits clear. */
609 if (idx == max_watchpoints)
612 dbr_addr = (long) addr;
613 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
614 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
618 dbr_mask |= (1L << 62); /* Set w bit */
621 dbr_mask |= (1L << 63); /* Set r bit */
624 dbr_mask |= (3L << 62); /* Set both r and w bits */
630 debug_registers[2 * idx] = dbr_addr;
631 debug_registers[2 * idx + 1] = dbr_mask;
634 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
635 enable_watchpoints_in_psr (lp->ptid);
642 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
643 enum target_hw_bp_type type,
644 struct expression *cond)
647 long dbr_addr, dbr_mask;
648 int max_watchpoints = 4;
650 if (len <= 0 || !is_power_of_2 (len))
653 for (idx = 0; idx < max_watchpoints; idx++)
655 dbr_addr = debug_registers[2 * idx];
656 dbr_mask = debug_registers[2 * idx + 1];
657 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
661 debug_registers[2 * idx] = 0;
662 debug_registers[2 * idx + 1] = 0;
667 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
676 ia64_linux_new_thread (struct lwp_info *lp)
681 for (i = 0; i < 8; i++)
683 if (debug_registers[i] != 0)
685 store_debug_register (lp->ptid, i, debug_registers[i]);
689 enable_watchpoints_in_psr (lp->ptid);
693 ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
697 struct regcache *regcache = get_current_regcache ();
699 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
702 if (siginfo.si_signo != SIGTRAP
703 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
706 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
707 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
708 for the next instruction. */
709 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
711 *addr_p = (CORE_ADDR) siginfo.si_addr;
716 ia64_linux_nat_target::stopped_by_watchpoint ()
719 return stopped_data_address (&addr);
723 ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
725 int cnt, int othertype)
731 /* Fetch register REGNUM from the inferior. */
734 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
736 struct gdbarch *gdbarch = regcache->arch ();
739 PTRACE_TYPE_RET *buf;
743 /* r0 cannot be fetched but is always zero. */
744 if (regnum == IA64_GR0_REGNUM)
746 const gdb_byte zero[8] = { 0 };
748 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
749 regcache->raw_supply (regnum, zero);
753 /* fr0 cannot be fetched but is always zero. */
754 if (regnum == IA64_FR0_REGNUM)
756 const gdb_byte f_zero[16] = { 0 };
758 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
759 regcache->raw_supply (regnum, f_zero);
763 /* fr1 cannot be fetched but is always one (1.0). */
764 if (regnum == IA64_FR1_REGNUM)
766 const gdb_byte f_one[16] =
767 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
769 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
770 regcache->raw_supply (regnum, f_one);
774 if (ia64_cannot_fetch_register (gdbarch, regnum))
776 regcache->raw_supply (regnum, NULL);
780 pid = get_ptrace_pid (regcache->ptid ());
782 /* This isn't really an address, but ptrace thinks of it as one. */
783 addr = ia64_register_addr (gdbarch, regnum);
784 size = register_size (gdbarch, regnum);
786 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
787 buf = (PTRACE_TYPE_RET *) alloca (size);
789 /* Read the register contents from the inferior a chunk at a time. */
790 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
793 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
795 error (_("Couldn't read register %s (#%d): %s."),
796 gdbarch_register_name (gdbarch, regnum),
797 regnum, safe_strerror (errno));
799 addr += sizeof (PTRACE_TYPE_RET);
801 regcache->raw_supply (regnum, buf);
804 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
805 for all registers. */
808 ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
812 regnum < gdbarch_num_regs (regcache->arch ());
814 ia64_linux_fetch_register (regcache, regnum);
816 ia64_linux_fetch_register (regcache, regnum);
819 /* Store register REGNUM into the inferior. */
822 ia64_linux_store_register (const struct regcache *regcache, int regnum)
824 struct gdbarch *gdbarch = regcache->arch ();
827 PTRACE_TYPE_RET *buf;
831 if (ia64_cannot_store_register (gdbarch, regnum))
834 pid = get_ptrace_pid (regcache->ptid ());
836 /* This isn't really an address, but ptrace thinks of it as one. */
837 addr = ia64_register_addr (gdbarch, regnum);
838 size = register_size (gdbarch, regnum);
840 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
841 buf = (PTRACE_TYPE_RET *) alloca (size);
843 /* Write the register contents into the inferior a chunk at a time. */
844 regcache->raw_collect (regnum, buf);
845 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
848 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
850 error (_("Couldn't write register %s (#%d): %s."),
851 gdbarch_register_name (gdbarch, regnum),
852 regnum, safe_strerror (errno));
854 addr += sizeof (PTRACE_TYPE_RET);
858 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
859 this for all registers. */
862 ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
866 regnum < gdbarch_num_regs (regcache->arch ());
868 ia64_linux_store_register (regcache, regnum);
870 ia64_linux_store_register (regcache, regnum);
873 /* Implement the xfer_partial target_ops method. */
875 enum target_xfer_status
876 ia64_linux_nat_target::xfer_partial (enum target_object object,
878 gdb_byte *readbuf, const gdb_byte *writebuf,
879 ULONGEST offset, ULONGEST len,
880 ULONGEST *xfered_len)
882 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
884 static long gate_table_size;
888 /* Probe for the table size once. */
889 if (gate_table_size == 0)
890 gate_table_size = syscall (__NR_getunwind, NULL, 0);
891 if (gate_table_size < 0)
892 return TARGET_XFER_E_IO;
894 if (offset >= gate_table_size)
895 return TARGET_XFER_EOF;
897 tmp_buf = (gdb_byte *) alloca (gate_table_size);
898 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
900 return TARGET_XFER_E_IO;
901 gdb_assert (res == gate_table_size);
903 if (offset + len > gate_table_size)
904 len = gate_table_size - offset;
906 memcpy (readbuf, tmp_buf + offset, len);
908 return TARGET_XFER_OK;
911 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
912 offset, len, xfered_len);
915 /* For break.b instruction ia64 CPU forgets the immediate value and generates
916 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
917 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
918 difference for the signals here. */
921 ia64_linux_nat_target::low_status_is_event (int status)
923 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
924 || WSTOPSIG (status) == SIGILL);
928 _initialize_ia64_linux_nat (void)
930 /* Register the target. */
931 linux_target = &the_ia64_linux_nat_target;
932 add_inf_child_target (&the_ia64_linux_nat_target);