1 /* Functions specific to running gdb native on IA-64 running
4 Copyright (C) 1999-2016 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
30 #include "nat/gdb_ptrace.h"
35 #include <sys/syscall.h>
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
41 /* Prototypes for supply_gregset etc. */
44 /* These must match the order of the register names.
46 Some sort of lookup table is needed because the offsets associated
47 with the registers are all over the board. */
49 static int u_offsets[] =
51 /* general registers */
52 -1, /* gr0 not available; i.e, it's always zero. */
84 /* gr32 through gr127 not directly available via the ptrace interface. */
85 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 /* Floating point registers */
92 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
219 /* Predicate registers - we don't fetch these individually. */
220 -1, -1, -1, -1, -1, -1, -1, -1,
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 /* branch registers */
237 /* Virtual frame pointer and virtual return address pointer. */
239 /* other registers */
242 PT_CR_IPSR, /* psr */
244 /* kernel registers not visible via ptrace interface (?) */
245 -1, -1, -1, -1, -1, -1, -1, -1,
247 -1, -1, -1, -1, -1, -1, -1, -1,
253 -1, /* Not available: FCR, IA32 floating control register. */
255 -1, /* Not available: EFLAG */
256 -1, /* Not available: CSD */
257 -1, /* Not available: SSD */
258 -1, /* Not available: CFLG */
259 -1, /* Not available: FSR */
260 -1, /* Not available: FIR */
261 -1, /* Not available: FDR */
269 -1, /* Not available: ITC */
270 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1, -1,
275 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 /* nat bits - not fetched directly; instead we obtain these bits from
283 either rnat or unat or from memory. */
284 -1, -1, -1, -1, -1, -1, -1, -1,
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
303 ia64_register_addr (struct gdbarch *gdbarch, int regno)
307 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
308 error (_("Invalid register number %d."), regno);
310 if (u_offsets[regno] == -1)
313 addr = (CORE_ADDR) u_offsets[regno];
319 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
322 || regno >= gdbarch_num_regs (gdbarch)
323 || u_offsets[regno] == -1;
327 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
329 /* Rationale behind not permitting stores to bspstore...
331 The IA-64 architecture provides bspstore and bsp which refer
332 memory locations in the RSE's backing store. bspstore is the
333 next location which will be written when the RSE needs to write
334 to memory. bsp is the address at which r32 in the current frame
335 would be found if it were written to the backing store.
337 The IA-64 architecture provides read-only access to bsp and
338 read/write access to bspstore (but only when the RSE is in
339 the enforced lazy mode). It should be noted that stores
340 to bspstore also affect the value of bsp. Changing bspstore
341 does not affect the number of dirty entries between bspstore
342 and bsp, so changing bspstore by N words will also cause bsp
343 to be changed by (roughly) N as well. (It could be N-1 or N+1
344 depending upon where the NaT collection bits fall.)
346 OTOH, the Linux kernel provides read/write access to bsp (and
347 currently read/write access to bspstore as well). But it
348 is definitely the case that if you change one, the other
349 will change at the same time. It is more useful to gdb to
350 be able to change bsp. So in order to prevent strange and
351 undesirable things from happening when a dummy stack frame
352 is popped (after calling an inferior function), we allow
353 bspstore to be read, but not written. (Note that popping
354 a (generic) dummy stack frame causes all registers that
355 were previously read from the inferior process to be written
359 || regno >= gdbarch_num_regs (gdbarch)
360 || u_offsets[regno] == -1
361 || regno == IA64_BSPSTORE_REGNUM;
365 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
368 const greg_t *regp = (const greg_t *) gregsetp;
370 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
372 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
375 /* FIXME: NAT collection bits are at index 32; gotta deal with these
378 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
380 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
382 regcache_raw_supply (regcache, regi,
383 regp + 34 + (regi - IA64_BR0_REGNUM));
386 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
387 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
388 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
389 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
390 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
391 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
392 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
393 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
394 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
395 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
396 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
397 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
398 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
402 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
405 greg_t *regp = (greg_t *) gregsetp;
407 #define COPY_REG(_idx_,_regi_) \
408 if ((regno == -1) || regno == _regi_) \
409 regcache_raw_collect (regcache, _regi_, regp + _idx_)
411 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
413 COPY_REG (regi - IA64_GR0_REGNUM, regi);
416 /* FIXME: NAT collection bits at index 32? */
418 COPY_REG (33, IA64_PR_REGNUM);
420 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
422 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
425 COPY_REG (42, IA64_IP_REGNUM);
426 COPY_REG (43, IA64_CFM_REGNUM);
427 COPY_REG (44, IA64_PSR_REGNUM);
428 COPY_REG (45, IA64_RSC_REGNUM);
429 COPY_REG (46, IA64_BSP_REGNUM);
430 COPY_REG (47, IA64_BSPSTORE_REGNUM);
431 COPY_REG (48, IA64_RNAT_REGNUM);
432 COPY_REG (49, IA64_CCV_REGNUM);
433 COPY_REG (50, IA64_UNAT_REGNUM);
434 COPY_REG (51, IA64_FPSR_REGNUM);
435 COPY_REG (52, IA64_PFS_REGNUM);
436 COPY_REG (53, IA64_LC_REGNUM);
437 COPY_REG (54, IA64_EC_REGNUM);
440 /* Given a pointer to a floating point register set in /proc format
441 (fpregset_t *), unpack the register contents and supply them as gdb's
442 idea of the current floating point register values. */
445 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
449 const gdb_byte f_zero[16] = { 0 };
450 const gdb_byte f_one[16] =
451 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
453 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
454 did the same. So ignore whatever might be recorded in fpregset_t
455 for fr0/fr1 and always supply their expected values. */
457 /* fr0 is always read as zero. */
458 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
459 /* fr1 is always read as one (1.0). */
460 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
462 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
464 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
465 regcache_raw_supply (regcache, regi, from);
469 /* Given a pointer to a floating point register set in /proc format
470 (fpregset_t *), update the register specified by REGNO from gdb's idea
471 of the current floating point register set. If REGNO is -1, update
475 fill_fpregset (const struct regcache *regcache,
476 fpregset_t *fpregsetp, int regno)
480 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
482 if ((regno == -1) || (regno == regi))
483 regcache_raw_collect (regcache, regi,
484 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
488 #define IA64_PSR_DB (1UL << 24)
489 #define IA64_PSR_DD (1UL << 39)
492 enable_watchpoints_in_psr (ptid_t ptid)
494 struct regcache *regcache = get_thread_regcache (ptid);
497 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
498 if (!(psr & IA64_PSR_DB))
500 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
501 watchpoints and breakpoints. */
502 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
506 static long debug_registers[8];
509 store_debug_register (ptid_t ptid, int idx, long val)
513 tid = ptid_get_lwp (ptid);
515 tid = ptid_get_pid (ptid);
517 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
521 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
525 store_debug_register (ptid, 2 * idx, *dbr_addr);
527 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
531 is_power_of_2 (int val)
536 for (i = 0; i < 8 * sizeof (val); i++)
540 return onecount <= 1;
544 ia64_linux_insert_watchpoint (struct target_ops *self,
545 CORE_ADDR addr, int len,
546 enum target_hw_bp_type type,
547 struct expression *cond)
551 long dbr_addr, dbr_mask;
552 int max_watchpoints = 4;
554 if (len <= 0 || !is_power_of_2 (len))
557 for (idx = 0; idx < max_watchpoints; idx++)
559 dbr_mask = debug_registers[idx * 2 + 1];
560 if ((dbr_mask & (0x3UL << 62)) == 0)
562 /* Exit loop if both r and w bits clear. */
567 if (idx == max_watchpoints)
570 dbr_addr = (long) addr;
571 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
572 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
576 dbr_mask |= (1L << 62); /* Set w bit */
579 dbr_mask |= (1L << 63); /* Set r bit */
582 dbr_mask |= (3L << 62); /* Set both r and w bits */
588 debug_registers[2 * idx] = dbr_addr;
589 debug_registers[2 * idx + 1] = dbr_mask;
592 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
593 enable_watchpoints_in_psr (lp->ptid);
600 ia64_linux_remove_watchpoint (struct target_ops *self,
601 CORE_ADDR addr, int len,
602 enum target_hw_bp_type type,
603 struct expression *cond)
606 long dbr_addr, dbr_mask;
607 int max_watchpoints = 4;
609 if (len <= 0 || !is_power_of_2 (len))
612 for (idx = 0; idx < max_watchpoints; idx++)
614 dbr_addr = debug_registers[2 * idx];
615 dbr_mask = debug_registers[2 * idx + 1];
616 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
620 debug_registers[2 * idx] = 0;
621 debug_registers[2 * idx + 1] = 0;
626 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
635 ia64_linux_new_thread (struct lwp_info *lp)
640 for (i = 0; i < 8; i++)
642 if (debug_registers[i] != 0)
644 store_debug_register (lp->ptid, i, debug_registers[i]);
648 enable_watchpoints_in_psr (lp->ptid);
652 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
656 struct regcache *regcache = get_current_regcache ();
658 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
661 if (siginfo.si_signo != SIGTRAP
662 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
665 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
666 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
667 for the next instruction. */
668 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
670 *addr_p = (CORE_ADDR) siginfo.si_addr;
675 ia64_linux_stopped_by_watchpoint (struct target_ops *ops)
678 return ia64_linux_stopped_data_address (ops, &addr);
682 ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
684 int cnt, int othertype)
690 /* Fetch register REGNUM from the inferior. */
693 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
695 struct gdbarch *gdbarch = get_regcache_arch (regcache);
698 PTRACE_TYPE_RET *buf;
701 /* r0 cannot be fetched but is always zero. */
702 if (regnum == IA64_GR0_REGNUM)
704 const gdb_byte zero[8] = { 0 };
706 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
707 regcache_raw_supply (regcache, regnum, zero);
711 /* fr0 cannot be fetched but is always zero. */
712 if (regnum == IA64_FR0_REGNUM)
714 const gdb_byte f_zero[16] = { 0 };
716 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
717 regcache_raw_supply (regcache, regnum, f_zero);
721 /* fr1 cannot be fetched but is always one (1.0). */
722 if (regnum == IA64_FR1_REGNUM)
724 const gdb_byte f_one[16] =
725 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
727 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
728 regcache_raw_supply (regcache, regnum, f_one);
732 if (ia64_cannot_fetch_register (gdbarch, regnum))
734 regcache_raw_supply (regcache, regnum, NULL);
738 /* Cater for systems like GNU/Linux, that implement threads as
739 separate processes. */
740 pid = ptid_get_lwp (inferior_ptid);
742 pid = ptid_get_pid (inferior_ptid);
744 /* This isn't really an address, but ptrace thinks of it as one. */
745 addr = ia64_register_addr (gdbarch, regnum);
746 size = register_size (gdbarch, regnum);
748 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
749 buf = (PTRACE_TYPE_RET *) alloca (size);
751 /* Read the register contents from the inferior a chunk at a time. */
752 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
755 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
757 error (_("Couldn't read register %s (#%d): %s."),
758 gdbarch_register_name (gdbarch, regnum),
759 regnum, safe_strerror (errno));
761 addr += sizeof (PTRACE_TYPE_RET);
763 regcache_raw_supply (regcache, regnum, buf);
766 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
767 for all registers. */
770 ia64_linux_fetch_registers (struct target_ops *ops,
771 struct regcache *regcache, int regnum)
775 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
777 ia64_linux_fetch_register (regcache, regnum);
779 ia64_linux_fetch_register (regcache, regnum);
782 /* Store register REGNUM into the inferior. */
785 ia64_linux_store_register (const struct regcache *regcache, int regnum)
787 struct gdbarch *gdbarch = get_regcache_arch (regcache);
790 PTRACE_TYPE_RET *buf;
793 if (ia64_cannot_store_register (gdbarch, regnum))
796 /* Cater for systems like GNU/Linux, that implement threads as
797 separate processes. */
798 pid = ptid_get_lwp (inferior_ptid);
800 pid = ptid_get_pid (inferior_ptid);
802 /* This isn't really an address, but ptrace thinks of it as one. */
803 addr = ia64_register_addr (gdbarch, regnum);
804 size = register_size (gdbarch, regnum);
806 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
807 buf = (PTRACE_TYPE_RET *) alloca (size);
809 /* Write the register contents into the inferior a chunk at a time. */
810 regcache_raw_collect (regcache, regnum, buf);
811 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
814 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
816 error (_("Couldn't write register %s (#%d): %s."),
817 gdbarch_register_name (gdbarch, regnum),
818 regnum, safe_strerror (errno));
820 addr += sizeof (PTRACE_TYPE_RET);
824 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
825 this for all registers. */
828 ia64_linux_store_registers (struct target_ops *ops,
829 struct regcache *regcache, int regnum)
833 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
835 ia64_linux_store_register (regcache, regnum);
837 ia64_linux_store_register (regcache, regnum);
841 static target_xfer_partial_ftype *super_xfer_partial;
843 /* Implement the to_xfer_partial target_ops method. */
845 static enum target_xfer_status
846 ia64_linux_xfer_partial (struct target_ops *ops,
847 enum target_object object,
849 gdb_byte *readbuf, const gdb_byte *writebuf,
850 ULONGEST offset, ULONGEST len,
851 ULONGEST *xfered_len)
853 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
855 static long gate_table_size;
859 /* Probe for the table size once. */
860 if (gate_table_size == 0)
861 gate_table_size = syscall (__NR_getunwind, NULL, 0);
862 if (gate_table_size < 0)
863 return TARGET_XFER_E_IO;
865 if (offset >= gate_table_size)
866 return TARGET_XFER_EOF;
868 tmp_buf = (gdb_byte *) alloca (gate_table_size);
869 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
871 return TARGET_XFER_E_IO;
872 gdb_assert (res == gate_table_size);
874 if (offset + len > gate_table_size)
875 len = gate_table_size - offset;
877 memcpy (readbuf, tmp_buf + offset, len);
879 return TARGET_XFER_OK;
882 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
883 offset, len, xfered_len);
886 /* For break.b instruction ia64 CPU forgets the immediate value and generates
887 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
888 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
889 difference for the signals here. */
892 ia64_linux_status_is_event (int status)
894 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
895 || WSTOPSIG (status) == SIGILL);
898 void _initialize_ia64_linux_nat (void);
901 _initialize_ia64_linux_nat (void)
903 struct target_ops *t;
905 /* Fill in the generic GNU/Linux methods. */
908 /* Override the default fetch/store register routines. */
909 t->to_fetch_registers = ia64_linux_fetch_registers;
910 t->to_store_registers = ia64_linux_store_registers;
912 /* Override the default to_xfer_partial. */
913 super_xfer_partial = t->to_xfer_partial;
914 t->to_xfer_partial = ia64_linux_xfer_partial;
916 /* Override watchpoint routines. */
918 /* The IA-64 architecture can step over a watch point (without triggering
919 it again) if the "dd" (data debug fault disable) bit in the processor
922 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
923 code there has determined that a hardware watchpoint has indeed
924 been hit. The CPU will then be able to execute one instruction
925 without triggering a watchpoint. */
927 t->to_have_steppable_watchpoint = 1;
928 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
929 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
930 t->to_stopped_data_address = ia64_linux_stopped_data_address;
931 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
932 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
934 /* Register the target. */
935 linux_nat_add_target (t);
936 linux_nat_set_new_thread (t, ia64_linux_new_thread);
937 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);