1 /* Functions specific to running gdb native on IA-64 running
4 Copyright (C) 1999-2014 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
31 #include <sys/ptrace.h>
36 #include <sys/syscall.h>
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
42 /* Prototypes for supply_gregset etc. */
45 /* These must match the order of the register names.
47 Some sort of lookup table is needed because the offsets associated
48 with the registers are all over the board. */
50 static int u_offsets[] =
52 /* general registers */
53 -1, /* gr0 not available; i.e, it's always zero. */
85 /* gr32 through gr127 not directly available via the ptrace interface. */
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 /* Floating point registers */
93 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
220 /* Predicate registers - we don't fetch these individually. */
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 /* branch registers */
238 /* Virtual frame pointer and virtual return address pointer. */
240 /* other registers */
243 PT_CR_IPSR, /* psr */
245 /* kernel registers not visible via ptrace interface (?) */
246 -1, -1, -1, -1, -1, -1, -1, -1,
248 -1, -1, -1, -1, -1, -1, -1, -1,
254 -1, /* Not available: FCR, IA32 floating control register. */
256 -1, /* Not available: EFLAG */
257 -1, /* Not available: CSD */
258 -1, /* Not available: SSD */
259 -1, /* Not available: CFLG */
260 -1, /* Not available: FSR */
261 -1, /* Not available: FIR */
262 -1, /* Not available: FDR */
270 -1, /* Not available: ITC */
271 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 /* nat bits - not fetched directly; instead we obtain these bits from
284 either rnat or unat or from memory. */
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
304 ia64_register_addr (struct gdbarch *gdbarch, int regno)
308 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
309 error (_("Invalid register number %d."), regno);
311 if (u_offsets[regno] == -1)
314 addr = (CORE_ADDR) u_offsets[regno];
320 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
323 || regno >= gdbarch_num_regs (gdbarch)
324 || u_offsets[regno] == -1;
328 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
330 /* Rationale behind not permitting stores to bspstore...
332 The IA-64 architecture provides bspstore and bsp which refer
333 memory locations in the RSE's backing store. bspstore is the
334 next location which will be written when the RSE needs to write
335 to memory. bsp is the address at which r32 in the current frame
336 would be found if it were written to the backing store.
338 The IA-64 architecture provides read-only access to bsp and
339 read/write access to bspstore (but only when the RSE is in
340 the enforced lazy mode). It should be noted that stores
341 to bspstore also affect the value of bsp. Changing bspstore
342 does not affect the number of dirty entries between bspstore
343 and bsp, so changing bspstore by N words will also cause bsp
344 to be changed by (roughly) N as well. (It could be N-1 or N+1
345 depending upon where the NaT collection bits fall.)
347 OTOH, the Linux kernel provides read/write access to bsp (and
348 currently read/write access to bspstore as well). But it
349 is definitely the case that if you change one, the other
350 will change at the same time. It is more useful to gdb to
351 be able to change bsp. So in order to prevent strange and
352 undesirable things from happening when a dummy stack frame
353 is popped (after calling an inferior function), we allow
354 bspstore to be read, but not written. (Note that popping
355 a (generic) dummy stack frame causes all registers that
356 were previously read from the inferior process to be written
360 || regno >= gdbarch_num_regs (gdbarch)
361 || u_offsets[regno] == -1
362 || regno == IA64_BSPSTORE_REGNUM;
366 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
369 const greg_t *regp = (const greg_t *) gregsetp;
371 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
373 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
379 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
383 regcache_raw_supply (regcache, regi,
384 regp + 34 + (regi - IA64_BR0_REGNUM));
387 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
388 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
389 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
390 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
391 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
392 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
393 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
394 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
395 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
396 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
397 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
398 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
399 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
403 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
406 greg_t *regp = (greg_t *) gregsetp;
408 #define COPY_REG(_idx_,_regi_) \
409 if ((regno == -1) || regno == _regi_) \
410 regcache_raw_collect (regcache, _regi_, regp + _idx_)
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
414 COPY_REG (regi - IA64_GR0_REGNUM, regi);
417 /* FIXME: NAT collection bits at index 32? */
419 COPY_REG (33, IA64_PR_REGNUM);
421 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
423 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
426 COPY_REG (42, IA64_IP_REGNUM);
427 COPY_REG (43, IA64_CFM_REGNUM);
428 COPY_REG (44, IA64_PSR_REGNUM);
429 COPY_REG (45, IA64_RSC_REGNUM);
430 COPY_REG (46, IA64_BSP_REGNUM);
431 COPY_REG (47, IA64_BSPSTORE_REGNUM);
432 COPY_REG (48, IA64_RNAT_REGNUM);
433 COPY_REG (49, IA64_CCV_REGNUM);
434 COPY_REG (50, IA64_UNAT_REGNUM);
435 COPY_REG (51, IA64_FPSR_REGNUM);
436 COPY_REG (52, IA64_PFS_REGNUM);
437 COPY_REG (53, IA64_LC_REGNUM);
438 COPY_REG (54, IA64_EC_REGNUM);
441 /* Given a pointer to a floating point register set in /proc format
442 (fpregset_t *), unpack the register contents and supply them as gdb's
443 idea of the current floating point register values. */
446 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
450 const gdb_byte f_zero[16] = { 0 };
451 const gdb_byte f_one[16] =
452 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
454 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
455 did the same. So ignore whatever might be recorded in fpregset_t
456 for fr0/fr1 and always supply their expected values. */
458 /* fr0 is always read as zero. */
459 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
460 /* fr1 is always read as one (1.0). */
461 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
463 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
465 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
466 regcache_raw_supply (regcache, regi, from);
470 /* Given a pointer to a floating point register set in /proc format
471 (fpregset_t *), update the register specified by REGNO from gdb's idea
472 of the current floating point register set. If REGNO is -1, update
476 fill_fpregset (const struct regcache *regcache,
477 fpregset_t *fpregsetp, int regno)
481 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
483 if ((regno == -1) || (regno == regi))
484 regcache_raw_collect (regcache, regi,
485 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
489 #define IA64_PSR_DB (1UL << 24)
490 #define IA64_PSR_DD (1UL << 39)
493 enable_watchpoints_in_psr (ptid_t ptid)
495 struct regcache *regcache = get_thread_regcache (ptid);
498 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
499 if (!(psr & IA64_PSR_DB))
501 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
502 watchpoints and breakpoints. */
503 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
507 static long debug_registers[8];
510 store_debug_register (ptid_t ptid, int idx, long val)
514 tid = ptid_get_lwp (ptid);
516 tid = ptid_get_pid (ptid);
518 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
522 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
526 store_debug_register (ptid, 2 * idx, *dbr_addr);
528 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
532 is_power_of_2 (int val)
537 for (i = 0; i < 8 * sizeof (val); i++)
541 return onecount <= 1;
545 ia64_linux_insert_watchpoint (struct target_ops *self,
546 CORE_ADDR addr, int len, int rw,
547 struct expression *cond)
551 long dbr_addr, dbr_mask;
552 int max_watchpoints = 4;
554 if (len <= 0 || !is_power_of_2 (len))
557 for (idx = 0; idx < max_watchpoints; idx++)
559 dbr_mask = debug_registers[idx * 2 + 1];
560 if ((dbr_mask & (0x3UL << 62)) == 0)
562 /* Exit loop if both r and w bits clear. */
567 if (idx == max_watchpoints)
570 dbr_addr = (long) addr;
571 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
572 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
576 dbr_mask |= (1L << 62); /* Set w bit */
579 dbr_mask |= (1L << 63); /* Set r bit */
582 dbr_mask |= (3L << 62); /* Set both r and w bits */
588 debug_registers[2 * idx] = dbr_addr;
589 debug_registers[2 * idx + 1] = dbr_mask;
592 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
593 enable_watchpoints_in_psr (lp->ptid);
600 ia64_linux_remove_watchpoint (struct target_ops *self,
601 CORE_ADDR addr, int len, int type,
602 struct expression *cond)
605 long dbr_addr, dbr_mask;
606 int max_watchpoints = 4;
608 if (len <= 0 || !is_power_of_2 (len))
611 for (idx = 0; idx < max_watchpoints; idx++)
613 dbr_addr = debug_registers[2 * idx];
614 dbr_mask = debug_registers[2 * idx + 1];
615 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
619 debug_registers[2 * idx] = 0;
620 debug_registers[2 * idx + 1] = 0;
625 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
634 ia64_linux_new_thread (struct lwp_info *lp)
639 for (i = 0; i < 8; i++)
641 if (debug_registers[i] != 0)
643 store_debug_register (lp->ptid, i, debug_registers[i]);
647 enable_watchpoints_in_psr (lp->ptid);
651 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
655 struct regcache *regcache = get_current_regcache ();
657 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
660 if (siginfo.si_signo != SIGTRAP
661 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
664 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
665 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
666 for the next instruction. */
667 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
669 *addr_p = (CORE_ADDR) siginfo.si_addr;
674 ia64_linux_stopped_by_watchpoint (struct target_ops *ops)
677 return ia64_linux_stopped_data_address (ops, &addr);
681 ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
682 int type, int cnt, int othertype)
688 /* Fetch register REGNUM from the inferior. */
691 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
696 PTRACE_TYPE_RET *buf;
699 /* r0 cannot be fetched but is always zero. */
700 if (regnum == IA64_GR0_REGNUM)
702 const gdb_byte zero[8] = { 0 };
704 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
705 regcache_raw_supply (regcache, regnum, zero);
709 /* fr0 cannot be fetched but is always zero. */
710 if (regnum == IA64_FR0_REGNUM)
712 const gdb_byte f_zero[16] = { 0 };
714 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
715 regcache_raw_supply (regcache, regnum, f_zero);
719 /* fr1 cannot be fetched but is always one (1.0). */
720 if (regnum == IA64_FR1_REGNUM)
722 const gdb_byte f_one[16] =
723 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
725 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
726 regcache_raw_supply (regcache, regnum, f_one);
730 if (ia64_cannot_fetch_register (gdbarch, regnum))
732 regcache_raw_supply (regcache, regnum, NULL);
736 /* Cater for systems like GNU/Linux, that implement threads as
737 separate processes. */
738 pid = ptid_get_lwp (inferior_ptid);
740 pid = ptid_get_pid (inferior_ptid);
742 /* This isn't really an address, but ptrace thinks of it as one. */
743 addr = ia64_register_addr (gdbarch, regnum);
744 size = register_size (gdbarch, regnum);
746 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
749 /* Read the register contents from the inferior a chunk at a time. */
750 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
753 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
755 error (_("Couldn't read register %s (#%d): %s."),
756 gdbarch_register_name (gdbarch, regnum),
757 regnum, safe_strerror (errno));
759 addr += sizeof (PTRACE_TYPE_RET);
761 regcache_raw_supply (regcache, regnum, buf);
764 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
765 for all registers. */
768 ia64_linux_fetch_registers (struct target_ops *ops,
769 struct regcache *regcache, int regnum)
773 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
775 ia64_linux_fetch_register (regcache, regnum);
777 ia64_linux_fetch_register (regcache, regnum);
780 /* Store register REGNUM into the inferior. */
783 ia64_linux_store_register (const struct regcache *regcache, int regnum)
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
788 PTRACE_TYPE_RET *buf;
791 if (ia64_cannot_store_register (gdbarch, regnum))
794 /* Cater for systems like GNU/Linux, that implement threads as
795 separate processes. */
796 pid = ptid_get_lwp (inferior_ptid);
798 pid = ptid_get_pid (inferior_ptid);
800 /* This isn't really an address, but ptrace thinks of it as one. */
801 addr = ia64_register_addr (gdbarch, regnum);
802 size = register_size (gdbarch, regnum);
804 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
807 /* Write the register contents into the inferior a chunk at a time. */
808 regcache_raw_collect (regcache, regnum, buf);
809 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
812 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
814 error (_("Couldn't write register %s (#%d): %s."),
815 gdbarch_register_name (gdbarch, regnum),
816 regnum, safe_strerror (errno));
818 addr += sizeof (PTRACE_TYPE_RET);
822 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
823 this for all registers. */
826 ia64_linux_store_registers (struct target_ops *ops,
827 struct regcache *regcache, int regnum)
831 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
833 ia64_linux_store_register (regcache, regnum);
835 ia64_linux_store_register (regcache, regnum);
839 static target_xfer_partial_ftype *super_xfer_partial;
841 /* Implement the to_xfer_partial target_ops method. */
843 static enum target_xfer_status
844 ia64_linux_xfer_partial (struct target_ops *ops,
845 enum target_object object,
847 gdb_byte *readbuf, const gdb_byte *writebuf,
848 ULONGEST offset, ULONGEST len,
849 ULONGEST *xfered_len)
851 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
853 static long gate_table_size;
857 /* Probe for the table size once. */
858 if (gate_table_size == 0)
859 gate_table_size = syscall (__NR_getunwind, NULL, 0);
860 if (gate_table_size < 0)
861 return TARGET_XFER_E_IO;
863 if (offset >= gate_table_size)
864 return TARGET_XFER_EOF;
866 tmp_buf = alloca (gate_table_size);
867 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
869 return TARGET_XFER_E_IO;
870 gdb_assert (res == gate_table_size);
872 if (offset + len > gate_table_size)
873 len = gate_table_size - offset;
875 memcpy (readbuf, tmp_buf + offset, len);
877 return TARGET_XFER_OK;
880 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
881 offset, len, xfered_len);
884 /* For break.b instruction ia64 CPU forgets the immediate value and generates
885 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
886 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
887 difference for the signals here. */
890 ia64_linux_status_is_event (int status)
892 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
893 || WSTOPSIG (status) == SIGILL);
896 void _initialize_ia64_linux_nat (void);
899 _initialize_ia64_linux_nat (void)
901 struct target_ops *t;
903 /* Fill in the generic GNU/Linux methods. */
906 /* Override the default fetch/store register routines. */
907 t->to_fetch_registers = ia64_linux_fetch_registers;
908 t->to_store_registers = ia64_linux_store_registers;
910 /* Override the default to_xfer_partial. */
911 super_xfer_partial = t->to_xfer_partial;
912 t->to_xfer_partial = ia64_linux_xfer_partial;
914 /* Override watchpoint routines. */
916 /* The IA-64 architecture can step over a watch point (without triggering
917 it again) if the "dd" (data debug fault disable) bit in the processor
920 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
921 code there has determined that a hardware watchpoint has indeed
922 been hit. The CPU will then be able to execute one instruction
923 without triggering a watchpoint. */
925 t->to_have_steppable_watchpoint = 1;
926 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
927 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
928 t->to_stopped_data_address = ia64_linux_stopped_data_address;
929 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
930 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
932 /* Register the target. */
933 linux_nat_add_target (t);
934 linux_nat_set_new_thread (t, ia64_linux_new_thread);
935 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);